linux/arch/powerpc/kernel/align.c
<<
>>
Prefs
   1/* align.c - handle alignment exceptions for the Power PC.
   2 *
   3 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
   4 * Copyright (c) 1998-1999 TiVo, Inc.
   5 *   PowerPC 403GCX modifications.
   6 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
   7 *   PowerPC 403GCX/405GP modifications.
   8 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
   9 *   64-bit and Power4 support
  10 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
  11 *                    <benh@kernel.crashing.org>
  12 *   Merge ppc32 and ppc64 implementations
  13 *
  14 * This program is free software; you can redistribute it and/or
  15 * modify it under the terms of the GNU General Public License
  16 * as published by the Free Software Foundation; either version
  17 * 2 of the License, or (at your option) any later version.
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/mm.h>
  22#include <asm/processor.h>
  23#include <asm/uaccess.h>
  24#include <asm/system.h>
  25#include <asm/cache.h>
  26#include <asm/cputable.h>
  27#include <asm/emulated_ops.h>
  28
  29struct aligninfo {
  30        unsigned char len;
  31        unsigned char flags;
  32};
  33
  34#define IS_XFORM(inst)  (((inst) >> 26) == 31)
  35#define IS_DSFORM(inst) (((inst) >> 26) >= 56)
  36
  37#define INVALID { 0, 0 }
  38
  39/* Bits in the flags field */
  40#define LD      0       /* load */
  41#define ST      1       /* store */
  42#define SE      2       /* sign-extend value, or FP ld/st as word */
  43#define F       4       /* to/from fp regs */
  44#define U       8       /* update index register */
  45#define M       0x10    /* multiple load/store */
  46#define SW      0x20    /* byte swap */
  47#define S       0x40    /* single-precision fp or... */
  48#define SX      0x40    /* ... byte count in XER */
  49#define HARD    0x80    /* string, stwcx. */
  50#define E4      0x40    /* SPE endianness is word */
  51#define E8      0x80    /* SPE endianness is double word */
  52#define SPLT    0x80    /* VSX SPLAT load */
  53
  54/* DSISR bits reported for a DCBZ instruction: */
  55#define DCBZ    0x5f    /* 8xx/82xx dcbz faults when cache not enabled */
  56
  57#define SWAP(a, b)      (t = (a), (a) = (b), (b) = t)
  58
  59/*
  60 * The PowerPC stores certain bits of the instruction that caused the
  61 * alignment exception in the DSISR register.  This array maps those
  62 * bits to information about the operand length and what the
  63 * instruction would do.
  64 */
  65static struct aligninfo aligninfo[128] = {
  66        { 4, LD },              /* 00 0 0000: lwz / lwarx */
  67        INVALID,                /* 00 0 0001 */
  68        { 4, ST },              /* 00 0 0010: stw */
  69        INVALID,                /* 00 0 0011 */
  70        { 2, LD },              /* 00 0 0100: lhz */
  71        { 2, LD+SE },           /* 00 0 0101: lha */
  72        { 2, ST },              /* 00 0 0110: sth */
  73        { 4, LD+M },            /* 00 0 0111: lmw */
  74        { 4, LD+F+S },          /* 00 0 1000: lfs */
  75        { 8, LD+F },            /* 00 0 1001: lfd */
  76        { 4, ST+F+S },          /* 00 0 1010: stfs */
  77        { 8, ST+F },            /* 00 0 1011: stfd */
  78        INVALID,                /* 00 0 1100 */
  79        { 8, LD },              /* 00 0 1101: ld/ldu/lwa */
  80        INVALID,                /* 00 0 1110 */
  81        { 8, ST },              /* 00 0 1111: std/stdu */
  82        { 4, LD+U },            /* 00 1 0000: lwzu */
  83        INVALID,                /* 00 1 0001 */
  84        { 4, ST+U },            /* 00 1 0010: stwu */
  85        INVALID,                /* 00 1 0011 */
  86        { 2, LD+U },            /* 00 1 0100: lhzu */
  87        { 2, LD+SE+U },         /* 00 1 0101: lhau */
  88        { 2, ST+U },            /* 00 1 0110: sthu */
  89        { 4, ST+M },            /* 00 1 0111: stmw */
  90        { 4, LD+F+S+U },        /* 00 1 1000: lfsu */
  91        { 8, LD+F+U },          /* 00 1 1001: lfdu */
  92        { 4, ST+F+S+U },        /* 00 1 1010: stfsu */
  93        { 8, ST+F+U },          /* 00 1 1011: stfdu */
  94        { 16, LD+F },           /* 00 1 1100: lfdp */
  95        INVALID,                /* 00 1 1101 */
  96        { 16, ST+F },           /* 00 1 1110: stfdp */
  97        INVALID,                /* 00 1 1111 */
  98        { 8, LD },              /* 01 0 0000: ldx */
  99        INVALID,                /* 01 0 0001 */
 100        { 8, ST },              /* 01 0 0010: stdx */
 101        INVALID,                /* 01 0 0011 */
 102        INVALID,                /* 01 0 0100 */
 103        { 4, LD+SE },           /* 01 0 0101: lwax */
 104        INVALID,                /* 01 0 0110 */
 105        INVALID,                /* 01 0 0111 */
 106        { 4, LD+M+HARD+SX },    /* 01 0 1000: lswx */
 107        { 4, LD+M+HARD },       /* 01 0 1001: lswi */
 108        { 4, ST+M+HARD+SX },    /* 01 0 1010: stswx */
 109        { 4, ST+M+HARD },       /* 01 0 1011: stswi */
 110        INVALID,                /* 01 0 1100 */
 111        { 8, LD+U },            /* 01 0 1101: ldu */
 112        INVALID,                /* 01 0 1110 */
 113        { 8, ST+U },            /* 01 0 1111: stdu */
 114        { 8, LD+U },            /* 01 1 0000: ldux */
 115        INVALID,                /* 01 1 0001 */
 116        { 8, ST+U },            /* 01 1 0010: stdux */
 117        INVALID,                /* 01 1 0011 */
 118        INVALID,                /* 01 1 0100 */
 119        { 4, LD+SE+U },         /* 01 1 0101: lwaux */
 120        INVALID,                /* 01 1 0110 */
 121        INVALID,                /* 01 1 0111 */
 122        INVALID,                /* 01 1 1000 */
 123        INVALID,                /* 01 1 1001 */
 124        INVALID,                /* 01 1 1010 */
 125        INVALID,                /* 01 1 1011 */
 126        INVALID,                /* 01 1 1100 */
 127        INVALID,                /* 01 1 1101 */
 128        INVALID,                /* 01 1 1110 */
 129        INVALID,                /* 01 1 1111 */
 130        INVALID,                /* 10 0 0000 */
 131        INVALID,                /* 10 0 0001 */
 132        INVALID,                /* 10 0 0010: stwcx. */
 133        INVALID,                /* 10 0 0011 */
 134        INVALID,                /* 10 0 0100 */
 135        INVALID,                /* 10 0 0101 */
 136        INVALID,                /* 10 0 0110 */
 137        INVALID,                /* 10 0 0111 */
 138        { 4, LD+SW },           /* 10 0 1000: lwbrx */
 139        INVALID,                /* 10 0 1001 */
 140        { 4, ST+SW },           /* 10 0 1010: stwbrx */
 141        INVALID,                /* 10 0 1011 */
 142        { 2, LD+SW },           /* 10 0 1100: lhbrx */
 143        { 4, LD+SE },           /* 10 0 1101  lwa */
 144        { 2, ST+SW },           /* 10 0 1110: sthbrx */
 145        INVALID,                /* 10 0 1111 */
 146        INVALID,                /* 10 1 0000 */
 147        INVALID,                /* 10 1 0001 */
 148        INVALID,                /* 10 1 0010 */
 149        INVALID,                /* 10 1 0011 */
 150        INVALID,                /* 10 1 0100 */
 151        INVALID,                /* 10 1 0101 */
 152        INVALID,                /* 10 1 0110 */
 153        INVALID,                /* 10 1 0111 */
 154        INVALID,                /* 10 1 1000 */
 155        INVALID,                /* 10 1 1001 */
 156        INVALID,                /* 10 1 1010 */
 157        INVALID,                /* 10 1 1011 */
 158        INVALID,                /* 10 1 1100 */
 159        INVALID,                /* 10 1 1101 */
 160        INVALID,                /* 10 1 1110 */
 161        { 0, ST+HARD },         /* 10 1 1111: dcbz */
 162        { 4, LD },              /* 11 0 0000: lwzx */
 163        INVALID,                /* 11 0 0001 */
 164        { 4, ST },              /* 11 0 0010: stwx */
 165        INVALID,                /* 11 0 0011 */
 166        { 2, LD },              /* 11 0 0100: lhzx */
 167        { 2, LD+SE },           /* 11 0 0101: lhax */
 168        { 2, ST },              /* 11 0 0110: sthx */
 169        INVALID,                /* 11 0 0111 */
 170        { 4, LD+F+S },          /* 11 0 1000: lfsx */
 171        { 8, LD+F },            /* 11 0 1001: lfdx */
 172        { 4, ST+F+S },          /* 11 0 1010: stfsx */
 173        { 8, ST+F },            /* 11 0 1011: stfdx */
 174        { 16, LD+F },           /* 11 0 1100: lfdpx */
 175        { 4, LD+F+SE },         /* 11 0 1101: lfiwax */
 176        { 16, ST+F },           /* 11 0 1110: stfdpx */
 177        { 4, ST+F },            /* 11 0 1111: stfiwx */
 178        { 4, LD+U },            /* 11 1 0000: lwzux */
 179        INVALID,                /* 11 1 0001 */
 180        { 4, ST+U },            /* 11 1 0010: stwux */
 181        INVALID,                /* 11 1 0011 */
 182        { 2, LD+U },            /* 11 1 0100: lhzux */
 183        { 2, LD+SE+U },         /* 11 1 0101: lhaux */
 184        { 2, ST+U },            /* 11 1 0110: sthux */
 185        INVALID,                /* 11 1 0111 */
 186        { 4, LD+F+S+U },        /* 11 1 1000: lfsux */
 187        { 8, LD+F+U },          /* 11 1 1001: lfdux */
 188        { 4, ST+F+S+U },        /* 11 1 1010: stfsux */
 189        { 8, ST+F+U },          /* 11 1 1011: stfdux */
 190        INVALID,                /* 11 1 1100 */
 191        { 4, LD+F },            /* 11 1 1101: lfiwzx */
 192        INVALID,                /* 11 1 1110 */
 193        INVALID,                /* 11 1 1111 */
 194};
 195
 196/*
 197 * Create a DSISR value from the instruction
 198 */
 199static inline unsigned make_dsisr(unsigned instr)
 200{
 201        unsigned dsisr;
 202
 203
 204        /* bits  6:15 --> 22:31 */
 205        dsisr = (instr & 0x03ff0000) >> 16;
 206
 207        if (IS_XFORM(instr)) {
 208                /* bits 29:30 --> 15:16 */
 209                dsisr |= (instr & 0x00000006) << 14;
 210                /* bit     25 -->    17 */
 211                dsisr |= (instr & 0x00000040) << 8;
 212                /* bits 21:24 --> 18:21 */
 213                dsisr |= (instr & 0x00000780) << 3;
 214        } else {
 215                /* bit      5 -->    17 */
 216                dsisr |= (instr & 0x04000000) >> 12;
 217                /* bits  1: 4 --> 18:21 */
 218                dsisr |= (instr & 0x78000000) >> 17;
 219                /* bits 30:31 --> 12:13 */
 220                if (IS_DSFORM(instr))
 221                        dsisr |= (instr & 0x00000003) << 18;
 222        }
 223
 224        return dsisr;
 225}
 226
 227/*
 228 * The dcbz (data cache block zero) instruction
 229 * gives an alignment fault if used on non-cacheable
 230 * memory.  We handle the fault mainly for the
 231 * case when we are running with the cache disabled
 232 * for debugging.
 233 */
 234static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
 235{
 236        long __user *p;
 237        int i, size;
 238
 239#ifdef __powerpc64__
 240        size = ppc64_caches.dline_size;
 241#else
 242        size = L1_CACHE_BYTES;
 243#endif
 244        p = (long __user *) (regs->dar & -size);
 245        if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
 246                return -EFAULT;
 247        for (i = 0; i < size / sizeof(long); ++i)
 248                if (__put_user_inatomic(0, p+i))
 249                        return -EFAULT;
 250        return 1;
 251}
 252
 253/*
 254 * Emulate load & store multiple instructions
 255 * On 64-bit machines, these instructions only affect/use the
 256 * bottom 4 bytes of each register, and the loads clear the
 257 * top 4 bytes of the affected register.
 258 */
 259#ifdef CONFIG_PPC64
 260#define REG_BYTE(rp, i)         *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
 261#else
 262#define REG_BYTE(rp, i)         *((u8 *)(rp) + (i))
 263#endif
 264
 265#define SWIZ_PTR(p)             ((unsigned char __user *)((p) ^ swiz))
 266
 267static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
 268                            unsigned int reg, unsigned int nb,
 269                            unsigned int flags, unsigned int instr,
 270                            unsigned long swiz)
 271{
 272        unsigned long *rptr;
 273        unsigned int nb0, i, bswiz;
 274        unsigned long p;
 275
 276        /*
 277         * We do not try to emulate 8 bytes multiple as they aren't really
 278         * available in our operating environments and we don't try to
 279         * emulate multiples operations in kernel land as they should never
 280         * be used/generated there at least not on unaligned boundaries
 281         */
 282        if (unlikely((nb > 4) || !user_mode(regs)))
 283                return 0;
 284
 285        /* lmw, stmw, lswi/x, stswi/x */
 286        nb0 = 0;
 287        if (flags & HARD) {
 288                if (flags & SX) {
 289                        nb = regs->xer & 127;
 290                        if (nb == 0)
 291                                return 1;
 292                } else {
 293                        unsigned long pc = regs->nip ^ (swiz & 4);
 294
 295                        if (__get_user_inatomic(instr,
 296                                                (unsigned int __user *)pc))
 297                                return -EFAULT;
 298                        if (swiz == 0 && (flags & SW))
 299                                instr = cpu_to_le32(instr);
 300                        nb = (instr >> 11) & 0x1f;
 301                        if (nb == 0)
 302                                nb = 32;
 303                }
 304                if (nb + reg * 4 > 128) {
 305                        nb0 = nb + reg * 4 - 128;
 306                        nb = 128 - reg * 4;
 307                }
 308        } else {
 309                /* lwm, stmw */
 310                nb = (32 - reg) * 4;
 311        }
 312
 313        if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
 314                return -EFAULT; /* bad address */
 315
 316        rptr = &regs->gpr[reg];
 317        p = (unsigned long) addr;
 318        bswiz = (flags & SW)? 3: 0;
 319
 320        if (!(flags & ST)) {
 321                /*
 322                 * This zeroes the top 4 bytes of the affected registers
 323                 * in 64-bit mode, and also zeroes out any remaining
 324                 * bytes of the last register for lsw*.
 325                 */
 326                memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
 327                if (nb0 > 0)
 328                        memset(&regs->gpr[0], 0,
 329                               ((nb0 + 3) / 4) * sizeof(unsigned long));
 330
 331                for (i = 0; i < nb; ++i, ++p)
 332                        if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
 333                                                SWIZ_PTR(p)))
 334                                return -EFAULT;
 335                if (nb0 > 0) {
 336                        rptr = &regs->gpr[0];
 337                        addr += nb;
 338                        for (i = 0; i < nb0; ++i, ++p)
 339                                if (__get_user_inatomic(REG_BYTE(rptr,
 340                                                                 i ^ bswiz),
 341                                                        SWIZ_PTR(p)))
 342                                        return -EFAULT;
 343                }
 344
 345        } else {
 346                for (i = 0; i < nb; ++i, ++p)
 347                        if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
 348                                                SWIZ_PTR(p)))
 349                                return -EFAULT;
 350                if (nb0 > 0) {
 351                        rptr = &regs->gpr[0];
 352                        addr += nb;
 353                        for (i = 0; i < nb0; ++i, ++p)
 354                                if (__put_user_inatomic(REG_BYTE(rptr,
 355                                                                 i ^ bswiz),
 356                                                        SWIZ_PTR(p)))
 357                                        return -EFAULT;
 358                }
 359        }
 360        return 1;
 361}
 362
 363/*
 364 * Emulate floating-point pair loads and stores.
 365 * Only POWER6 has these instructions, and it does true little-endian,
 366 * so we don't need the address swizzling.
 367 */
 368static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
 369                           unsigned int flags)
 370{
 371        char *ptr0 = (char *) &current->thread.TS_FPR(reg);
 372        char *ptr1 = (char *) &current->thread.TS_FPR(reg+1);
 373        int i, ret, sw = 0;
 374
 375        if (!(flags & F))
 376                return 0;
 377        if (reg & 1)
 378                return 0;       /* invalid form: FRS/FRT must be even */
 379        if (flags & SW)
 380                sw = 7;
 381        ret = 0;
 382        for (i = 0; i < 8; ++i) {
 383                if (!(flags & ST)) {
 384                        ret |= __get_user(ptr0[i^sw], addr + i);
 385                        ret |= __get_user(ptr1[i^sw], addr + i + 8);
 386                } else {
 387                        ret |= __put_user(ptr0[i^sw], addr + i);
 388                        ret |= __put_user(ptr1[i^sw], addr + i + 8);
 389                }
 390        }
 391        if (ret)
 392                return -EFAULT;
 393        return 1;       /* exception handled and fixed up */
 394}
 395
 396#ifdef CONFIG_SPE
 397
 398static struct aligninfo spe_aligninfo[32] = {
 399        { 8, LD+E8 },           /* 0 00 00: evldd[x] */
 400        { 8, LD+E4 },           /* 0 00 01: evldw[x] */
 401        { 8, LD },              /* 0 00 10: evldh[x] */
 402        INVALID,                /* 0 00 11 */
 403        { 2, LD },              /* 0 01 00: evlhhesplat[x] */
 404        INVALID,                /* 0 01 01 */
 405        { 2, LD },              /* 0 01 10: evlhhousplat[x] */
 406        { 2, LD+SE },           /* 0 01 11: evlhhossplat[x] */
 407        { 4, LD },              /* 0 10 00: evlwhe[x] */
 408        INVALID,                /* 0 10 01 */
 409        { 4, LD },              /* 0 10 10: evlwhou[x] */
 410        { 4, LD+SE },           /* 0 10 11: evlwhos[x] */
 411        { 4, LD+E4 },           /* 0 11 00: evlwwsplat[x] */
 412        INVALID,                /* 0 11 01 */
 413        { 4, LD },              /* 0 11 10: evlwhsplat[x] */
 414        INVALID,                /* 0 11 11 */
 415
 416        { 8, ST+E8 },           /* 1 00 00: evstdd[x] */
 417        { 8, ST+E4 },           /* 1 00 01: evstdw[x] */
 418        { 8, ST },              /* 1 00 10: evstdh[x] */
 419        INVALID,                /* 1 00 11 */
 420        INVALID,                /* 1 01 00 */
 421        INVALID,                /* 1 01 01 */
 422        INVALID,                /* 1 01 10 */
 423        INVALID,                /* 1 01 11 */
 424        { 4, ST },              /* 1 10 00: evstwhe[x] */
 425        INVALID,                /* 1 10 01 */
 426        { 4, ST },              /* 1 10 10: evstwho[x] */
 427        INVALID,                /* 1 10 11 */
 428        { 4, ST+E4 },           /* 1 11 00: evstwwe[x] */
 429        INVALID,                /* 1 11 01 */
 430        { 4, ST+E4 },           /* 1 11 10: evstwwo[x] */
 431        INVALID,                /* 1 11 11 */
 432};
 433
 434#define EVLDD           0x00
 435#define EVLDW           0x01
 436#define EVLDH           0x02
 437#define EVLHHESPLAT     0x04
 438#define EVLHHOUSPLAT    0x06
 439#define EVLHHOSSPLAT    0x07
 440#define EVLWHE          0x08
 441#define EVLWHOU         0x0A
 442#define EVLWHOS         0x0B
 443#define EVLWWSPLAT      0x0C
 444#define EVLWHSPLAT      0x0E
 445#define EVSTDD          0x10
 446#define EVSTDW          0x11
 447#define EVSTDH          0x12
 448#define EVSTWHE         0x18
 449#define EVSTWHO         0x1A
 450#define EVSTWWE         0x1C
 451#define EVSTWWO         0x1E
 452
 453/*
 454 * Emulate SPE loads and stores.
 455 * Only Book-E has these instructions, and it does true little-endian,
 456 * so we don't need the address swizzling.
 457 */
 458static int emulate_spe(struct pt_regs *regs, unsigned int reg,
 459                       unsigned int instr)
 460{
 461        int t, ret;
 462        union {
 463                u64 ll;
 464                u32 w[2];
 465                u16 h[4];
 466                u8 v[8];
 467        } data, temp;
 468        unsigned char __user *p, *addr;
 469        unsigned long *evr = &current->thread.evr[reg];
 470        unsigned int nb, flags;
 471
 472        instr = (instr >> 1) & 0x1f;
 473
 474        /* DAR has the operand effective address */
 475        addr = (unsigned char __user *)regs->dar;
 476
 477        nb = spe_aligninfo[instr].len;
 478        flags = spe_aligninfo[instr].flags;
 479
 480        /* Verify the address of the operand */
 481        if (unlikely(user_mode(regs) &&
 482                     !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
 483                                addr, nb)))
 484                return -EFAULT;
 485
 486        /* userland only */
 487        if (unlikely(!user_mode(regs)))
 488                return 0;
 489
 490        flush_spe_to_thread(current);
 491
 492        /* If we are loading, get the data from user space, else
 493         * get it from register values
 494         */
 495        if (flags & ST) {
 496                data.ll = 0;
 497                switch (instr) {
 498                case EVSTDD:
 499                case EVSTDW:
 500                case EVSTDH:
 501                        data.w[0] = *evr;
 502                        data.w[1] = regs->gpr[reg];
 503                        break;
 504                case EVSTWHE:
 505                        data.h[2] = *evr >> 16;
 506                        data.h[3] = regs->gpr[reg] >> 16;
 507                        break;
 508                case EVSTWHO:
 509                        data.h[2] = *evr & 0xffff;
 510                        data.h[3] = regs->gpr[reg] & 0xffff;
 511                        break;
 512                case EVSTWWE:
 513                        data.w[1] = *evr;
 514                        break;
 515                case EVSTWWO:
 516                        data.w[1] = regs->gpr[reg];
 517                        break;
 518                default:
 519                        return -EINVAL;
 520                }
 521        } else {
 522                temp.ll = data.ll = 0;
 523                ret = 0;
 524                p = addr;
 525
 526                switch (nb) {
 527                case 8:
 528                        ret |= __get_user_inatomic(temp.v[0], p++);
 529                        ret |= __get_user_inatomic(temp.v[1], p++);
 530                        ret |= __get_user_inatomic(temp.v[2], p++);
 531                        ret |= __get_user_inatomic(temp.v[3], p++);
 532                case 4:
 533                        ret |= __get_user_inatomic(temp.v[4], p++);
 534                        ret |= __get_user_inatomic(temp.v[5], p++);
 535                case 2:
 536                        ret |= __get_user_inatomic(temp.v[6], p++);
 537                        ret |= __get_user_inatomic(temp.v[7], p++);
 538                        if (unlikely(ret))
 539                                return -EFAULT;
 540                }
 541
 542                switch (instr) {
 543                case EVLDD:
 544                case EVLDW:
 545                case EVLDH:
 546                        data.ll = temp.ll;
 547                        break;
 548                case EVLHHESPLAT:
 549                        data.h[0] = temp.h[3];
 550                        data.h[2] = temp.h[3];
 551                        break;
 552                case EVLHHOUSPLAT:
 553                case EVLHHOSSPLAT:
 554                        data.h[1] = temp.h[3];
 555                        data.h[3] = temp.h[3];
 556                        break;
 557                case EVLWHE:
 558                        data.h[0] = temp.h[2];
 559                        data.h[2] = temp.h[3];
 560                        break;
 561                case EVLWHOU:
 562                case EVLWHOS:
 563                        data.h[1] = temp.h[2];
 564                        data.h[3] = temp.h[3];
 565                        break;
 566                case EVLWWSPLAT:
 567                        data.w[0] = temp.w[1];
 568                        data.w[1] = temp.w[1];
 569                        break;
 570                case EVLWHSPLAT:
 571                        data.h[0] = temp.h[2];
 572                        data.h[1] = temp.h[2];
 573                        data.h[2] = temp.h[3];
 574                        data.h[3] = temp.h[3];
 575                        break;
 576                default:
 577                        return -EINVAL;
 578                }
 579        }
 580
 581        if (flags & SW) {
 582                switch (flags & 0xf0) {
 583                case E8:
 584                        SWAP(data.v[0], data.v[7]);
 585                        SWAP(data.v[1], data.v[6]);
 586                        SWAP(data.v[2], data.v[5]);
 587                        SWAP(data.v[3], data.v[4]);
 588                        break;
 589                case E4:
 590
 591                        SWAP(data.v[0], data.v[3]);
 592                        SWAP(data.v[1], data.v[2]);
 593                        SWAP(data.v[4], data.v[7]);
 594                        SWAP(data.v[5], data.v[6]);
 595                        break;
 596                /* Its half word endian */
 597                default:
 598                        SWAP(data.v[0], data.v[1]);
 599                        SWAP(data.v[2], data.v[3]);
 600                        SWAP(data.v[4], data.v[5]);
 601                        SWAP(data.v[6], data.v[7]);
 602                        break;
 603                }
 604        }
 605
 606        if (flags & SE) {
 607                data.w[0] = (s16)data.h[1];
 608                data.w[1] = (s16)data.h[3];
 609        }
 610
 611        /* Store result to memory or update registers */
 612        if (flags & ST) {
 613                ret = 0;
 614                p = addr;
 615                switch (nb) {
 616                case 8:
 617                        ret |= __put_user_inatomic(data.v[0], p++);
 618                        ret |= __put_user_inatomic(data.v[1], p++);
 619                        ret |= __put_user_inatomic(data.v[2], p++);
 620                        ret |= __put_user_inatomic(data.v[3], p++);
 621                case 4:
 622                        ret |= __put_user_inatomic(data.v[4], p++);
 623                        ret |= __put_user_inatomic(data.v[5], p++);
 624                case 2:
 625                        ret |= __put_user_inatomic(data.v[6], p++);
 626                        ret |= __put_user_inatomic(data.v[7], p++);
 627                }
 628                if (unlikely(ret))
 629                        return -EFAULT;
 630        } else {
 631                *evr = data.w[0];
 632                regs->gpr[reg] = data.w[1];
 633        }
 634
 635        return 1;
 636}
 637#endif /* CONFIG_SPE */
 638
 639#ifdef CONFIG_VSX
 640/*
 641 * Emulate VSX instructions...
 642 */
 643static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
 644                       unsigned int areg, struct pt_regs *regs,
 645                       unsigned int flags, unsigned int length,
 646                       unsigned int elsize)
 647{
 648        char *ptr;
 649        unsigned long *lptr;
 650        int ret = 0;
 651        int sw = 0;
 652        int i, j;
 653
 654        flush_vsx_to_thread(current);
 655
 656        if (reg < 32)
 657                ptr = (char *) &current->thread.TS_FPR(reg);
 658        else
 659                ptr = (char *) &current->thread.vr[reg - 32];
 660
 661        lptr = (unsigned long *) ptr;
 662
 663        if (flags & SW)
 664                sw = elsize-1;
 665
 666        for (j = 0; j < length; j += elsize) {
 667                for (i = 0; i < elsize; ++i) {
 668                        if (flags & ST)
 669                                ret |= __put_user(ptr[i^sw], addr + i);
 670                        else
 671                                ret |= __get_user(ptr[i^sw], addr + i);
 672                }
 673                ptr  += elsize;
 674                addr += elsize;
 675        }
 676
 677        if (!ret) {
 678                if (flags & U)
 679                        regs->gpr[areg] = regs->dar;
 680
 681                /* Splat load copies the same data to top and bottom 8 bytes */
 682                if (flags & SPLT)
 683                        lptr[1] = lptr[0];
 684                /* For 8 byte loads, zero the top 8 bytes */
 685                else if (!(flags & ST) && (8 == length))
 686                        lptr[1] = 0;
 687        } else
 688                return -EFAULT;
 689
 690        return 1;
 691}
 692#endif
 693
 694/*
 695 * Called on alignment exception. Attempts to fixup
 696 *
 697 * Return 1 on success
 698 * Return 0 if unable to handle the interrupt
 699 * Return -EFAULT if data address is bad
 700 */
 701
 702int fix_alignment(struct pt_regs *regs)
 703{
 704        unsigned int instr, nb, flags, instruction = 0;
 705        unsigned int reg, areg;
 706        unsigned int dsisr;
 707        unsigned char __user *addr;
 708        unsigned long p, swiz;
 709        int ret, t;
 710        union {
 711                u64 ll;
 712                double dd;
 713                unsigned char v[8];
 714                struct {
 715                        unsigned hi32;
 716                        int      low32;
 717                } x32;
 718                struct {
 719                        unsigned char hi48[6];
 720                        short         low16;
 721                } x16;
 722        } data;
 723
 724        /*
 725         * We require a complete register set, if not, then our assembly
 726         * is broken
 727         */
 728        CHECK_FULL_REGS(regs);
 729
 730        dsisr = regs->dsisr;
 731
 732        /* Some processors don't provide us with a DSISR we can use here,
 733         * let's make one up from the instruction
 734         */
 735        if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
 736                unsigned long pc = regs->nip;
 737
 738                if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
 739                        pc ^= 4;
 740                if (unlikely(__get_user_inatomic(instr,
 741                                                 (unsigned int __user *)pc)))
 742                        return -EFAULT;
 743                if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
 744                        instr = cpu_to_le32(instr);
 745                dsisr = make_dsisr(instr);
 746                instruction = instr;
 747        }
 748
 749        /* extract the operation and registers from the dsisr */
 750        reg = (dsisr >> 5) & 0x1f;      /* source/dest register */
 751        areg = dsisr & 0x1f;            /* register to update */
 752
 753#ifdef CONFIG_SPE
 754        if ((instr >> 26) == 0x4) {
 755                PPC_WARN_ALIGNMENT(spe, regs);
 756                return emulate_spe(regs, reg, instr);
 757        }
 758#endif
 759
 760        instr = (dsisr >> 10) & 0x7f;
 761        instr |= (dsisr >> 13) & 0x60;
 762
 763        /* Lookup the operation in our table */
 764        nb = aligninfo[instr].len;
 765        flags = aligninfo[instr].flags;
 766
 767        /* Byteswap little endian loads and stores */
 768        swiz = 0;
 769        if (regs->msr & MSR_LE) {
 770                flags ^= SW;
 771                /*
 772                 * So-called "PowerPC little endian" mode works by
 773                 * swizzling addresses rather than by actually doing
 774                 * any byte-swapping.  To emulate this, we XOR each
 775                 * byte address with 7.  We also byte-swap, because
 776                 * the processor's address swizzling depends on the
 777                 * operand size (it xors the address with 7 for bytes,
 778                 * 6 for halfwords, 4 for words, 0 for doublewords) but
 779                 * we will xor with 7 and load/store each byte separately.
 780                 */
 781                if (cpu_has_feature(CPU_FTR_PPC_LE))
 782                        swiz = 7;
 783        }
 784
 785        /* DAR has the operand effective address */
 786        addr = (unsigned char __user *)regs->dar;
 787
 788#ifdef CONFIG_VSX
 789        if ((instruction & 0xfc00003e) == 0x7c000018) {
 790                unsigned int elsize;
 791
 792                /* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
 793                reg |= (instruction & 0x1) << 5;
 794                /* Simple inline decoder instead of a table */
 795                /* VSX has only 8 and 16 byte memory accesses */
 796                nb = 8;
 797                if (instruction & 0x200)
 798                        nb = 16;
 799
 800                /* Vector stores in little-endian mode swap individual
 801                   elements, so process them separately */
 802                elsize = 4;
 803                if (instruction & 0x80)
 804                        elsize = 8;
 805
 806                flags = 0;
 807                if (regs->msr & MSR_LE)
 808                        flags |= SW;
 809                if (instruction & 0x100)
 810                        flags |= ST;
 811                if (instruction & 0x040)
 812                        flags |= U;
 813                /* splat load needs a special decoder */
 814                if ((instruction & 0x400) == 0){
 815                        flags |= SPLT;
 816                        nb = 8;
 817                }
 818                PPC_WARN_ALIGNMENT(vsx, regs);
 819                return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
 820        }
 821#endif
 822        /* A size of 0 indicates an instruction we don't support, with
 823         * the exception of DCBZ which is handled as a special case here
 824         */
 825        if (instr == DCBZ) {
 826                PPC_WARN_ALIGNMENT(dcbz, regs);
 827                return emulate_dcbz(regs, addr);
 828        }
 829        if (unlikely(nb == 0))
 830                return 0;
 831
 832        /* Load/Store Multiple instructions are handled in their own
 833         * function
 834         */
 835        if (flags & M) {
 836                PPC_WARN_ALIGNMENT(multiple, regs);
 837                return emulate_multiple(regs, addr, reg, nb,
 838                                        flags, instr, swiz);
 839        }
 840
 841        /* Verify the address of the operand */
 842        if (unlikely(user_mode(regs) &&
 843                     !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
 844                                addr, nb)))
 845                return -EFAULT;
 846
 847        /* Force the fprs into the save area so we can reference them */
 848        if (flags & F) {
 849                /* userland only */
 850                if (unlikely(!user_mode(regs)))
 851                        return 0;
 852                flush_fp_to_thread(current);
 853        }
 854
 855        /* Special case for 16-byte FP loads and stores */
 856        if (nb == 16) {
 857                PPC_WARN_ALIGNMENT(fp_pair, regs);
 858                return emulate_fp_pair(addr, reg, flags);
 859        }
 860
 861        PPC_WARN_ALIGNMENT(unaligned, regs);
 862
 863        /* If we are loading, get the data from user space, else
 864         * get it from register values
 865         */
 866        if (!(flags & ST)) {
 867                data.ll = 0;
 868                ret = 0;
 869                p = (unsigned long) addr;
 870                switch (nb) {
 871                case 8:
 872                        ret |= __get_user_inatomic(data.v[0], SWIZ_PTR(p++));
 873                        ret |= __get_user_inatomic(data.v[1], SWIZ_PTR(p++));
 874                        ret |= __get_user_inatomic(data.v[2], SWIZ_PTR(p++));
 875                        ret |= __get_user_inatomic(data.v[3], SWIZ_PTR(p++));
 876                case 4:
 877                        ret |= __get_user_inatomic(data.v[4], SWIZ_PTR(p++));
 878                        ret |= __get_user_inatomic(data.v[5], SWIZ_PTR(p++));
 879                case 2:
 880                        ret |= __get_user_inatomic(data.v[6], SWIZ_PTR(p++));
 881                        ret |= __get_user_inatomic(data.v[7], SWIZ_PTR(p++));
 882                        if (unlikely(ret))
 883                                return -EFAULT;
 884                }
 885        } else if (flags & F) {
 886                data.dd = current->thread.TS_FPR(reg);
 887                if (flags & S) {
 888                        /* Single-precision FP store requires conversion... */
 889#ifdef CONFIG_PPC_FPU
 890                        preempt_disable();
 891                        enable_kernel_fp();
 892                        cvt_df(&data.dd, (float *)&data.v[4]);
 893                        preempt_enable();
 894#else
 895                        return 0;
 896#endif
 897                }
 898        } else
 899                data.ll = regs->gpr[reg];
 900
 901        if (flags & SW) {
 902                switch (nb) {
 903                case 8:
 904                        SWAP(data.v[0], data.v[7]);
 905                        SWAP(data.v[1], data.v[6]);
 906                        SWAP(data.v[2], data.v[5]);
 907                        SWAP(data.v[3], data.v[4]);
 908                        break;
 909                case 4:
 910                        SWAP(data.v[4], data.v[7]);
 911                        SWAP(data.v[5], data.v[6]);
 912                        break;
 913                case 2:
 914                        SWAP(data.v[6], data.v[7]);
 915                        break;
 916                }
 917        }
 918
 919        /* Perform other misc operations like sign extension
 920         * or floating point single precision conversion
 921         */
 922        switch (flags & ~(U|SW)) {
 923        case LD+SE:     /* sign extending integer loads */
 924        case LD+F+SE:   /* sign extend for lfiwax */
 925                if ( nb == 2 )
 926                        data.ll = data.x16.low16;
 927                else    /* nb must be 4 */
 928                        data.ll = data.x32.low32;
 929                break;
 930
 931        /* Single-precision FP load requires conversion... */
 932        case LD+F+S:
 933#ifdef CONFIG_PPC_FPU
 934                preempt_disable();
 935                enable_kernel_fp();
 936                cvt_fd((float *)&data.v[4], &data.dd);
 937                preempt_enable();
 938#else
 939                return 0;
 940#endif
 941                break;
 942        }
 943
 944        /* Store result to memory or update registers */
 945        if (flags & ST) {
 946                ret = 0;
 947                p = (unsigned long) addr;
 948                switch (nb) {
 949                case 8:
 950                        ret |= __put_user_inatomic(data.v[0], SWIZ_PTR(p++));
 951                        ret |= __put_user_inatomic(data.v[1], SWIZ_PTR(p++));
 952                        ret |= __put_user_inatomic(data.v[2], SWIZ_PTR(p++));
 953                        ret |= __put_user_inatomic(data.v[3], SWIZ_PTR(p++));
 954                case 4:
 955                        ret |= __put_user_inatomic(data.v[4], SWIZ_PTR(p++));
 956                        ret |= __put_user_inatomic(data.v[5], SWIZ_PTR(p++));
 957                case 2:
 958                        ret |= __put_user_inatomic(data.v[6], SWIZ_PTR(p++));
 959                        ret |= __put_user_inatomic(data.v[7], SWIZ_PTR(p++));
 960                }
 961                if (unlikely(ret))
 962                        return -EFAULT;
 963        } else if (flags & F)
 964                current->thread.TS_FPR(reg) = data.dd;
 965        else
 966                regs->gpr[reg] = data.ll;
 967
 968        /* Update RA as needed */
 969        if (flags & U)
 970                regs->gpr[areg] = regs->dar;
 971
 972        return 1;
 973}
 974