linux/arch/powerpc/kernel/e500-pmu.c
<<
>>
Prefs
   1/*
   2 * Performance counter support for e500 family processors.
   3 *
   4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   5 * Copyright 2010 Freescale Semiconductor, Inc.
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; either version
  10 * 2 of the License, or (at your option) any later version.
  11 */
  12#include <linux/string.h>
  13#include <linux/perf_event.h>
  14#include <asm/reg.h>
  15#include <asm/cputable.h>
  16
  17/*
  18 * Map of generic hardware event types to hardware events
  19 * Zero if unsupported
  20 */
  21static int e500_generic_events[] = {
  22        [PERF_COUNT_HW_CPU_CYCLES] = 1,
  23        [PERF_COUNT_HW_INSTRUCTIONS] = 2,
  24        [PERF_COUNT_HW_CACHE_MISSES] = 41, /* Data L1 cache reloads */
  25        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 12,
  26        [PERF_COUNT_HW_BRANCH_MISSES] = 15,
  27};
  28
  29#define C(x)    PERF_COUNT_HW_CACHE_##x
  30
  31/*
  32 * Table of generalized cache-related events.
  33 * 0 means not supported, -1 means nonsensical, other values
  34 * are event codes.
  35 */
  36static int e500_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
  37        /*
  38         * D-cache misses are not split into read/write/prefetch;
  39         * use raw event 41.
  40         */
  41        [C(L1D)] = {            /*      RESULT_ACCESS   RESULT_MISS */
  42                [C(OP_READ)] = {        27,             0       },
  43                [C(OP_WRITE)] = {       28,             0       },
  44                [C(OP_PREFETCH)] = {    29,             0       },
  45        },
  46        [C(L1I)] = {            /*      RESULT_ACCESS   RESULT_MISS */
  47                [C(OP_READ)] = {        2,              60      },
  48                [C(OP_WRITE)] = {       -1,             -1      },
  49                [C(OP_PREFETCH)] = {    0,              0       },
  50        },
  51        /*
  52         * Assuming LL means L2, it's not a good match for this model.
  53         * It allocates only on L1 castout or explicit prefetch, and
  54         * does not have separate read/write events (but it does have
  55         * separate instruction/data events).
  56         */
  57        [C(LL)] = {             /*      RESULT_ACCESS   RESULT_MISS */
  58                [C(OP_READ)] = {        0,              0       },
  59                [C(OP_WRITE)] = {       0,              0       },
  60                [C(OP_PREFETCH)] = {    0,              0       },
  61        },
  62        /*
  63         * There are data/instruction MMU misses, but that's a miss on
  64         * the chip's internal level-one TLB which is probably not
  65         * what the user wants.  Instead, unified level-two TLB misses
  66         * are reported here.
  67         */
  68        [C(DTLB)] = {           /*      RESULT_ACCESS   RESULT_MISS */
  69                [C(OP_READ)] = {        26,             66      },
  70                [C(OP_WRITE)] = {       -1,             -1      },
  71                [C(OP_PREFETCH)] = {    -1,             -1      },
  72        },
  73        [C(BPU)] = {            /*      RESULT_ACCESS   RESULT_MISS */
  74                [C(OP_READ)] = {        12,             15      },
  75                [C(OP_WRITE)] = {       -1,             -1      },
  76                [C(OP_PREFETCH)] = {    -1,             -1      },
  77        },
  78};
  79
  80static int num_events = 128;
  81
  82/* Upper half of event id is PMLCb, for threshold events */
  83static u64 e500_xlate_event(u64 event_id)
  84{
  85        u32 event_low = (u32)event_id;
  86        u64 ret;
  87
  88        if (event_low >= num_events)
  89                return 0;
  90
  91        ret = FSL_EMB_EVENT_VALID;
  92
  93        if (event_low >= 76 && event_low <= 81) {
  94                ret |= FSL_EMB_EVENT_RESTRICTED;
  95                ret |= event_id &
  96                       (FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH);
  97        } else if (event_id &
  98                   (FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH)) {
  99                /* Threshold requested on non-threshold event */
 100                return 0;
 101        }
 102
 103        return ret;
 104}
 105
 106static struct fsl_emb_pmu e500_pmu = {
 107        .name                   = "e500 family",
 108        .n_counter              = 4,
 109        .n_restricted           = 2,
 110        .xlate_event            = e500_xlate_event,
 111        .n_generic              = ARRAY_SIZE(e500_generic_events),
 112        .generic_events         = e500_generic_events,
 113        .cache_events           = &e500_cache_events,
 114};
 115
 116static int init_e500_pmu(void)
 117{
 118        if (!cur_cpu_spec->oprofile_cpu_type)
 119                return -ENODEV;
 120
 121        if (!strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500mc"))
 122                num_events = 256;
 123        else if (strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500"))
 124                return -ENODEV;
 125
 126        return register_fsl_emb_pmu(&e500_pmu);
 127}
 128
 129early_initcall(init_e500_pmu);
 130