linux/arch/powerpc/kernel/time.c
<<
>>
Prefs
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time. (for iSeries, we calibrate the timebase
  21 * against the Titan chip's clock.)
  22 * - for astronomical applications: add a new function to get
  23 * non ambiguous timestamps even around leap seconds. This needs
  24 * a new timestamp format and a good name.
  25 *
  26 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  27 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  28 *
  29 *      This program is free software; you can redistribute it and/or
  30 *      modify it under the terms of the GNU General Public License
  31 *      as published by the Free Software Foundation; either version
  32 *      2 of the License, or (at your option) any later version.
  33 */
  34
  35#include <linux/errno.h>
  36#include <linux/module.h>
  37#include <linux/sched.h>
  38#include <linux/kernel.h>
  39#include <linux/param.h>
  40#include <linux/string.h>
  41#include <linux/mm.h>
  42#include <linux/interrupt.h>
  43#include <linux/timex.h>
  44#include <linux/kernel_stat.h>
  45#include <linux/time.h>
  46#include <linux/init.h>
  47#include <linux/profile.h>
  48#include <linux/cpu.h>
  49#include <linux/security.h>
  50#include <linux/percpu.h>
  51#include <linux/rtc.h>
  52#include <linux/jiffies.h>
  53#include <linux/posix-timers.h>
  54#include <linux/irq.h>
  55#include <linux/delay.h>
  56#include <linux/irq_work.h>
  57#include <asm/trace.h>
  58
  59#include <asm/io.h>
  60#include <asm/processor.h>
  61#include <asm/nvram.h>
  62#include <asm/cache.h>
  63#include <asm/machdep.h>
  64#include <asm/uaccess.h>
  65#include <asm/time.h>
  66#include <asm/prom.h>
  67#include <asm/irq.h>
  68#include <asm/div64.h>
  69#include <asm/smp.h>
  70#include <asm/vdso_datapage.h>
  71#include <asm/firmware.h>
  72#include <asm/cputime.h>
  73#ifdef CONFIG_PPC_ISERIES
  74#include <asm/iseries/it_lp_queue.h>
  75#include <asm/iseries/hv_call_xm.h>
  76#endif
  77
  78/* powerpc clocksource/clockevent code */
  79
  80#include <linux/clockchips.h>
  81#include <linux/clocksource.h>
  82
  83static cycle_t rtc_read(struct clocksource *);
  84static struct clocksource clocksource_rtc = {
  85        .name         = "rtc",
  86        .rating       = 400,
  87        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  88        .mask         = CLOCKSOURCE_MASK(64),
  89        .shift        = 22,
  90        .mult         = 0,      /* To be filled in */
  91        .read         = rtc_read,
  92};
  93
  94static cycle_t timebase_read(struct clocksource *);
  95static struct clocksource clocksource_timebase = {
  96        .name         = "timebase",
  97        .rating       = 400,
  98        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  99        .mask         = CLOCKSOURCE_MASK(64),
 100        .shift        = 22,
 101        .mult         = 0,      /* To be filled in */
 102        .read         = timebase_read,
 103};
 104
 105#define DECREMENTER_MAX 0x7fffffff
 106
 107static int decrementer_set_next_event(unsigned long evt,
 108                                      struct clock_event_device *dev);
 109static void decrementer_set_mode(enum clock_event_mode mode,
 110                                 struct clock_event_device *dev);
 111
 112static struct clock_event_device decrementer_clockevent = {
 113       .name           = "decrementer",
 114       .rating         = 200,
 115       .shift          = 0,     /* To be filled in */
 116       .mult           = 0,     /* To be filled in */
 117       .irq            = 0,
 118       .set_next_event = decrementer_set_next_event,
 119       .set_mode       = decrementer_set_mode,
 120       .features       = CLOCK_EVT_FEAT_ONESHOT,
 121};
 122
 123struct decrementer_clock {
 124        struct clock_event_device event;
 125        u64 next_tb;
 126};
 127
 128static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
 129
 130#ifdef CONFIG_PPC_ISERIES
 131static unsigned long __initdata iSeries_recal_titan;
 132static signed long __initdata iSeries_recal_tb;
 133
 134/* Forward declaration is only needed for iSereis compiles */
 135static void __init clocksource_init(void);
 136#endif
 137
 138#define XSEC_PER_SEC (1024*1024)
 139
 140#ifdef CONFIG_PPC64
 141#define SCALE_XSEC(xsec, max)   (((xsec) * max) / XSEC_PER_SEC)
 142#else
 143/* compute ((xsec << 12) * max) >> 32 */
 144#define SCALE_XSEC(xsec, max)   mulhwu((xsec) << 12, max)
 145#endif
 146
 147unsigned long tb_ticks_per_jiffy;
 148unsigned long tb_ticks_per_usec = 100; /* sane default */
 149EXPORT_SYMBOL(tb_ticks_per_usec);
 150unsigned long tb_ticks_per_sec;
 151EXPORT_SYMBOL(tb_ticks_per_sec);        /* for cputime_t conversions */
 152
 153DEFINE_SPINLOCK(rtc_lock);
 154EXPORT_SYMBOL_GPL(rtc_lock);
 155
 156static u64 tb_to_ns_scale __read_mostly;
 157static unsigned tb_to_ns_shift __read_mostly;
 158static u64 boot_tb __read_mostly;
 159
 160extern struct timezone sys_tz;
 161static long timezone_offset;
 162
 163unsigned long ppc_proc_freq;
 164EXPORT_SYMBOL_GPL(ppc_proc_freq);
 165unsigned long ppc_tb_freq;
 166EXPORT_SYMBOL_GPL(ppc_tb_freq);
 167
 168#ifdef CONFIG_VIRT_CPU_ACCOUNTING
 169/*
 170 * Factors for converting from cputime_t (timebase ticks) to
 171 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
 172 * These are all stored as 0.64 fixed-point binary fractions.
 173 */
 174u64 __cputime_jiffies_factor;
 175EXPORT_SYMBOL(__cputime_jiffies_factor);
 176u64 __cputime_msec_factor;
 177EXPORT_SYMBOL(__cputime_msec_factor);
 178u64 __cputime_sec_factor;
 179EXPORT_SYMBOL(__cputime_sec_factor);
 180u64 __cputime_clockt_factor;
 181EXPORT_SYMBOL(__cputime_clockt_factor);
 182DEFINE_PER_CPU(unsigned long, cputime_last_delta);
 183DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
 184
 185cputime_t cputime_one_jiffy;
 186
 187void (*dtl_consumer)(struct dtl_entry *, u64);
 188
 189static void calc_cputime_factors(void)
 190{
 191        struct div_result res;
 192
 193        div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
 194        __cputime_jiffies_factor = res.result_low;
 195        div128_by_32(1000, 0, tb_ticks_per_sec, &res);
 196        __cputime_msec_factor = res.result_low;
 197        div128_by_32(1, 0, tb_ticks_per_sec, &res);
 198        __cputime_sec_factor = res.result_low;
 199        div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
 200        __cputime_clockt_factor = res.result_low;
 201}
 202
 203/*
 204 * Read the SPURR on systems that have it, otherwise the PURR,
 205 * or if that doesn't exist return the timebase value passed in.
 206 */
 207static u64 read_spurr(u64 tb)
 208{
 209        if (cpu_has_feature(CPU_FTR_SPURR))
 210                return mfspr(SPRN_SPURR);
 211        if (cpu_has_feature(CPU_FTR_PURR))
 212                return mfspr(SPRN_PURR);
 213        return tb;
 214}
 215
 216#ifdef CONFIG_PPC_SPLPAR
 217
 218/*
 219 * Scan the dispatch trace log and count up the stolen time.
 220 * Should be called with interrupts disabled.
 221 */
 222static u64 scan_dispatch_log(u64 stop_tb)
 223{
 224        u64 i = local_paca->dtl_ridx;
 225        struct dtl_entry *dtl = local_paca->dtl_curr;
 226        struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 227        struct lppaca *vpa = local_paca->lppaca_ptr;
 228        u64 tb_delta;
 229        u64 stolen = 0;
 230        u64 dtb;
 231
 232        if (i == vpa->dtl_idx)
 233                return 0;
 234        while (i < vpa->dtl_idx) {
 235                if (dtl_consumer)
 236                        dtl_consumer(dtl, i);
 237                dtb = dtl->timebase;
 238                tb_delta = dtl->enqueue_to_dispatch_time +
 239                        dtl->ready_to_enqueue_time;
 240                barrier();
 241                if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
 242                        /* buffer has overflowed */
 243                        i = vpa->dtl_idx - N_DISPATCH_LOG;
 244                        dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 245                        continue;
 246                }
 247                if (dtb > stop_tb)
 248                        break;
 249                stolen += tb_delta;
 250                ++i;
 251                ++dtl;
 252                if (dtl == dtl_end)
 253                        dtl = local_paca->dispatch_log;
 254        }
 255        local_paca->dtl_ridx = i;
 256        local_paca->dtl_curr = dtl;
 257        return stolen;
 258}
 259
 260/*
 261 * Accumulate stolen time by scanning the dispatch trace log.
 262 * Called on entry from user mode.
 263 */
 264void accumulate_stolen_time(void)
 265{
 266        u64 sst, ust;
 267
 268        u8 save_soft_enabled = local_paca->soft_enabled;
 269        u8 save_hard_enabled = local_paca->hard_enabled;
 270
 271        /* We are called early in the exception entry, before
 272         * soft/hard_enabled are sync'ed to the expected state
 273         * for the exception. We are hard disabled but the PACA
 274         * needs to reflect that so various debug stuff doesn't
 275         * complain
 276         */
 277        local_paca->soft_enabled = 0;
 278        local_paca->hard_enabled = 0;
 279
 280        sst = scan_dispatch_log(local_paca->starttime_user);
 281        ust = scan_dispatch_log(local_paca->starttime);
 282        local_paca->system_time -= sst;
 283        local_paca->user_time -= ust;
 284        local_paca->stolen_time += ust + sst;
 285
 286        local_paca->soft_enabled = save_soft_enabled;
 287        local_paca->hard_enabled = save_hard_enabled;
 288}
 289
 290static inline u64 calculate_stolen_time(u64 stop_tb)
 291{
 292        u64 stolen = 0;
 293
 294        if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
 295                stolen = scan_dispatch_log(stop_tb);
 296                get_paca()->system_time -= stolen;
 297        }
 298
 299        stolen += get_paca()->stolen_time;
 300        get_paca()->stolen_time = 0;
 301        return stolen;
 302}
 303
 304#else /* CONFIG_PPC_SPLPAR */
 305static inline u64 calculate_stolen_time(u64 stop_tb)
 306{
 307        return 0;
 308}
 309
 310#endif /* CONFIG_PPC_SPLPAR */
 311
 312/*
 313 * Account time for a transition between system, hard irq
 314 * or soft irq state.
 315 */
 316void account_system_vtime(struct task_struct *tsk)
 317{
 318        u64 now, nowscaled, delta, deltascaled;
 319        unsigned long flags;
 320        u64 stolen, udelta, sys_scaled, user_scaled;
 321
 322        local_irq_save(flags);
 323        now = mftb();
 324        nowscaled = read_spurr(now);
 325        get_paca()->system_time += now - get_paca()->starttime;
 326        get_paca()->starttime = now;
 327        deltascaled = nowscaled - get_paca()->startspurr;
 328        get_paca()->startspurr = nowscaled;
 329
 330        stolen = calculate_stolen_time(now);
 331
 332        delta = get_paca()->system_time;
 333        get_paca()->system_time = 0;
 334        udelta = get_paca()->user_time - get_paca()->utime_sspurr;
 335        get_paca()->utime_sspurr = get_paca()->user_time;
 336
 337        /*
 338         * Because we don't read the SPURR on every kernel entry/exit,
 339         * deltascaled includes both user and system SPURR ticks.
 340         * Apportion these ticks to system SPURR ticks and user
 341         * SPURR ticks in the same ratio as the system time (delta)
 342         * and user time (udelta) values obtained from the timebase
 343         * over the same interval.  The system ticks get accounted here;
 344         * the user ticks get saved up in paca->user_time_scaled to be
 345         * used by account_process_tick.
 346         */
 347        sys_scaled = delta;
 348        user_scaled = udelta;
 349        if (deltascaled != delta + udelta) {
 350                if (udelta) {
 351                        sys_scaled = deltascaled * delta / (delta + udelta);
 352                        user_scaled = deltascaled - sys_scaled;
 353                } else {
 354                        sys_scaled = deltascaled;
 355                }
 356        }
 357        get_paca()->user_time_scaled += user_scaled;
 358
 359        if (in_irq() || idle_task(smp_processor_id()) != tsk) {
 360                account_system_time(tsk, 0, delta, sys_scaled);
 361                if (stolen)
 362                        account_steal_time(stolen);
 363        } else {
 364                account_idle_time(delta + stolen);
 365        }
 366        local_irq_restore(flags);
 367}
 368EXPORT_SYMBOL_GPL(account_system_vtime);
 369
 370/*
 371 * Transfer the user and system times accumulated in the paca
 372 * by the exception entry and exit code to the generic process
 373 * user and system time records.
 374 * Must be called with interrupts disabled.
 375 * Assumes that account_system_vtime() has been called recently
 376 * (i.e. since the last entry from usermode) so that
 377 * get_paca()->user_time_scaled is up to date.
 378 */
 379void account_process_tick(struct task_struct *tsk, int user_tick)
 380{
 381        cputime_t utime, utimescaled;
 382
 383        utime = get_paca()->user_time;
 384        utimescaled = get_paca()->user_time_scaled;
 385        get_paca()->user_time = 0;
 386        get_paca()->user_time_scaled = 0;
 387        get_paca()->utime_sspurr = 0;
 388        account_user_time(tsk, utime, utimescaled);
 389}
 390
 391#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
 392#define calc_cputime_factors()
 393#endif
 394
 395void __delay(unsigned long loops)
 396{
 397        unsigned long start;
 398        int diff;
 399
 400        if (__USE_RTC()) {
 401                start = get_rtcl();
 402                do {
 403                        /* the RTCL register wraps at 1000000000 */
 404                        diff = get_rtcl() - start;
 405                        if (diff < 0)
 406                                diff += 1000000000;
 407                } while (diff < loops);
 408        } else {
 409                start = get_tbl();
 410                while (get_tbl() - start < loops)
 411                        HMT_low();
 412                HMT_medium();
 413        }
 414}
 415EXPORT_SYMBOL(__delay);
 416
 417void udelay(unsigned long usecs)
 418{
 419        __delay(tb_ticks_per_usec * usecs);
 420}
 421EXPORT_SYMBOL(udelay);
 422
 423#ifdef CONFIG_SMP
 424unsigned long profile_pc(struct pt_regs *regs)
 425{
 426        unsigned long pc = instruction_pointer(regs);
 427
 428        if (in_lock_functions(pc))
 429                return regs->link;
 430
 431        return pc;
 432}
 433EXPORT_SYMBOL(profile_pc);
 434#endif
 435
 436#ifdef CONFIG_PPC_ISERIES
 437
 438/* 
 439 * This function recalibrates the timebase based on the 49-bit time-of-day
 440 * value in the Titan chip.  The Titan is much more accurate than the value
 441 * returned by the service processor for the timebase frequency.  
 442 */
 443
 444static int __init iSeries_tb_recal(void)
 445{
 446        unsigned long titan, tb;
 447
 448        /* Make sure we only run on iSeries */
 449        if (!firmware_has_feature(FW_FEATURE_ISERIES))
 450                return -ENODEV;
 451
 452        tb = get_tb();
 453        titan = HvCallXm_loadTod();
 454        if ( iSeries_recal_titan ) {
 455                unsigned long tb_ticks = tb - iSeries_recal_tb;
 456                unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
 457                unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
 458                unsigned long new_tb_ticks_per_jiffy =
 459                        DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
 460                long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
 461                char sign = '+';                
 462                /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
 463                new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
 464
 465                if ( tick_diff < 0 ) {
 466                        tick_diff = -tick_diff;
 467                        sign = '-';
 468                }
 469                if ( tick_diff ) {
 470                        if ( tick_diff < tb_ticks_per_jiffy/25 ) {
 471                                printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
 472                                                new_tb_ticks_per_jiffy, sign, tick_diff );
 473                                tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
 474                                tb_ticks_per_sec   = new_tb_ticks_per_sec;
 475                                calc_cputime_factors();
 476                                vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
 477                                setup_cputime_one_jiffy();
 478                        }
 479                        else {
 480                                printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
 481                                        "                   new tb_ticks_per_jiffy = %lu\n"
 482                                        "                   old tb_ticks_per_jiffy = %lu\n",
 483                                        new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
 484                        }
 485                }
 486        }
 487        iSeries_recal_titan = titan;
 488        iSeries_recal_tb = tb;
 489
 490        /* Called here as now we know accurate values for the timebase */
 491        clocksource_init();
 492        return 0;
 493}
 494late_initcall(iSeries_tb_recal);
 495
 496/* Called from platform early init */
 497void __init iSeries_time_init_early(void)
 498{
 499        iSeries_recal_tb = get_tb();
 500        iSeries_recal_titan = HvCallXm_loadTod();
 501}
 502#endif /* CONFIG_PPC_ISERIES */
 503
 504#ifdef CONFIG_IRQ_WORK
 505
 506/*
 507 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 508 */
 509#ifdef CONFIG_PPC64
 510static inline unsigned long test_irq_work_pending(void)
 511{
 512        unsigned long x;
 513
 514        asm volatile("lbz %0,%1(13)"
 515                : "=r" (x)
 516                : "i" (offsetof(struct paca_struct, irq_work_pending)));
 517        return x;
 518}
 519
 520static inline void set_irq_work_pending_flag(void)
 521{
 522        asm volatile("stb %0,%1(13)" : :
 523                "r" (1),
 524                "i" (offsetof(struct paca_struct, irq_work_pending)));
 525}
 526
 527static inline void clear_irq_work_pending(void)
 528{
 529        asm volatile("stb %0,%1(13)" : :
 530                "r" (0),
 531                "i" (offsetof(struct paca_struct, irq_work_pending)));
 532}
 533
 534#else /* 32-bit */
 535
 536DEFINE_PER_CPU(u8, irq_work_pending);
 537
 538#define set_irq_work_pending_flag()     __get_cpu_var(irq_work_pending) = 1
 539#define test_irq_work_pending()         __get_cpu_var(irq_work_pending)
 540#define clear_irq_work_pending()        __get_cpu_var(irq_work_pending) = 0
 541
 542#endif /* 32 vs 64 bit */
 543
 544void set_irq_work_pending(void)
 545{
 546        preempt_disable();
 547        set_irq_work_pending_flag();
 548        set_dec(1);
 549        preempt_enable();
 550}
 551
 552#else  /* CONFIG_IRQ_WORK */
 553
 554#define test_irq_work_pending() 0
 555#define clear_irq_work_pending()
 556
 557#endif /* CONFIG_IRQ_WORK */
 558
 559/*
 560 * For iSeries shared processors, we have to let the hypervisor
 561 * set the hardware decrementer.  We set a virtual decrementer
 562 * in the lppaca and call the hypervisor if the virtual
 563 * decrementer is less than the current value in the hardware
 564 * decrementer. (almost always the new decrementer value will
 565 * be greater than the current hardware decementer so the hypervisor
 566 * call will not be needed)
 567 */
 568
 569/*
 570 * timer_interrupt - gets called when the decrementer overflows,
 571 * with interrupts disabled.
 572 */
 573void timer_interrupt(struct pt_regs * regs)
 574{
 575        struct pt_regs *old_regs;
 576        struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
 577        struct clock_event_device *evt = &decrementer->event;
 578        u64 now;
 579
 580        trace_timer_interrupt_entry(regs);
 581
 582        __get_cpu_var(irq_stat).timer_irqs++;
 583
 584        /* Ensure a positive value is written to the decrementer, or else
 585         * some CPUs will continuue to take decrementer exceptions */
 586        set_dec(DECREMENTER_MAX);
 587
 588#if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
 589        if (atomic_read(&ppc_n_lost_interrupts) != 0)
 590                do_IRQ(regs);
 591#endif
 592
 593        old_regs = set_irq_regs(regs);
 594        irq_enter();
 595
 596        if (test_irq_work_pending()) {
 597                clear_irq_work_pending();
 598                irq_work_run();
 599        }
 600
 601#ifdef CONFIG_PPC_ISERIES
 602        if (firmware_has_feature(FW_FEATURE_ISERIES))
 603                get_lppaca()->int_dword.fields.decr_int = 0;
 604#endif
 605
 606        now = get_tb_or_rtc();
 607        if (now >= decrementer->next_tb) {
 608                decrementer->next_tb = ~(u64)0;
 609                if (evt->event_handler)
 610                        evt->event_handler(evt);
 611        } else {
 612                now = decrementer->next_tb - now;
 613                if (now <= DECREMENTER_MAX)
 614                        set_dec((int)now);
 615        }
 616
 617#ifdef CONFIG_PPC_ISERIES
 618        if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
 619                process_hvlpevents();
 620#endif
 621
 622#ifdef CONFIG_PPC64
 623        /* collect purr register values often, for accurate calculations */
 624        if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 625                struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
 626                cu->current_tb = mfspr(SPRN_PURR);
 627        }
 628#endif
 629
 630        irq_exit();
 631        set_irq_regs(old_regs);
 632
 633        trace_timer_interrupt_exit(regs);
 634}
 635
 636#ifdef CONFIG_SUSPEND
 637static void generic_suspend_disable_irqs(void)
 638{
 639        /* Disable the decrementer, so that it doesn't interfere
 640         * with suspending.
 641         */
 642
 643        set_dec(0x7fffffff);
 644        local_irq_disable();
 645        set_dec(0x7fffffff);
 646}
 647
 648static void generic_suspend_enable_irqs(void)
 649{
 650        local_irq_enable();
 651}
 652
 653/* Overrides the weak version in kernel/power/main.c */
 654void arch_suspend_disable_irqs(void)
 655{
 656        if (ppc_md.suspend_disable_irqs)
 657                ppc_md.suspend_disable_irqs();
 658        generic_suspend_disable_irqs();
 659}
 660
 661/* Overrides the weak version in kernel/power/main.c */
 662void arch_suspend_enable_irqs(void)
 663{
 664        generic_suspend_enable_irqs();
 665        if (ppc_md.suspend_enable_irqs)
 666                ppc_md.suspend_enable_irqs();
 667}
 668#endif
 669
 670/*
 671 * Scheduler clock - returns current time in nanosec units.
 672 *
 673 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 674 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 675 * are 64-bit unsigned numbers.
 676 */
 677unsigned long long sched_clock(void)
 678{
 679        if (__USE_RTC())
 680                return get_rtc();
 681        return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 682}
 683
 684static int __init get_freq(char *name, int cells, unsigned long *val)
 685{
 686        struct device_node *cpu;
 687        const unsigned int *fp;
 688        int found = 0;
 689
 690        /* The cpu node should have timebase and clock frequency properties */
 691        cpu = of_find_node_by_type(NULL, "cpu");
 692
 693        if (cpu) {
 694                fp = of_get_property(cpu, name, NULL);
 695                if (fp) {
 696                        found = 1;
 697                        *val = of_read_ulong(fp, cells);
 698                }
 699
 700                of_node_put(cpu);
 701        }
 702
 703        return found;
 704}
 705
 706/* should become __cpuinit when secondary_cpu_time_init also is */
 707void start_cpu_decrementer(void)
 708{
 709#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 710        /* Clear any pending timer interrupts */
 711        mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 712
 713        /* Enable decrementer interrupt */
 714        mtspr(SPRN_TCR, TCR_DIE);
 715#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
 716}
 717
 718void __init generic_calibrate_decr(void)
 719{
 720        ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
 721
 722        if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 723            !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 724
 725                printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 726                                "(not found)\n");
 727        }
 728
 729        ppc_proc_freq = DEFAULT_PROC_FREQ;      /* hardcoded default */
 730
 731        if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 732            !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 733
 734                printk(KERN_ERR "WARNING: Estimating processor frequency "
 735                                "(not found)\n");
 736        }
 737}
 738
 739int update_persistent_clock(struct timespec now)
 740{
 741        struct rtc_time tm;
 742
 743        if (!ppc_md.set_rtc_time)
 744                return 0;
 745
 746        to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 747        tm.tm_year -= 1900;
 748        tm.tm_mon -= 1;
 749
 750        return ppc_md.set_rtc_time(&tm);
 751}
 752
 753static void __read_persistent_clock(struct timespec *ts)
 754{
 755        struct rtc_time tm;
 756        static int first = 1;
 757
 758        ts->tv_nsec = 0;
 759        /* XXX this is a litle fragile but will work okay in the short term */
 760        if (first) {
 761                first = 0;
 762                if (ppc_md.time_init)
 763                        timezone_offset = ppc_md.time_init();
 764
 765                /* get_boot_time() isn't guaranteed to be safe to call late */
 766                if (ppc_md.get_boot_time) {
 767                        ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 768                        return;
 769                }
 770        }
 771        if (!ppc_md.get_rtc_time) {
 772                ts->tv_sec = 0;
 773                return;
 774        }
 775        ppc_md.get_rtc_time(&tm);
 776
 777        ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 778                            tm.tm_hour, tm.tm_min, tm.tm_sec);
 779}
 780
 781void read_persistent_clock(struct timespec *ts)
 782{
 783        __read_persistent_clock(ts);
 784
 785        /* Sanitize it in case real time clock is set below EPOCH */
 786        if (ts->tv_sec < 0) {
 787                ts->tv_sec = 0;
 788                ts->tv_nsec = 0;
 789        }
 790                
 791}
 792
 793/* clocksource code */
 794static cycle_t rtc_read(struct clocksource *cs)
 795{
 796        return (cycle_t)get_rtc();
 797}
 798
 799static cycle_t timebase_read(struct clocksource *cs)
 800{
 801        return (cycle_t)get_tb();
 802}
 803
 804void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
 805                        struct clocksource *clock, u32 mult)
 806{
 807        u64 new_tb_to_xs, new_stamp_xsec;
 808        u32 frac_sec;
 809
 810        if (clock != &clocksource_timebase)
 811                return;
 812
 813        /* Make userspace gettimeofday spin until we're done. */
 814        ++vdso_data->tb_update_count;
 815        smp_mb();
 816
 817        /* XXX this assumes clock->shift == 22 */
 818        /* 4611686018 ~= 2^(20+64-22) / 1e9 */
 819        new_tb_to_xs = (u64) mult * 4611686018ULL;
 820        new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
 821        do_div(new_stamp_xsec, 1000000000);
 822        new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
 823
 824        BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
 825        /* this is tv_nsec / 1e9 as a 0.32 fraction */
 826        frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
 827
 828        /*
 829         * tb_update_count is used to allow the userspace gettimeofday code
 830         * to assure itself that it sees a consistent view of the tb_to_xs and
 831         * stamp_xsec variables.  It reads the tb_update_count, then reads
 832         * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 833         * the two values of tb_update_count match and are even then the
 834         * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 835         * loops back and reads them again until this criteria is met.
 836         * We expect the caller to have done the first increment of
 837         * vdso_data->tb_update_count already.
 838         */
 839        vdso_data->tb_orig_stamp = clock->cycle_last;
 840        vdso_data->stamp_xsec = new_stamp_xsec;
 841        vdso_data->tb_to_xs = new_tb_to_xs;
 842        vdso_data->wtom_clock_sec = wtm->tv_sec;
 843        vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 844        vdso_data->stamp_xtime = *wall_time;
 845        vdso_data->stamp_sec_fraction = frac_sec;
 846        smp_wmb();
 847        ++(vdso_data->tb_update_count);
 848}
 849
 850void update_vsyscall_tz(void)
 851{
 852        /* Make userspace gettimeofday spin until we're done. */
 853        ++vdso_data->tb_update_count;
 854        smp_mb();
 855        vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 856        vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 857        smp_mb();
 858        ++vdso_data->tb_update_count;
 859}
 860
 861static void __init clocksource_init(void)
 862{
 863        struct clocksource *clock;
 864
 865        if (__USE_RTC())
 866                clock = &clocksource_rtc;
 867        else
 868                clock = &clocksource_timebase;
 869
 870        clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
 871
 872        if (clocksource_register(clock)) {
 873                printk(KERN_ERR "clocksource: %s is already registered\n",
 874                       clock->name);
 875                return;
 876        }
 877
 878        printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 879               clock->name, clock->mult, clock->shift);
 880}
 881
 882static int decrementer_set_next_event(unsigned long evt,
 883                                      struct clock_event_device *dev)
 884{
 885        __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
 886        set_dec(evt);
 887        return 0;
 888}
 889
 890static void decrementer_set_mode(enum clock_event_mode mode,
 891                                 struct clock_event_device *dev)
 892{
 893        if (mode != CLOCK_EVT_MODE_ONESHOT)
 894                decrementer_set_next_event(DECREMENTER_MAX, dev);
 895}
 896
 897static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
 898                                int shift)
 899{
 900        uint64_t tmp = ((uint64_t)ticks) << shift;
 901
 902        do_div(tmp, nsec);
 903        return tmp;
 904}
 905
 906static void __init setup_clockevent_multiplier(unsigned long hz)
 907{
 908        u64 mult, shift = 32;
 909
 910        while (1) {
 911                mult = div_sc64(hz, NSEC_PER_SEC, shift);
 912                if (mult && (mult >> 32UL) == 0UL)
 913                        break;
 914
 915                shift--;
 916        }
 917
 918        decrementer_clockevent.shift = shift;
 919        decrementer_clockevent.mult = mult;
 920}
 921
 922static void register_decrementer_clockevent(int cpu)
 923{
 924        struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
 925
 926        *dec = decrementer_clockevent;
 927        dec->cpumask = cpumask_of(cpu);
 928
 929        printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 930                    dec->name, dec->mult, dec->shift, cpu);
 931
 932        clockevents_register_device(dec);
 933}
 934
 935static void __init init_decrementer_clockevent(void)
 936{
 937        int cpu = smp_processor_id();
 938
 939        setup_clockevent_multiplier(ppc_tb_freq);
 940        decrementer_clockevent.max_delta_ns =
 941                clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
 942        decrementer_clockevent.min_delta_ns =
 943                clockevent_delta2ns(2, &decrementer_clockevent);
 944
 945        register_decrementer_clockevent(cpu);
 946}
 947
 948void secondary_cpu_time_init(void)
 949{
 950        /* Start the decrementer on CPUs that have manual control
 951         * such as BookE
 952         */
 953        start_cpu_decrementer();
 954
 955        /* FIME: Should make unrelatred change to move snapshot_timebase
 956         * call here ! */
 957        register_decrementer_clockevent(smp_processor_id());
 958}
 959
 960/* This function is only called on the boot processor */
 961void __init time_init(void)
 962{
 963        struct div_result res;
 964        u64 scale;
 965        unsigned shift;
 966
 967        if (__USE_RTC()) {
 968                /* 601 processor: dec counts down by 128 every 128ns */
 969                ppc_tb_freq = 1000000000;
 970        } else {
 971                /* Normal PowerPC with timebase register */
 972                ppc_md.calibrate_decr();
 973                printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
 974                       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
 975                printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
 976                       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
 977        }
 978
 979        tb_ticks_per_jiffy = ppc_tb_freq / HZ;
 980        tb_ticks_per_sec = ppc_tb_freq;
 981        tb_ticks_per_usec = ppc_tb_freq / 1000000;
 982        calc_cputime_factors();
 983        setup_cputime_one_jiffy();
 984
 985        /*
 986         * Compute scale factor for sched_clock.
 987         * The calibrate_decr() function has set tb_ticks_per_sec,
 988         * which is the timebase frequency.
 989         * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
 990         * the 128-bit result as a 64.64 fixed-point number.
 991         * We then shift that number right until it is less than 1.0,
 992         * giving us the scale factor and shift count to use in
 993         * sched_clock().
 994         */
 995        div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
 996        scale = res.result_low;
 997        for (shift = 0; res.result_high != 0; ++shift) {
 998                scale = (scale >> 1) | (res.result_high << 63);
 999                res.result_high >>= 1;
1000        }
1001        tb_to_ns_scale = scale;
1002        tb_to_ns_shift = shift;
1003        /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1004        boot_tb = get_tb_or_rtc();
1005
1006        /* If platform provided a timezone (pmac), we correct the time */
1007        if (timezone_offset) {
1008                sys_tz.tz_minuteswest = -timezone_offset / 60;
1009                sys_tz.tz_dsttime = 0;
1010        }
1011
1012        vdso_data->tb_update_count = 0;
1013        vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1014
1015        /* Start the decrementer on CPUs that have manual control
1016         * such as BookE
1017         */
1018        start_cpu_decrementer();
1019
1020        /* Register the clocksource, if we're not running on iSeries */
1021        if (!firmware_has_feature(FW_FEATURE_ISERIES))
1022                clocksource_init();
1023
1024        init_decrementer_clockevent();
1025}
1026
1027
1028#define FEBRUARY        2
1029#define STARTOFTIME     1970
1030#define SECDAY          86400L
1031#define SECYR           (SECDAY * 365)
1032#define leapyear(year)          ((year) % 4 == 0 && \
1033                                 ((year) % 100 != 0 || (year) % 400 == 0))
1034#define days_in_year(a)         (leapyear(a) ? 366 : 365)
1035#define days_in_month(a)        (month_days[(a) - 1])
1036
1037static int month_days[12] = {
1038        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1039};
1040
1041/*
1042 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1043 */
1044void GregorianDay(struct rtc_time * tm)
1045{
1046        int leapsToDate;
1047        int lastYear;
1048        int day;
1049        int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1050
1051        lastYear = tm->tm_year - 1;
1052
1053        /*
1054         * Number of leap corrections to apply up to end of last year
1055         */
1056        leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1057
1058        /*
1059         * This year is a leap year if it is divisible by 4 except when it is
1060         * divisible by 100 unless it is divisible by 400
1061         *
1062         * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1063         */
1064        day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1065
1066        day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1067                   tm->tm_mday;
1068
1069        tm->tm_wday = day % 7;
1070}
1071
1072void to_tm(int tim, struct rtc_time * tm)
1073{
1074        register int    i;
1075        register long   hms, day;
1076
1077        day = tim / SECDAY;
1078        hms = tim % SECDAY;
1079
1080        /* Hours, minutes, seconds are easy */
1081        tm->tm_hour = hms / 3600;
1082        tm->tm_min = (hms % 3600) / 60;
1083        tm->tm_sec = (hms % 3600) % 60;
1084
1085        /* Number of years in days */
1086        for (i = STARTOFTIME; day >= days_in_year(i); i++)
1087                day -= days_in_year(i);
1088        tm->tm_year = i;
1089
1090        /* Number of months in days left */
1091        if (leapyear(tm->tm_year))
1092                days_in_month(FEBRUARY) = 29;
1093        for (i = 1; day >= days_in_month(i); i++)
1094                day -= days_in_month(i);
1095        days_in_month(FEBRUARY) = 28;
1096        tm->tm_mon = i;
1097
1098        /* Days are what is left over (+1) from all that. */
1099        tm->tm_mday = day + 1;
1100
1101        /*
1102         * Determine the day of week
1103         */
1104        GregorianDay(tm);
1105}
1106
1107/*
1108 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1109 * result.
1110 */
1111void div128_by_32(u64 dividend_high, u64 dividend_low,
1112                  unsigned divisor, struct div_result *dr)
1113{
1114        unsigned long a, b, c, d;
1115        unsigned long w, x, y, z;
1116        u64 ra, rb, rc;
1117
1118        a = dividend_high >> 32;
1119        b = dividend_high & 0xffffffff;
1120        c = dividend_low >> 32;
1121        d = dividend_low & 0xffffffff;
1122
1123        w = a / divisor;
1124        ra = ((u64)(a - (w * divisor)) << 32) + b;
1125
1126        rb = ((u64) do_div(ra, divisor) << 32) + c;
1127        x = ra;
1128
1129        rc = ((u64) do_div(rb, divisor) << 32) + d;
1130        y = rb;
1131
1132        do_div(rc, divisor);
1133        z = rc;
1134
1135        dr->result_high = ((u64)w << 32) + x;
1136        dr->result_low  = ((u64)y << 32) + z;
1137
1138}
1139
1140/* We don't need to calibrate delay, we use the CPU timebase for that */
1141void calibrate_delay(void)
1142{
1143        /* Some generic code (such as spinlock debug) use loops_per_jiffy
1144         * as the number of __delay(1) in a jiffy, so make it so
1145         */
1146        loops_per_jiffy = tb_ticks_per_jiffy;
1147}
1148
1149static int __init rtc_init(void)
1150{
1151        struct platform_device *pdev;
1152
1153        if (!ppc_md.get_rtc_time)
1154                return -ENODEV;
1155
1156        pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1157        if (IS_ERR(pdev))
1158                return PTR_ERR(pdev);
1159
1160        return 0;
1161}
1162
1163module_init(rtc_init);
1164