linux/arch/powerpc/mm/hash_utils_64.c
<<
>>
Prefs
   1/*
   2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
   3 *   {mikejc|engebret}@us.ibm.com
   4 *
   5 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
   6 *
   7 * SMP scalability work:
   8 *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
   9 * 
  10 *    Module name: htab.c
  11 *
  12 *    Description:
  13 *      PowerPC Hashed Page Table functions
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 */
  20
  21#undef DEBUG
  22#undef DEBUG_LOW
  23
  24#include <linux/spinlock.h>
  25#include <linux/errno.h>
  26#include <linux/sched.h>
  27#include <linux/proc_fs.h>
  28#include <linux/stat.h>
  29#include <linux/sysctl.h>
  30#include <linux/ctype.h>
  31#include <linux/cache.h>
  32#include <linux/init.h>
  33#include <linux/signal.h>
  34#include <linux/memblock.h>
  35
  36#include <asm/processor.h>
  37#include <asm/pgtable.h>
  38#include <asm/mmu.h>
  39#include <asm/mmu_context.h>
  40#include <asm/page.h>
  41#include <asm/types.h>
  42#include <asm/system.h>
  43#include <asm/uaccess.h>
  44#include <asm/machdep.h>
  45#include <asm/prom.h>
  46#include <asm/abs_addr.h>
  47#include <asm/tlbflush.h>
  48#include <asm/io.h>
  49#include <asm/eeh.h>
  50#include <asm/tlb.h>
  51#include <asm/cacheflush.h>
  52#include <asm/cputable.h>
  53#include <asm/sections.h>
  54#include <asm/spu.h>
  55#include <asm/udbg.h>
  56
  57#ifdef DEBUG
  58#define DBG(fmt...) udbg_printf(fmt)
  59#else
  60#define DBG(fmt...)
  61#endif
  62
  63#ifdef DEBUG_LOW
  64#define DBG_LOW(fmt...) udbg_printf(fmt)
  65#else
  66#define DBG_LOW(fmt...)
  67#endif
  68
  69#define KB (1024)
  70#define MB (1024*KB)
  71#define GB (1024L*MB)
  72
  73/*
  74 * Note:  pte   --> Linux PTE
  75 *        HPTE  --> PowerPC Hashed Page Table Entry
  76 *
  77 * Execution context:
  78 *   htab_initialize is called with the MMU off (of course), but
  79 *   the kernel has been copied down to zero so it can directly
  80 *   reference global data.  At this point it is very difficult
  81 *   to print debug info.
  82 *
  83 */
  84
  85#ifdef CONFIG_U3_DART
  86extern unsigned long dart_tablebase;
  87#endif /* CONFIG_U3_DART */
  88
  89static unsigned long _SDR1;
  90struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  91
  92struct hash_pte *htab_address;
  93unsigned long htab_size_bytes;
  94unsigned long htab_hash_mask;
  95EXPORT_SYMBOL_GPL(htab_hash_mask);
  96int mmu_linear_psize = MMU_PAGE_4K;
  97int mmu_virtual_psize = MMU_PAGE_4K;
  98int mmu_vmalloc_psize = MMU_PAGE_4K;
  99#ifdef CONFIG_SPARSEMEM_VMEMMAP
 100int mmu_vmemmap_psize = MMU_PAGE_4K;
 101#endif
 102int mmu_io_psize = MMU_PAGE_4K;
 103int mmu_kernel_ssize = MMU_SEGSIZE_256M;
 104int mmu_highuser_ssize = MMU_SEGSIZE_256M;
 105u16 mmu_slb_size = 64;
 106EXPORT_SYMBOL_GPL(mmu_slb_size);
 107#ifdef CONFIG_HUGETLB_PAGE
 108unsigned int HPAGE_SHIFT;
 109#endif
 110#ifdef CONFIG_PPC_64K_PAGES
 111int mmu_ci_restrictions;
 112#endif
 113#ifdef CONFIG_DEBUG_PAGEALLOC
 114static u8 *linear_map_hash_slots;
 115static unsigned long linear_map_hash_count;
 116static DEFINE_SPINLOCK(linear_map_hash_lock);
 117#endif /* CONFIG_DEBUG_PAGEALLOC */
 118
 119/* There are definitions of page sizes arrays to be used when none
 120 * is provided by the firmware.
 121 */
 122
 123/* Pre-POWER4 CPUs (4k pages only)
 124 */
 125static struct mmu_psize_def mmu_psize_defaults_old[] = {
 126        [MMU_PAGE_4K] = {
 127                .shift  = 12,
 128                .sllp   = 0,
 129                .penc   = 0,
 130                .avpnm  = 0,
 131                .tlbiel = 0,
 132        },
 133};
 134
 135/* POWER4, GPUL, POWER5
 136 *
 137 * Support for 16Mb large pages
 138 */
 139static struct mmu_psize_def mmu_psize_defaults_gp[] = {
 140        [MMU_PAGE_4K] = {
 141                .shift  = 12,
 142                .sllp   = 0,
 143                .penc   = 0,
 144                .avpnm  = 0,
 145                .tlbiel = 1,
 146        },
 147        [MMU_PAGE_16M] = {
 148                .shift  = 24,
 149                .sllp   = SLB_VSID_L,
 150                .penc   = 0,
 151                .avpnm  = 0x1UL,
 152                .tlbiel = 0,
 153        },
 154};
 155
 156static unsigned long htab_convert_pte_flags(unsigned long pteflags)
 157{
 158        unsigned long rflags = pteflags & 0x1fa;
 159
 160        /* _PAGE_EXEC -> NOEXEC */
 161        if ((pteflags & _PAGE_EXEC) == 0)
 162                rflags |= HPTE_R_N;
 163
 164        /* PP bits. PAGE_USER is already PP bit 0x2, so we only
 165         * need to add in 0x1 if it's a read-only user page
 166         */
 167        if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
 168                                         (pteflags & _PAGE_DIRTY)))
 169                rflags |= 1;
 170
 171        /* Always add C */
 172        return rflags | HPTE_R_C;
 173}
 174
 175int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 176                      unsigned long pstart, unsigned long prot,
 177                      int psize, int ssize)
 178{
 179        unsigned long vaddr, paddr;
 180        unsigned int step, shift;
 181        int ret = 0;
 182
 183        shift = mmu_psize_defs[psize].shift;
 184        step = 1 << shift;
 185
 186        prot = htab_convert_pte_flags(prot);
 187
 188        DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
 189            vstart, vend, pstart, prot, psize, ssize);
 190
 191        for (vaddr = vstart, paddr = pstart; vaddr < vend;
 192             vaddr += step, paddr += step) {
 193                unsigned long hash, hpteg;
 194                unsigned long vsid = get_kernel_vsid(vaddr, ssize);
 195                unsigned long va = hpt_va(vaddr, vsid, ssize);
 196                unsigned long tprot = prot;
 197
 198                /* Make kernel text executable */
 199                if (overlaps_kernel_text(vaddr, vaddr + step))
 200                        tprot &= ~HPTE_R_N;
 201
 202                hash = hpt_hash(va, shift, ssize);
 203                hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
 204
 205                BUG_ON(!ppc_md.hpte_insert);
 206                ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
 207                                         HPTE_V_BOLTED, psize, ssize);
 208
 209                if (ret < 0)
 210                        break;
 211#ifdef CONFIG_DEBUG_PAGEALLOC
 212                if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
 213                        linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
 214#endif /* CONFIG_DEBUG_PAGEALLOC */
 215        }
 216        return ret < 0 ? ret : 0;
 217}
 218
 219#ifdef CONFIG_MEMORY_HOTPLUG
 220static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 221                      int psize, int ssize)
 222{
 223        unsigned long vaddr;
 224        unsigned int step, shift;
 225
 226        shift = mmu_psize_defs[psize].shift;
 227        step = 1 << shift;
 228
 229        if (!ppc_md.hpte_removebolted) {
 230                printk(KERN_WARNING "Platform doesn't implement "
 231                                "hpte_removebolted\n");
 232                return -EINVAL;
 233        }
 234
 235        for (vaddr = vstart; vaddr < vend; vaddr += step)
 236                ppc_md.hpte_removebolted(vaddr, psize, ssize);
 237
 238        return 0;
 239}
 240#endif /* CONFIG_MEMORY_HOTPLUG */
 241
 242static int __init htab_dt_scan_seg_sizes(unsigned long node,
 243                                         const char *uname, int depth,
 244                                         void *data)
 245{
 246        char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 247        u32 *prop;
 248        unsigned long size = 0;
 249
 250        /* We are scanning "cpu" nodes only */
 251        if (type == NULL || strcmp(type, "cpu") != 0)
 252                return 0;
 253
 254        prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
 255                                          &size);
 256        if (prop == NULL)
 257                return 0;
 258        for (; size >= 4; size -= 4, ++prop) {
 259                if (prop[0] == 40) {
 260                        DBG("1T segment support detected\n");
 261                        cur_cpu_spec->cpu_features |= CPU_FTR_1T_SEGMENT;
 262                        return 1;
 263                }
 264        }
 265        cur_cpu_spec->cpu_features &= ~CPU_FTR_NO_SLBIE_B;
 266        return 0;
 267}
 268
 269static void __init htab_init_seg_sizes(void)
 270{
 271        of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
 272}
 273
 274static int __init htab_dt_scan_page_sizes(unsigned long node,
 275                                          const char *uname, int depth,
 276                                          void *data)
 277{
 278        char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 279        u32 *prop;
 280        unsigned long size = 0;
 281
 282        /* We are scanning "cpu" nodes only */
 283        if (type == NULL || strcmp(type, "cpu") != 0)
 284                return 0;
 285
 286        prop = (u32 *)of_get_flat_dt_prop(node,
 287                                          "ibm,segment-page-sizes", &size);
 288        if (prop != NULL) {
 289                DBG("Page sizes from device-tree:\n");
 290                size /= 4;
 291                cur_cpu_spec->cpu_features &= ~(CPU_FTR_16M_PAGE);
 292                while(size > 0) {
 293                        unsigned int shift = prop[0];
 294                        unsigned int slbenc = prop[1];
 295                        unsigned int lpnum = prop[2];
 296                        unsigned int lpenc = 0;
 297                        struct mmu_psize_def *def;
 298                        int idx = -1;
 299
 300                        size -= 3; prop += 3;
 301                        while(size > 0 && lpnum) {
 302                                if (prop[0] == shift)
 303                                        lpenc = prop[1];
 304                                prop += 2; size -= 2;
 305                                lpnum--;
 306                        }
 307                        switch(shift) {
 308                        case 0xc:
 309                                idx = MMU_PAGE_4K;
 310                                break;
 311                        case 0x10:
 312                                idx = MMU_PAGE_64K;
 313                                break;
 314                        case 0x14:
 315                                idx = MMU_PAGE_1M;
 316                                break;
 317                        case 0x18:
 318                                idx = MMU_PAGE_16M;
 319                                cur_cpu_spec->cpu_features |= CPU_FTR_16M_PAGE;
 320                                break;
 321                        case 0x22:
 322                                idx = MMU_PAGE_16G;
 323                                break;
 324                        }
 325                        if (idx < 0)
 326                                continue;
 327                        def = &mmu_psize_defs[idx];
 328                        def->shift = shift;
 329                        if (shift <= 23)
 330                                def->avpnm = 0;
 331                        else
 332                                def->avpnm = (1 << (shift - 23)) - 1;
 333                        def->sllp = slbenc;
 334                        def->penc = lpenc;
 335                        /* We don't know for sure what's up with tlbiel, so
 336                         * for now we only set it for 4K and 64K pages
 337                         */
 338                        if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
 339                                def->tlbiel = 1;
 340                        else
 341                                def->tlbiel = 0;
 342
 343                        DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
 344                            "tlbiel=%d, penc=%d\n",
 345                            idx, shift, def->sllp, def->avpnm, def->tlbiel,
 346                            def->penc);
 347                }
 348                return 1;
 349        }
 350        return 0;
 351}
 352
 353#ifdef CONFIG_HUGETLB_PAGE
 354/* Scan for 16G memory blocks that have been set aside for huge pages
 355 * and reserve those blocks for 16G huge pages.
 356 */
 357static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
 358                                        const char *uname, int depth,
 359                                        void *data) {
 360        char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 361        unsigned long *addr_prop;
 362        u32 *page_count_prop;
 363        unsigned int expected_pages;
 364        long unsigned int phys_addr;
 365        long unsigned int block_size;
 366
 367        /* We are scanning "memory" nodes only */
 368        if (type == NULL || strcmp(type, "memory") != 0)
 369                return 0;
 370
 371        /* This property is the log base 2 of the number of virtual pages that
 372         * will represent this memory block. */
 373        page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
 374        if (page_count_prop == NULL)
 375                return 0;
 376        expected_pages = (1 << page_count_prop[0]);
 377        addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
 378        if (addr_prop == NULL)
 379                return 0;
 380        phys_addr = addr_prop[0];
 381        block_size = addr_prop[1];
 382        if (block_size != (16 * GB))
 383                return 0;
 384        printk(KERN_INFO "Huge page(16GB) memory: "
 385                        "addr = 0x%lX size = 0x%lX pages = %d\n",
 386                        phys_addr, block_size, expected_pages);
 387        if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
 388                memblock_reserve(phys_addr, block_size * expected_pages);
 389                add_gpage(phys_addr, block_size, expected_pages);
 390        }
 391        return 0;
 392}
 393#endif /* CONFIG_HUGETLB_PAGE */
 394
 395static void __init htab_init_page_sizes(void)
 396{
 397        int rc;
 398
 399        /* Default to 4K pages only */
 400        memcpy(mmu_psize_defs, mmu_psize_defaults_old,
 401               sizeof(mmu_psize_defaults_old));
 402
 403        /*
 404         * Try to find the available page sizes in the device-tree
 405         */
 406        rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
 407        if (rc != 0)  /* Found */
 408                goto found;
 409
 410        /*
 411         * Not in the device-tree, let's fallback on known size
 412         * list for 16M capable GP & GR
 413         */
 414        if (cpu_has_feature(CPU_FTR_16M_PAGE))
 415                memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
 416                       sizeof(mmu_psize_defaults_gp));
 417 found:
 418#ifndef CONFIG_DEBUG_PAGEALLOC
 419        /*
 420         * Pick a size for the linear mapping. Currently, we only support
 421         * 16M, 1M and 4K which is the default
 422         */
 423        if (mmu_psize_defs[MMU_PAGE_16M].shift)
 424                mmu_linear_psize = MMU_PAGE_16M;
 425        else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 426                mmu_linear_psize = MMU_PAGE_1M;
 427#endif /* CONFIG_DEBUG_PAGEALLOC */
 428
 429#ifdef CONFIG_PPC_64K_PAGES
 430        /*
 431         * Pick a size for the ordinary pages. Default is 4K, we support
 432         * 64K for user mappings and vmalloc if supported by the processor.
 433         * We only use 64k for ioremap if the processor
 434         * (and firmware) support cache-inhibited large pages.
 435         * If not, we use 4k and set mmu_ci_restrictions so that
 436         * hash_page knows to switch processes that use cache-inhibited
 437         * mappings to 4k pages.
 438         */
 439        if (mmu_psize_defs[MMU_PAGE_64K].shift) {
 440                mmu_virtual_psize = MMU_PAGE_64K;
 441                mmu_vmalloc_psize = MMU_PAGE_64K;
 442                if (mmu_linear_psize == MMU_PAGE_4K)
 443                        mmu_linear_psize = MMU_PAGE_64K;
 444                if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE)) {
 445                        /*
 446                         * Don't use 64k pages for ioremap on pSeries, since
 447                         * that would stop us accessing the HEA ethernet.
 448                         */
 449                        if (!machine_is(pseries))
 450                                mmu_io_psize = MMU_PAGE_64K;
 451                } else
 452                        mmu_ci_restrictions = 1;
 453        }
 454#endif /* CONFIG_PPC_64K_PAGES */
 455
 456#ifdef CONFIG_SPARSEMEM_VMEMMAP
 457        /* We try to use 16M pages for vmemmap if that is supported
 458         * and we have at least 1G of RAM at boot
 459         */
 460        if (mmu_psize_defs[MMU_PAGE_16M].shift &&
 461            memblock_phys_mem_size() >= 0x40000000)
 462                mmu_vmemmap_psize = MMU_PAGE_16M;
 463        else if (mmu_psize_defs[MMU_PAGE_64K].shift)
 464                mmu_vmemmap_psize = MMU_PAGE_64K;
 465        else
 466                mmu_vmemmap_psize = MMU_PAGE_4K;
 467#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 468
 469        printk(KERN_DEBUG "Page orders: linear mapping = %d, "
 470               "virtual = %d, io = %d"
 471#ifdef CONFIG_SPARSEMEM_VMEMMAP
 472               ", vmemmap = %d"
 473#endif
 474               "\n",
 475               mmu_psize_defs[mmu_linear_psize].shift,
 476               mmu_psize_defs[mmu_virtual_psize].shift,
 477               mmu_psize_defs[mmu_io_psize].shift
 478#ifdef CONFIG_SPARSEMEM_VMEMMAP
 479               ,mmu_psize_defs[mmu_vmemmap_psize].shift
 480#endif
 481               );
 482
 483#ifdef CONFIG_HUGETLB_PAGE
 484        /* Reserve 16G huge page memory sections for huge pages */
 485        of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
 486#endif /* CONFIG_HUGETLB_PAGE */
 487}
 488
 489static int __init htab_dt_scan_pftsize(unsigned long node,
 490                                       const char *uname, int depth,
 491                                       void *data)
 492{
 493        char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 494        u32 *prop;
 495
 496        /* We are scanning "cpu" nodes only */
 497        if (type == NULL || strcmp(type, "cpu") != 0)
 498                return 0;
 499
 500        prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
 501        if (prop != NULL) {
 502                /* pft_size[0] is the NUMA CEC cookie */
 503                ppc64_pft_size = prop[1];
 504                return 1;
 505        }
 506        return 0;
 507}
 508
 509static unsigned long __init htab_get_table_size(void)
 510{
 511        unsigned long mem_size, rnd_mem_size, pteg_count, psize;
 512
 513        /* If hash size isn't already provided by the platform, we try to
 514         * retrieve it from the device-tree. If it's not there neither, we
 515         * calculate it now based on the total RAM size
 516         */
 517        if (ppc64_pft_size == 0)
 518                of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
 519        if (ppc64_pft_size)
 520                return 1UL << ppc64_pft_size;
 521
 522        /* round mem_size up to next power of 2 */
 523        mem_size = memblock_phys_mem_size();
 524        rnd_mem_size = 1UL << __ilog2(mem_size);
 525        if (rnd_mem_size < mem_size)
 526                rnd_mem_size <<= 1;
 527
 528        /* # pages / 2 */
 529        psize = mmu_psize_defs[mmu_virtual_psize].shift;
 530        pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
 531
 532        return pteg_count << 7;
 533}
 534
 535#ifdef CONFIG_MEMORY_HOTPLUG
 536void create_section_mapping(unsigned long start, unsigned long end)
 537{
 538        BUG_ON(htab_bolt_mapping(start, end, __pa(start),
 539                                 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
 540                                 mmu_kernel_ssize));
 541}
 542
 543int remove_section_mapping(unsigned long start, unsigned long end)
 544{
 545        return htab_remove_mapping(start, end, mmu_linear_psize,
 546                        mmu_kernel_ssize);
 547}
 548#endif /* CONFIG_MEMORY_HOTPLUG */
 549
 550static inline void make_bl(unsigned int *insn_addr, void *func)
 551{
 552        unsigned long funcp = *((unsigned long *)func);
 553        int offset = funcp - (unsigned long)insn_addr;
 554
 555        *insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc));
 556        flush_icache_range((unsigned long)insn_addr, 4+
 557                           (unsigned long)insn_addr);
 558}
 559
 560static void __init htab_finish_init(void)
 561{
 562        extern unsigned int *htab_call_hpte_insert1;
 563        extern unsigned int *htab_call_hpte_insert2;
 564        extern unsigned int *htab_call_hpte_remove;
 565        extern unsigned int *htab_call_hpte_updatepp;
 566
 567#ifdef CONFIG_PPC_HAS_HASH_64K
 568        extern unsigned int *ht64_call_hpte_insert1;
 569        extern unsigned int *ht64_call_hpte_insert2;
 570        extern unsigned int *ht64_call_hpte_remove;
 571        extern unsigned int *ht64_call_hpte_updatepp;
 572
 573        make_bl(ht64_call_hpte_insert1, ppc_md.hpte_insert);
 574        make_bl(ht64_call_hpte_insert2, ppc_md.hpte_insert);
 575        make_bl(ht64_call_hpte_remove, ppc_md.hpte_remove);
 576        make_bl(ht64_call_hpte_updatepp, ppc_md.hpte_updatepp);
 577#endif /* CONFIG_PPC_HAS_HASH_64K */
 578
 579        make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert);
 580        make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert);
 581        make_bl(htab_call_hpte_remove, ppc_md.hpte_remove);
 582        make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp);
 583}
 584
 585static void __init htab_initialize(void)
 586{
 587        unsigned long table;
 588        unsigned long pteg_count;
 589        unsigned long prot;
 590        unsigned long base = 0, size = 0, limit;
 591        struct memblock_region *reg;
 592
 593        DBG(" -> htab_initialize()\n");
 594
 595        /* Initialize segment sizes */
 596        htab_init_seg_sizes();
 597
 598        /* Initialize page sizes */
 599        htab_init_page_sizes();
 600
 601        if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) {
 602                mmu_kernel_ssize = MMU_SEGSIZE_1T;
 603                mmu_highuser_ssize = MMU_SEGSIZE_1T;
 604                printk(KERN_INFO "Using 1TB segments\n");
 605        }
 606
 607        /*
 608         * Calculate the required size of the htab.  We want the number of
 609         * PTEGs to equal one half the number of real pages.
 610         */ 
 611        htab_size_bytes = htab_get_table_size();
 612        pteg_count = htab_size_bytes >> 7;
 613
 614        htab_hash_mask = pteg_count - 1;
 615
 616        if (firmware_has_feature(FW_FEATURE_LPAR)) {
 617                /* Using a hypervisor which owns the htab */
 618                htab_address = NULL;
 619                _SDR1 = 0; 
 620        } else {
 621                /* Find storage for the HPT.  Must be contiguous in
 622                 * the absolute address space. On cell we want it to be
 623                 * in the first 2 Gig so we can use it for IOMMU hacks.
 624                 */
 625                if (machine_is(cell))
 626                        limit = 0x80000000;
 627                else
 628                        limit = MEMBLOCK_ALLOC_ANYWHERE;
 629
 630                table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
 631
 632                DBG("Hash table allocated at %lx, size: %lx\n", table,
 633                    htab_size_bytes);
 634
 635                htab_address = abs_to_virt(table);
 636
 637                /* htab absolute addr + encoded htabsize */
 638                _SDR1 = table + __ilog2(pteg_count) - 11;
 639
 640                /* Initialize the HPT with no entries */
 641                memset((void *)table, 0, htab_size_bytes);
 642
 643                /* Set SDR1 */
 644                mtspr(SPRN_SDR1, _SDR1);
 645        }
 646
 647        prot = pgprot_val(PAGE_KERNEL);
 648
 649#ifdef CONFIG_DEBUG_PAGEALLOC
 650        linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
 651        linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
 652                                                    1, ppc64_rma_size));
 653        memset(linear_map_hash_slots, 0, linear_map_hash_count);
 654#endif /* CONFIG_DEBUG_PAGEALLOC */
 655
 656        /* On U3 based machines, we need to reserve the DART area and
 657         * _NOT_ map it to avoid cache paradoxes as it's remapped non
 658         * cacheable later on
 659         */
 660
 661        /* create bolted the linear mapping in the hash table */
 662        for_each_memblock(memory, reg) {
 663                base = (unsigned long)__va(reg->base);
 664                size = reg->size;
 665
 666                DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
 667                    base, size, prot);
 668
 669#ifdef CONFIG_U3_DART
 670                /* Do not map the DART space. Fortunately, it will be aligned
 671                 * in such a way that it will not cross two memblock regions and
 672                 * will fit within a single 16Mb page.
 673                 * The DART space is assumed to be a full 16Mb region even if
 674                 * we only use 2Mb of that space. We will use more of it later
 675                 * for AGP GART. We have to use a full 16Mb large page.
 676                 */
 677                DBG("DART base: %lx\n", dart_tablebase);
 678
 679                if (dart_tablebase != 0 && dart_tablebase >= base
 680                    && dart_tablebase < (base + size)) {
 681                        unsigned long dart_table_end = dart_tablebase + 16 * MB;
 682                        if (base != dart_tablebase)
 683                                BUG_ON(htab_bolt_mapping(base, dart_tablebase,
 684                                                        __pa(base), prot,
 685                                                        mmu_linear_psize,
 686                                                        mmu_kernel_ssize));
 687                        if ((base + size) > dart_table_end)
 688                                BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
 689                                                        base + size,
 690                                                        __pa(dart_table_end),
 691                                                         prot,
 692                                                         mmu_linear_psize,
 693                                                         mmu_kernel_ssize));
 694                        continue;
 695                }
 696#endif /* CONFIG_U3_DART */
 697                BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
 698                                prot, mmu_linear_psize, mmu_kernel_ssize));
 699        }
 700        memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 701
 702        /*
 703         * If we have a memory_limit and we've allocated TCEs then we need to
 704         * explicitly map the TCE area at the top of RAM. We also cope with the
 705         * case that the TCEs start below memory_limit.
 706         * tce_alloc_start/end are 16MB aligned so the mapping should work
 707         * for either 4K or 16MB pages.
 708         */
 709        if (tce_alloc_start) {
 710                tce_alloc_start = (unsigned long)__va(tce_alloc_start);
 711                tce_alloc_end = (unsigned long)__va(tce_alloc_end);
 712
 713                if (base + size >= tce_alloc_start)
 714                        tce_alloc_start = base + size + 1;
 715
 716                BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
 717                                         __pa(tce_alloc_start), prot,
 718                                         mmu_linear_psize, mmu_kernel_ssize));
 719        }
 720
 721        htab_finish_init();
 722
 723        DBG(" <- htab_initialize()\n");
 724}
 725#undef KB
 726#undef MB
 727
 728void __init early_init_mmu(void)
 729{
 730        /* Setup initial STAB address in the PACA */
 731        get_paca()->stab_real = __pa((u64)&initial_stab);
 732        get_paca()->stab_addr = (u64)&initial_stab;
 733
 734        /* Initialize the MMU Hash table and create the linear mapping
 735         * of memory. Has to be done before stab/slb initialization as
 736         * this is currently where the page size encoding is obtained
 737         */
 738        htab_initialize();
 739
 740        /* Initialize stab / SLB management except on iSeries
 741         */
 742        if (cpu_has_feature(CPU_FTR_SLB))
 743                slb_initialize();
 744        else if (!firmware_has_feature(FW_FEATURE_ISERIES))
 745                stab_initialize(get_paca()->stab_real);
 746}
 747
 748#ifdef CONFIG_SMP
 749void __cpuinit early_init_mmu_secondary(void)
 750{
 751        /* Initialize hash table for that CPU */
 752        if (!firmware_has_feature(FW_FEATURE_LPAR))
 753                mtspr(SPRN_SDR1, _SDR1);
 754
 755        /* Initialize STAB/SLB. We use a virtual address as it works
 756         * in real mode on pSeries and we want a virutal address on
 757         * iSeries anyway
 758         */
 759        if (cpu_has_feature(CPU_FTR_SLB))
 760                slb_initialize();
 761        else
 762                stab_initialize(get_paca()->stab_addr);
 763}
 764#endif /* CONFIG_SMP */
 765
 766/*
 767 * Called by asm hashtable.S for doing lazy icache flush
 768 */
 769unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
 770{
 771        struct page *page;
 772
 773        if (!pfn_valid(pte_pfn(pte)))
 774                return pp;
 775
 776        page = pte_page(pte);
 777
 778        /* page is dirty */
 779        if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
 780                if (trap == 0x400) {
 781                        flush_dcache_icache_page(page);
 782                        set_bit(PG_arch_1, &page->flags);
 783                } else
 784                        pp |= HPTE_R_N;
 785        }
 786        return pp;
 787}
 788
 789#ifdef CONFIG_PPC_MM_SLICES
 790unsigned int get_paca_psize(unsigned long addr)
 791{
 792        unsigned long index, slices;
 793
 794        if (addr < SLICE_LOW_TOP) {
 795                slices = get_paca()->context.low_slices_psize;
 796                index = GET_LOW_SLICE_INDEX(addr);
 797        } else {
 798                slices = get_paca()->context.high_slices_psize;
 799                index = GET_HIGH_SLICE_INDEX(addr);
 800        }
 801        return (slices >> (index * 4)) & 0xF;
 802}
 803
 804#else
 805unsigned int get_paca_psize(unsigned long addr)
 806{
 807        return get_paca()->context.user_psize;
 808}
 809#endif
 810
 811/*
 812 * Demote a segment to using 4k pages.
 813 * For now this makes the whole process use 4k pages.
 814 */
 815#ifdef CONFIG_PPC_64K_PAGES
 816void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
 817{
 818        if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
 819                return;
 820        slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
 821#ifdef CONFIG_SPU_BASE
 822        spu_flush_all_slbs(mm);
 823#endif
 824        if (get_paca_psize(addr) != MMU_PAGE_4K) {
 825                get_paca()->context = mm->context;
 826                slb_flush_and_rebolt();
 827        }
 828}
 829#endif /* CONFIG_PPC_64K_PAGES */
 830
 831#ifdef CONFIG_PPC_SUBPAGE_PROT
 832/*
 833 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
 834 * Userspace sets the subpage permissions using the subpage_prot system call.
 835 *
 836 * Result is 0: full permissions, _PAGE_RW: read-only,
 837 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
 838 */
 839static int subpage_protection(struct mm_struct *mm, unsigned long ea)
 840{
 841        struct subpage_prot_table *spt = &mm->context.spt;
 842        u32 spp = 0;
 843        u32 **sbpm, *sbpp;
 844
 845        if (ea >= spt->maxaddr)
 846                return 0;
 847        if (ea < 0x100000000) {
 848                /* addresses below 4GB use spt->low_prot */
 849                sbpm = spt->low_prot;
 850        } else {
 851                sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
 852                if (!sbpm)
 853                        return 0;
 854        }
 855        sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
 856        if (!sbpp)
 857                return 0;
 858        spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
 859
 860        /* extract 2-bit bitfield for this 4k subpage */
 861        spp >>= 30 - 2 * ((ea >> 12) & 0xf);
 862
 863        /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
 864        spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
 865        return spp;
 866}
 867
 868#else /* CONFIG_PPC_SUBPAGE_PROT */
 869static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
 870{
 871        return 0;
 872}
 873#endif
 874
 875void hash_failure_debug(unsigned long ea, unsigned long access,
 876                        unsigned long vsid, unsigned long trap,
 877                        int ssize, int psize, unsigned long pte)
 878{
 879        if (!printk_ratelimit())
 880                return;
 881        pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
 882                ea, access, current->comm);
 883        pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
 884                trap, vsid, ssize, psize, pte);
 885}
 886
 887/* Result code is:
 888 *  0 - handled
 889 *  1 - normal page fault
 890 * -1 - critical hash insertion error
 891 * -2 - access not permitted by subpage protection mechanism
 892 */
 893int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
 894{
 895        pgd_t *pgdir;
 896        unsigned long vsid;
 897        struct mm_struct *mm;
 898        pte_t *ptep;
 899        unsigned hugeshift;
 900        const struct cpumask *tmp;
 901        int rc, user_region = 0, local = 0;
 902        int psize, ssize;
 903
 904        DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
 905                ea, access, trap);
 906
 907        if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
 908                DBG_LOW(" out of pgtable range !\n");
 909                return 1;
 910        }
 911
 912        /* Get region & vsid */
 913        switch (REGION_ID(ea)) {
 914        case USER_REGION_ID:
 915                user_region = 1;
 916                mm = current->mm;
 917                if (! mm) {
 918                        DBG_LOW(" user region with no mm !\n");
 919                        return 1;
 920                }
 921                psize = get_slice_psize(mm, ea);
 922                ssize = user_segment_size(ea);
 923                vsid = get_vsid(mm->context.id, ea, ssize);
 924                break;
 925        case VMALLOC_REGION_ID:
 926                mm = &init_mm;
 927                vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
 928                if (ea < VMALLOC_END)
 929                        psize = mmu_vmalloc_psize;
 930                else
 931                        psize = mmu_io_psize;
 932                ssize = mmu_kernel_ssize;
 933                break;
 934        default:
 935                /* Not a valid range
 936                 * Send the problem up to do_page_fault 
 937                 */
 938                return 1;
 939        }
 940        DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
 941
 942        /* Get pgdir */
 943        pgdir = mm->pgd;
 944        if (pgdir == NULL)
 945                return 1;
 946
 947        /* Check CPU locality */
 948        tmp = cpumask_of(smp_processor_id());
 949        if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
 950                local = 1;
 951
 952#ifndef CONFIG_PPC_64K_PAGES
 953        /* If we use 4K pages and our psize is not 4K, then we might
 954         * be hitting a special driver mapping, and need to align the
 955         * address before we fetch the PTE.
 956         *
 957         * It could also be a hugepage mapping, in which case this is
 958         * not necessary, but it's not harmful, either.
 959         */
 960        if (psize != MMU_PAGE_4K)
 961                ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
 962#endif /* CONFIG_PPC_64K_PAGES */
 963
 964        /* Get PTE and page size from page tables */
 965        ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
 966        if (ptep == NULL || !pte_present(*ptep)) {
 967                DBG_LOW(" no PTE !\n");
 968                return 1;
 969        }
 970
 971        /* Add _PAGE_PRESENT to the required access perm */
 972        access |= _PAGE_PRESENT;
 973
 974        /* Pre-check access permissions (will be re-checked atomically
 975         * in __hash_page_XX but this pre-check is a fast path
 976         */
 977        if (access & ~pte_val(*ptep)) {
 978                DBG_LOW(" no access !\n");
 979                return 1;
 980        }
 981
 982#ifdef CONFIG_HUGETLB_PAGE
 983        if (hugeshift)
 984                return __hash_page_huge(ea, access, vsid, ptep, trap, local,
 985                                        ssize, hugeshift, psize);
 986#endif /* CONFIG_HUGETLB_PAGE */
 987
 988#ifndef CONFIG_PPC_64K_PAGES
 989        DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
 990#else
 991        DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
 992                pte_val(*(ptep + PTRS_PER_PTE)));
 993#endif
 994        /* Do actual hashing */
 995#ifdef CONFIG_PPC_64K_PAGES
 996        /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
 997        if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
 998                demote_segment_4k(mm, ea);
 999                psize = MMU_PAGE_4K;
1000        }
1001
1002        /* If this PTE is non-cacheable and we have restrictions on
1003         * using non cacheable large pages, then we switch to 4k
1004         */
1005        if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1006            (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1007                if (user_region) {
1008                        demote_segment_4k(mm, ea);
1009                        psize = MMU_PAGE_4K;
1010                } else if (ea < VMALLOC_END) {
1011                        /*
1012                         * some driver did a non-cacheable mapping
1013                         * in vmalloc space, so switch vmalloc
1014                         * to 4k pages
1015                         */
1016                        printk(KERN_ALERT "Reducing vmalloc segment "
1017                               "to 4kB pages because of "
1018                               "non-cacheable mapping\n");
1019                        psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1020#ifdef CONFIG_SPU_BASE
1021                        spu_flush_all_slbs(mm);
1022#endif
1023                }
1024        }
1025        if (user_region) {
1026                if (psize != get_paca_psize(ea)) {
1027                        get_paca()->context = mm->context;
1028                        slb_flush_and_rebolt();
1029                }
1030        } else if (get_paca()->vmalloc_sllp !=
1031                   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1032                get_paca()->vmalloc_sllp =
1033                        mmu_psize_defs[mmu_vmalloc_psize].sllp;
1034                slb_vmalloc_update();
1035        }
1036#endif /* CONFIG_PPC_64K_PAGES */
1037
1038#ifdef CONFIG_PPC_HAS_HASH_64K
1039        if (psize == MMU_PAGE_64K)
1040                rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1041        else
1042#endif /* CONFIG_PPC_HAS_HASH_64K */
1043        {
1044                int spp = subpage_protection(mm, ea);
1045                if (access & spp)
1046                        rc = -2;
1047                else
1048                        rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1049                                            local, ssize, spp);
1050        }
1051
1052        /* Dump some info in case of hash insertion failure, they should
1053         * never happen so it is really useful to know if/when they do
1054         */
1055        if (rc == -1)
1056                hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1057                                   pte_val(*ptep));
1058#ifndef CONFIG_PPC_64K_PAGES
1059        DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1060#else
1061        DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1062                pte_val(*(ptep + PTRS_PER_PTE)));
1063#endif
1064        DBG_LOW(" -> rc=%d\n", rc);
1065        return rc;
1066}
1067EXPORT_SYMBOL_GPL(hash_page);
1068
1069void hash_preload(struct mm_struct *mm, unsigned long ea,
1070                  unsigned long access, unsigned long trap)
1071{
1072        unsigned long vsid;
1073        pgd_t *pgdir;
1074        pte_t *ptep;
1075        unsigned long flags;
1076        int rc, ssize, local = 0;
1077
1078        BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1079
1080#ifdef CONFIG_PPC_MM_SLICES
1081        /* We only prefault standard pages for now */
1082        if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1083                return;
1084#endif
1085
1086        DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1087                " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1088
1089        /* Get Linux PTE if available */
1090        pgdir = mm->pgd;
1091        if (pgdir == NULL)
1092                return;
1093        ptep = find_linux_pte(pgdir, ea);
1094        if (!ptep)
1095                return;
1096
1097#ifdef CONFIG_PPC_64K_PAGES
1098        /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1099         * a 64K kernel), then we don't preload, hash_page() will take
1100         * care of it once we actually try to access the page.
1101         * That way we don't have to duplicate all of the logic for segment
1102         * page size demotion here
1103         */
1104        if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1105                return;
1106#endif /* CONFIG_PPC_64K_PAGES */
1107
1108        /* Get VSID */
1109        ssize = user_segment_size(ea);
1110        vsid = get_vsid(mm->context.id, ea, ssize);
1111
1112        /* Hash doesn't like irqs */
1113        local_irq_save(flags);
1114
1115        /* Is that local to this CPU ? */
1116        if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1117                local = 1;
1118
1119        /* Hash it in */
1120#ifdef CONFIG_PPC_HAS_HASH_64K
1121        if (mm->context.user_psize == MMU_PAGE_64K)
1122                rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1123        else
1124#endif /* CONFIG_PPC_HAS_HASH_64K */
1125                rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1126                                    subpage_protection(mm, ea));
1127
1128        /* Dump some info in case of hash insertion failure, they should
1129         * never happen so it is really useful to know if/when they do
1130         */
1131        if (rc == -1)
1132                hash_failure_debug(ea, access, vsid, trap, ssize,
1133                                   mm->context.user_psize, pte_val(*ptep));
1134
1135        local_irq_restore(flags);
1136}
1137
1138/* WARNING: This is called from hash_low_64.S, if you change this prototype,
1139 *          do not forget to update the assembly call site !
1140 */
1141void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1142                     int local)
1143{
1144        unsigned long hash, index, shift, hidx, slot;
1145
1146        DBG_LOW("flush_hash_page(va=%016lx)\n", va);
1147        pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1148                hash = hpt_hash(va, shift, ssize);
1149                hidx = __rpte_to_hidx(pte, index);
1150                if (hidx & _PTEIDX_SECONDARY)
1151                        hash = ~hash;
1152                slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1153                slot += hidx & _PTEIDX_GROUP_IX;
1154                DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1155                ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1156        } pte_iterate_hashed_end();
1157}
1158
1159void flush_hash_range(unsigned long number, int local)
1160{
1161        if (ppc_md.flush_hash_range)
1162                ppc_md.flush_hash_range(number, local);
1163        else {
1164                int i;
1165                struct ppc64_tlb_batch *batch =
1166                        &__get_cpu_var(ppc64_tlb_batch);
1167
1168                for (i = 0; i < number; i++)
1169                        flush_hash_page(batch->vaddr[i], batch->pte[i],
1170                                        batch->psize, batch->ssize, local);
1171        }
1172}
1173
1174/*
1175 * low_hash_fault is called when we the low level hash code failed
1176 * to instert a PTE due to an hypervisor error
1177 */
1178void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1179{
1180        if (user_mode(regs)) {
1181#ifdef CONFIG_PPC_SUBPAGE_PROT
1182                if (rc == -2)
1183                        _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1184                else
1185#endif
1186                        _exception(SIGBUS, regs, BUS_ADRERR, address);
1187        } else
1188                bad_page_fault(regs, address, SIGBUS);
1189}
1190
1191#ifdef CONFIG_DEBUG_PAGEALLOC
1192static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1193{
1194        unsigned long hash, hpteg;
1195        unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1196        unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1197        unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1198        int ret;
1199
1200        hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1201        hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1202
1203        ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1204                                 mode, HPTE_V_BOLTED,
1205                                 mmu_linear_psize, mmu_kernel_ssize);
1206        BUG_ON (ret < 0);
1207        spin_lock(&linear_map_hash_lock);
1208        BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1209        linear_map_hash_slots[lmi] = ret | 0x80;
1210        spin_unlock(&linear_map_hash_lock);
1211}
1212
1213static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1214{
1215        unsigned long hash, hidx, slot;
1216        unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1217        unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1218
1219        hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1220        spin_lock(&linear_map_hash_lock);
1221        BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1222        hidx = linear_map_hash_slots[lmi] & 0x7f;
1223        linear_map_hash_slots[lmi] = 0;
1224        spin_unlock(&linear_map_hash_lock);
1225        if (hidx & _PTEIDX_SECONDARY)
1226                hash = ~hash;
1227        slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1228        slot += hidx & _PTEIDX_GROUP_IX;
1229        ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1230}
1231
1232void kernel_map_pages(struct page *page, int numpages, int enable)
1233{
1234        unsigned long flags, vaddr, lmi;
1235        int i;
1236
1237        local_irq_save(flags);
1238        for (i = 0; i < numpages; i++, page++) {
1239                vaddr = (unsigned long)page_address(page);
1240                lmi = __pa(vaddr) >> PAGE_SHIFT;
1241                if (lmi >= linear_map_hash_count)
1242                        continue;
1243                if (enable)
1244                        kernel_map_linear_page(vaddr, lmi);
1245                else
1246                        kernel_unmap_linear_page(vaddr, lmi);
1247        }
1248        local_irq_restore(flags);
1249}
1250#endif /* CONFIG_DEBUG_PAGEALLOC */
1251
1252void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1253                                phys_addr_t first_memblock_size)
1254{
1255        /* We don't currently support the first MEMBLOCK not mapping 0
1256         * physical on those processors
1257         */
1258        BUG_ON(first_memblock_base != 0);
1259
1260        /* On LPAR systems, the first entry is our RMA region,
1261         * non-LPAR 64-bit hash MMU systems don't have a limitation
1262         * on real mode access, but using the first entry works well
1263         * enough. We also clamp it to 1G to avoid some funky things
1264         * such as RTAS bugs etc...
1265         */
1266        ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1267
1268        /* Finally limit subsequent allocations */
1269        memblock_set_current_limit(ppc64_rma_size);
1270}
1271