linux/arch/powerpc/mm/numa.c
<<
>>
Prefs
   1/*
   2 * pSeries NUMA support
   3 *
   4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/threads.h>
  12#include <linux/bootmem.h>
  13#include <linux/init.h>
  14#include <linux/mm.h>
  15#include <linux/mmzone.h>
  16#include <linux/module.h>
  17#include <linux/nodemask.h>
  18#include <linux/cpu.h>
  19#include <linux/notifier.h>
  20#include <linux/memblock.h>
  21#include <linux/of.h>
  22#include <linux/pfn.h>
  23#include <linux/cpuset.h>
  24#include <linux/node.h>
  25#include <asm/sparsemem.h>
  26#include <asm/prom.h>
  27#include <asm/system.h>
  28#include <asm/smp.h>
  29#include <asm/firmware.h>
  30#include <asm/paca.h>
  31#include <asm/hvcall.h>
  32
  33static int numa_enabled = 1;
  34
  35static char *cmdline __initdata;
  36
  37static int numa_debug;
  38#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  39
  40int numa_cpu_lookup_table[NR_CPUS];
  41cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  42struct pglist_data *node_data[MAX_NUMNODES];
  43
  44EXPORT_SYMBOL(numa_cpu_lookup_table);
  45EXPORT_SYMBOL(node_to_cpumask_map);
  46EXPORT_SYMBOL(node_data);
  47
  48static int min_common_depth;
  49static int n_mem_addr_cells, n_mem_size_cells;
  50static int form1_affinity;
  51
  52#define MAX_DISTANCE_REF_POINTS 4
  53static int distance_ref_points_depth;
  54static const unsigned int *distance_ref_points;
  55static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  56
  57/*
  58 * Allocate node_to_cpumask_map based on number of available nodes
  59 * Requires node_possible_map to be valid.
  60 *
  61 * Note: node_to_cpumask() is not valid until after this is done.
  62 */
  63static void __init setup_node_to_cpumask_map(void)
  64{
  65        unsigned int node, num = 0;
  66
  67        /* setup nr_node_ids if not done yet */
  68        if (nr_node_ids == MAX_NUMNODES) {
  69                for_each_node_mask(node, node_possible_map)
  70                        num = node;
  71                nr_node_ids = num + 1;
  72        }
  73
  74        /* allocate the map */
  75        for (node = 0; node < nr_node_ids; node++)
  76                alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  77
  78        /* cpumask_of_node() will now work */
  79        dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
  80}
  81
  82static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
  83                                                unsigned int *nid)
  84{
  85        unsigned long long mem;
  86        char *p = cmdline;
  87        static unsigned int fake_nid;
  88        static unsigned long long curr_boundary;
  89
  90        /*
  91         * Modify node id, iff we started creating NUMA nodes
  92         * We want to continue from where we left of the last time
  93         */
  94        if (fake_nid)
  95                *nid = fake_nid;
  96        /*
  97         * In case there are no more arguments to parse, the
  98         * node_id should be the same as the last fake node id
  99         * (we've handled this above).
 100         */
 101        if (!p)
 102                return 0;
 103
 104        mem = memparse(p, &p);
 105        if (!mem)
 106                return 0;
 107
 108        if (mem < curr_boundary)
 109                return 0;
 110
 111        curr_boundary = mem;
 112
 113        if ((end_pfn << PAGE_SHIFT) > mem) {
 114                /*
 115                 * Skip commas and spaces
 116                 */
 117                while (*p == ',' || *p == ' ' || *p == '\t')
 118                        p++;
 119
 120                cmdline = p;
 121                fake_nid++;
 122                *nid = fake_nid;
 123                dbg("created new fake_node with id %d\n", fake_nid);
 124                return 1;
 125        }
 126        return 0;
 127}
 128
 129/*
 130 * get_active_region_work_fn - A helper function for get_node_active_region
 131 *      Returns datax set to the start_pfn and end_pfn if they contain
 132 *      the initial value of datax->start_pfn between them
 133 * @start_pfn: start page(inclusive) of region to check
 134 * @end_pfn: end page(exclusive) of region to check
 135 * @datax: comes in with ->start_pfn set to value to search for and
 136 *      goes out with active range if it contains it
 137 * Returns 1 if search value is in range else 0
 138 */
 139static int __init get_active_region_work_fn(unsigned long start_pfn,
 140                                        unsigned long end_pfn, void *datax)
 141{
 142        struct node_active_region *data;
 143        data = (struct node_active_region *)datax;
 144
 145        if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
 146                data->start_pfn = start_pfn;
 147                data->end_pfn = end_pfn;
 148                return 1;
 149        }
 150        return 0;
 151
 152}
 153
 154/*
 155 * get_node_active_region - Return active region containing start_pfn
 156 * Active range returned is empty if none found.
 157 * @start_pfn: The page to return the region for.
 158 * @node_ar: Returned set to the active region containing start_pfn
 159 */
 160static void __init get_node_active_region(unsigned long start_pfn,
 161                       struct node_active_region *node_ar)
 162{
 163        int nid = early_pfn_to_nid(start_pfn);
 164
 165        node_ar->nid = nid;
 166        node_ar->start_pfn = start_pfn;
 167        node_ar->end_pfn = start_pfn;
 168        work_with_active_regions(nid, get_active_region_work_fn, node_ar);
 169}
 170
 171static void map_cpu_to_node(int cpu, int node)
 172{
 173        numa_cpu_lookup_table[cpu] = node;
 174
 175        dbg("adding cpu %d to node %d\n", cpu, node);
 176
 177        if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 178                cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 179}
 180
 181#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 182static void unmap_cpu_from_node(unsigned long cpu)
 183{
 184        int node = numa_cpu_lookup_table[cpu];
 185
 186        dbg("removing cpu %lu from node %d\n", cpu, node);
 187
 188        if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 189                cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 190        } else {
 191                printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 192                       cpu, node);
 193        }
 194}
 195#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 196
 197/* must hold reference to node during call */
 198static const int *of_get_associativity(struct device_node *dev)
 199{
 200        return of_get_property(dev, "ibm,associativity", NULL);
 201}
 202
 203/*
 204 * Returns the property linux,drconf-usable-memory if
 205 * it exists (the property exists only in kexec/kdump kernels,
 206 * added by kexec-tools)
 207 */
 208static const u32 *of_get_usable_memory(struct device_node *memory)
 209{
 210        const u32 *prop;
 211        u32 len;
 212        prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
 213        if (!prop || len < sizeof(unsigned int))
 214                return 0;
 215        return prop;
 216}
 217
 218int __node_distance(int a, int b)
 219{
 220        int i;
 221        int distance = LOCAL_DISTANCE;
 222
 223        if (!form1_affinity)
 224                return distance;
 225
 226        for (i = 0; i < distance_ref_points_depth; i++) {
 227                if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 228                        break;
 229
 230                /* Double the distance for each NUMA level */
 231                distance *= 2;
 232        }
 233
 234        return distance;
 235}
 236
 237static void initialize_distance_lookup_table(int nid,
 238                const unsigned int *associativity)
 239{
 240        int i;
 241
 242        if (!form1_affinity)
 243                return;
 244
 245        for (i = 0; i < distance_ref_points_depth; i++) {
 246                distance_lookup_table[nid][i] =
 247                        associativity[distance_ref_points[i]];
 248        }
 249}
 250
 251/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 252 * info is found.
 253 */
 254static int associativity_to_nid(const unsigned int *associativity)
 255{
 256        int nid = -1;
 257
 258        if (min_common_depth == -1)
 259                goto out;
 260
 261        if (associativity[0] >= min_common_depth)
 262                nid = associativity[min_common_depth];
 263
 264        /* POWER4 LPAR uses 0xffff as invalid node */
 265        if (nid == 0xffff || nid >= MAX_NUMNODES)
 266                nid = -1;
 267
 268        if (nid > 0 && associativity[0] >= distance_ref_points_depth)
 269                initialize_distance_lookup_table(nid, associativity);
 270
 271out:
 272        return nid;
 273}
 274
 275/* Returns the nid associated with the given device tree node,
 276 * or -1 if not found.
 277 */
 278static int of_node_to_nid_single(struct device_node *device)
 279{
 280        int nid = -1;
 281        const unsigned int *tmp;
 282
 283        tmp = of_get_associativity(device);
 284        if (tmp)
 285                nid = associativity_to_nid(tmp);
 286        return nid;
 287}
 288
 289/* Walk the device tree upwards, looking for an associativity id */
 290int of_node_to_nid(struct device_node *device)
 291{
 292        struct device_node *tmp;
 293        int nid = -1;
 294
 295        of_node_get(device);
 296        while (device) {
 297                nid = of_node_to_nid_single(device);
 298                if (nid != -1)
 299                        break;
 300
 301                tmp = device;
 302                device = of_get_parent(tmp);
 303                of_node_put(tmp);
 304        }
 305        of_node_put(device);
 306
 307        return nid;
 308}
 309EXPORT_SYMBOL_GPL(of_node_to_nid);
 310
 311static int __init find_min_common_depth(void)
 312{
 313        int depth;
 314        struct device_node *rtas_root;
 315        struct device_node *chosen;
 316        const char *vec5;
 317
 318        rtas_root = of_find_node_by_path("/rtas");
 319
 320        if (!rtas_root)
 321                return -1;
 322
 323        /*
 324         * This property is a set of 32-bit integers, each representing
 325         * an index into the ibm,associativity nodes.
 326         *
 327         * With form 0 affinity the first integer is for an SMP configuration
 328         * (should be all 0's) and the second is for a normal NUMA
 329         * configuration. We have only one level of NUMA.
 330         *
 331         * With form 1 affinity the first integer is the most significant
 332         * NUMA boundary and the following are progressively less significant
 333         * boundaries. There can be more than one level of NUMA.
 334         */
 335        distance_ref_points = of_get_property(rtas_root,
 336                                        "ibm,associativity-reference-points",
 337                                        &distance_ref_points_depth);
 338
 339        if (!distance_ref_points) {
 340                dbg("NUMA: ibm,associativity-reference-points not found.\n");
 341                goto err;
 342        }
 343
 344        distance_ref_points_depth /= sizeof(int);
 345
 346#define VEC5_AFFINITY_BYTE      5
 347#define VEC5_AFFINITY           0x80
 348        chosen = of_find_node_by_path("/chosen");
 349        if (chosen) {
 350                vec5 = of_get_property(chosen, "ibm,architecture-vec-5", NULL);
 351                if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & VEC5_AFFINITY)) {
 352                        dbg("Using form 1 affinity\n");
 353                        form1_affinity = 1;
 354                }
 355        }
 356
 357        if (form1_affinity) {
 358                depth = distance_ref_points[0];
 359        } else {
 360                if (distance_ref_points_depth < 2) {
 361                        printk(KERN_WARNING "NUMA: "
 362                                "short ibm,associativity-reference-points\n");
 363                        goto err;
 364                }
 365
 366                depth = distance_ref_points[1];
 367        }
 368
 369        /*
 370         * Warn and cap if the hardware supports more than
 371         * MAX_DISTANCE_REF_POINTS domains.
 372         */
 373        if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 374                printk(KERN_WARNING "NUMA: distance array capped at "
 375                        "%d entries\n", MAX_DISTANCE_REF_POINTS);
 376                distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 377        }
 378
 379        of_node_put(rtas_root);
 380        return depth;
 381
 382err:
 383        of_node_put(rtas_root);
 384        return -1;
 385}
 386
 387static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 388{
 389        struct device_node *memory = NULL;
 390
 391        memory = of_find_node_by_type(memory, "memory");
 392        if (!memory)
 393                panic("numa.c: No memory nodes found!");
 394
 395        *n_addr_cells = of_n_addr_cells(memory);
 396        *n_size_cells = of_n_size_cells(memory);
 397        of_node_put(memory);
 398}
 399
 400static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
 401{
 402        unsigned long result = 0;
 403
 404        while (n--) {
 405                result = (result << 32) | **buf;
 406                (*buf)++;
 407        }
 408        return result;
 409}
 410
 411struct of_drconf_cell {
 412        u64     base_addr;
 413        u32     drc_index;
 414        u32     reserved;
 415        u32     aa_index;
 416        u32     flags;
 417};
 418
 419#define DRCONF_MEM_ASSIGNED     0x00000008
 420#define DRCONF_MEM_AI_INVALID   0x00000040
 421#define DRCONF_MEM_RESERVED     0x00000080
 422
 423/*
 424 * Read the next memblock list entry from the ibm,dynamic-memory property
 425 * and return the information in the provided of_drconf_cell structure.
 426 */
 427static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
 428{
 429        const u32 *cp;
 430
 431        drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
 432
 433        cp = *cellp;
 434        drmem->drc_index = cp[0];
 435        drmem->reserved = cp[1];
 436        drmem->aa_index = cp[2];
 437        drmem->flags = cp[3];
 438
 439        *cellp = cp + 4;
 440}
 441
 442/*
 443 * Retreive and validate the ibm,dynamic-memory property of the device tree.
 444 *
 445 * The layout of the ibm,dynamic-memory property is a number N of memblock
 446 * list entries followed by N memblock list entries.  Each memblock list entry
 447 * contains information as layed out in the of_drconf_cell struct above.
 448 */
 449static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
 450{
 451        const u32 *prop;
 452        u32 len, entries;
 453
 454        prop = of_get_property(memory, "ibm,dynamic-memory", &len);
 455        if (!prop || len < sizeof(unsigned int))
 456                return 0;
 457
 458        entries = *prop++;
 459
 460        /* Now that we know the number of entries, revalidate the size
 461         * of the property read in to ensure we have everything
 462         */
 463        if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
 464                return 0;
 465
 466        *dm = prop;
 467        return entries;
 468}
 469
 470/*
 471 * Retreive and validate the ibm,lmb-size property for drconf memory
 472 * from the device tree.
 473 */
 474static u64 of_get_lmb_size(struct device_node *memory)
 475{
 476        const u32 *prop;
 477        u32 len;
 478
 479        prop = of_get_property(memory, "ibm,lmb-size", &len);
 480        if (!prop || len < sizeof(unsigned int))
 481                return 0;
 482
 483        return read_n_cells(n_mem_size_cells, &prop);
 484}
 485
 486struct assoc_arrays {
 487        u32     n_arrays;
 488        u32     array_sz;
 489        const u32 *arrays;
 490};
 491
 492/*
 493 * Retreive and validate the list of associativity arrays for drconf
 494 * memory from the ibm,associativity-lookup-arrays property of the
 495 * device tree..
 496 *
 497 * The layout of the ibm,associativity-lookup-arrays property is a number N
 498 * indicating the number of associativity arrays, followed by a number M
 499 * indicating the size of each associativity array, followed by a list
 500 * of N associativity arrays.
 501 */
 502static int of_get_assoc_arrays(struct device_node *memory,
 503                               struct assoc_arrays *aa)
 504{
 505        const u32 *prop;
 506        u32 len;
 507
 508        prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 509        if (!prop || len < 2 * sizeof(unsigned int))
 510                return -1;
 511
 512        aa->n_arrays = *prop++;
 513        aa->array_sz = *prop++;
 514
 515        /* Now that we know the number of arrrays and size of each array,
 516         * revalidate the size of the property read in.
 517         */
 518        if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 519                return -1;
 520
 521        aa->arrays = prop;
 522        return 0;
 523}
 524
 525/*
 526 * This is like of_node_to_nid_single() for memory represented in the
 527 * ibm,dynamic-reconfiguration-memory node.
 528 */
 529static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
 530                                   struct assoc_arrays *aa)
 531{
 532        int default_nid = 0;
 533        int nid = default_nid;
 534        int index;
 535
 536        if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
 537            !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
 538            drmem->aa_index < aa->n_arrays) {
 539                index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
 540                nid = aa->arrays[index];
 541
 542                if (nid == 0xffff || nid >= MAX_NUMNODES)
 543                        nid = default_nid;
 544        }
 545
 546        return nid;
 547}
 548
 549/*
 550 * Figure out to which domain a cpu belongs and stick it there.
 551 * Return the id of the domain used.
 552 */
 553static int __cpuinit numa_setup_cpu(unsigned long lcpu)
 554{
 555        int nid = 0;
 556        struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
 557
 558        if (!cpu) {
 559                WARN_ON(1);
 560                goto out;
 561        }
 562
 563        nid = of_node_to_nid_single(cpu);
 564
 565        if (nid < 0 || !node_online(nid))
 566                nid = first_online_node;
 567out:
 568        map_cpu_to_node(lcpu, nid);
 569
 570        of_node_put(cpu);
 571
 572        return nid;
 573}
 574
 575static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
 576                             unsigned long action,
 577                             void *hcpu)
 578{
 579        unsigned long lcpu = (unsigned long)hcpu;
 580        int ret = NOTIFY_DONE;
 581
 582        switch (action) {
 583        case CPU_UP_PREPARE:
 584        case CPU_UP_PREPARE_FROZEN:
 585                numa_setup_cpu(lcpu);
 586                ret = NOTIFY_OK;
 587                break;
 588#ifdef CONFIG_HOTPLUG_CPU
 589        case CPU_DEAD:
 590        case CPU_DEAD_FROZEN:
 591        case CPU_UP_CANCELED:
 592        case CPU_UP_CANCELED_FROZEN:
 593                unmap_cpu_from_node(lcpu);
 594                break;
 595                ret = NOTIFY_OK;
 596#endif
 597        }
 598        return ret;
 599}
 600
 601/*
 602 * Check and possibly modify a memory region to enforce the memory limit.
 603 *
 604 * Returns the size the region should have to enforce the memory limit.
 605 * This will either be the original value of size, a truncated value,
 606 * or zero. If the returned value of size is 0 the region should be
 607 * discarded as it lies wholy above the memory limit.
 608 */
 609static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 610                                                      unsigned long size)
 611{
 612        /*
 613         * We use memblock_end_of_DRAM() in here instead of memory_limit because
 614         * we've already adjusted it for the limit and it takes care of
 615         * having memory holes below the limit.  Also, in the case of
 616         * iommu_is_off, memory_limit is not set but is implicitly enforced.
 617         */
 618
 619        if (start + size <= memblock_end_of_DRAM())
 620                return size;
 621
 622        if (start >= memblock_end_of_DRAM())
 623                return 0;
 624
 625        return memblock_end_of_DRAM() - start;
 626}
 627
 628/*
 629 * Reads the counter for a given entry in
 630 * linux,drconf-usable-memory property
 631 */
 632static inline int __init read_usm_ranges(const u32 **usm)
 633{
 634        /*
 635         * For each lmb in ibm,dynamic-memory a corresponding
 636         * entry in linux,drconf-usable-memory property contains
 637         * a counter followed by that many (base, size) duple.
 638         * read the counter from linux,drconf-usable-memory
 639         */
 640        return read_n_cells(n_mem_size_cells, usm);
 641}
 642
 643/*
 644 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 645 * node.  This assumes n_mem_{addr,size}_cells have been set.
 646 */
 647static void __init parse_drconf_memory(struct device_node *memory)
 648{
 649        const u32 *dm, *usm;
 650        unsigned int n, rc, ranges, is_kexec_kdump = 0;
 651        unsigned long lmb_size, base, size, sz;
 652        int nid;
 653        struct assoc_arrays aa;
 654
 655        n = of_get_drconf_memory(memory, &dm);
 656        if (!n)
 657                return;
 658
 659        lmb_size = of_get_lmb_size(memory);
 660        if (!lmb_size)
 661                return;
 662
 663        rc = of_get_assoc_arrays(memory, &aa);
 664        if (rc)
 665                return;
 666
 667        /* check if this is a kexec/kdump kernel */
 668        usm = of_get_usable_memory(memory);
 669        if (usm != NULL)
 670                is_kexec_kdump = 1;
 671
 672        for (; n != 0; --n) {
 673                struct of_drconf_cell drmem;
 674
 675                read_drconf_cell(&drmem, &dm);
 676
 677                /* skip this block if the reserved bit is set in flags (0x80)
 678                   or if the block is not assigned to this partition (0x8) */
 679                if ((drmem.flags & DRCONF_MEM_RESERVED)
 680                    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
 681                        continue;
 682
 683                base = drmem.base_addr;
 684                size = lmb_size;
 685                ranges = 1;
 686
 687                if (is_kexec_kdump) {
 688                        ranges = read_usm_ranges(&usm);
 689                        if (!ranges) /* there are no (base, size) duple */
 690                                continue;
 691                }
 692                do {
 693                        if (is_kexec_kdump) {
 694                                base = read_n_cells(n_mem_addr_cells, &usm);
 695                                size = read_n_cells(n_mem_size_cells, &usm);
 696                        }
 697                        nid = of_drconf_to_nid_single(&drmem, &aa);
 698                        fake_numa_create_new_node(
 699                                ((base + size) >> PAGE_SHIFT),
 700                                           &nid);
 701                        node_set_online(nid);
 702                        sz = numa_enforce_memory_limit(base, size);
 703                        if (sz)
 704                                add_active_range(nid, base >> PAGE_SHIFT,
 705                                                 (base >> PAGE_SHIFT)
 706                                                 + (sz >> PAGE_SHIFT));
 707                } while (--ranges);
 708        }
 709}
 710
 711static int __init parse_numa_properties(void)
 712{
 713        struct device_node *cpu = NULL;
 714        struct device_node *memory = NULL;
 715        int default_nid = 0;
 716        unsigned long i;
 717
 718        if (numa_enabled == 0) {
 719                printk(KERN_WARNING "NUMA disabled by user\n");
 720                return -1;
 721        }
 722
 723        min_common_depth = find_min_common_depth();
 724
 725        if (min_common_depth < 0)
 726                return min_common_depth;
 727
 728        dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 729
 730        /*
 731         * Even though we connect cpus to numa domains later in SMP
 732         * init, we need to know the node ids now. This is because
 733         * each node to be onlined must have NODE_DATA etc backing it.
 734         */
 735        for_each_present_cpu(i) {
 736                int nid;
 737
 738                cpu = of_get_cpu_node(i, NULL);
 739                BUG_ON(!cpu);
 740                nid = of_node_to_nid_single(cpu);
 741                of_node_put(cpu);
 742
 743                /*
 744                 * Don't fall back to default_nid yet -- we will plug
 745                 * cpus into nodes once the memory scan has discovered
 746                 * the topology.
 747                 */
 748                if (nid < 0)
 749                        continue;
 750                node_set_online(nid);
 751        }
 752
 753        get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 754        memory = NULL;
 755        while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
 756                unsigned long start;
 757                unsigned long size;
 758                int nid;
 759                int ranges;
 760                const unsigned int *memcell_buf;
 761                unsigned int len;
 762
 763                memcell_buf = of_get_property(memory,
 764                        "linux,usable-memory", &len);
 765                if (!memcell_buf || len <= 0)
 766                        memcell_buf = of_get_property(memory, "reg", &len);
 767                if (!memcell_buf || len <= 0)
 768                        continue;
 769
 770                /* ranges in cell */
 771                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 772new_range:
 773                /* these are order-sensitive, and modify the buffer pointer */
 774                start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 775                size = read_n_cells(n_mem_size_cells, &memcell_buf);
 776
 777                /*
 778                 * Assumption: either all memory nodes or none will
 779                 * have associativity properties.  If none, then
 780                 * everything goes to default_nid.
 781                 */
 782                nid = of_node_to_nid_single(memory);
 783                if (nid < 0)
 784                        nid = default_nid;
 785
 786                fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 787                node_set_online(nid);
 788
 789                if (!(size = numa_enforce_memory_limit(start, size))) {
 790                        if (--ranges)
 791                                goto new_range;
 792                        else
 793                                continue;
 794                }
 795
 796                add_active_range(nid, start >> PAGE_SHIFT,
 797                                (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
 798
 799                if (--ranges)
 800                        goto new_range;
 801        }
 802
 803        /*
 804         * Now do the same thing for each MEMBLOCK listed in the ibm,dynamic-memory
 805         * property in the ibm,dynamic-reconfiguration-memory node.
 806         */
 807        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 808        if (memory)
 809                parse_drconf_memory(memory);
 810
 811        return 0;
 812}
 813
 814static void __init setup_nonnuma(void)
 815{
 816        unsigned long top_of_ram = memblock_end_of_DRAM();
 817        unsigned long total_ram = memblock_phys_mem_size();
 818        unsigned long start_pfn, end_pfn;
 819        unsigned int nid = 0;
 820        struct memblock_region *reg;
 821
 822        printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 823               top_of_ram, total_ram);
 824        printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 825               (top_of_ram - total_ram) >> 20);
 826
 827        for_each_memblock(memory, reg) {
 828                start_pfn = memblock_region_memory_base_pfn(reg);
 829                end_pfn = memblock_region_memory_end_pfn(reg);
 830
 831                fake_numa_create_new_node(end_pfn, &nid);
 832                add_active_range(nid, start_pfn, end_pfn);
 833                node_set_online(nid);
 834        }
 835}
 836
 837void __init dump_numa_cpu_topology(void)
 838{
 839        unsigned int node;
 840        unsigned int cpu, count;
 841
 842        if (min_common_depth == -1 || !numa_enabled)
 843                return;
 844
 845        for_each_online_node(node) {
 846                printk(KERN_DEBUG "Node %d CPUs:", node);
 847
 848                count = 0;
 849                /*
 850                 * If we used a CPU iterator here we would miss printing
 851                 * the holes in the cpumap.
 852                 */
 853                for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 854                        if (cpumask_test_cpu(cpu,
 855                                        node_to_cpumask_map[node])) {
 856                                if (count == 0)
 857                                        printk(" %u", cpu);
 858                                ++count;
 859                        } else {
 860                                if (count > 1)
 861                                        printk("-%u", cpu - 1);
 862                                count = 0;
 863                        }
 864                }
 865
 866                if (count > 1)
 867                        printk("-%u", nr_cpu_ids - 1);
 868                printk("\n");
 869        }
 870}
 871
 872static void __init dump_numa_memory_topology(void)
 873{
 874        unsigned int node;
 875        unsigned int count;
 876
 877        if (min_common_depth == -1 || !numa_enabled)
 878                return;
 879
 880        for_each_online_node(node) {
 881                unsigned long i;
 882
 883                printk(KERN_DEBUG "Node %d Memory:", node);
 884
 885                count = 0;
 886
 887                for (i = 0; i < memblock_end_of_DRAM();
 888                     i += (1 << SECTION_SIZE_BITS)) {
 889                        if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
 890                                if (count == 0)
 891                                        printk(" 0x%lx", i);
 892                                ++count;
 893                        } else {
 894                                if (count > 0)
 895                                        printk("-0x%lx", i);
 896                                count = 0;
 897                        }
 898                }
 899
 900                if (count > 0)
 901                        printk("-0x%lx", i);
 902                printk("\n");
 903        }
 904}
 905
 906/*
 907 * Allocate some memory, satisfying the memblock or bootmem allocator where
 908 * required. nid is the preferred node and end is the physical address of
 909 * the highest address in the node.
 910 *
 911 * Returns the virtual address of the memory.
 912 */
 913static void __init *careful_zallocation(int nid, unsigned long size,
 914                                       unsigned long align,
 915                                       unsigned long end_pfn)
 916{
 917        void *ret;
 918        int new_nid;
 919        unsigned long ret_paddr;
 920
 921        ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
 922
 923        /* retry over all memory */
 924        if (!ret_paddr)
 925                ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
 926
 927        if (!ret_paddr)
 928                panic("numa.c: cannot allocate %lu bytes for node %d",
 929                      size, nid);
 930
 931        ret = __va(ret_paddr);
 932
 933        /*
 934         * We initialize the nodes in numeric order: 0, 1, 2...
 935         * and hand over control from the MEMBLOCK allocator to the
 936         * bootmem allocator.  If this function is called for
 937         * node 5, then we know that all nodes <5 are using the
 938         * bootmem allocator instead of the MEMBLOCK allocator.
 939         *
 940         * So, check the nid from which this allocation came
 941         * and double check to see if we need to use bootmem
 942         * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
 943         * since it would be useless.
 944         */
 945        new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
 946        if (new_nid < nid) {
 947                ret = __alloc_bootmem_node(NODE_DATA(new_nid),
 948                                size, align, 0);
 949
 950                dbg("alloc_bootmem %p %lx\n", ret, size);
 951        }
 952
 953        memset(ret, 0, size);
 954        return ret;
 955}
 956
 957static struct notifier_block __cpuinitdata ppc64_numa_nb = {
 958        .notifier_call = cpu_numa_callback,
 959        .priority = 1 /* Must run before sched domains notifier. */
 960};
 961
 962static void mark_reserved_regions_for_nid(int nid)
 963{
 964        struct pglist_data *node = NODE_DATA(nid);
 965        struct memblock_region *reg;
 966
 967        for_each_memblock(reserved, reg) {
 968                unsigned long physbase = reg->base;
 969                unsigned long size = reg->size;
 970                unsigned long start_pfn = physbase >> PAGE_SHIFT;
 971                unsigned long end_pfn = PFN_UP(physbase + size);
 972                struct node_active_region node_ar;
 973                unsigned long node_end_pfn = node->node_start_pfn +
 974                                             node->node_spanned_pages;
 975
 976                /*
 977                 * Check to make sure that this memblock.reserved area is
 978                 * within the bounds of the node that we care about.
 979                 * Checking the nid of the start and end points is not
 980                 * sufficient because the reserved area could span the
 981                 * entire node.
 982                 */
 983                if (end_pfn <= node->node_start_pfn ||
 984                    start_pfn >= node_end_pfn)
 985                        continue;
 986
 987                get_node_active_region(start_pfn, &node_ar);
 988                while (start_pfn < end_pfn &&
 989                        node_ar.start_pfn < node_ar.end_pfn) {
 990                        unsigned long reserve_size = size;
 991                        /*
 992                         * if reserved region extends past active region
 993                         * then trim size to active region
 994                         */
 995                        if (end_pfn > node_ar.end_pfn)
 996                                reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
 997                                        - physbase;
 998                        /*
 999                         * Only worry about *this* node, others may not
1000                         * yet have valid NODE_DATA().
1001                         */
1002                        if (node_ar.nid == nid) {
1003                                dbg("reserve_bootmem %lx %lx nid=%d\n",
1004                                        physbase, reserve_size, node_ar.nid);
1005                                reserve_bootmem_node(NODE_DATA(node_ar.nid),
1006                                                physbase, reserve_size,
1007                                                BOOTMEM_DEFAULT);
1008                        }
1009                        /*
1010                         * if reserved region is contained in the active region
1011                         * then done.
1012                         */
1013                        if (end_pfn <= node_ar.end_pfn)
1014                                break;
1015
1016                        /*
1017                         * reserved region extends past the active region
1018                         *   get next active region that contains this
1019                         *   reserved region
1020                         */
1021                        start_pfn = node_ar.end_pfn;
1022                        physbase = start_pfn << PAGE_SHIFT;
1023                        size = size - reserve_size;
1024                        get_node_active_region(start_pfn, &node_ar);
1025                }
1026        }
1027}
1028
1029
1030void __init do_init_bootmem(void)
1031{
1032        int nid;
1033
1034        min_low_pfn = 0;
1035        max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1036        max_pfn = max_low_pfn;
1037
1038        if (parse_numa_properties())
1039                setup_nonnuma();
1040        else
1041                dump_numa_memory_topology();
1042
1043        for_each_online_node(nid) {
1044                unsigned long start_pfn, end_pfn;
1045                void *bootmem_vaddr;
1046                unsigned long bootmap_pages;
1047
1048                get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1049
1050                /*
1051                 * Allocate the node structure node local if possible
1052                 *
1053                 * Be careful moving this around, as it relies on all
1054                 * previous nodes' bootmem to be initialized and have
1055                 * all reserved areas marked.
1056                 */
1057                NODE_DATA(nid) = careful_zallocation(nid,
1058                                        sizeof(struct pglist_data),
1059                                        SMP_CACHE_BYTES, end_pfn);
1060
1061                dbg("node %d\n", nid);
1062                dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1063
1064                NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1065                NODE_DATA(nid)->node_start_pfn = start_pfn;
1066                NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1067
1068                if (NODE_DATA(nid)->node_spanned_pages == 0)
1069                        continue;
1070
1071                dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1072                dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1073
1074                bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1075                bootmem_vaddr = careful_zallocation(nid,
1076                                        bootmap_pages << PAGE_SHIFT,
1077                                        PAGE_SIZE, end_pfn);
1078
1079                dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1080
1081                init_bootmem_node(NODE_DATA(nid),
1082                                  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1083                                  start_pfn, end_pfn);
1084
1085                free_bootmem_with_active_regions(nid, end_pfn);
1086                /*
1087                 * Be very careful about moving this around.  Future
1088                 * calls to careful_zallocation() depend on this getting
1089                 * done correctly.
1090                 */
1091                mark_reserved_regions_for_nid(nid);
1092                sparse_memory_present_with_active_regions(nid);
1093        }
1094
1095        init_bootmem_done = 1;
1096
1097        /*
1098         * Now bootmem is initialised we can create the node to cpumask
1099         * lookup tables and setup the cpu callback to populate them.
1100         */
1101        setup_node_to_cpumask_map();
1102
1103        register_cpu_notifier(&ppc64_numa_nb);
1104        cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1105                          (void *)(unsigned long)boot_cpuid);
1106}
1107
1108void __init paging_init(void)
1109{
1110        unsigned long max_zone_pfns[MAX_NR_ZONES];
1111        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1112        max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1113        free_area_init_nodes(max_zone_pfns);
1114}
1115
1116static int __init early_numa(char *p)
1117{
1118        if (!p)
1119                return 0;
1120
1121        if (strstr(p, "off"))
1122                numa_enabled = 0;
1123
1124        if (strstr(p, "debug"))
1125                numa_debug = 1;
1126
1127        p = strstr(p, "fake=");
1128        if (p)
1129                cmdline = p + strlen("fake=");
1130
1131        return 0;
1132}
1133early_param("numa", early_numa);
1134
1135#ifdef CONFIG_MEMORY_HOTPLUG
1136/*
1137 * Find the node associated with a hot added memory section for
1138 * memory represented in the device tree by the property
1139 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1140 */
1141static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1142                                     unsigned long scn_addr)
1143{
1144        const u32 *dm;
1145        unsigned int drconf_cell_cnt, rc;
1146        unsigned long lmb_size;
1147        struct assoc_arrays aa;
1148        int nid = -1;
1149
1150        drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1151        if (!drconf_cell_cnt)
1152                return -1;
1153
1154        lmb_size = of_get_lmb_size(memory);
1155        if (!lmb_size)
1156                return -1;
1157
1158        rc = of_get_assoc_arrays(memory, &aa);
1159        if (rc)
1160                return -1;
1161
1162        for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1163                struct of_drconf_cell drmem;
1164
1165                read_drconf_cell(&drmem, &dm);
1166
1167                /* skip this block if it is reserved or not assigned to
1168                 * this partition */
1169                if ((drmem.flags & DRCONF_MEM_RESERVED)
1170                    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1171                        continue;
1172
1173                if ((scn_addr < drmem.base_addr)
1174                    || (scn_addr >= (drmem.base_addr + lmb_size)))
1175                        continue;
1176
1177                nid = of_drconf_to_nid_single(&drmem, &aa);
1178                break;
1179        }
1180
1181        return nid;
1182}
1183
1184/*
1185 * Find the node associated with a hot added memory section for memory
1186 * represented in the device tree as a node (i.e. memory@XXXX) for
1187 * each memblock.
1188 */
1189int hot_add_node_scn_to_nid(unsigned long scn_addr)
1190{
1191        struct device_node *memory = NULL;
1192        int nid = -1;
1193
1194        while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1195                unsigned long start, size;
1196                int ranges;
1197                const unsigned int *memcell_buf;
1198                unsigned int len;
1199
1200                memcell_buf = of_get_property(memory, "reg", &len);
1201                if (!memcell_buf || len <= 0)
1202                        continue;
1203
1204                /* ranges in cell */
1205                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1206
1207                while (ranges--) {
1208                        start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1209                        size = read_n_cells(n_mem_size_cells, &memcell_buf);
1210
1211                        if ((scn_addr < start) || (scn_addr >= (start + size)))
1212                                continue;
1213
1214                        nid = of_node_to_nid_single(memory);
1215                        break;
1216                }
1217
1218                of_node_put(memory);
1219                if (nid >= 0)
1220                        break;
1221        }
1222
1223        return nid;
1224}
1225
1226/*
1227 * Find the node associated with a hot added memory section.  Section
1228 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1229 * sections are fully contained within a single MEMBLOCK.
1230 */
1231int hot_add_scn_to_nid(unsigned long scn_addr)
1232{
1233        struct device_node *memory = NULL;
1234        int nid, found = 0;
1235
1236        if (!numa_enabled || (min_common_depth < 0))
1237                return first_online_node;
1238
1239        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1240        if (memory) {
1241                nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1242                of_node_put(memory);
1243        } else {
1244                nid = hot_add_node_scn_to_nid(scn_addr);
1245        }
1246
1247        if (nid < 0 || !node_online(nid))
1248                nid = first_online_node;
1249
1250        if (NODE_DATA(nid)->node_spanned_pages)
1251                return nid;
1252
1253        for_each_online_node(nid) {
1254                if (NODE_DATA(nid)->node_spanned_pages) {
1255                        found = 1;
1256                        break;
1257                }
1258        }
1259
1260        BUG_ON(!found);
1261        return nid;
1262}
1263
1264static u64 hot_add_drconf_memory_max(void)
1265{
1266        struct device_node *memory = NULL;
1267        unsigned int drconf_cell_cnt = 0;
1268        u64 lmb_size = 0;
1269        const u32 *dm = 0;
1270
1271        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1272        if (memory) {
1273                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1274                lmb_size = of_get_lmb_size(memory);
1275                of_node_put(memory);
1276        }
1277        return lmb_size * drconf_cell_cnt;
1278}
1279
1280/*
1281 * memory_hotplug_max - return max address of memory that may be added
1282 *
1283 * This is currently only used on systems that support drconfig memory
1284 * hotplug.
1285 */
1286u64 memory_hotplug_max(void)
1287{
1288        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1289}
1290#endif /* CONFIG_MEMORY_HOTPLUG */
1291
1292/* Virtual Processor Home Node (VPHN) support */
1293#ifdef CONFIG_PPC_SPLPAR
1294static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1295static cpumask_t cpu_associativity_changes_mask;
1296static int vphn_enabled;
1297static void set_topology_timer(void);
1298
1299/*
1300 * Store the current values of the associativity change counters in the
1301 * hypervisor.
1302 */
1303static void setup_cpu_associativity_change_counters(void)
1304{
1305        int cpu;
1306
1307        /* The VPHN feature supports a maximum of 8 reference points */
1308        BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1309
1310        for_each_possible_cpu(cpu) {
1311                int i;
1312                u8 *counts = vphn_cpu_change_counts[cpu];
1313                volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1314
1315                for (i = 0; i < distance_ref_points_depth; i++)
1316                        counts[i] = hypervisor_counts[i];
1317        }
1318}
1319
1320/*
1321 * The hypervisor maintains a set of 8 associativity change counters in
1322 * the VPA of each cpu that correspond to the associativity levels in the
1323 * ibm,associativity-reference-points property. When an associativity
1324 * level changes, the corresponding counter is incremented.
1325 *
1326 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1327 * node associativity levels have changed.
1328 *
1329 * Returns the number of cpus with unhandled associativity changes.
1330 */
1331static int update_cpu_associativity_changes_mask(void)
1332{
1333        int cpu, nr_cpus = 0;
1334        cpumask_t *changes = &cpu_associativity_changes_mask;
1335
1336        cpumask_clear(changes);
1337
1338        for_each_possible_cpu(cpu) {
1339                int i, changed = 0;
1340                u8 *counts = vphn_cpu_change_counts[cpu];
1341                volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1342
1343                for (i = 0; i < distance_ref_points_depth; i++) {
1344                        if (hypervisor_counts[i] != counts[i]) {
1345                                counts[i] = hypervisor_counts[i];
1346                                changed = 1;
1347                        }
1348                }
1349                if (changed) {
1350                        cpumask_set_cpu(cpu, changes);
1351                        nr_cpus++;
1352                }
1353        }
1354
1355        return nr_cpus;
1356}
1357
1358/*
1359 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1360 * the complete property we have to add the length in the first cell.
1361 */
1362#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1363
1364/*
1365 * Convert the associativity domain numbers returned from the hypervisor
1366 * to the sequence they would appear in the ibm,associativity property.
1367 */
1368static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1369{
1370        int i, nr_assoc_doms = 0;
1371        const u16 *field = (const u16*) packed;
1372
1373#define VPHN_FIELD_UNUSED       (0xffff)
1374#define VPHN_FIELD_MSB          (0x8000)
1375#define VPHN_FIELD_MASK         (~VPHN_FIELD_MSB)
1376
1377        for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1378                if (*field == VPHN_FIELD_UNUSED) {
1379                        /* All significant fields processed, and remaining
1380                         * fields contain the reserved value of all 1's.
1381                         * Just store them.
1382                         */
1383                        unpacked[i] = *((u32*)field);
1384                        field += 2;
1385                } else if (*field & VPHN_FIELD_MSB) {
1386                        /* Data is in the lower 15 bits of this field */
1387                        unpacked[i] = *field & VPHN_FIELD_MASK;
1388                        field++;
1389                        nr_assoc_doms++;
1390                } else {
1391                        /* Data is in the lower 15 bits of this field
1392                         * concatenated with the next 16 bit field
1393                         */
1394                        unpacked[i] = *((u32*)field);
1395                        field += 2;
1396                        nr_assoc_doms++;
1397                }
1398        }
1399
1400        /* The first cell contains the length of the property */
1401        unpacked[0] = nr_assoc_doms;
1402
1403        return nr_assoc_doms;
1404}
1405
1406/*
1407 * Retrieve the new associativity information for a virtual processor's
1408 * home node.
1409 */
1410static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1411{
1412        long rc;
1413        long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1414        u64 flags = 1;
1415        int hwcpu = get_hard_smp_processor_id(cpu);
1416
1417        rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1418        vphn_unpack_associativity(retbuf, associativity);
1419
1420        return rc;
1421}
1422
1423static long vphn_get_associativity(unsigned long cpu,
1424                                        unsigned int *associativity)
1425{
1426        long rc;
1427
1428        rc = hcall_vphn(cpu, associativity);
1429
1430        switch (rc) {
1431        case H_FUNCTION:
1432                printk(KERN_INFO
1433                        "VPHN is not supported. Disabling polling...\n");
1434                stop_topology_update();
1435                break;
1436        case H_HARDWARE:
1437                printk(KERN_ERR
1438                        "hcall_vphn() experienced a hardware fault "
1439                        "preventing VPHN. Disabling polling...\n");
1440                stop_topology_update();
1441        }
1442
1443        return rc;
1444}
1445
1446/*
1447 * Update the node maps and sysfs entries for each cpu whose home node
1448 * has changed.
1449 */
1450int arch_update_cpu_topology(void)
1451{
1452        int cpu, nid, old_nid;
1453        unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1454        struct sys_device *sysdev;
1455
1456        for_each_cpu_mask(cpu, cpu_associativity_changes_mask) {
1457                vphn_get_associativity(cpu, associativity);
1458                nid = associativity_to_nid(associativity);
1459
1460                if (nid < 0 || !node_online(nid))
1461                        nid = first_online_node;
1462
1463                old_nid = numa_cpu_lookup_table[cpu];
1464
1465                /* Disable hotplug while we update the cpu
1466                 * masks and sysfs.
1467                 */
1468                get_online_cpus();
1469                unregister_cpu_under_node(cpu, old_nid);
1470                unmap_cpu_from_node(cpu);
1471                map_cpu_to_node(cpu, nid);
1472                register_cpu_under_node(cpu, nid);
1473                put_online_cpus();
1474
1475                sysdev = get_cpu_sysdev(cpu);
1476                if (sysdev)
1477                        kobject_uevent(&sysdev->kobj, KOBJ_CHANGE);
1478        }
1479
1480        return 1;
1481}
1482
1483static void topology_work_fn(struct work_struct *work)
1484{
1485        rebuild_sched_domains();
1486}
1487static DECLARE_WORK(topology_work, topology_work_fn);
1488
1489void topology_schedule_update(void)
1490{
1491        schedule_work(&topology_work);
1492}
1493
1494static void topology_timer_fn(unsigned long ignored)
1495{
1496        if (!vphn_enabled)
1497                return;
1498        if (update_cpu_associativity_changes_mask() > 0)
1499                topology_schedule_update();
1500        set_topology_timer();
1501}
1502static struct timer_list topology_timer =
1503        TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1504
1505static void set_topology_timer(void)
1506{
1507        topology_timer.data = 0;
1508        topology_timer.expires = jiffies + 60 * HZ;
1509        add_timer(&topology_timer);
1510}
1511
1512/*
1513 * Start polling for VPHN associativity changes.
1514 */
1515int start_topology_update(void)
1516{
1517        int rc = 0;
1518
1519        /* Disabled until races with load balancing are fixed */
1520        if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
1521            get_lppaca()->shared_proc) {
1522                vphn_enabled = 1;
1523                setup_cpu_associativity_change_counters();
1524                init_timer_deferrable(&topology_timer);
1525                set_topology_timer();
1526                rc = 1;
1527        }
1528
1529        return rc;
1530}
1531__initcall(start_topology_update);
1532
1533/*
1534 * Disable polling for VPHN associativity changes.
1535 */
1536int stop_topology_update(void)
1537{
1538        vphn_enabled = 0;
1539        return del_timer_sync(&topology_timer);
1540}
1541#endif /* CONFIG_PPC_SPLPAR */
1542