linux/arch/powerpc/platforms/iseries/mf.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Troy D. Armstrong  IBM Corporation
   3 * Copyright (C) 2004-2005 Stephen Rothwell  IBM Corporation
   4 *
   5 * This modules exists as an interface between a Linux secondary partition
   6 * running on an iSeries and the primary partition's Virtual Service
   7 * Processor (VSP) object.  The VSP has final authority over powering on/off
   8 * all partitions in the iSeries.  It also provides miscellaneous low-level
   9 * machine facility type operations.
  10 *
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  25 */
  26
  27#include <linux/types.h>
  28#include <linux/errno.h>
  29#include <linux/kernel.h>
  30#include <linux/init.h>
  31#include <linux/completion.h>
  32#include <linux/delay.h>
  33#include <linux/proc_fs.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/bcd.h>
  36#include <linux/rtc.h>
  37#include <linux/slab.h>
  38
  39#include <asm/time.h>
  40#include <asm/uaccess.h>
  41#include <asm/paca.h>
  42#include <asm/abs_addr.h>
  43#include <asm/firmware.h>
  44#include <asm/iseries/mf.h>
  45#include <asm/iseries/hv_lp_config.h>
  46#include <asm/iseries/hv_lp_event.h>
  47#include <asm/iseries/it_lp_queue.h>
  48
  49#include "setup.h"
  50
  51static int mf_initialized;
  52
  53/*
  54 * This is the structure layout for the Machine Facilites LPAR event
  55 * flows.
  56 */
  57struct vsp_cmd_data {
  58        u64 token;
  59        u16 cmd;
  60        HvLpIndex lp_index;
  61        u8 result_code;
  62        u32 reserved;
  63        union {
  64                u64 state;      /* GetStateOut */
  65                u64 ipl_type;   /* GetIplTypeOut, Function02SelectIplTypeIn */
  66                u64 ipl_mode;   /* GetIplModeOut, Function02SelectIplModeIn */
  67                u64 page[4];    /* GetSrcHistoryIn */
  68                u64 flag;       /* GetAutoIplWhenPrimaryIplsOut,
  69                                   SetAutoIplWhenPrimaryIplsIn,
  70                                   WhiteButtonPowerOffIn,
  71                                   Function08FastPowerOffIn,
  72                                   IsSpcnRackPowerIncompleteOut */
  73                struct {
  74                        u64 token;
  75                        u64 address_type;
  76                        u64 side;
  77                        u32 length;
  78                        u32 offset;
  79                } kern;         /* SetKernelImageIn, GetKernelImageIn,
  80                                   SetKernelCmdLineIn, GetKernelCmdLineIn */
  81                u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
  82                u8 reserved[80];
  83        } sub_data;
  84};
  85
  86struct vsp_rsp_data {
  87        struct completion com;
  88        struct vsp_cmd_data *response;
  89};
  90
  91struct alloc_data {
  92        u16 size;
  93        u16 type;
  94        u32 count;
  95        u16 reserved1;
  96        u8 reserved2;
  97        HvLpIndex target_lp;
  98};
  99
 100struct ce_msg_data;
 101
 102typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
 103
 104struct ce_msg_comp_data {
 105        ce_msg_comp_hdlr handler;
 106        void *token;
 107};
 108
 109struct ce_msg_data {
 110        u8 ce_msg[12];
 111        char reserved[4];
 112        struct ce_msg_comp_data *completion;
 113};
 114
 115struct io_mf_lp_event {
 116        struct HvLpEvent hp_lp_event;
 117        u16 subtype_result_code;
 118        u16 reserved1;
 119        u32 reserved2;
 120        union {
 121                struct alloc_data alloc;
 122                struct ce_msg_data ce_msg;
 123                struct vsp_cmd_data vsp_cmd;
 124        } data;
 125};
 126
 127#define subtype_data(a, b, c, d)        \
 128                (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
 129
 130/*
 131 * All outgoing event traffic is kept on a FIFO queue.  The first
 132 * pointer points to the one that is outstanding, and all new
 133 * requests get stuck on the end.  Also, we keep a certain number of
 134 * preallocated pending events so that we can operate very early in
 135 * the boot up sequence (before kmalloc is ready).
 136 */
 137struct pending_event {
 138        struct pending_event *next;
 139        struct io_mf_lp_event event;
 140        MFCompleteHandler hdlr;
 141        char dma_data[72];
 142        unsigned dma_data_length;
 143        unsigned remote_address;
 144};
 145static spinlock_t pending_event_spinlock;
 146static struct pending_event *pending_event_head;
 147static struct pending_event *pending_event_tail;
 148static struct pending_event *pending_event_avail;
 149#define PENDING_EVENT_PREALLOC_LEN 16
 150static struct pending_event pending_event_prealloc[PENDING_EVENT_PREALLOC_LEN];
 151
 152/*
 153 * Put a pending event onto the available queue, so it can get reused.
 154 * Attention! You must have the pending_event_spinlock before calling!
 155 */
 156static void free_pending_event(struct pending_event *ev)
 157{
 158        if (ev != NULL) {
 159                ev->next = pending_event_avail;
 160                pending_event_avail = ev;
 161        }
 162}
 163
 164/*
 165 * Enqueue the outbound event onto the stack.  If the queue was
 166 * empty to begin with, we must also issue it via the Hypervisor
 167 * interface.  There is a section of code below that will touch
 168 * the first stack pointer without the protection of the pending_event_spinlock.
 169 * This is OK, because we know that nobody else will be modifying
 170 * the first pointer when we do this.
 171 */
 172static int signal_event(struct pending_event *ev)
 173{
 174        int rc = 0;
 175        unsigned long flags;
 176        int go = 1;
 177        struct pending_event *ev1;
 178        HvLpEvent_Rc hv_rc;
 179
 180        /* enqueue the event */
 181        if (ev != NULL) {
 182                ev->next = NULL;
 183                spin_lock_irqsave(&pending_event_spinlock, flags);
 184                if (pending_event_head == NULL)
 185                        pending_event_head = ev;
 186                else {
 187                        go = 0;
 188                        pending_event_tail->next = ev;
 189                }
 190                pending_event_tail = ev;
 191                spin_unlock_irqrestore(&pending_event_spinlock, flags);
 192        }
 193
 194        /* send the event */
 195        while (go) {
 196                go = 0;
 197
 198                /* any DMA data to send beforehand? */
 199                if (pending_event_head->dma_data_length > 0)
 200                        HvCallEvent_dmaToSp(pending_event_head->dma_data,
 201                                        pending_event_head->remote_address,
 202                                        pending_event_head->dma_data_length,
 203                                        HvLpDma_Direction_LocalToRemote);
 204
 205                hv_rc = HvCallEvent_signalLpEvent(
 206                                &pending_event_head->event.hp_lp_event);
 207                if (hv_rc != HvLpEvent_Rc_Good) {
 208                        printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
 209                                        "failed with %d\n", (int)hv_rc);
 210
 211                        spin_lock_irqsave(&pending_event_spinlock, flags);
 212                        ev1 = pending_event_head;
 213                        pending_event_head = pending_event_head->next;
 214                        if (pending_event_head != NULL)
 215                                go = 1;
 216                        spin_unlock_irqrestore(&pending_event_spinlock, flags);
 217
 218                        if (ev1 == ev)
 219                                rc = -EIO;
 220                        else if (ev1->hdlr != NULL)
 221                                (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
 222
 223                        spin_lock_irqsave(&pending_event_spinlock, flags);
 224                        free_pending_event(ev1);
 225                        spin_unlock_irqrestore(&pending_event_spinlock, flags);
 226                }
 227        }
 228
 229        return rc;
 230}
 231
 232/*
 233 * Allocate a new pending_event structure, and initialize it.
 234 */
 235static struct pending_event *new_pending_event(void)
 236{
 237        struct pending_event *ev = NULL;
 238        HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
 239        unsigned long flags;
 240        struct HvLpEvent *hev;
 241
 242        spin_lock_irqsave(&pending_event_spinlock, flags);
 243        if (pending_event_avail != NULL) {
 244                ev = pending_event_avail;
 245                pending_event_avail = pending_event_avail->next;
 246        }
 247        spin_unlock_irqrestore(&pending_event_spinlock, flags);
 248        if (ev == NULL) {
 249                ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
 250                if (ev == NULL) {
 251                        printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
 252                                        sizeof(struct pending_event));
 253                        return NULL;
 254                }
 255        }
 256        memset(ev, 0, sizeof(struct pending_event));
 257        hev = &ev->event.hp_lp_event;
 258        hev->flags = HV_LP_EVENT_VALID | HV_LP_EVENT_DO_ACK | HV_LP_EVENT_INT;
 259        hev->xType = HvLpEvent_Type_MachineFac;
 260        hev->xSourceLp = HvLpConfig_getLpIndex();
 261        hev->xTargetLp = primary_lp;
 262        hev->xSizeMinus1 = sizeof(ev->event) - 1;
 263        hev->xRc = HvLpEvent_Rc_Good;
 264        hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
 265                        HvLpEvent_Type_MachineFac);
 266        hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
 267                        HvLpEvent_Type_MachineFac);
 268
 269        return ev;
 270}
 271
 272static int __maybe_unused
 273signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
 274{
 275        struct pending_event *ev = new_pending_event();
 276        int rc;
 277        struct vsp_rsp_data response;
 278
 279        if (ev == NULL)
 280                return -ENOMEM;
 281
 282        init_completion(&response.com);
 283        response.response = vsp_cmd;
 284        ev->event.hp_lp_event.xSubtype = 6;
 285        ev->event.hp_lp_event.x.xSubtypeData =
 286                subtype_data('M', 'F',  'V',  'I');
 287        ev->event.data.vsp_cmd.token = (u64)&response;
 288        ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
 289        ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
 290        ev->event.data.vsp_cmd.result_code = 0xFF;
 291        ev->event.data.vsp_cmd.reserved = 0;
 292        memcpy(&(ev->event.data.vsp_cmd.sub_data),
 293                        &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
 294        mb();
 295
 296        rc = signal_event(ev);
 297        if (rc == 0)
 298                wait_for_completion(&response.com);
 299        return rc;
 300}
 301
 302
 303/*
 304 * Send a 12-byte CE message to the primary partition VSP object
 305 */
 306static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
 307{
 308        struct pending_event *ev = new_pending_event();
 309
 310        if (ev == NULL)
 311                return -ENOMEM;
 312
 313        ev->event.hp_lp_event.xSubtype = 0;
 314        ev->event.hp_lp_event.x.xSubtypeData =
 315                subtype_data('M',  'F',  'C',  'E');
 316        memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
 317        ev->event.data.ce_msg.completion = completion;
 318        return signal_event(ev);
 319}
 320
 321/*
 322 * Send a 12-byte CE message (with no data) to the primary partition VSP object
 323 */
 324static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
 325{
 326        u8 ce_msg[12];
 327
 328        memset(ce_msg, 0, sizeof(ce_msg));
 329        ce_msg[3] = ce_op;
 330        return signal_ce_msg(ce_msg, completion);
 331}
 332
 333/*
 334 * Send a 12-byte CE message and DMA data to the primary partition VSP object
 335 */
 336static int dma_and_signal_ce_msg(char *ce_msg,
 337                struct ce_msg_comp_data *completion, void *dma_data,
 338                unsigned dma_data_length, unsigned remote_address)
 339{
 340        struct pending_event *ev = new_pending_event();
 341
 342        if (ev == NULL)
 343                return -ENOMEM;
 344
 345        ev->event.hp_lp_event.xSubtype = 0;
 346        ev->event.hp_lp_event.x.xSubtypeData =
 347                subtype_data('M', 'F', 'C', 'E');
 348        memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
 349        ev->event.data.ce_msg.completion = completion;
 350        memcpy(ev->dma_data, dma_data, dma_data_length);
 351        ev->dma_data_length = dma_data_length;
 352        ev->remote_address = remote_address;
 353        return signal_event(ev);
 354}
 355
 356/*
 357 * Initiate a nice (hopefully) shutdown of Linux.  We simply are
 358 * going to try and send the init process a SIGINT signal.  If
 359 * this fails (why?), we'll simply force it off in a not-so-nice
 360 * manner.
 361 */
 362static int shutdown(void)
 363{
 364        int rc = kill_cad_pid(SIGINT, 1);
 365
 366        if (rc) {
 367                printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
 368                                "hard shutdown commencing\n", rc);
 369                mf_power_off();
 370        } else
 371                printk(KERN_INFO "mf.c: init has been successfully notified "
 372                                "to proceed with shutdown\n");
 373        return rc;
 374}
 375
 376/*
 377 * The primary partition VSP object is sending us a new
 378 * event flow.  Handle it...
 379 */
 380static void handle_int(struct io_mf_lp_event *event)
 381{
 382        struct ce_msg_data *ce_msg_data;
 383        struct ce_msg_data *pce_msg_data;
 384        unsigned long flags;
 385        struct pending_event *pev;
 386
 387        /* ack the interrupt */
 388        event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
 389        HvCallEvent_ackLpEvent(&event->hp_lp_event);
 390
 391        /* process interrupt */
 392        switch (event->hp_lp_event.xSubtype) {
 393        case 0: /* CE message */
 394                ce_msg_data = &event->data.ce_msg;
 395                switch (ce_msg_data->ce_msg[3]) {
 396                case 0x5B:      /* power control notification */
 397                        if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
 398                                printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
 399                                if (shutdown() == 0)
 400                                        signal_ce_msg_simple(0xDB, NULL);
 401                        }
 402                        break;
 403                case 0xC0:      /* get time */
 404                        spin_lock_irqsave(&pending_event_spinlock, flags);
 405                        pev = pending_event_head;
 406                        if (pev != NULL)
 407                                pending_event_head = pending_event_head->next;
 408                        spin_unlock_irqrestore(&pending_event_spinlock, flags);
 409                        if (pev == NULL)
 410                                break;
 411                        pce_msg_data = &pev->event.data.ce_msg;
 412                        if (pce_msg_data->ce_msg[3] != 0x40)
 413                                break;
 414                        if (pce_msg_data->completion != NULL) {
 415                                ce_msg_comp_hdlr handler =
 416                                        pce_msg_data->completion->handler;
 417                                void *token = pce_msg_data->completion->token;
 418
 419                                if (handler != NULL)
 420                                        (*handler)(token, ce_msg_data);
 421                        }
 422                        spin_lock_irqsave(&pending_event_spinlock, flags);
 423                        free_pending_event(pev);
 424                        spin_unlock_irqrestore(&pending_event_spinlock, flags);
 425                        /* send next waiting event */
 426                        if (pending_event_head != NULL)
 427                                signal_event(NULL);
 428                        break;
 429                }
 430                break;
 431        case 1: /* IT sys shutdown */
 432                printk(KERN_INFO "mf.c: Commencing system shutdown\n");
 433                shutdown();
 434                break;
 435        }
 436}
 437
 438/*
 439 * The primary partition VSP object is acknowledging the receipt
 440 * of a flow we sent to them.  If there are other flows queued
 441 * up, we must send another one now...
 442 */
 443static void handle_ack(struct io_mf_lp_event *event)
 444{
 445        unsigned long flags;
 446        struct pending_event *two = NULL;
 447        unsigned long free_it = 0;
 448        struct ce_msg_data *ce_msg_data;
 449        struct ce_msg_data *pce_msg_data;
 450        struct vsp_rsp_data *rsp;
 451
 452        /* handle current event */
 453        if (pending_event_head == NULL) {
 454                printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
 455                return;
 456        }
 457
 458        switch (event->hp_lp_event.xSubtype) {
 459        case 0:     /* CE msg */
 460                ce_msg_data = &event->data.ce_msg;
 461                if (ce_msg_data->ce_msg[3] != 0x40) {
 462                        free_it = 1;
 463                        break;
 464                }
 465                if (ce_msg_data->ce_msg[2] == 0)
 466                        break;
 467                free_it = 1;
 468                pce_msg_data = &pending_event_head->event.data.ce_msg;
 469                if (pce_msg_data->completion != NULL) {
 470                        ce_msg_comp_hdlr handler =
 471                                pce_msg_data->completion->handler;
 472                        void *token = pce_msg_data->completion->token;
 473
 474                        if (handler != NULL)
 475                                (*handler)(token, ce_msg_data);
 476                }
 477                break;
 478        case 4: /* allocate */
 479        case 5: /* deallocate */
 480                if (pending_event_head->hdlr != NULL)
 481                        (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
 482                free_it = 1;
 483                break;
 484        case 6:
 485                free_it = 1;
 486                rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
 487                if (rsp == NULL) {
 488                        printk(KERN_ERR "mf.c: no rsp\n");
 489                        break;
 490                }
 491                if (rsp->response != NULL)
 492                        memcpy(rsp->response, &event->data.vsp_cmd,
 493                                        sizeof(event->data.vsp_cmd));
 494                complete(&rsp->com);
 495                break;
 496        }
 497
 498        /* remove from queue */
 499        spin_lock_irqsave(&pending_event_spinlock, flags);
 500        if ((pending_event_head != NULL) && (free_it == 1)) {
 501                struct pending_event *oldHead = pending_event_head;
 502
 503                pending_event_head = pending_event_head->next;
 504                two = pending_event_head;
 505                free_pending_event(oldHead);
 506        }
 507        spin_unlock_irqrestore(&pending_event_spinlock, flags);
 508
 509        /* send next waiting event */
 510        if (two != NULL)
 511                signal_event(NULL);
 512}
 513
 514/*
 515 * This is the generic event handler we are registering with
 516 * the Hypervisor.  Ensure the flows are for us, and then
 517 * parse it enough to know if it is an interrupt or an
 518 * acknowledge.
 519 */
 520static void hv_handler(struct HvLpEvent *event)
 521{
 522        if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
 523                if (hvlpevent_is_ack(event))
 524                        handle_ack((struct io_mf_lp_event *)event);
 525                else
 526                        handle_int((struct io_mf_lp_event *)event);
 527        } else
 528                printk(KERN_ERR "mf.c: alien event received\n");
 529}
 530
 531/*
 532 * Global kernel interface to allocate and seed events into the
 533 * Hypervisor.
 534 */
 535void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
 536                unsigned size, unsigned count, MFCompleteHandler hdlr,
 537                void *user_token)
 538{
 539        struct pending_event *ev = new_pending_event();
 540        int rc;
 541
 542        if (ev == NULL) {
 543                rc = -ENOMEM;
 544        } else {
 545                ev->event.hp_lp_event.xSubtype = 4;
 546                ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
 547                ev->event.hp_lp_event.x.xSubtypeData =
 548                        subtype_data('M', 'F', 'M', 'A');
 549                ev->event.data.alloc.target_lp = target_lp;
 550                ev->event.data.alloc.type = type;
 551                ev->event.data.alloc.size = size;
 552                ev->event.data.alloc.count = count;
 553                ev->hdlr = hdlr;
 554                rc = signal_event(ev);
 555        }
 556        if ((rc != 0) && (hdlr != NULL))
 557                (*hdlr)(user_token, rc);
 558}
 559EXPORT_SYMBOL(mf_allocate_lp_events);
 560
 561/*
 562 * Global kernel interface to unseed and deallocate events already in
 563 * Hypervisor.
 564 */
 565void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
 566                unsigned count, MFCompleteHandler hdlr, void *user_token)
 567{
 568        struct pending_event *ev = new_pending_event();
 569        int rc;
 570
 571        if (ev == NULL)
 572                rc = -ENOMEM;
 573        else {
 574                ev->event.hp_lp_event.xSubtype = 5;
 575                ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
 576                ev->event.hp_lp_event.x.xSubtypeData =
 577                        subtype_data('M', 'F', 'M', 'D');
 578                ev->event.data.alloc.target_lp = target_lp;
 579                ev->event.data.alloc.type = type;
 580                ev->event.data.alloc.count = count;
 581                ev->hdlr = hdlr;
 582                rc = signal_event(ev);
 583        }
 584        if ((rc != 0) && (hdlr != NULL))
 585                (*hdlr)(user_token, rc);
 586}
 587EXPORT_SYMBOL(mf_deallocate_lp_events);
 588
 589/*
 590 * Global kernel interface to tell the VSP object in the primary
 591 * partition to power this partition off.
 592 */
 593void mf_power_off(void)
 594{
 595        printk(KERN_INFO "mf.c: Down it goes...\n");
 596        signal_ce_msg_simple(0x4d, NULL);
 597        for (;;)
 598                ;
 599}
 600
 601/*
 602 * Global kernel interface to tell the VSP object in the primary
 603 * partition to reboot this partition.
 604 */
 605void mf_reboot(char *cmd)
 606{
 607        printk(KERN_INFO "mf.c: Preparing to bounce...\n");
 608        signal_ce_msg_simple(0x4e, NULL);
 609        for (;;)
 610                ;
 611}
 612
 613/*
 614 * Display a single word SRC onto the VSP control panel.
 615 */
 616void mf_display_src(u32 word)
 617{
 618        u8 ce[12];
 619
 620        memset(ce, 0, sizeof(ce));
 621        ce[3] = 0x4a;
 622        ce[7] = 0x01;
 623        ce[8] = word >> 24;
 624        ce[9] = word >> 16;
 625        ce[10] = word >> 8;
 626        ce[11] = word;
 627        signal_ce_msg(ce, NULL);
 628}
 629
 630/*
 631 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
 632 */
 633static __init void mf_display_progress_src(u16 value)
 634{
 635        u8 ce[12];
 636        u8 src[72];
 637
 638        memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
 639        memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
 640                "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
 641                "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
 642                "\x00\x00\x00\x00PROGxxxx                        ",
 643                72);
 644        src[6] = value >> 8;
 645        src[7] = value & 255;
 646        src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
 647        src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
 648        src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
 649        src[47] = "0123456789ABCDEF"[value & 15];
 650        dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
 651}
 652
 653/*
 654 * Clear the VSP control panel.  Used to "erase" an SRC that was
 655 * previously displayed.
 656 */
 657static void mf_clear_src(void)
 658{
 659        signal_ce_msg_simple(0x4b, NULL);
 660}
 661
 662void __init mf_display_progress(u16 value)
 663{
 664        if (!mf_initialized)
 665                return;
 666
 667        if (0xFFFF == value)
 668                mf_clear_src();
 669        else
 670                mf_display_progress_src(value);
 671}
 672
 673/*
 674 * Initialization code here.
 675 */
 676void __init mf_init(void)
 677{
 678        int i;
 679
 680        spin_lock_init(&pending_event_spinlock);
 681
 682        for (i = 0; i < PENDING_EVENT_PREALLOC_LEN; i++)
 683                free_pending_event(&pending_event_prealloc[i]);
 684
 685        HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
 686
 687        /* virtual continue ack */
 688        signal_ce_msg_simple(0x57, NULL);
 689
 690        mf_initialized = 1;
 691        mb();
 692
 693        printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
 694                        "initialized\n");
 695}
 696
 697struct rtc_time_data {
 698        struct completion com;
 699        struct ce_msg_data ce_msg;
 700        int rc;
 701};
 702
 703static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
 704{
 705        struct rtc_time_data *rtc = token;
 706
 707        memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
 708        rtc->rc = 0;
 709        complete(&rtc->com);
 710}
 711
 712static int mf_set_rtc(struct rtc_time *tm)
 713{
 714        char ce_time[12];
 715        u8 day, mon, hour, min, sec, y1, y2;
 716        unsigned year;
 717
 718        year = 1900 + tm->tm_year;
 719        y1 = year / 100;
 720        y2 = year % 100;
 721
 722        sec = tm->tm_sec;
 723        min = tm->tm_min;
 724        hour = tm->tm_hour;
 725        day = tm->tm_mday;
 726        mon = tm->tm_mon + 1;
 727
 728        sec = bin2bcd(sec);
 729        min = bin2bcd(min);
 730        hour = bin2bcd(hour);
 731        mon = bin2bcd(mon);
 732        day = bin2bcd(day);
 733        y1 = bin2bcd(y1);
 734        y2 = bin2bcd(y2);
 735
 736        memset(ce_time, 0, sizeof(ce_time));
 737        ce_time[3] = 0x41;
 738        ce_time[4] = y1;
 739        ce_time[5] = y2;
 740        ce_time[6] = sec;
 741        ce_time[7] = min;
 742        ce_time[8] = hour;
 743        ce_time[10] = day;
 744        ce_time[11] = mon;
 745
 746        return signal_ce_msg(ce_time, NULL);
 747}
 748
 749static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
 750{
 751        tm->tm_wday = 0;
 752        tm->tm_yday = 0;
 753        tm->tm_isdst = 0;
 754        if (rc) {
 755                tm->tm_sec = 0;
 756                tm->tm_min = 0;
 757                tm->tm_hour = 0;
 758                tm->tm_mday = 15;
 759                tm->tm_mon = 5;
 760                tm->tm_year = 52;
 761                return rc;
 762        }
 763
 764        if ((ce_msg[2] == 0xa9) ||
 765            (ce_msg[2] == 0xaf)) {
 766                /* TOD clock is not set */
 767                tm->tm_sec = 1;
 768                tm->tm_min = 1;
 769                tm->tm_hour = 1;
 770                tm->tm_mday = 10;
 771                tm->tm_mon = 8;
 772                tm->tm_year = 71;
 773                mf_set_rtc(tm);
 774        }
 775        {
 776                u8 year = ce_msg[5];
 777                u8 sec = ce_msg[6];
 778                u8 min = ce_msg[7];
 779                u8 hour = ce_msg[8];
 780                u8 day = ce_msg[10];
 781                u8 mon = ce_msg[11];
 782
 783                sec = bcd2bin(sec);
 784                min = bcd2bin(min);
 785                hour = bcd2bin(hour);
 786                day = bcd2bin(day);
 787                mon = bcd2bin(mon);
 788                year = bcd2bin(year);
 789
 790                if (year <= 69)
 791                        year += 100;
 792
 793                tm->tm_sec = sec;
 794                tm->tm_min = min;
 795                tm->tm_hour = hour;
 796                tm->tm_mday = day;
 797                tm->tm_mon = mon;
 798                tm->tm_year = year;
 799        }
 800
 801        return 0;
 802}
 803
 804static int mf_get_rtc(struct rtc_time *tm)
 805{
 806        struct ce_msg_comp_data ce_complete;
 807        struct rtc_time_data rtc_data;
 808        int rc;
 809
 810        memset(&ce_complete, 0, sizeof(ce_complete));
 811        memset(&rtc_data, 0, sizeof(rtc_data));
 812        init_completion(&rtc_data.com);
 813        ce_complete.handler = &get_rtc_time_complete;
 814        ce_complete.token = &rtc_data;
 815        rc = signal_ce_msg_simple(0x40, &ce_complete);
 816        if (rc)
 817                return rc;
 818        wait_for_completion(&rtc_data.com);
 819        return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
 820}
 821
 822struct boot_rtc_time_data {
 823        int busy;
 824        struct ce_msg_data ce_msg;
 825        int rc;
 826};
 827
 828static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
 829{
 830        struct boot_rtc_time_data *rtc = token;
 831
 832        memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
 833        rtc->rc = 0;
 834        rtc->busy = 0;
 835}
 836
 837static int mf_get_boot_rtc(struct rtc_time *tm)
 838{
 839        struct ce_msg_comp_data ce_complete;
 840        struct boot_rtc_time_data rtc_data;
 841        int rc;
 842
 843        memset(&ce_complete, 0, sizeof(ce_complete));
 844        memset(&rtc_data, 0, sizeof(rtc_data));
 845        rtc_data.busy = 1;
 846        ce_complete.handler = &get_boot_rtc_time_complete;
 847        ce_complete.token = &rtc_data;
 848        rc = signal_ce_msg_simple(0x40, &ce_complete);
 849        if (rc)
 850                return rc;
 851        /* We need to poll here as we are not yet taking interrupts */
 852        while (rtc_data.busy) {
 853                if (hvlpevent_is_pending())
 854                        process_hvlpevents();
 855        }
 856        return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
 857}
 858
 859#ifdef CONFIG_PROC_FS
 860static int mf_cmdline_proc_show(struct seq_file *m, void *v)
 861{
 862        char *page, *p;
 863        struct vsp_cmd_data vsp_cmd;
 864        int rc;
 865        dma_addr_t dma_addr;
 866
 867        /* The HV appears to return no more than 256 bytes of command line */
 868        page = kmalloc(256, GFP_KERNEL);
 869        if (!page)
 870                return -ENOMEM;
 871
 872        dma_addr = iseries_hv_map(page, 256, DMA_FROM_DEVICE);
 873        if (dma_addr == DMA_ERROR_CODE) {
 874                kfree(page);
 875                return -ENOMEM;
 876        }
 877        memset(page, 0, 256);
 878        memset(&vsp_cmd, 0, sizeof(vsp_cmd));
 879        vsp_cmd.cmd = 33;
 880        vsp_cmd.sub_data.kern.token = dma_addr;
 881        vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
 882        vsp_cmd.sub_data.kern.side = (u64)m->private;
 883        vsp_cmd.sub_data.kern.length = 256;
 884        mb();
 885        rc = signal_vsp_instruction(&vsp_cmd);
 886        iseries_hv_unmap(dma_addr, 256, DMA_FROM_DEVICE);
 887        if (rc) {
 888                kfree(page);
 889                return rc;
 890        }
 891        if (vsp_cmd.result_code != 0) {
 892                kfree(page);
 893                return -ENOMEM;
 894        }
 895        p = page;
 896        while (p - page < 256) {
 897                if (*p == '\0' || *p == '\n') {
 898                        *p = '\n';
 899                        break;
 900                }
 901                p++;
 902
 903        }
 904        seq_write(m, page, p - page);
 905        kfree(page);
 906        return 0;
 907}
 908
 909static int mf_cmdline_proc_open(struct inode *inode, struct file *file)
 910{
 911        return single_open(file, mf_cmdline_proc_show, PDE(inode)->data);
 912}
 913
 914#if 0
 915static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
 916{
 917        struct vsp_cmd_data vsp_cmd;
 918        int rc;
 919        int len = *size;
 920        dma_addr_t dma_addr;
 921
 922        dma_addr = iseries_hv_map(buffer, len, DMA_FROM_DEVICE);
 923        memset(buffer, 0, len);
 924        memset(&vsp_cmd, 0, sizeof(vsp_cmd));
 925        vsp_cmd.cmd = 32;
 926        vsp_cmd.sub_data.kern.token = dma_addr;
 927        vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
 928        vsp_cmd.sub_data.kern.side = side;
 929        vsp_cmd.sub_data.kern.offset = offset;
 930        vsp_cmd.sub_data.kern.length = len;
 931        mb();
 932        rc = signal_vsp_instruction(&vsp_cmd);
 933        if (rc == 0) {
 934                if (vsp_cmd.result_code == 0)
 935                        *size = vsp_cmd.sub_data.length_out;
 936                else
 937                        rc = -ENOMEM;
 938        }
 939
 940        iseries_hv_unmap(dma_addr, len, DMA_FROM_DEVICE);
 941
 942        return rc;
 943}
 944
 945static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
 946                int count, int *eof, void *data)
 947{
 948        int sizeToGet = count;
 949
 950        if (!capable(CAP_SYS_ADMIN))
 951                return -EACCES;
 952
 953        if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
 954                if (sizeToGet != 0) {
 955                        *start = page + off;
 956                        return sizeToGet;
 957                }
 958                *eof = 1;
 959                return 0;
 960        }
 961        *eof = 1;
 962        return 0;
 963}
 964#endif
 965
 966static int mf_side_proc_show(struct seq_file *m, void *v)
 967{
 968        char mf_current_side = ' ';
 969        struct vsp_cmd_data vsp_cmd;
 970
 971        memset(&vsp_cmd, 0, sizeof(vsp_cmd));
 972        vsp_cmd.cmd = 2;
 973        vsp_cmd.sub_data.ipl_type = 0;
 974        mb();
 975
 976        if (signal_vsp_instruction(&vsp_cmd) == 0) {
 977                if (vsp_cmd.result_code == 0) {
 978                        switch (vsp_cmd.sub_data.ipl_type) {
 979                        case 0: mf_current_side = 'A';
 980                                break;
 981                        case 1: mf_current_side = 'B';
 982                                break;
 983                        case 2: mf_current_side = 'C';
 984                                break;
 985                        default:        mf_current_side = 'D';
 986                                break;
 987                        }
 988                }
 989        }
 990
 991        seq_printf(m, "%c\n", mf_current_side);
 992        return 0;
 993}
 994
 995static int mf_side_proc_open(struct inode *inode, struct file *file)
 996{
 997        return single_open(file, mf_side_proc_show, NULL);
 998}
 999
1000static ssize_t mf_side_proc_write(struct file *file, const char __user *buffer,
1001                                  size_t count, loff_t *pos)
1002{
1003        char side;
1004        u64 newSide;
1005        struct vsp_cmd_data vsp_cmd;
1006
1007        if (!capable(CAP_SYS_ADMIN))
1008                return -EACCES;
1009
1010        if (count == 0)
1011                return 0;
1012
1013        if (get_user(side, buffer))
1014                return -EFAULT;
1015
1016        switch (side) {
1017        case 'A':       newSide = 0;
1018                        break;
1019        case 'B':       newSide = 1;
1020                        break;
1021        case 'C':       newSide = 2;
1022                        break;
1023        case 'D':       newSide = 3;
1024                        break;
1025        default:
1026                printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1027                return -EINVAL;
1028        }
1029
1030        memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1031        vsp_cmd.sub_data.ipl_type = newSide;
1032        vsp_cmd.cmd = 10;
1033
1034        (void)signal_vsp_instruction(&vsp_cmd);
1035
1036        return count;
1037}
1038
1039static const struct file_operations mf_side_proc_fops = {
1040        .owner          = THIS_MODULE,
1041        .open           = mf_side_proc_open,
1042        .read           = seq_read,
1043        .llseek         = seq_lseek,
1044        .release        = single_release,
1045        .write          = mf_side_proc_write,
1046};
1047
1048static int mf_src_proc_show(struct seq_file *m, void *v)
1049{
1050        return 0;
1051}
1052
1053static int mf_src_proc_open(struct inode *inode, struct file *file)
1054{
1055        return single_open(file, mf_src_proc_show, NULL);
1056}
1057
1058static ssize_t mf_src_proc_write(struct file *file, const char __user *buffer,
1059                                 size_t count, loff_t *pos)
1060{
1061        char stkbuf[10];
1062
1063        if (!capable(CAP_SYS_ADMIN))
1064                return -EACCES;
1065
1066        if ((count < 4) && (count != 1)) {
1067                printk(KERN_ERR "mf_proc: invalid src\n");
1068                return -EINVAL;
1069        }
1070
1071        if (count > (sizeof(stkbuf) - 1))
1072                count = sizeof(stkbuf) - 1;
1073        if (copy_from_user(stkbuf, buffer, count))
1074                return -EFAULT;
1075
1076        if ((count == 1) && (*stkbuf == '\0'))
1077                mf_clear_src();
1078        else
1079                mf_display_src(*(u32 *)stkbuf);
1080
1081        return count;
1082}
1083
1084static const struct file_operations mf_src_proc_fops = {
1085        .owner          = THIS_MODULE,
1086        .open           = mf_src_proc_open,
1087        .read           = seq_read,
1088        .llseek         = seq_lseek,
1089        .release        = single_release,
1090        .write          = mf_src_proc_write,
1091};
1092
1093static ssize_t mf_cmdline_proc_write(struct file *file, const char __user *buffer,
1094                                     size_t count, loff_t *pos)
1095{
1096        void *data = PDE(file->f_path.dentry->d_inode)->data;
1097        struct vsp_cmd_data vsp_cmd;
1098        dma_addr_t dma_addr;
1099        char *page;
1100        int ret = -EACCES;
1101
1102        if (!capable(CAP_SYS_ADMIN))
1103                goto out;
1104
1105        dma_addr = 0;
1106        page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
1107        ret = -ENOMEM;
1108        if (page == NULL)
1109                goto out;
1110
1111        ret = -EFAULT;
1112        if (copy_from_user(page, buffer, count))
1113                goto out_free;
1114
1115        memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1116        vsp_cmd.cmd = 31;
1117        vsp_cmd.sub_data.kern.token = dma_addr;
1118        vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1119        vsp_cmd.sub_data.kern.side = (u64)data;
1120        vsp_cmd.sub_data.kern.length = count;
1121        mb();
1122        (void)signal_vsp_instruction(&vsp_cmd);
1123        ret = count;
1124
1125out_free:
1126        iseries_hv_free(count, page, dma_addr);
1127out:
1128        return ret;
1129}
1130
1131static const struct file_operations mf_cmdline_proc_fops = {
1132        .owner          = THIS_MODULE,
1133        .open           = mf_cmdline_proc_open,
1134        .read           = seq_read,
1135        .llseek         = seq_lseek,
1136        .release        = single_release,
1137        .write          = mf_cmdline_proc_write,
1138};
1139
1140static ssize_t proc_mf_change_vmlinux(struct file *file,
1141                                      const char __user *buf,
1142                                      size_t count, loff_t *ppos)
1143{
1144        struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
1145        ssize_t rc;
1146        dma_addr_t dma_addr;
1147        char *page;
1148        struct vsp_cmd_data vsp_cmd;
1149
1150        rc = -EACCES;
1151        if (!capable(CAP_SYS_ADMIN))
1152                goto out;
1153
1154        dma_addr = 0;
1155        page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
1156        rc = -ENOMEM;
1157        if (page == NULL) {
1158                printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1159                goto out;
1160        }
1161        rc = -EFAULT;
1162        if (copy_from_user(page, buf, count))
1163                goto out_free;
1164
1165        memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1166        vsp_cmd.cmd = 30;
1167        vsp_cmd.sub_data.kern.token = dma_addr;
1168        vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1169        vsp_cmd.sub_data.kern.side = (u64)dp->data;
1170        vsp_cmd.sub_data.kern.offset = *ppos;
1171        vsp_cmd.sub_data.kern.length = count;
1172        mb();
1173        rc = signal_vsp_instruction(&vsp_cmd);
1174        if (rc)
1175                goto out_free;
1176        rc = -ENOMEM;
1177        if (vsp_cmd.result_code != 0)
1178                goto out_free;
1179
1180        *ppos += count;
1181        rc = count;
1182out_free:
1183        iseries_hv_free(count, page, dma_addr);
1184out:
1185        return rc;
1186}
1187
1188static const struct file_operations proc_vmlinux_operations = {
1189        .write          = proc_mf_change_vmlinux,
1190        .llseek         = default_llseek,
1191};
1192
1193static int __init mf_proc_init(void)
1194{
1195        struct proc_dir_entry *mf_proc_root;
1196        struct proc_dir_entry *ent;
1197        struct proc_dir_entry *mf;
1198        char name[2];
1199        int i;
1200
1201        if (!firmware_has_feature(FW_FEATURE_ISERIES))
1202                return 0;
1203
1204        mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1205        if (!mf_proc_root)
1206                return 1;
1207
1208        name[1] = '\0';
1209        for (i = 0; i < 4; i++) {
1210                name[0] = 'A' + i;
1211                mf = proc_mkdir(name, mf_proc_root);
1212                if (!mf)
1213                        return 1;
1214
1215                ent = proc_create_data("cmdline", S_IRUSR|S_IWUSR, mf,
1216                                       &mf_cmdline_proc_fops, (void *)(long)i);
1217                if (!ent)
1218                        return 1;
1219
1220                if (i == 3)     /* no vmlinux entry for 'D' */
1221                        continue;
1222
1223                ent = proc_create_data("vmlinux", S_IFREG|S_IWUSR, mf,
1224                                       &proc_vmlinux_operations,
1225                                       (void *)(long)i);
1226                if (!ent)
1227                        return 1;
1228        }
1229
1230        ent = proc_create("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root,
1231                          &mf_side_proc_fops);
1232        if (!ent)
1233                return 1;
1234
1235        ent = proc_create("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root,
1236                          &mf_src_proc_fops);
1237        if (!ent)
1238                return 1;
1239
1240        return 0;
1241}
1242
1243__initcall(mf_proc_init);
1244
1245#endif /* CONFIG_PROC_FS */
1246
1247/*
1248 * Get the RTC from the virtual service processor
1249 * This requires flowing LpEvents to the primary partition
1250 */
1251void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1252{
1253        mf_get_rtc(rtc_tm);
1254        rtc_tm->tm_mon--;
1255}
1256
1257/*
1258 * Set the RTC in the virtual service processor
1259 * This requires flowing LpEvents to the primary partition
1260 */
1261int iSeries_set_rtc_time(struct rtc_time *tm)
1262{
1263        mf_set_rtc(tm);
1264        return 0;
1265}
1266
1267unsigned long iSeries_get_boot_time(void)
1268{
1269        struct rtc_time tm;
1270
1271        mf_get_boot_rtc(&tm);
1272        return mktime(tm.tm_year + 1900, tm.tm_mon, tm.tm_mday,
1273                      tm.tm_hour, tm.tm_min, tm.tm_sec);
1274}
1275