linux/arch/s390/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 *  include/asm-s390/pgtable.h
   3 *
   4 *  S390 version
   5 *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
   6 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   7 *               Ulrich Weigand (weigand@de.ibm.com)
   8 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   9 *
  10 *  Derived from "include/asm-i386/pgtable.h"
  11 */
  12
  13#ifndef _ASM_S390_PGTABLE_H
  14#define _ASM_S390_PGTABLE_H
  15
  16/*
  17 * The Linux memory management assumes a three-level page table setup. For
  18 * s390 31 bit we "fold" the mid level into the top-level page table, so
  19 * that we physically have the same two-level page table as the s390 mmu
  20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  21 * the hardware provides (region first and region second tables are not
  22 * used).
  23 *
  24 * The "pgd_xxx()" functions are trivial for a folded two-level
  25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
  26 * into the pgd entry)
  27 *
  28 * This file contains the functions and defines necessary to modify and use
  29 * the S390 page table tree.
  30 */
  31#ifndef __ASSEMBLY__
  32#include <linux/sched.h>
  33#include <linux/mm_types.h>
  34#include <asm/bitops.h>
  35#include <asm/bug.h>
  36#include <asm/processor.h>
  37
  38extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  39extern void paging_init(void);
  40extern void vmem_map_init(void);
  41extern void fault_init(void);
  42
  43/*
  44 * The S390 doesn't have any external MMU info: the kernel page
  45 * tables contain all the necessary information.
  46 */
  47#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  48
  49/*
  50 * ZERO_PAGE is a global shared page that is always zero; used
  51 * for zero-mapped memory areas etc..
  52 */
  53
  54extern unsigned long empty_zero_page;
  55extern unsigned long zero_page_mask;
  56
  57#define ZERO_PAGE(vaddr) \
  58        (virt_to_page((void *)(empty_zero_page + \
  59         (((unsigned long)(vaddr)) &zero_page_mask))))
  60
  61#define is_zero_pfn is_zero_pfn
  62static inline int is_zero_pfn(unsigned long pfn)
  63{
  64        extern unsigned long zero_pfn;
  65        unsigned long offset_from_zero_pfn = pfn - zero_pfn;
  66        return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
  67}
  68
  69#define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
  70
  71#endif /* !__ASSEMBLY__ */
  72
  73/*
  74 * PMD_SHIFT determines the size of the area a second-level page
  75 * table can map
  76 * PGDIR_SHIFT determines what a third-level page table entry can map
  77 */
  78#ifndef __s390x__
  79# define PMD_SHIFT      20
  80# define PUD_SHIFT      20
  81# define PGDIR_SHIFT    20
  82#else /* __s390x__ */
  83# define PMD_SHIFT      20
  84# define PUD_SHIFT      31
  85# define PGDIR_SHIFT    42
  86#endif /* __s390x__ */
  87
  88#define PMD_SIZE        (1UL << PMD_SHIFT)
  89#define PMD_MASK        (~(PMD_SIZE-1))
  90#define PUD_SIZE        (1UL << PUD_SHIFT)
  91#define PUD_MASK        (~(PUD_SIZE-1))
  92#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  93#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  94
  95/*
  96 * entries per page directory level: the S390 is two-level, so
  97 * we don't really have any PMD directory physically.
  98 * for S390 segment-table entries are combined to one PGD
  99 * that leads to 1024 pte per pgd
 100 */
 101#define PTRS_PER_PTE    256
 102#ifndef __s390x__
 103#define PTRS_PER_PMD    1
 104#define PTRS_PER_PUD    1
 105#else /* __s390x__ */
 106#define PTRS_PER_PMD    2048
 107#define PTRS_PER_PUD    2048
 108#endif /* __s390x__ */
 109#define PTRS_PER_PGD    2048
 110
 111#define FIRST_USER_ADDRESS  0
 112
 113#define pte_ERROR(e) \
 114        printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
 115#define pmd_ERROR(e) \
 116        printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
 117#define pud_ERROR(e) \
 118        printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
 119#define pgd_ERROR(e) \
 120        printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
 121
 122#ifndef __ASSEMBLY__
 123/*
 124 * The vmalloc area will always be on the topmost area of the kernel
 125 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc,
 126 * which should be enough for any sane case.
 127 * By putting vmalloc at the top, we maximise the gap between physical
 128 * memory and vmalloc to catch misplaced memory accesses. As a side
 129 * effect, this also makes sure that 64 bit module code cannot be used
 130 * as system call address.
 131 */
 132
 133extern unsigned long VMALLOC_START;
 134
 135#ifndef __s390x__
 136#define VMALLOC_SIZE    (96UL << 20)
 137#define VMALLOC_END     0x7e000000UL
 138#define VMEM_MAP_END    0x80000000UL
 139#else /* __s390x__ */
 140#define VMALLOC_SIZE    (128UL << 30)
 141#define VMALLOC_END     0x3e000000000UL
 142#define VMEM_MAP_END    0x40000000000UL
 143#endif /* __s390x__ */
 144
 145/*
 146 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
 147 * mapping. This needs to be calculated at compile time since the size of the
 148 * VMEM_MAP is static but the size of struct page can change.
 149 */
 150#define VMEM_MAX_PAGES  ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
 151#define VMEM_MAX_PFN    min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
 152#define VMEM_MAX_PHYS   ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
 153#define vmemmap         ((struct page *) VMALLOC_END)
 154
 155/*
 156 * A 31 bit pagetable entry of S390 has following format:
 157 *  |   PFRA          |    |  OS  |
 158 * 0                   0IP0
 159 * 00000000001111111111222222222233
 160 * 01234567890123456789012345678901
 161 *
 162 * I Page-Invalid Bit:    Page is not available for address-translation
 163 * P Page-Protection Bit: Store access not possible for page
 164 *
 165 * A 31 bit segmenttable entry of S390 has following format:
 166 *  |   P-table origin      |  |PTL
 167 * 0                         IC
 168 * 00000000001111111111222222222233
 169 * 01234567890123456789012345678901
 170 *
 171 * I Segment-Invalid Bit:    Segment is not available for address-translation
 172 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 173 * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
 174 *
 175 * The 31 bit segmenttable origin of S390 has following format:
 176 *
 177 *  |S-table origin   |     | STL |
 178 * X                   **GPS
 179 * 00000000001111111111222222222233
 180 * 01234567890123456789012345678901
 181 *
 182 * X Space-Switch event:
 183 * G Segment-Invalid Bit:     *
 184 * P Private-Space Bit:       Segment is not private (PoP 3-30)
 185 * S Storage-Alteration:
 186 * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
 187 *
 188 * A 64 bit pagetable entry of S390 has following format:
 189 * |                     PFRA                         |0IPC|  OS  |
 190 * 0000000000111111111122222222223333333333444444444455555555556666
 191 * 0123456789012345678901234567890123456789012345678901234567890123
 192 *
 193 * I Page-Invalid Bit:    Page is not available for address-translation
 194 * P Page-Protection Bit: Store access not possible for page
 195 * C Change-bit override: HW is not required to set change bit
 196 *
 197 * A 64 bit segmenttable entry of S390 has following format:
 198 * |        P-table origin                              |      TT
 199 * 0000000000111111111122222222223333333333444444444455555555556666
 200 * 0123456789012345678901234567890123456789012345678901234567890123
 201 *
 202 * I Segment-Invalid Bit:    Segment is not available for address-translation
 203 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 204 * P Page-Protection Bit: Store access not possible for page
 205 * TT Type 00
 206 *
 207 * A 64 bit region table entry of S390 has following format:
 208 * |        S-table origin                             |   TF  TTTL
 209 * 0000000000111111111122222222223333333333444444444455555555556666
 210 * 0123456789012345678901234567890123456789012345678901234567890123
 211 *
 212 * I Segment-Invalid Bit:    Segment is not available for address-translation
 213 * TT Type 01
 214 * TF
 215 * TL Table length
 216 *
 217 * The 64 bit regiontable origin of S390 has following format:
 218 * |      region table origon                          |       DTTL
 219 * 0000000000111111111122222222223333333333444444444455555555556666
 220 * 0123456789012345678901234567890123456789012345678901234567890123
 221 *
 222 * X Space-Switch event:
 223 * G Segment-Invalid Bit:  
 224 * P Private-Space Bit:    
 225 * S Storage-Alteration:
 226 * R Real space
 227 * TL Table-Length:
 228 *
 229 * A storage key has the following format:
 230 * | ACC |F|R|C|0|
 231 *  0   3 4 5 6 7
 232 * ACC: access key
 233 * F  : fetch protection bit
 234 * R  : referenced bit
 235 * C  : changed bit
 236 */
 237
 238/* Hardware bits in the page table entry */
 239#define _PAGE_CO        0x100           /* HW Change-bit override */
 240#define _PAGE_RO        0x200           /* HW read-only bit  */
 241#define _PAGE_INVALID   0x400           /* HW invalid bit    */
 242
 243/* Software bits in the page table entry */
 244#define _PAGE_SWT       0x001           /* SW pte type bit t */
 245#define _PAGE_SWX       0x002           /* SW pte type bit x */
 246#define _PAGE_SPECIAL   0x004           /* SW associated with special page */
 247#define __HAVE_ARCH_PTE_SPECIAL
 248
 249/* Set of bits not changed in pte_modify */
 250#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_SPECIAL)
 251
 252/* Six different types of pages. */
 253#define _PAGE_TYPE_EMPTY        0x400
 254#define _PAGE_TYPE_NONE         0x401
 255#define _PAGE_TYPE_SWAP         0x403
 256#define _PAGE_TYPE_FILE         0x601   /* bit 0x002 is used for offset !! */
 257#define _PAGE_TYPE_RO           0x200
 258#define _PAGE_TYPE_RW           0x000
 259#define _PAGE_TYPE_EX_RO        0x202
 260#define _PAGE_TYPE_EX_RW        0x002
 261
 262/*
 263 * Only four types for huge pages, using the invalid bit and protection bit
 264 * of a segment table entry.
 265 */
 266#define _HPAGE_TYPE_EMPTY       0x020   /* _SEGMENT_ENTRY_INV */
 267#define _HPAGE_TYPE_NONE        0x220
 268#define _HPAGE_TYPE_RO          0x200   /* _SEGMENT_ENTRY_RO  */
 269#define _HPAGE_TYPE_RW          0x000
 270
 271/*
 272 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
 273 * pte_none and pte_file to find out the pte type WITHOUT holding the page
 274 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
 275 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
 276 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
 277 * This change is done while holding the lock, but the intermediate step
 278 * of a previously valid pte with the hw invalid bit set can be observed by
 279 * handle_pte_fault. That makes it necessary that all valid pte types with
 280 * the hw invalid bit set must be distinguishable from the four pte types
 281 * empty, none, swap and file.
 282 *
 283 *                      irxt  ipte  irxt
 284 * _PAGE_TYPE_EMPTY     1000   ->   1000
 285 * _PAGE_TYPE_NONE      1001   ->   1001
 286 * _PAGE_TYPE_SWAP      1011   ->   1011
 287 * _PAGE_TYPE_FILE      11?1   ->   11?1
 288 * _PAGE_TYPE_RO        0100   ->   1100
 289 * _PAGE_TYPE_RW        0000   ->   1000
 290 * _PAGE_TYPE_EX_RO     0110   ->   1110
 291 * _PAGE_TYPE_EX_RW     0010   ->   1010
 292 *
 293 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
 294 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
 295 * pte_file is true for bits combinations 1101, 1111
 296 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
 297 */
 298
 299/* Page status table bits for virtualization */
 300#define RCP_PCL_BIT     55
 301#define RCP_HR_BIT      54
 302#define RCP_HC_BIT      53
 303#define RCP_GR_BIT      50
 304#define RCP_GC_BIT      49
 305
 306/* User dirty bit for KVM's migration feature */
 307#define KVM_UD_BIT      47
 308
 309#ifndef __s390x__
 310
 311/* Bits in the segment table address-space-control-element */
 312#define _ASCE_SPACE_SWITCH      0x80000000UL    /* space switch event       */
 313#define _ASCE_ORIGIN_MASK       0x7ffff000UL    /* segment table origin     */
 314#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 315#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 316#define _ASCE_TABLE_LENGTH      0x7f    /* 128 x 64 entries = 8k            */
 317
 318/* Bits in the segment table entry */
 319#define _SEGMENT_ENTRY_ORIGIN   0x7fffffc0UL    /* page table origin        */
 320#define _SEGMENT_ENTRY_RO       0x200   /* page protection bit              */
 321#define _SEGMENT_ENTRY_INV      0x20    /* invalid segment table entry      */
 322#define _SEGMENT_ENTRY_COMMON   0x10    /* common segment bit               */
 323#define _SEGMENT_ENTRY_PTL      0x0f    /* page table length                */
 324
 325#define _SEGMENT_ENTRY          (_SEGMENT_ENTRY_PTL)
 326#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INV)
 327
 328#else /* __s390x__ */
 329
 330/* Bits in the segment/region table address-space-control-element */
 331#define _ASCE_ORIGIN            ~0xfffUL/* segment table origin             */
 332#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 333#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 334#define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 335#define _ASCE_REAL_SPACE        0x20    /* real space control               */
 336#define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 337#define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 338#define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 339#define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 340#define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 341#define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 342
 343/* Bits in the region table entry */
 344#define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 345#define _REGION_ENTRY_INV       0x20    /* invalid region table entry       */
 346#define _REGION_ENTRY_TYPE_MASK 0x0c    /* region/segment table type mask   */
 347#define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 348#define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 349#define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 350#define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 351
 352#define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 353#define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
 354#define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 355#define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
 356#define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 357#define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
 358
 359/* Bits in the segment table entry */
 360#define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* segment table origin             */
 361#define _SEGMENT_ENTRY_RO       0x200   /* page protection bit              */
 362#define _SEGMENT_ENTRY_INV      0x20    /* invalid segment table entry      */
 363
 364#define _SEGMENT_ENTRY          (0)
 365#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INV)
 366
 367#define _SEGMENT_ENTRY_LARGE    0x400   /* STE-format control, large page   */
 368#define _SEGMENT_ENTRY_CO       0x100   /* change-recording override   */
 369
 370#endif /* __s390x__ */
 371
 372/*
 373 * A user page table pointer has the space-switch-event bit, the
 374 * private-space-control bit and the storage-alteration-event-control
 375 * bit set. A kernel page table pointer doesn't need them.
 376 */
 377#define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 378                                 _ASCE_ALT_EVENT)
 379
 380/* Bits int the storage key */
 381#define _PAGE_CHANGED    0x02          /* HW changed bit                   */
 382#define _PAGE_REFERENCED 0x04          /* HW referenced bit                */
 383
 384/*
 385 * Page protection definitions.
 386 */
 387#define PAGE_NONE       __pgprot(_PAGE_TYPE_NONE)
 388#define PAGE_RO         __pgprot(_PAGE_TYPE_RO)
 389#define PAGE_RW         __pgprot(_PAGE_TYPE_RW)
 390#define PAGE_EX_RO      __pgprot(_PAGE_TYPE_EX_RO)
 391#define PAGE_EX_RW      __pgprot(_PAGE_TYPE_EX_RW)
 392
 393#define PAGE_KERNEL     PAGE_RW
 394#define PAGE_COPY       PAGE_RO
 395
 396/*
 397 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
 398 * Write permission always implies read permission. In theory with a
 399 * primary/secondary page table execute only can be implemented but
 400 * it would cost an additional bit in the pte to distinguish all the
 401 * different pte types. To avoid that execute permission currently
 402 * implies read permission as well.
 403 */
 404         /*xwr*/
 405#define __P000  PAGE_NONE
 406#define __P001  PAGE_RO
 407#define __P010  PAGE_RO
 408#define __P011  PAGE_RO
 409#define __P100  PAGE_EX_RO
 410#define __P101  PAGE_EX_RO
 411#define __P110  PAGE_EX_RO
 412#define __P111  PAGE_EX_RO
 413
 414#define __S000  PAGE_NONE
 415#define __S001  PAGE_RO
 416#define __S010  PAGE_RW
 417#define __S011  PAGE_RW
 418#define __S100  PAGE_EX_RO
 419#define __S101  PAGE_EX_RO
 420#define __S110  PAGE_EX_RW
 421#define __S111  PAGE_EX_RW
 422
 423#ifndef __s390x__
 424# define PxD_SHADOW_SHIFT       1
 425#else /* __s390x__ */
 426# define PxD_SHADOW_SHIFT       2
 427#endif /* __s390x__ */
 428
 429static inline void *get_shadow_table(void *table)
 430{
 431        unsigned long addr, offset;
 432        struct page *page;
 433
 434        addr = (unsigned long) table;
 435        offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
 436        page = virt_to_page((void *)(addr ^ offset));
 437        return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
 438}
 439
 440/*
 441 * Certain architectures need to do special things when PTEs
 442 * within a page table are directly modified.  Thus, the following
 443 * hook is made available.
 444 */
 445static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 446                              pte_t *ptep, pte_t entry)
 447{
 448        *ptep = entry;
 449        if (mm->context.noexec) {
 450                if (!(pte_val(entry) & _PAGE_INVALID) &&
 451                    (pte_val(entry) & _PAGE_SWX))
 452                        pte_val(entry) |= _PAGE_RO;
 453                else
 454                        pte_val(entry) = _PAGE_TYPE_EMPTY;
 455                ptep[PTRS_PER_PTE] = entry;
 456        }
 457}
 458
 459/*
 460 * pgd/pmd/pte query functions
 461 */
 462#ifndef __s390x__
 463
 464static inline int pgd_present(pgd_t pgd) { return 1; }
 465static inline int pgd_none(pgd_t pgd)    { return 0; }
 466static inline int pgd_bad(pgd_t pgd)     { return 0; }
 467
 468static inline int pud_present(pud_t pud) { return 1; }
 469static inline int pud_none(pud_t pud)    { return 0; }
 470static inline int pud_bad(pud_t pud)     { return 0; }
 471
 472#else /* __s390x__ */
 473
 474static inline int pgd_present(pgd_t pgd)
 475{
 476        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 477                return 1;
 478        return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 479}
 480
 481static inline int pgd_none(pgd_t pgd)
 482{
 483        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 484                return 0;
 485        return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
 486}
 487
 488static inline int pgd_bad(pgd_t pgd)
 489{
 490        /*
 491         * With dynamic page table levels the pgd can be a region table
 492         * entry or a segment table entry. Check for the bit that are
 493         * invalid for either table entry.
 494         */
 495        unsigned long mask =
 496                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
 497                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 498        return (pgd_val(pgd) & mask) != 0;
 499}
 500
 501static inline int pud_present(pud_t pud)
 502{
 503        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 504                return 1;
 505        return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 506}
 507
 508static inline int pud_none(pud_t pud)
 509{
 510        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 511                return 0;
 512        return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
 513}
 514
 515static inline int pud_bad(pud_t pud)
 516{
 517        /*
 518         * With dynamic page table levels the pud can be a region table
 519         * entry or a segment table entry. Check for the bit that are
 520         * invalid for either table entry.
 521         */
 522        unsigned long mask =
 523                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
 524                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 525        return (pud_val(pud) & mask) != 0;
 526}
 527
 528#endif /* __s390x__ */
 529
 530static inline int pmd_present(pmd_t pmd)
 531{
 532        return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
 533}
 534
 535static inline int pmd_none(pmd_t pmd)
 536{
 537        return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
 538}
 539
 540static inline int pmd_bad(pmd_t pmd)
 541{
 542        unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
 543        return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
 544}
 545
 546static inline int pte_none(pte_t pte)
 547{
 548        return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
 549}
 550
 551static inline int pte_present(pte_t pte)
 552{
 553        unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
 554        return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
 555                (!(pte_val(pte) & _PAGE_INVALID) &&
 556                 !(pte_val(pte) & _PAGE_SWT));
 557}
 558
 559static inline int pte_file(pte_t pte)
 560{
 561        unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
 562        return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
 563}
 564
 565static inline int pte_special(pte_t pte)
 566{
 567        return (pte_val(pte) & _PAGE_SPECIAL);
 568}
 569
 570#define __HAVE_ARCH_PTE_SAME
 571#define pte_same(a,b)  (pte_val(a) == pte_val(b))
 572
 573static inline void rcp_lock(pte_t *ptep)
 574{
 575#ifdef CONFIG_PGSTE
 576        unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
 577        preempt_disable();
 578        while (test_and_set_bit(RCP_PCL_BIT, pgste))
 579                ;
 580#endif
 581}
 582
 583static inline void rcp_unlock(pte_t *ptep)
 584{
 585#ifdef CONFIG_PGSTE
 586        unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
 587        clear_bit(RCP_PCL_BIT, pgste);
 588        preempt_enable();
 589#endif
 590}
 591
 592/* forward declaration for SetPageUptodate in page-flags.h*/
 593static inline void page_clear_dirty(struct page *page, int mapped);
 594#include <linux/page-flags.h>
 595
 596static inline void ptep_rcp_copy(pte_t *ptep)
 597{
 598#ifdef CONFIG_PGSTE
 599        struct page *page = virt_to_page(pte_val(*ptep));
 600        unsigned int skey;
 601        unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
 602
 603        skey = page_get_storage_key(page_to_phys(page));
 604        if (skey & _PAGE_CHANGED) {
 605                set_bit_simple(RCP_GC_BIT, pgste);
 606                set_bit_simple(KVM_UD_BIT, pgste);
 607        }
 608        if (skey & _PAGE_REFERENCED)
 609                set_bit_simple(RCP_GR_BIT, pgste);
 610        if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
 611                SetPageDirty(page);
 612                set_bit_simple(KVM_UD_BIT, pgste);
 613        }
 614        if (test_and_clear_bit_simple(RCP_HR_BIT, pgste))
 615                SetPageReferenced(page);
 616#endif
 617}
 618
 619/*
 620 * query functions pte_write/pte_dirty/pte_young only work if
 621 * pte_present() is true. Undefined behaviour if not..
 622 */
 623static inline int pte_write(pte_t pte)
 624{
 625        return (pte_val(pte) & _PAGE_RO) == 0;
 626}
 627
 628static inline int pte_dirty(pte_t pte)
 629{
 630        /* A pte is neither clean nor dirty on s/390. The dirty bit
 631         * is in the storage key. See page_test_and_clear_dirty for
 632         * details.
 633         */
 634        return 0;
 635}
 636
 637static inline int pte_young(pte_t pte)
 638{
 639        /* A pte is neither young nor old on s/390. The young bit
 640         * is in the storage key. See page_test_and_clear_young for
 641         * details.
 642         */
 643        return 0;
 644}
 645
 646/*
 647 * pgd/pmd/pte modification functions
 648 */
 649
 650#ifndef __s390x__
 651
 652#define pgd_clear(pgd)          do { } while (0)
 653#define pud_clear(pud)          do { } while (0)
 654
 655#else /* __s390x__ */
 656
 657static inline void pgd_clear_kernel(pgd_t * pgd)
 658{
 659        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 660                pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
 661}
 662
 663static inline void pgd_clear(pgd_t * pgd)
 664{
 665        pgd_t *shadow = get_shadow_table(pgd);
 666
 667        pgd_clear_kernel(pgd);
 668        if (shadow)
 669                pgd_clear_kernel(shadow);
 670}
 671
 672static inline void pud_clear_kernel(pud_t *pud)
 673{
 674        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 675                pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 676}
 677
 678static inline void pud_clear(pud_t *pud)
 679{
 680        pud_t *shadow = get_shadow_table(pud);
 681
 682        pud_clear_kernel(pud);
 683        if (shadow)
 684                pud_clear_kernel(shadow);
 685}
 686
 687#endif /* __s390x__ */
 688
 689static inline void pmd_clear_kernel(pmd_t * pmdp)
 690{
 691        pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 692}
 693
 694static inline void pmd_clear(pmd_t *pmd)
 695{
 696        pmd_t *shadow = get_shadow_table(pmd);
 697
 698        pmd_clear_kernel(pmd);
 699        if (shadow)
 700                pmd_clear_kernel(shadow);
 701}
 702
 703static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 704{
 705        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 706        if (mm->context.noexec)
 707                pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
 708}
 709
 710/*
 711 * The following pte modification functions only work if
 712 * pte_present() is true. Undefined behaviour if not..
 713 */
 714static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 715{
 716        pte_val(pte) &= _PAGE_CHG_MASK;
 717        pte_val(pte) |= pgprot_val(newprot);
 718        return pte;
 719}
 720
 721static inline pte_t pte_wrprotect(pte_t pte)
 722{
 723        /* Do not clobber _PAGE_TYPE_NONE pages!  */
 724        if (!(pte_val(pte) & _PAGE_INVALID))
 725                pte_val(pte) |= _PAGE_RO;
 726        return pte;
 727}
 728
 729static inline pte_t pte_mkwrite(pte_t pte)
 730{
 731        pte_val(pte) &= ~_PAGE_RO;
 732        return pte;
 733}
 734
 735static inline pte_t pte_mkclean(pte_t pte)
 736{
 737        /* The only user of pte_mkclean is the fork() code.
 738           We must *not* clear the *physical* page dirty bit
 739           just because fork() wants to clear the dirty bit in
 740           *one* of the page's mappings.  So we just do nothing. */
 741        return pte;
 742}
 743
 744static inline pte_t pte_mkdirty(pte_t pte)
 745{
 746        /* We do not explicitly set the dirty bit because the
 747         * sske instruction is slow. It is faster to let the
 748         * next instruction set the dirty bit.
 749         */
 750        return pte;
 751}
 752
 753static inline pte_t pte_mkold(pte_t pte)
 754{
 755        /* S/390 doesn't keep its dirty/referenced bit in the pte.
 756         * There is no point in clearing the real referenced bit.
 757         */
 758        return pte;
 759}
 760
 761static inline pte_t pte_mkyoung(pte_t pte)
 762{
 763        /* S/390 doesn't keep its dirty/referenced bit in the pte.
 764         * There is no point in setting the real referenced bit.
 765         */
 766        return pte;
 767}
 768
 769static inline pte_t pte_mkspecial(pte_t pte)
 770{
 771        pte_val(pte) |= _PAGE_SPECIAL;
 772        return pte;
 773}
 774
 775#ifdef CONFIG_HUGETLB_PAGE
 776static inline pte_t pte_mkhuge(pte_t pte)
 777{
 778        /*
 779         * PROT_NONE needs to be remapped from the pte type to the ste type.
 780         * The HW invalid bit is also different for pte and ste. The pte
 781         * invalid bit happens to be the same as the ste _SEGMENT_ENTRY_LARGE
 782         * bit, so we don't have to clear it.
 783         */
 784        if (pte_val(pte) & _PAGE_INVALID) {
 785                if (pte_val(pte) & _PAGE_SWT)
 786                        pte_val(pte) |= _HPAGE_TYPE_NONE;
 787                pte_val(pte) |= _SEGMENT_ENTRY_INV;
 788        }
 789        /*
 790         * Clear SW pte bits SWT and SWX, there are no SW bits in a segment
 791         * table entry.
 792         */
 793        pte_val(pte) &= ~(_PAGE_SWT | _PAGE_SWX);
 794        /*
 795         * Also set the change-override bit because we don't need dirty bit
 796         * tracking for hugetlbfs pages.
 797         */
 798        pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
 799        return pte;
 800}
 801#endif
 802
 803#ifdef CONFIG_PGSTE
 804/*
 805 * Get (and clear) the user dirty bit for a PTE.
 806 */
 807static inline int kvm_s390_test_and_clear_page_dirty(struct mm_struct *mm,
 808                                                     pte_t *ptep)
 809{
 810        int dirty;
 811        unsigned long *pgste;
 812        struct page *page;
 813        unsigned int skey;
 814
 815        if (!mm->context.has_pgste)
 816                return -EINVAL;
 817        rcp_lock(ptep);
 818        pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
 819        page = virt_to_page(pte_val(*ptep));
 820        skey = page_get_storage_key(page_to_phys(page));
 821        if (skey & _PAGE_CHANGED) {
 822                set_bit_simple(RCP_GC_BIT, pgste);
 823                set_bit_simple(KVM_UD_BIT, pgste);
 824        }
 825        if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
 826                SetPageDirty(page);
 827                set_bit_simple(KVM_UD_BIT, pgste);
 828        }
 829        dirty = test_and_clear_bit_simple(KVM_UD_BIT, pgste);
 830        if (skey & _PAGE_CHANGED)
 831                page_clear_dirty(page, 1);
 832        rcp_unlock(ptep);
 833        return dirty;
 834}
 835#endif
 836
 837#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 838static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 839                                            unsigned long addr, pte_t *ptep)
 840{
 841#ifdef CONFIG_PGSTE
 842        unsigned long physpage;
 843        int young;
 844        unsigned long *pgste;
 845
 846        if (!vma->vm_mm->context.has_pgste)
 847                return 0;
 848        physpage = pte_val(*ptep) & PAGE_MASK;
 849        pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
 850
 851        young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0);
 852        rcp_lock(ptep);
 853        if (young)
 854                set_bit_simple(RCP_GR_BIT, pgste);
 855        young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste);
 856        rcp_unlock(ptep);
 857        return young;
 858#endif
 859        return 0;
 860}
 861
 862#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 863static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
 864                                         unsigned long address, pte_t *ptep)
 865{
 866        /* No need to flush TLB
 867         * On s390 reference bits are in storage key and never in TLB
 868         * With virtualization we handle the reference bit, without we
 869         * we can simply return */
 870#ifdef CONFIG_PGSTE
 871        return ptep_test_and_clear_young(vma, address, ptep);
 872#endif
 873        return 0;
 874}
 875
 876static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
 877{
 878        if (!(pte_val(*ptep) & _PAGE_INVALID)) {
 879#ifndef __s390x__
 880                /* pto must point to the start of the segment table */
 881                pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
 882#else
 883                /* ipte in zarch mode can do the math */
 884                pte_t *pto = ptep;
 885#endif
 886                asm volatile(
 887                        "       ipte    %2,%3"
 888                        : "=m" (*ptep) : "m" (*ptep),
 889                          "a" (pto), "a" (address));
 890        }
 891}
 892
 893static inline void ptep_invalidate(struct mm_struct *mm,
 894                                   unsigned long address, pte_t *ptep)
 895{
 896        if (mm->context.has_pgste) {
 897                rcp_lock(ptep);
 898                __ptep_ipte(address, ptep);
 899                ptep_rcp_copy(ptep);
 900                pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 901                rcp_unlock(ptep);
 902                return;
 903        }
 904        __ptep_ipte(address, ptep);
 905        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 906        if (mm->context.noexec) {
 907                __ptep_ipte(address, ptep + PTRS_PER_PTE);
 908                pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY;
 909        }
 910}
 911
 912/*
 913 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
 914 * both clear the TLB for the unmapped pte. The reason is that
 915 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
 916 * to modify an active pte. The sequence is
 917 *   1) ptep_get_and_clear
 918 *   2) set_pte_at
 919 *   3) flush_tlb_range
 920 * On s390 the tlb needs to get flushed with the modification of the pte
 921 * if the pte is active. The only way how this can be implemented is to
 922 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
 923 * is a nop.
 924 */
 925#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 926#define ptep_get_and_clear(__mm, __address, __ptep)                     \
 927({                                                                      \
 928        pte_t __pte = *(__ptep);                                        \
 929        (__mm)->context.flush_mm = 1;                                   \
 930        if (atomic_read(&(__mm)->context.attach_count) > 1 ||           \
 931            (__mm) != current->active_mm)                               \
 932                ptep_invalidate(__mm, __address, __ptep);               \
 933        else                                                            \
 934                pte_clear((__mm), (__address), (__ptep));               \
 935        __pte;                                                          \
 936})
 937
 938#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
 939static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
 940                                     unsigned long address, pte_t *ptep)
 941{
 942        pte_t pte = *ptep;
 943        ptep_invalidate(vma->vm_mm, address, ptep);
 944        return pte;
 945}
 946
 947/*
 948 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
 949 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
 950 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
 951 * cannot be accessed while the batched unmap is running. In this case
 952 * full==1 and a simple pte_clear is enough. See tlb.h.
 953 */
 954#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 955static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 956                                            unsigned long addr,
 957                                            pte_t *ptep, int full)
 958{
 959        pte_t pte = *ptep;
 960
 961        if (full)
 962                pte_clear(mm, addr, ptep);
 963        else
 964                ptep_invalidate(mm, addr, ptep);
 965        return pte;
 966}
 967
 968#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 969#define ptep_set_wrprotect(__mm, __addr, __ptep)                        \
 970({                                                                      \
 971        pte_t __pte = *(__ptep);                                        \
 972        if (pte_write(__pte)) {                                         \
 973                (__mm)->context.flush_mm = 1;                           \
 974                if (atomic_read(&(__mm)->context.attach_count) > 1 ||   \
 975                    (__mm) != current->active_mm)                       \
 976                        ptep_invalidate(__mm, __addr, __ptep);          \
 977                set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
 978        }                                                               \
 979})
 980
 981#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 982#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty)  \
 983({                                                                      \
 984        int __changed = !pte_same(*(__ptep), __entry);                  \
 985        if (__changed) {                                                \
 986                ptep_invalidate((__vma)->vm_mm, __addr, __ptep);        \
 987                set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry);    \
 988        }                                                               \
 989        __changed;                                                      \
 990})
 991
 992/*
 993 * Test and clear dirty bit in storage key.
 994 * We can't clear the changed bit atomically. This is a potential
 995 * race against modification of the referenced bit. This function
 996 * should therefore only be called if it is not mapped in any
 997 * address space.
 998 */
 999#define __HAVE_ARCH_PAGE_TEST_DIRTY
1000static inline int page_test_dirty(struct page *page)
1001{
1002        return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
1003}
1004
1005#define __HAVE_ARCH_PAGE_CLEAR_DIRTY
1006static inline void page_clear_dirty(struct page *page, int mapped)
1007{
1008        page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY, mapped);
1009}
1010
1011/*
1012 * Test and clear referenced bit in storage key.
1013 */
1014#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
1015static inline int page_test_and_clear_young(struct page *page)
1016{
1017        unsigned long physpage = page_to_phys(page);
1018        int ccode;
1019
1020        asm volatile(
1021                "       rrbe    0,%1\n"
1022                "       ipm     %0\n"
1023                "       srl     %0,28\n"
1024                : "=d" (ccode) : "a" (physpage) : "cc" );
1025        return ccode & 2;
1026}
1027
1028/*
1029 * Conversion functions: convert a page and protection to a page entry,
1030 * and a page entry and page directory to the page they refer to.
1031 */
1032static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1033{
1034        pte_t __pte;
1035        pte_val(__pte) = physpage + pgprot_val(pgprot);
1036        return __pte;
1037}
1038
1039static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1040{
1041        unsigned long physpage = page_to_phys(page);
1042
1043        return mk_pte_phys(physpage, pgprot);
1044}
1045
1046#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1047#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1048#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1049#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1050
1051#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1052#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1053
1054#ifndef __s390x__
1055
1056#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1057#define pud_deref(pmd) ({ BUG(); 0UL; })
1058#define pgd_deref(pmd) ({ BUG(); 0UL; })
1059
1060#define pud_offset(pgd, address) ((pud_t *) pgd)
1061#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1062
1063#else /* __s390x__ */
1064
1065#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1066#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1067#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1068
1069static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1070{
1071        pud_t *pud = (pud_t *) pgd;
1072        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1073                pud = (pud_t *) pgd_deref(*pgd);
1074        return pud  + pud_index(address);
1075}
1076
1077static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1078{
1079        pmd_t *pmd = (pmd_t *) pud;
1080        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1081                pmd = (pmd_t *) pud_deref(*pud);
1082        return pmd + pmd_index(address);
1083}
1084
1085#endif /* __s390x__ */
1086
1087#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1088#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1089#define pte_page(x) pfn_to_page(pte_pfn(x))
1090
1091#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1092
1093/* Find an entry in the lowest level page table.. */
1094#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1095#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1096#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1097#define pte_unmap(pte) do { } while (0)
1098
1099/*
1100 * 31 bit swap entry format:
1101 * A page-table entry has some bits we have to treat in a special way.
1102 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1103 * exception will occur instead of a page translation exception. The
1104 * specifiation exception has the bad habit not to store necessary
1105 * information in the lowcore.
1106 * Bit 21 and bit 22 are the page invalid bit and the page protection
1107 * bit. We set both to indicate a swapped page.
1108 * Bit 30 and 31 are used to distinguish the different page types. For
1109 * a swapped page these bits need to be zero.
1110 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1111 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1112 * plus 24 for the offset.
1113 * 0|     offset        |0110|o|type |00|
1114 * 0 0000000001111111111 2222 2 22222 33
1115 * 0 1234567890123456789 0123 4 56789 01
1116 *
1117 * 64 bit swap entry format:
1118 * A page-table entry has some bits we have to treat in a special way.
1119 * Bits 52 and bit 55 have to be zero, otherwise an specification
1120 * exception will occur instead of a page translation exception. The
1121 * specifiation exception has the bad habit not to store necessary
1122 * information in the lowcore.
1123 * Bit 53 and bit 54 are the page invalid bit and the page protection
1124 * bit. We set both to indicate a swapped page.
1125 * Bit 62 and 63 are used to distinguish the different page types. For
1126 * a swapped page these bits need to be zero.
1127 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1128 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1129 * plus 56 for the offset.
1130 * |                      offset                        |0110|o|type |00|
1131 *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1132 *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1133 */
1134#ifndef __s390x__
1135#define __SWP_OFFSET_MASK (~0UL >> 12)
1136#else
1137#define __SWP_OFFSET_MASK (~0UL >> 11)
1138#endif
1139static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1140{
1141        pte_t pte;
1142        offset &= __SWP_OFFSET_MASK;
1143        pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1144                ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1145        return pte;
1146}
1147
1148#define __swp_type(entry)       (((entry).val >> 2) & 0x1f)
1149#define __swp_offset(entry)     (((entry).val >> 11) | (((entry).val >> 7) & 1))
1150#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1151
1152#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1153#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1154
1155#ifndef __s390x__
1156# define PTE_FILE_MAX_BITS      26
1157#else /* __s390x__ */
1158# define PTE_FILE_MAX_BITS      59
1159#endif /* __s390x__ */
1160
1161#define pte_to_pgoff(__pte) \
1162        ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1163
1164#define pgoff_to_pte(__off) \
1165        ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1166                   | _PAGE_TYPE_FILE })
1167
1168#endif /* !__ASSEMBLY__ */
1169
1170#define kern_addr_valid(addr)   (1)
1171
1172extern int vmem_add_mapping(unsigned long start, unsigned long size);
1173extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1174extern int s390_enable_sie(void);
1175
1176/*
1177 * No page table caches to initialise
1178 */
1179#define pgtable_cache_init()    do { } while (0)
1180
1181#include <asm-generic/pgtable.h>
1182
1183#endif /* _S390_PAGE_H */
1184