linux/arch/sparc/kernel/process_64.c
<<
>>
Prefs
   1/*  arch/sparc64/kernel/process.c
   2 *
   3 *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
   4 *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
   5 *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
   6 */
   7
   8/*
   9 * This file handles the architecture-dependent parts of process handling..
  10 */
  11
  12#include <stdarg.h>
  13
  14#include <linux/errno.h>
  15#include <linux/module.h>
  16#include <linux/sched.h>
  17#include <linux/kernel.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/smp.h>
  21#include <linux/stddef.h>
  22#include <linux/ptrace.h>
  23#include <linux/slab.h>
  24#include <linux/user.h>
  25#include <linux/delay.h>
  26#include <linux/compat.h>
  27#include <linux/tick.h>
  28#include <linux/init.h>
  29#include <linux/cpu.h>
  30#include <linux/elfcore.h>
  31#include <linux/sysrq.h>
  32#include <linux/nmi.h>
  33
  34#include <asm/uaccess.h>
  35#include <asm/system.h>
  36#include <asm/page.h>
  37#include <asm/pgalloc.h>
  38#include <asm/pgtable.h>
  39#include <asm/processor.h>
  40#include <asm/pstate.h>
  41#include <asm/elf.h>
  42#include <asm/fpumacro.h>
  43#include <asm/head.h>
  44#include <asm/cpudata.h>
  45#include <asm/mmu_context.h>
  46#include <asm/unistd.h>
  47#include <asm/hypervisor.h>
  48#include <asm/syscalls.h>
  49#include <asm/irq_regs.h>
  50#include <asm/smp.h>
  51
  52#include "kstack.h"
  53
  54static void sparc64_yield(int cpu)
  55{
  56        if (tlb_type != hypervisor) {
  57                touch_nmi_watchdog();
  58                return;
  59        }
  60
  61        clear_thread_flag(TIF_POLLING_NRFLAG);
  62        smp_mb__after_clear_bit();
  63
  64        while (!need_resched() && !cpu_is_offline(cpu)) {
  65                unsigned long pstate;
  66
  67                /* Disable interrupts. */
  68                __asm__ __volatile__(
  69                        "rdpr %%pstate, %0\n\t"
  70                        "andn %0, %1, %0\n\t"
  71                        "wrpr %0, %%g0, %%pstate"
  72                        : "=&r" (pstate)
  73                        : "i" (PSTATE_IE));
  74
  75                if (!need_resched() && !cpu_is_offline(cpu))
  76                        sun4v_cpu_yield();
  77
  78                /* Re-enable interrupts. */
  79                __asm__ __volatile__(
  80                        "rdpr %%pstate, %0\n\t"
  81                        "or %0, %1, %0\n\t"
  82                        "wrpr %0, %%g0, %%pstate"
  83                        : "=&r" (pstate)
  84                        : "i" (PSTATE_IE));
  85        }
  86
  87        set_thread_flag(TIF_POLLING_NRFLAG);
  88}
  89
  90/* The idle loop on sparc64. */
  91void cpu_idle(void)
  92{
  93        int cpu = smp_processor_id();
  94
  95        set_thread_flag(TIF_POLLING_NRFLAG);
  96
  97        while(1) {
  98                tick_nohz_stop_sched_tick(1);
  99
 100                while (!need_resched() && !cpu_is_offline(cpu))
 101                        sparc64_yield(cpu);
 102
 103                tick_nohz_restart_sched_tick();
 104
 105                preempt_enable_no_resched();
 106
 107#ifdef CONFIG_HOTPLUG_CPU
 108                if (cpu_is_offline(cpu))
 109                        cpu_play_dead();
 110#endif
 111
 112                schedule();
 113                preempt_disable();
 114        }
 115}
 116
 117#ifdef CONFIG_COMPAT
 118static void show_regwindow32(struct pt_regs *regs)
 119{
 120        struct reg_window32 __user *rw;
 121        struct reg_window32 r_w;
 122        mm_segment_t old_fs;
 123        
 124        __asm__ __volatile__ ("flushw");
 125        rw = compat_ptr((unsigned)regs->u_regs[14]);
 126        old_fs = get_fs();
 127        set_fs (USER_DS);
 128        if (copy_from_user (&r_w, rw, sizeof(r_w))) {
 129                set_fs (old_fs);
 130                return;
 131        }
 132
 133        set_fs (old_fs);                        
 134        printk("l0: %08x l1: %08x l2: %08x l3: %08x "
 135               "l4: %08x l5: %08x l6: %08x l7: %08x\n",
 136               r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
 137               r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
 138        printk("i0: %08x i1: %08x i2: %08x i3: %08x "
 139               "i4: %08x i5: %08x i6: %08x i7: %08x\n",
 140               r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
 141               r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
 142}
 143#else
 144#define show_regwindow32(regs)  do { } while (0)
 145#endif
 146
 147static void show_regwindow(struct pt_regs *regs)
 148{
 149        struct reg_window __user *rw;
 150        struct reg_window *rwk;
 151        struct reg_window r_w;
 152        mm_segment_t old_fs;
 153
 154        if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
 155                __asm__ __volatile__ ("flushw");
 156                rw = (struct reg_window __user *)
 157                        (regs->u_regs[14] + STACK_BIAS);
 158                rwk = (struct reg_window *)
 159                        (regs->u_regs[14] + STACK_BIAS);
 160                if (!(regs->tstate & TSTATE_PRIV)) {
 161                        old_fs = get_fs();
 162                        set_fs (USER_DS);
 163                        if (copy_from_user (&r_w, rw, sizeof(r_w))) {
 164                                set_fs (old_fs);
 165                                return;
 166                        }
 167                        rwk = &r_w;
 168                        set_fs (old_fs);                        
 169                }
 170        } else {
 171                show_regwindow32(regs);
 172                return;
 173        }
 174        printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
 175               rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
 176        printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
 177               rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
 178        printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
 179               rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
 180        printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
 181               rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
 182        if (regs->tstate & TSTATE_PRIV)
 183                printk("I7: <%pS>\n", (void *) rwk->ins[7]);
 184}
 185
 186void show_regs(struct pt_regs *regs)
 187{
 188        printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
 189               regs->tpc, regs->tnpc, regs->y, print_tainted());
 190        printk("TPC: <%pS>\n", (void *) regs->tpc);
 191        printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
 192               regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
 193               regs->u_regs[3]);
 194        printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
 195               regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
 196               regs->u_regs[7]);
 197        printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
 198               regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
 199               regs->u_regs[11]);
 200        printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
 201               regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
 202               regs->u_regs[15]);
 203        printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
 204        show_regwindow(regs);
 205        show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
 206}
 207
 208struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
 209static DEFINE_SPINLOCK(global_reg_snapshot_lock);
 210
 211static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
 212                              int this_cpu)
 213{
 214        flushw_all();
 215
 216        global_reg_snapshot[this_cpu].tstate = regs->tstate;
 217        global_reg_snapshot[this_cpu].tpc = regs->tpc;
 218        global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
 219        global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
 220
 221        if (regs->tstate & TSTATE_PRIV) {
 222                struct reg_window *rw;
 223
 224                rw = (struct reg_window *)
 225                        (regs->u_regs[UREG_FP] + STACK_BIAS);
 226                if (kstack_valid(tp, (unsigned long) rw)) {
 227                        global_reg_snapshot[this_cpu].i7 = rw->ins[7];
 228                        rw = (struct reg_window *)
 229                                (rw->ins[6] + STACK_BIAS);
 230                        if (kstack_valid(tp, (unsigned long) rw))
 231                                global_reg_snapshot[this_cpu].rpc = rw->ins[7];
 232                }
 233        } else {
 234                global_reg_snapshot[this_cpu].i7 = 0;
 235                global_reg_snapshot[this_cpu].rpc = 0;
 236        }
 237        global_reg_snapshot[this_cpu].thread = tp;
 238}
 239
 240/* In order to avoid hangs we do not try to synchronize with the
 241 * global register dump client cpus.  The last store they make is to
 242 * the thread pointer, so do a short poll waiting for that to become
 243 * non-NULL.
 244 */
 245static void __global_reg_poll(struct global_reg_snapshot *gp)
 246{
 247        int limit = 0;
 248
 249        while (!gp->thread && ++limit < 100) {
 250                barrier();
 251                udelay(1);
 252        }
 253}
 254
 255void arch_trigger_all_cpu_backtrace(void)
 256{
 257        struct thread_info *tp = current_thread_info();
 258        struct pt_regs *regs = get_irq_regs();
 259        unsigned long flags;
 260        int this_cpu, cpu;
 261
 262        if (!regs)
 263                regs = tp->kregs;
 264
 265        spin_lock_irqsave(&global_reg_snapshot_lock, flags);
 266
 267        memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
 268
 269        this_cpu = raw_smp_processor_id();
 270
 271        __global_reg_self(tp, regs, this_cpu);
 272
 273        smp_fetch_global_regs();
 274
 275        for_each_online_cpu(cpu) {
 276                struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
 277
 278                __global_reg_poll(gp);
 279
 280                tp = gp->thread;
 281                printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
 282                       (cpu == this_cpu ? '*' : ' '), cpu,
 283                       gp->tstate, gp->tpc, gp->tnpc,
 284                       ((tp && tp->task) ? tp->task->comm : "NULL"),
 285                       ((tp && tp->task) ? tp->task->pid : -1));
 286
 287                if (gp->tstate & TSTATE_PRIV) {
 288                        printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
 289                               (void *) gp->tpc,
 290                               (void *) gp->o7,
 291                               (void *) gp->i7,
 292                               (void *) gp->rpc);
 293                } else {
 294                        printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
 295                               gp->tpc, gp->o7, gp->i7, gp->rpc);
 296                }
 297        }
 298
 299        memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
 300
 301        spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
 302}
 303
 304#ifdef CONFIG_MAGIC_SYSRQ
 305
 306static void sysrq_handle_globreg(int key)
 307{
 308        arch_trigger_all_cpu_backtrace();
 309}
 310
 311static struct sysrq_key_op sparc_globalreg_op = {
 312        .handler        = sysrq_handle_globreg,
 313        .help_msg       = "Globalregs",
 314        .action_msg     = "Show Global CPU Regs",
 315};
 316
 317static int __init sparc_globreg_init(void)
 318{
 319        return register_sysrq_key('y', &sparc_globalreg_op);
 320}
 321
 322core_initcall(sparc_globreg_init);
 323
 324#endif
 325
 326unsigned long thread_saved_pc(struct task_struct *tsk)
 327{
 328        struct thread_info *ti = task_thread_info(tsk);
 329        unsigned long ret = 0xdeadbeefUL;
 330        
 331        if (ti && ti->ksp) {
 332                unsigned long *sp;
 333                sp = (unsigned long *)(ti->ksp + STACK_BIAS);
 334                if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
 335                    sp[14]) {
 336                        unsigned long *fp;
 337                        fp = (unsigned long *)(sp[14] + STACK_BIAS);
 338                        if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
 339                                ret = fp[15];
 340                }
 341        }
 342        return ret;
 343}
 344
 345/* Free current thread data structures etc.. */
 346void exit_thread(void)
 347{
 348        struct thread_info *t = current_thread_info();
 349
 350        if (t->utraps) {
 351                if (t->utraps[0] < 2)
 352                        kfree (t->utraps);
 353                else
 354                        t->utraps[0]--;
 355        }
 356}
 357
 358void flush_thread(void)
 359{
 360        struct thread_info *t = current_thread_info();
 361        struct mm_struct *mm;
 362
 363        mm = t->task->mm;
 364        if (mm)
 365                tsb_context_switch(mm);
 366
 367        set_thread_wsaved(0);
 368
 369        /* Clear FPU register state. */
 370        t->fpsaved[0] = 0;
 371        
 372        if (get_thread_current_ds() != ASI_AIUS)
 373                set_fs(USER_DS);
 374}
 375
 376/* It's a bit more tricky when 64-bit tasks are involved... */
 377static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
 378{
 379        unsigned long fp, distance, rval;
 380
 381        if (!(test_thread_flag(TIF_32BIT))) {
 382                csp += STACK_BIAS;
 383                psp += STACK_BIAS;
 384                __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
 385                fp += STACK_BIAS;
 386        } else
 387                __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
 388
 389        /* Now align the stack as this is mandatory in the Sparc ABI
 390         * due to how register windows work.  This hides the
 391         * restriction from thread libraries etc.
 392         */
 393        csp &= ~15UL;
 394
 395        distance = fp - psp;
 396        rval = (csp - distance);
 397        if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
 398                rval = 0;
 399        else if (test_thread_flag(TIF_32BIT)) {
 400                if (put_user(((u32)csp),
 401                             &(((struct reg_window32 __user *)rval)->ins[6])))
 402                        rval = 0;
 403        } else {
 404                if (put_user(((u64)csp - STACK_BIAS),
 405                             &(((struct reg_window __user *)rval)->ins[6])))
 406                        rval = 0;
 407                else
 408                        rval = rval - STACK_BIAS;
 409        }
 410
 411        return rval;
 412}
 413
 414/* Standard stuff. */
 415static inline void shift_window_buffer(int first_win, int last_win,
 416                                       struct thread_info *t)
 417{
 418        int i;
 419
 420        for (i = first_win; i < last_win; i++) {
 421                t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
 422                memcpy(&t->reg_window[i], &t->reg_window[i+1],
 423                       sizeof(struct reg_window));
 424        }
 425}
 426
 427void synchronize_user_stack(void)
 428{
 429        struct thread_info *t = current_thread_info();
 430        unsigned long window;
 431
 432        flush_user_windows();
 433        if ((window = get_thread_wsaved()) != 0) {
 434                int winsize = sizeof(struct reg_window);
 435                int bias = 0;
 436
 437                if (test_thread_flag(TIF_32BIT))
 438                        winsize = sizeof(struct reg_window32);
 439                else
 440                        bias = STACK_BIAS;
 441
 442                window -= 1;
 443                do {
 444                        unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
 445                        struct reg_window *rwin = &t->reg_window[window];
 446
 447                        if (!copy_to_user((char __user *)sp, rwin, winsize)) {
 448                                shift_window_buffer(window, get_thread_wsaved() - 1, t);
 449                                set_thread_wsaved(get_thread_wsaved() - 1);
 450                        }
 451                } while (window--);
 452        }
 453}
 454
 455static void stack_unaligned(unsigned long sp)
 456{
 457        siginfo_t info;
 458
 459        info.si_signo = SIGBUS;
 460        info.si_errno = 0;
 461        info.si_code = BUS_ADRALN;
 462        info.si_addr = (void __user *) sp;
 463        info.si_trapno = 0;
 464        force_sig_info(SIGBUS, &info, current);
 465}
 466
 467void fault_in_user_windows(void)
 468{
 469        struct thread_info *t = current_thread_info();
 470        unsigned long window;
 471        int winsize = sizeof(struct reg_window);
 472        int bias = 0;
 473
 474        if (test_thread_flag(TIF_32BIT))
 475                winsize = sizeof(struct reg_window32);
 476        else
 477                bias = STACK_BIAS;
 478
 479        flush_user_windows();
 480        window = get_thread_wsaved();
 481
 482        if (likely(window != 0)) {
 483                window -= 1;
 484                do {
 485                        unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
 486                        struct reg_window *rwin = &t->reg_window[window];
 487
 488                        if (unlikely(sp & 0x7UL))
 489                                stack_unaligned(sp);
 490
 491                        if (unlikely(copy_to_user((char __user *)sp,
 492                                                  rwin, winsize)))
 493                                goto barf;
 494                } while (window--);
 495        }
 496        set_thread_wsaved(0);
 497        return;
 498
 499barf:
 500        set_thread_wsaved(window + 1);
 501        do_exit(SIGILL);
 502}
 503
 504asmlinkage long sparc_do_fork(unsigned long clone_flags,
 505                              unsigned long stack_start,
 506                              struct pt_regs *regs,
 507                              unsigned long stack_size)
 508{
 509        int __user *parent_tid_ptr, *child_tid_ptr;
 510        unsigned long orig_i1 = regs->u_regs[UREG_I1];
 511        long ret;
 512
 513#ifdef CONFIG_COMPAT
 514        if (test_thread_flag(TIF_32BIT)) {
 515                parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
 516                child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
 517        } else
 518#endif
 519        {
 520                parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
 521                child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
 522        }
 523
 524        ret = do_fork(clone_flags, stack_start,
 525                      regs, stack_size,
 526                      parent_tid_ptr, child_tid_ptr);
 527
 528        /* If we get an error and potentially restart the system
 529         * call, we're screwed because copy_thread() clobbered
 530         * the parent's %o1.  So detect that case and restore it
 531         * here.
 532         */
 533        if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
 534                regs->u_regs[UREG_I1] = orig_i1;
 535
 536        return ret;
 537}
 538
 539/* Copy a Sparc thread.  The fork() return value conventions
 540 * under SunOS are nothing short of bletcherous:
 541 * Parent -->  %o0 == childs  pid, %o1 == 0
 542 * Child  -->  %o0 == parents pid, %o1 == 1
 543 */
 544int copy_thread(unsigned long clone_flags, unsigned long sp,
 545                unsigned long unused,
 546                struct task_struct *p, struct pt_regs *regs)
 547{
 548        struct thread_info *t = task_thread_info(p);
 549        struct sparc_stackf *parent_sf;
 550        unsigned long child_stack_sz;
 551        char *child_trap_frame;
 552        int kernel_thread;
 553
 554        kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
 555        parent_sf = ((struct sparc_stackf *) regs) - 1;
 556
 557        /* Calculate offset to stack_frame & pt_regs */
 558        child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
 559                          (kernel_thread ? STACKFRAME_SZ : 0));
 560        child_trap_frame = (task_stack_page(p) +
 561                            (THREAD_SIZE - child_stack_sz));
 562        memcpy(child_trap_frame, parent_sf, child_stack_sz);
 563
 564        t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
 565                                 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
 566                (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
 567        t->new_child = 1;
 568        t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
 569        t->kregs = (struct pt_regs *) (child_trap_frame +
 570                                       sizeof(struct sparc_stackf));
 571        t->fpsaved[0] = 0;
 572
 573        if (kernel_thread) {
 574                struct sparc_stackf *child_sf = (struct sparc_stackf *)
 575                        (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
 576
 577                /* Zero terminate the stack backtrace.  */
 578                child_sf->fp = NULL;
 579                t->kregs->u_regs[UREG_FP] =
 580                  ((unsigned long) child_sf) - STACK_BIAS;
 581
 582                t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
 583                t->kregs->u_regs[UREG_G6] = (unsigned long) t;
 584                t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
 585        } else {
 586                if (t->flags & _TIF_32BIT) {
 587                        sp &= 0x00000000ffffffffUL;
 588                        regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
 589                }
 590                t->kregs->u_regs[UREG_FP] = sp;
 591                t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
 592                if (sp != regs->u_regs[UREG_FP]) {
 593                        unsigned long csp;
 594
 595                        csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
 596                        if (!csp)
 597                                return -EFAULT;
 598                        t->kregs->u_regs[UREG_FP] = csp;
 599                }
 600                if (t->utraps)
 601                        t->utraps[0]++;
 602        }
 603
 604        /* Set the return value for the child. */
 605        t->kregs->u_regs[UREG_I0] = current->pid;
 606        t->kregs->u_regs[UREG_I1] = 1;
 607
 608        /* Set the second return value for the parent. */
 609        regs->u_regs[UREG_I1] = 0;
 610
 611        if (clone_flags & CLONE_SETTLS)
 612                t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
 613
 614        return 0;
 615}
 616
 617/*
 618 * This is the mechanism for creating a new kernel thread.
 619 *
 620 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
 621 * who haven't done an "execve()") should use this: it will work within
 622 * a system call from a "real" process, but the process memory space will
 623 * not be freed until both the parent and the child have exited.
 624 */
 625pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
 626{
 627        long retval;
 628
 629        /* If the parent runs before fn(arg) is called by the child,
 630         * the input registers of this function can be clobbered.
 631         * So we stash 'fn' and 'arg' into global registers which
 632         * will not be modified by the parent.
 633         */
 634        __asm__ __volatile__("mov %4, %%g2\n\t"    /* Save FN into global */
 635                             "mov %5, %%g3\n\t"    /* Save ARG into global */
 636                             "mov %1, %%g1\n\t"    /* Clone syscall nr. */
 637                             "mov %2, %%o0\n\t"    /* Clone flags. */
 638                             "mov 0, %%o1\n\t"     /* usp arg == 0 */
 639                             "t 0x6d\n\t"          /* Linux/Sparc clone(). */
 640                             "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
 641                             " mov %%o0, %0\n\t"
 642                             "jmpl %%g2, %%o7\n\t"   /* Call the function. */
 643                             " mov %%g3, %%o0\n\t"   /* Set arg in delay. */
 644                             "mov %3, %%g1\n\t"
 645                             "t 0x6d\n\t"          /* Linux/Sparc exit(). */
 646                             /* Notreached by child. */
 647                             "1:" :
 648                             "=r" (retval) :
 649                             "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
 650                             "i" (__NR_exit),  "r" (fn), "r" (arg) :
 651                             "g1", "g2", "g3", "o0", "o1", "memory", "cc");
 652        return retval;
 653}
 654EXPORT_SYMBOL(kernel_thread);
 655
 656typedef struct {
 657        union {
 658                unsigned int    pr_regs[32];
 659                unsigned long   pr_dregs[16];
 660        } pr_fr;
 661        unsigned int __unused;
 662        unsigned int    pr_fsr;
 663        unsigned char   pr_qcnt;
 664        unsigned char   pr_q_entrysize;
 665        unsigned char   pr_en;
 666        unsigned int    pr_q[64];
 667} elf_fpregset_t32;
 668
 669/*
 670 * fill in the fpu structure for a core dump.
 671 */
 672int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
 673{
 674        unsigned long *kfpregs = current_thread_info()->fpregs;
 675        unsigned long fprs = current_thread_info()->fpsaved[0];
 676
 677        if (test_thread_flag(TIF_32BIT)) {
 678                elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
 679
 680                if (fprs & FPRS_DL)
 681                        memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
 682                               sizeof(unsigned int) * 32);
 683                else
 684                        memset(&fpregs32->pr_fr.pr_regs[0], 0,
 685                               sizeof(unsigned int) * 32);
 686                fpregs32->pr_qcnt = 0;
 687                fpregs32->pr_q_entrysize = 8;
 688                memset(&fpregs32->pr_q[0], 0,
 689                       (sizeof(unsigned int) * 64));
 690                if (fprs & FPRS_FEF) {
 691                        fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
 692                        fpregs32->pr_en = 1;
 693                } else {
 694                        fpregs32->pr_fsr = 0;
 695                        fpregs32->pr_en = 0;
 696                }
 697        } else {
 698                if(fprs & FPRS_DL)
 699                        memcpy(&fpregs->pr_regs[0], kfpregs,
 700                               sizeof(unsigned int) * 32);
 701                else
 702                        memset(&fpregs->pr_regs[0], 0,
 703                               sizeof(unsigned int) * 32);
 704                if(fprs & FPRS_DU)
 705                        memcpy(&fpregs->pr_regs[16], kfpregs+16,
 706                               sizeof(unsigned int) * 32);
 707                else
 708                        memset(&fpregs->pr_regs[16], 0,
 709                               sizeof(unsigned int) * 32);
 710                if(fprs & FPRS_FEF) {
 711                        fpregs->pr_fsr = current_thread_info()->xfsr[0];
 712                        fpregs->pr_gsr = current_thread_info()->gsr[0];
 713                } else {
 714                        fpregs->pr_fsr = fpregs->pr_gsr = 0;
 715                }
 716                fpregs->pr_fprs = fprs;
 717        }
 718        return 1;
 719}
 720EXPORT_SYMBOL(dump_fpu);
 721
 722/*
 723 * sparc_execve() executes a new program after the asm stub has set
 724 * things up for us.  This should basically do what I want it to.
 725 */
 726asmlinkage int sparc_execve(struct pt_regs *regs)
 727{
 728        int error, base = 0;
 729        char *filename;
 730
 731        /* User register window flush is done by entry.S */
 732
 733        /* Check for indirect call. */
 734        if (regs->u_regs[UREG_G1] == 0)
 735                base = 1;
 736
 737        filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
 738        error = PTR_ERR(filename);
 739        if (IS_ERR(filename))
 740                goto out;
 741        error = do_execve(filename,
 742                          (const char __user *const __user *)
 743                          regs->u_regs[base + UREG_I1],
 744                          (const char __user *const __user *)
 745                          regs->u_regs[base + UREG_I2], regs);
 746        putname(filename);
 747        if (!error) {
 748                fprs_write(0);
 749                current_thread_info()->xfsr[0] = 0;
 750                current_thread_info()->fpsaved[0] = 0;
 751                regs->tstate &= ~TSTATE_PEF;
 752        }
 753out:
 754        return error;
 755}
 756
 757unsigned long get_wchan(struct task_struct *task)
 758{
 759        unsigned long pc, fp, bias = 0;
 760        struct thread_info *tp;
 761        struct reg_window *rw;
 762        unsigned long ret = 0;
 763        int count = 0; 
 764
 765        if (!task || task == current ||
 766            task->state == TASK_RUNNING)
 767                goto out;
 768
 769        tp = task_thread_info(task);
 770        bias = STACK_BIAS;
 771        fp = task_thread_info(task)->ksp + bias;
 772
 773        do {
 774                if (!kstack_valid(tp, fp))
 775                        break;
 776                rw = (struct reg_window *) fp;
 777                pc = rw->ins[7];
 778                if (!in_sched_functions(pc)) {
 779                        ret = pc;
 780                        goto out;
 781                }
 782                fp = rw->ins[6] + bias;
 783        } while (++count < 16);
 784
 785out:
 786        return ret;
 787}
 788