linux/arch/sparc/kernel/smp_64.c
<<
>>
Prefs
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28
  29#include <asm/head.h>
  30#include <asm/ptrace.h>
  31#include <asm/atomic.h>
  32#include <asm/tlbflush.h>
  33#include <asm/mmu_context.h>
  34#include <asm/cpudata.h>
  35#include <asm/hvtramp.h>
  36#include <asm/io.h>
  37#include <asm/timer.h>
  38
  39#include <asm/irq.h>
  40#include <asm/irq_regs.h>
  41#include <asm/page.h>
  42#include <asm/pgtable.h>
  43#include <asm/oplib.h>
  44#include <asm/uaccess.h>
  45#include <asm/starfire.h>
  46#include <asm/tlb.h>
  47#include <asm/sections.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/ldc.h>
  51#include <asm/hypervisor.h>
  52#include <asm/pcr.h>
  53
  54#include "cpumap.h"
  55
  56int sparc64_multi_core __read_mostly;
  57
  58DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  59cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  60        { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  61
  62EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  63EXPORT_SYMBOL(cpu_core_map);
  64
  65static cpumask_t smp_commenced_mask;
  66
  67void smp_info(struct seq_file *m)
  68{
  69        int i;
  70        
  71        seq_printf(m, "State:\n");
  72        for_each_online_cpu(i)
  73                seq_printf(m, "CPU%d:\t\tonline\n", i);
  74}
  75
  76void smp_bogo(struct seq_file *m)
  77{
  78        int i;
  79        
  80        for_each_online_cpu(i)
  81                seq_printf(m,
  82                           "Cpu%dClkTck\t: %016lx\n",
  83                           i, cpu_data(i).clock_tick);
  84}
  85
  86extern void setup_sparc64_timer(void);
  87
  88static volatile unsigned long callin_flag = 0;
  89
  90void __cpuinit smp_callin(void)
  91{
  92        int cpuid = hard_smp_processor_id();
  93
  94        __local_per_cpu_offset = __per_cpu_offset(cpuid);
  95
  96        if (tlb_type == hypervisor)
  97                sun4v_ktsb_register();
  98
  99        __flush_tlb_all();
 100
 101        setup_sparc64_timer();
 102
 103        if (cheetah_pcache_forced_on)
 104                cheetah_enable_pcache();
 105
 106        local_irq_enable();
 107
 108        callin_flag = 1;
 109        __asm__ __volatile__("membar #Sync\n\t"
 110                             "flush  %%g6" : : : "memory");
 111
 112        /* Clear this or we will die instantly when we
 113         * schedule back to this idler...
 114         */
 115        current_thread_info()->new_child = 0;
 116
 117        /* Attach to the address space of init_task. */
 118        atomic_inc(&init_mm.mm_count);
 119        current->active_mm = &init_mm;
 120
 121        /* inform the notifiers about the new cpu */
 122        notify_cpu_starting(cpuid);
 123
 124        while (!cpu_isset(cpuid, smp_commenced_mask))
 125                rmb();
 126
 127        ipi_call_lock_irq();
 128        cpu_set(cpuid, cpu_online_map);
 129        ipi_call_unlock_irq();
 130
 131        /* idle thread is expected to have preempt disabled */
 132        preempt_disable();
 133}
 134
 135void cpu_panic(void)
 136{
 137        printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 138        panic("SMP bolixed\n");
 139}
 140
 141/* This tick register synchronization scheme is taken entirely from
 142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 143 *
 144 * The only change I've made is to rework it so that the master
 145 * initiates the synchonization instead of the slave. -DaveM
 146 */
 147
 148#define MASTER  0
 149#define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
 150
 151#define NUM_ROUNDS      64      /* magic value */
 152#define NUM_ITERS       5       /* likewise */
 153
 154static DEFINE_SPINLOCK(itc_sync_lock);
 155static unsigned long go[SLAVE + 1];
 156
 157#define DEBUG_TICK_SYNC 0
 158
 159static inline long get_delta (long *rt, long *master)
 160{
 161        unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 162        unsigned long tcenter, t0, t1, tm;
 163        unsigned long i;
 164
 165        for (i = 0; i < NUM_ITERS; i++) {
 166                t0 = tick_ops->get_tick();
 167                go[MASTER] = 1;
 168                membar_safe("#StoreLoad");
 169                while (!(tm = go[SLAVE]))
 170                        rmb();
 171                go[SLAVE] = 0;
 172                wmb();
 173                t1 = tick_ops->get_tick();
 174
 175                if (t1 - t0 < best_t1 - best_t0)
 176                        best_t0 = t0, best_t1 = t1, best_tm = tm;
 177        }
 178
 179        *rt = best_t1 - best_t0;
 180        *master = best_tm - best_t0;
 181
 182        /* average best_t0 and best_t1 without overflow: */
 183        tcenter = (best_t0/2 + best_t1/2);
 184        if (best_t0 % 2 + best_t1 % 2 == 2)
 185                tcenter++;
 186        return tcenter - best_tm;
 187}
 188
 189void smp_synchronize_tick_client(void)
 190{
 191        long i, delta, adj, adjust_latency = 0, done = 0;
 192        unsigned long flags, rt, master_time_stamp, bound;
 193#if DEBUG_TICK_SYNC
 194        struct {
 195                long rt;        /* roundtrip time */
 196                long master;    /* master's timestamp */
 197                long diff;      /* difference between midpoint and master's timestamp */
 198                long lat;       /* estimate of itc adjustment latency */
 199        } t[NUM_ROUNDS];
 200#endif
 201
 202        go[MASTER] = 1;
 203
 204        while (go[MASTER])
 205                rmb();
 206
 207        local_irq_save(flags);
 208        {
 209                for (i = 0; i < NUM_ROUNDS; i++) {
 210                        delta = get_delta(&rt, &master_time_stamp);
 211                        if (delta == 0) {
 212                                done = 1;       /* let's lock on to this... */
 213                                bound = rt;
 214                        }
 215
 216                        if (!done) {
 217                                if (i > 0) {
 218                                        adjust_latency += -delta;
 219                                        adj = -delta + adjust_latency/4;
 220                                } else
 221                                        adj = -delta;
 222
 223                                tick_ops->add_tick(adj);
 224                        }
 225#if DEBUG_TICK_SYNC
 226                        t[i].rt = rt;
 227                        t[i].master = master_time_stamp;
 228                        t[i].diff = delta;
 229                        t[i].lat = adjust_latency/4;
 230#endif
 231                }
 232        }
 233        local_irq_restore(flags);
 234
 235#if DEBUG_TICK_SYNC
 236        for (i = 0; i < NUM_ROUNDS; i++)
 237                printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 238                       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 239#endif
 240
 241        printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 242               "(last diff %ld cycles, maxerr %lu cycles)\n",
 243               smp_processor_id(), delta, rt);
 244}
 245
 246static void smp_start_sync_tick_client(int cpu);
 247
 248static void smp_synchronize_one_tick(int cpu)
 249{
 250        unsigned long flags, i;
 251
 252        go[MASTER] = 0;
 253
 254        smp_start_sync_tick_client(cpu);
 255
 256        /* wait for client to be ready */
 257        while (!go[MASTER])
 258                rmb();
 259
 260        /* now let the client proceed into his loop */
 261        go[MASTER] = 0;
 262        membar_safe("#StoreLoad");
 263
 264        spin_lock_irqsave(&itc_sync_lock, flags);
 265        {
 266                for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 267                        while (!go[MASTER])
 268                                rmb();
 269                        go[MASTER] = 0;
 270                        wmb();
 271                        go[SLAVE] = tick_ops->get_tick();
 272                        membar_safe("#StoreLoad");
 273                }
 274        }
 275        spin_unlock_irqrestore(&itc_sync_lock, flags);
 276}
 277
 278#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 279/* XXX Put this in some common place. XXX */
 280static unsigned long kimage_addr_to_ra(void *p)
 281{
 282        unsigned long val = (unsigned long) p;
 283
 284        return kern_base + (val - KERNBASE);
 285}
 286
 287static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
 288{
 289        extern unsigned long sparc64_ttable_tl0;
 290        extern unsigned long kern_locked_tte_data;
 291        struct hvtramp_descr *hdesc;
 292        unsigned long trampoline_ra;
 293        struct trap_per_cpu *tb;
 294        u64 tte_vaddr, tte_data;
 295        unsigned long hv_err;
 296        int i;
 297
 298        hdesc = kzalloc(sizeof(*hdesc) +
 299                        (sizeof(struct hvtramp_mapping) *
 300                         num_kernel_image_mappings - 1),
 301                        GFP_KERNEL);
 302        if (!hdesc) {
 303                printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 304                       "hvtramp_descr.\n");
 305                return;
 306        }
 307        *descrp = hdesc;
 308
 309        hdesc->cpu = cpu;
 310        hdesc->num_mappings = num_kernel_image_mappings;
 311
 312        tb = &trap_block[cpu];
 313
 314        hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 315        hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 316
 317        hdesc->thread_reg = thread_reg;
 318
 319        tte_vaddr = (unsigned long) KERNBASE;
 320        tte_data = kern_locked_tte_data;
 321
 322        for (i = 0; i < hdesc->num_mappings; i++) {
 323                hdesc->maps[i].vaddr = tte_vaddr;
 324                hdesc->maps[i].tte   = tte_data;
 325                tte_vaddr += 0x400000;
 326                tte_data  += 0x400000;
 327        }
 328
 329        trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 330
 331        hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 332                                 kimage_addr_to_ra(&sparc64_ttable_tl0),
 333                                 __pa(hdesc));
 334        if (hv_err)
 335                printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 336                       "gives error %lu\n", hv_err);
 337}
 338#endif
 339
 340extern unsigned long sparc64_cpu_startup;
 341
 342/* The OBP cpu startup callback truncates the 3rd arg cookie to
 343 * 32-bits (I think) so to be safe we have it read the pointer
 344 * contained here so we work on >4GB machines. -DaveM
 345 */
 346static struct thread_info *cpu_new_thread = NULL;
 347
 348static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
 349{
 350        unsigned long entry =
 351                (unsigned long)(&sparc64_cpu_startup);
 352        unsigned long cookie =
 353                (unsigned long)(&cpu_new_thread);
 354        struct task_struct *p;
 355        void *descr = NULL;
 356        int timeout, ret;
 357
 358        p = fork_idle(cpu);
 359        if (IS_ERR(p))
 360                return PTR_ERR(p);
 361        callin_flag = 0;
 362        cpu_new_thread = task_thread_info(p);
 363
 364        if (tlb_type == hypervisor) {
 365#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 366                if (ldom_domaining_enabled)
 367                        ldom_startcpu_cpuid(cpu,
 368                                            (unsigned long) cpu_new_thread,
 369                                            &descr);
 370                else
 371#endif
 372                        prom_startcpu_cpuid(cpu, entry, cookie);
 373        } else {
 374                struct device_node *dp = of_find_node_by_cpuid(cpu);
 375
 376                prom_startcpu(dp->phandle, entry, cookie);
 377        }
 378
 379        for (timeout = 0; timeout < 50000; timeout++) {
 380                if (callin_flag)
 381                        break;
 382                udelay(100);
 383        }
 384
 385        if (callin_flag) {
 386                ret = 0;
 387        } else {
 388                printk("Processor %d is stuck.\n", cpu);
 389                ret = -ENODEV;
 390        }
 391        cpu_new_thread = NULL;
 392
 393        kfree(descr);
 394
 395        return ret;
 396}
 397
 398static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 399{
 400        u64 result, target;
 401        int stuck, tmp;
 402
 403        if (this_is_starfire) {
 404                /* map to real upaid */
 405                cpu = (((cpu & 0x3c) << 1) |
 406                        ((cpu & 0x40) >> 4) |
 407                        (cpu & 0x3));
 408        }
 409
 410        target = (cpu << 14) | 0x70;
 411again:
 412        /* Ok, this is the real Spitfire Errata #54.
 413         * One must read back from a UDB internal register
 414         * after writes to the UDB interrupt dispatch, but
 415         * before the membar Sync for that write.
 416         * So we use the high UDB control register (ASI 0x7f,
 417         * ADDR 0x20) for the dummy read. -DaveM
 418         */
 419        tmp = 0x40;
 420        __asm__ __volatile__(
 421        "wrpr   %1, %2, %%pstate\n\t"
 422        "stxa   %4, [%0] %3\n\t"
 423        "stxa   %5, [%0+%8] %3\n\t"
 424        "add    %0, %8, %0\n\t"
 425        "stxa   %6, [%0+%8] %3\n\t"
 426        "membar #Sync\n\t"
 427        "stxa   %%g0, [%7] %3\n\t"
 428        "membar #Sync\n\t"
 429        "mov    0x20, %%g1\n\t"
 430        "ldxa   [%%g1] 0x7f, %%g0\n\t"
 431        "membar #Sync"
 432        : "=r" (tmp)
 433        : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 434          "r" (data0), "r" (data1), "r" (data2), "r" (target),
 435          "r" (0x10), "0" (tmp)
 436        : "g1");
 437
 438        /* NOTE: PSTATE_IE is still clear. */
 439        stuck = 100000;
 440        do {
 441                __asm__ __volatile__("ldxa [%%g0] %1, %0"
 442                        : "=r" (result)
 443                        : "i" (ASI_INTR_DISPATCH_STAT));
 444                if (result == 0) {
 445                        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 446                                             : : "r" (pstate));
 447                        return;
 448                }
 449                stuck -= 1;
 450                if (stuck == 0)
 451                        break;
 452        } while (result & 0x1);
 453        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 454                             : : "r" (pstate));
 455        if (stuck == 0) {
 456                printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 457                       smp_processor_id(), result);
 458        } else {
 459                udelay(2);
 460                goto again;
 461        }
 462}
 463
 464static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 465{
 466        u64 *mondo, data0, data1, data2;
 467        u16 *cpu_list;
 468        u64 pstate;
 469        int i;
 470
 471        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 472        cpu_list = __va(tb->cpu_list_pa);
 473        mondo = __va(tb->cpu_mondo_block_pa);
 474        data0 = mondo[0];
 475        data1 = mondo[1];
 476        data2 = mondo[2];
 477        for (i = 0; i < cnt; i++)
 478                spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 479}
 480
 481/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 482 * packet, but we have no use for that.  However we do take advantage of
 483 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 484 */
 485static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 486{
 487        int nack_busy_id, is_jbus, need_more;
 488        u64 *mondo, pstate, ver, busy_mask;
 489        u16 *cpu_list;
 490
 491        cpu_list = __va(tb->cpu_list_pa);
 492        mondo = __va(tb->cpu_mondo_block_pa);
 493
 494        /* Unfortunately, someone at Sun had the brilliant idea to make the
 495         * busy/nack fields hard-coded by ITID number for this Ultra-III
 496         * derivative processor.
 497         */
 498        __asm__ ("rdpr %%ver, %0" : "=r" (ver));
 499        is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 500                   (ver >> 32) == __SERRANO_ID);
 501
 502        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 503
 504retry:
 505        need_more = 0;
 506        __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 507                             : : "r" (pstate), "i" (PSTATE_IE));
 508
 509        /* Setup the dispatch data registers. */
 510        __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
 511                             "stxa      %1, [%4] %6\n\t"
 512                             "stxa      %2, [%5] %6\n\t"
 513                             "membar    #Sync\n\t"
 514                             : /* no outputs */
 515                             : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 516                               "r" (0x40), "r" (0x50), "r" (0x60),
 517                               "i" (ASI_INTR_W));
 518
 519        nack_busy_id = 0;
 520        busy_mask = 0;
 521        {
 522                int i;
 523
 524                for (i = 0; i < cnt; i++) {
 525                        u64 target, nr;
 526
 527                        nr = cpu_list[i];
 528                        if (nr == 0xffff)
 529                                continue;
 530
 531                        target = (nr << 14) | 0x70;
 532                        if (is_jbus) {
 533                                busy_mask |= (0x1UL << (nr * 2));
 534                        } else {
 535                                target |= (nack_busy_id << 24);
 536                                busy_mask |= (0x1UL <<
 537                                              (nack_busy_id * 2));
 538                        }
 539                        __asm__ __volatile__(
 540                                "stxa   %%g0, [%0] %1\n\t"
 541                                "membar #Sync\n\t"
 542                                : /* no outputs */
 543                                : "r" (target), "i" (ASI_INTR_W));
 544                        nack_busy_id++;
 545                        if (nack_busy_id == 32) {
 546                                need_more = 1;
 547                                break;
 548                        }
 549                }
 550        }
 551
 552        /* Now, poll for completion. */
 553        {
 554                u64 dispatch_stat, nack_mask;
 555                long stuck;
 556
 557                stuck = 100000 * nack_busy_id;
 558                nack_mask = busy_mask << 1;
 559                do {
 560                        __asm__ __volatile__("ldxa      [%%g0] %1, %0"
 561                                             : "=r" (dispatch_stat)
 562                                             : "i" (ASI_INTR_DISPATCH_STAT));
 563                        if (!(dispatch_stat & (busy_mask | nack_mask))) {
 564                                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 565                                                     : : "r" (pstate));
 566                                if (unlikely(need_more)) {
 567                                        int i, this_cnt = 0;
 568                                        for (i = 0; i < cnt; i++) {
 569                                                if (cpu_list[i] == 0xffff)
 570                                                        continue;
 571                                                cpu_list[i] = 0xffff;
 572                                                this_cnt++;
 573                                                if (this_cnt == 32)
 574                                                        break;
 575                                        }
 576                                        goto retry;
 577                                }
 578                                return;
 579                        }
 580                        if (!--stuck)
 581                                break;
 582                } while (dispatch_stat & busy_mask);
 583
 584                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 585                                     : : "r" (pstate));
 586
 587                if (dispatch_stat & busy_mask) {
 588                        /* Busy bits will not clear, continue instead
 589                         * of freezing up on this cpu.
 590                         */
 591                        printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 592                               smp_processor_id(), dispatch_stat);
 593                } else {
 594                        int i, this_busy_nack = 0;
 595
 596                        /* Delay some random time with interrupts enabled
 597                         * to prevent deadlock.
 598                         */
 599                        udelay(2 * nack_busy_id);
 600
 601                        /* Clear out the mask bits for cpus which did not
 602                         * NACK us.
 603                         */
 604                        for (i = 0; i < cnt; i++) {
 605                                u64 check_mask, nr;
 606
 607                                nr = cpu_list[i];
 608                                if (nr == 0xffff)
 609                                        continue;
 610
 611                                if (is_jbus)
 612                                        check_mask = (0x2UL << (2*nr));
 613                                else
 614                                        check_mask = (0x2UL <<
 615                                                      this_busy_nack);
 616                                if ((dispatch_stat & check_mask) == 0)
 617                                        cpu_list[i] = 0xffff;
 618                                this_busy_nack += 2;
 619                                if (this_busy_nack == 64)
 620                                        break;
 621                        }
 622
 623                        goto retry;
 624                }
 625        }
 626}
 627
 628/* Multi-cpu list version.  */
 629static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 630{
 631        int retries, this_cpu, prev_sent, i, saw_cpu_error;
 632        unsigned long status;
 633        u16 *cpu_list;
 634
 635        this_cpu = smp_processor_id();
 636
 637        cpu_list = __va(tb->cpu_list_pa);
 638
 639        saw_cpu_error = 0;
 640        retries = 0;
 641        prev_sent = 0;
 642        do {
 643                int forward_progress, n_sent;
 644
 645                status = sun4v_cpu_mondo_send(cnt,
 646                                              tb->cpu_list_pa,
 647                                              tb->cpu_mondo_block_pa);
 648
 649                /* HV_EOK means all cpus received the xcall, we're done.  */
 650                if (likely(status == HV_EOK))
 651                        break;
 652
 653                /* First, see if we made any forward progress.
 654                 *
 655                 * The hypervisor indicates successful sends by setting
 656                 * cpu list entries to the value 0xffff.
 657                 */
 658                n_sent = 0;
 659                for (i = 0; i < cnt; i++) {
 660                        if (likely(cpu_list[i] == 0xffff))
 661                                n_sent++;
 662                }
 663
 664                forward_progress = 0;
 665                if (n_sent > prev_sent)
 666                        forward_progress = 1;
 667
 668                prev_sent = n_sent;
 669
 670                /* If we get a HV_ECPUERROR, then one or more of the cpus
 671                 * in the list are in error state.  Use the cpu_state()
 672                 * hypervisor call to find out which cpus are in error state.
 673                 */
 674                if (unlikely(status == HV_ECPUERROR)) {
 675                        for (i = 0; i < cnt; i++) {
 676                                long err;
 677                                u16 cpu;
 678
 679                                cpu = cpu_list[i];
 680                                if (cpu == 0xffff)
 681                                        continue;
 682
 683                                err = sun4v_cpu_state(cpu);
 684                                if (err == HV_CPU_STATE_ERROR) {
 685                                        saw_cpu_error = (cpu + 1);
 686                                        cpu_list[i] = 0xffff;
 687                                }
 688                        }
 689                } else if (unlikely(status != HV_EWOULDBLOCK))
 690                        goto fatal_mondo_error;
 691
 692                /* Don't bother rewriting the CPU list, just leave the
 693                 * 0xffff and non-0xffff entries in there and the
 694                 * hypervisor will do the right thing.
 695                 *
 696                 * Only advance timeout state if we didn't make any
 697                 * forward progress.
 698                 */
 699                if (unlikely(!forward_progress)) {
 700                        if (unlikely(++retries > 10000))
 701                                goto fatal_mondo_timeout;
 702
 703                        /* Delay a little bit to let other cpus catch up
 704                         * on their cpu mondo queue work.
 705                         */
 706                        udelay(2 * cnt);
 707                }
 708        } while (1);
 709
 710        if (unlikely(saw_cpu_error))
 711                goto fatal_mondo_cpu_error;
 712
 713        return;
 714
 715fatal_mondo_cpu_error:
 716        printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 717               "(including %d) were in error state\n",
 718               this_cpu, saw_cpu_error - 1);
 719        return;
 720
 721fatal_mondo_timeout:
 722        printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 723               " progress after %d retries.\n",
 724               this_cpu, retries);
 725        goto dump_cpu_list_and_out;
 726
 727fatal_mondo_error:
 728        printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 729               this_cpu, status);
 730        printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 731               "mondo_block_pa(%lx)\n",
 732               this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 733
 734dump_cpu_list_and_out:
 735        printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 736        for (i = 0; i < cnt; i++)
 737                printk("%u ", cpu_list[i]);
 738        printk("]\n");
 739}
 740
 741static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 742
 743static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 744{
 745        struct trap_per_cpu *tb;
 746        int this_cpu, i, cnt;
 747        unsigned long flags;
 748        u16 *cpu_list;
 749        u64 *mondo;
 750
 751        /* We have to do this whole thing with interrupts fully disabled.
 752         * Otherwise if we send an xcall from interrupt context it will
 753         * corrupt both our mondo block and cpu list state.
 754         *
 755         * One consequence of this is that we cannot use timeout mechanisms
 756         * that depend upon interrupts being delivered locally.  So, for
 757         * example, we cannot sample jiffies and expect it to advance.
 758         *
 759         * Fortunately, udelay() uses %stick/%tick so we can use that.
 760         */
 761        local_irq_save(flags);
 762
 763        this_cpu = smp_processor_id();
 764        tb = &trap_block[this_cpu];
 765
 766        mondo = __va(tb->cpu_mondo_block_pa);
 767        mondo[0] = data0;
 768        mondo[1] = data1;
 769        mondo[2] = data2;
 770        wmb();
 771
 772        cpu_list = __va(tb->cpu_list_pa);
 773
 774        /* Setup the initial cpu list.  */
 775        cnt = 0;
 776        for_each_cpu(i, mask) {
 777                if (i == this_cpu || !cpu_online(i))
 778                        continue;
 779                cpu_list[cnt++] = i;
 780        }
 781
 782        if (cnt)
 783                xcall_deliver_impl(tb, cnt);
 784
 785        local_irq_restore(flags);
 786}
 787
 788/* Send cross call to all processors mentioned in MASK_P
 789 * except self.  Really, there are only two cases currently,
 790 * "&cpu_online_map" and "&mm->cpu_vm_mask".
 791 */
 792static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 793{
 794        u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 795
 796        xcall_deliver(data0, data1, data2, mask);
 797}
 798
 799/* Send cross call to all processors except self. */
 800static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 801{
 802        smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
 803}
 804
 805extern unsigned long xcall_sync_tick;
 806
 807static void smp_start_sync_tick_client(int cpu)
 808{
 809        xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 810                      &cpumask_of_cpu(cpu));
 811}
 812
 813extern unsigned long xcall_call_function;
 814
 815void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 816{
 817        xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 818}
 819
 820extern unsigned long xcall_call_function_single;
 821
 822void arch_send_call_function_single_ipi(int cpu)
 823{
 824        xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 825                      &cpumask_of_cpu(cpu));
 826}
 827
 828void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 829{
 830        clear_softint(1 << irq);
 831        generic_smp_call_function_interrupt();
 832}
 833
 834void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 835{
 836        clear_softint(1 << irq);
 837        generic_smp_call_function_single_interrupt();
 838}
 839
 840static void tsb_sync(void *info)
 841{
 842        struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 843        struct mm_struct *mm = info;
 844
 845        /* It is not valid to test "currrent->active_mm == mm" here.
 846         *
 847         * The value of "current" is not changed atomically with
 848         * switch_mm().  But that's OK, we just need to check the
 849         * current cpu's trap block PGD physical address.
 850         */
 851        if (tp->pgd_paddr == __pa(mm->pgd))
 852                tsb_context_switch(mm);
 853}
 854
 855void smp_tsb_sync(struct mm_struct *mm)
 856{
 857        smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 858}
 859
 860extern unsigned long xcall_flush_tlb_mm;
 861extern unsigned long xcall_flush_tlb_pending;
 862extern unsigned long xcall_flush_tlb_kernel_range;
 863extern unsigned long xcall_fetch_glob_regs;
 864extern unsigned long xcall_receive_signal;
 865extern unsigned long xcall_new_mmu_context_version;
 866#ifdef CONFIG_KGDB
 867extern unsigned long xcall_kgdb_capture;
 868#endif
 869
 870#ifdef DCACHE_ALIASING_POSSIBLE
 871extern unsigned long xcall_flush_dcache_page_cheetah;
 872#endif
 873extern unsigned long xcall_flush_dcache_page_spitfire;
 874
 875#ifdef CONFIG_DEBUG_DCFLUSH
 876extern atomic_t dcpage_flushes;
 877extern atomic_t dcpage_flushes_xcall;
 878#endif
 879
 880static inline void __local_flush_dcache_page(struct page *page)
 881{
 882#ifdef DCACHE_ALIASING_POSSIBLE
 883        __flush_dcache_page(page_address(page),
 884                            ((tlb_type == spitfire) &&
 885                             page_mapping(page) != NULL));
 886#else
 887        if (page_mapping(page) != NULL &&
 888            tlb_type == spitfire)
 889                __flush_icache_page(__pa(page_address(page)));
 890#endif
 891}
 892
 893void smp_flush_dcache_page_impl(struct page *page, int cpu)
 894{
 895        int this_cpu;
 896
 897        if (tlb_type == hypervisor)
 898                return;
 899
 900#ifdef CONFIG_DEBUG_DCFLUSH
 901        atomic_inc(&dcpage_flushes);
 902#endif
 903
 904        this_cpu = get_cpu();
 905
 906        if (cpu == this_cpu) {
 907                __local_flush_dcache_page(page);
 908        } else if (cpu_online(cpu)) {
 909                void *pg_addr = page_address(page);
 910                u64 data0 = 0;
 911
 912                if (tlb_type == spitfire) {
 913                        data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 914                        if (page_mapping(page) != NULL)
 915                                data0 |= ((u64)1 << 32);
 916                } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 917#ifdef DCACHE_ALIASING_POSSIBLE
 918                        data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 919#endif
 920                }
 921                if (data0) {
 922                        xcall_deliver(data0, __pa(pg_addr),
 923                                      (u64) pg_addr, &cpumask_of_cpu(cpu));
 924#ifdef CONFIG_DEBUG_DCFLUSH
 925                        atomic_inc(&dcpage_flushes_xcall);
 926#endif
 927                }
 928        }
 929
 930        put_cpu();
 931}
 932
 933void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 934{
 935        void *pg_addr;
 936        int this_cpu;
 937        u64 data0;
 938
 939        if (tlb_type == hypervisor)
 940                return;
 941
 942        this_cpu = get_cpu();
 943
 944#ifdef CONFIG_DEBUG_DCFLUSH
 945        atomic_inc(&dcpage_flushes);
 946#endif
 947        data0 = 0;
 948        pg_addr = page_address(page);
 949        if (tlb_type == spitfire) {
 950                data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 951                if (page_mapping(page) != NULL)
 952                        data0 |= ((u64)1 << 32);
 953        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 954#ifdef DCACHE_ALIASING_POSSIBLE
 955                data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 956#endif
 957        }
 958        if (data0) {
 959                xcall_deliver(data0, __pa(pg_addr),
 960                              (u64) pg_addr, &cpu_online_map);
 961#ifdef CONFIG_DEBUG_DCFLUSH
 962                atomic_inc(&dcpage_flushes_xcall);
 963#endif
 964        }
 965        __local_flush_dcache_page(page);
 966
 967        put_cpu();
 968}
 969
 970void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 971{
 972        struct mm_struct *mm;
 973        unsigned long flags;
 974
 975        clear_softint(1 << irq);
 976
 977        /* See if we need to allocate a new TLB context because
 978         * the version of the one we are using is now out of date.
 979         */
 980        mm = current->active_mm;
 981        if (unlikely(!mm || (mm == &init_mm)))
 982                return;
 983
 984        spin_lock_irqsave(&mm->context.lock, flags);
 985
 986        if (unlikely(!CTX_VALID(mm->context)))
 987                get_new_mmu_context(mm);
 988
 989        spin_unlock_irqrestore(&mm->context.lock, flags);
 990
 991        load_secondary_context(mm);
 992        __flush_tlb_mm(CTX_HWBITS(mm->context),
 993                       SECONDARY_CONTEXT);
 994}
 995
 996void smp_new_mmu_context_version(void)
 997{
 998        smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 999}
1000
1001#ifdef CONFIG_KGDB
1002void kgdb_roundup_cpus(unsigned long flags)
1003{
1004        smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1005}
1006#endif
1007
1008void smp_fetch_global_regs(void)
1009{
1010        smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1011}
1012
1013/* We know that the window frames of the user have been flushed
1014 * to the stack before we get here because all callers of us
1015 * are flush_tlb_*() routines, and these run after flush_cache_*()
1016 * which performs the flushw.
1017 *
1018 * The SMP TLB coherency scheme we use works as follows:
1019 *
1020 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1021 *    space has (potentially) executed on, this is the heuristic
1022 *    we use to avoid doing cross calls.
1023 *
1024 *    Also, for flushing from kswapd and also for clones, we
1025 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1026 *
1027 * 2) TLB context numbers are shared globally across all processors
1028 *    in the system, this allows us to play several games to avoid
1029 *    cross calls.
1030 *
1031 *    One invariant is that when a cpu switches to a process, and
1032 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1033 *    current cpu's bit set, that tlb context is flushed locally.
1034 *
1035 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1036 *    cross calls when we want to flush the currently running process's
1037 *    tlb state.  This is done by clearing all cpu bits except the current
1038 *    processor's in current->mm->cpu_vm_mask and performing the
1039 *    flush locally only.  This will force any subsequent cpus which run
1040 *    this task to flush the context from the local tlb if the process
1041 *    migrates to another cpu (again).
1042 *
1043 * 3) For shared address spaces (threads) and swapping we bite the
1044 *    bullet for most cases and perform the cross call (but only to
1045 *    the cpus listed in cpu_vm_mask).
1046 *
1047 *    The performance gain from "optimizing" away the cross call for threads is
1048 *    questionable (in theory the big win for threads is the massive sharing of
1049 *    address space state across processors).
1050 */
1051
1052/* This currently is only used by the hugetlb arch pre-fault
1053 * hook on UltraSPARC-III+ and later when changing the pagesize
1054 * bits of the context register for an address space.
1055 */
1056void smp_flush_tlb_mm(struct mm_struct *mm)
1057{
1058        u32 ctx = CTX_HWBITS(mm->context);
1059        int cpu = get_cpu();
1060
1061        if (atomic_read(&mm->mm_users) == 1) {
1062                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1063                goto local_flush_and_out;
1064        }
1065
1066        smp_cross_call_masked(&xcall_flush_tlb_mm,
1067                              ctx, 0, 0,
1068                              mm_cpumask(mm));
1069
1070local_flush_and_out:
1071        __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1072
1073        put_cpu();
1074}
1075
1076void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1077{
1078        u32 ctx = CTX_HWBITS(mm->context);
1079        int cpu = get_cpu();
1080
1081        if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1082                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1083        else
1084                smp_cross_call_masked(&xcall_flush_tlb_pending,
1085                                      ctx, nr, (unsigned long) vaddrs,
1086                                      mm_cpumask(mm));
1087
1088        __flush_tlb_pending(ctx, nr, vaddrs);
1089
1090        put_cpu();
1091}
1092
1093void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1094{
1095        start &= PAGE_MASK;
1096        end    = PAGE_ALIGN(end);
1097        if (start != end) {
1098                smp_cross_call(&xcall_flush_tlb_kernel_range,
1099                               0, start, end);
1100
1101                __flush_tlb_kernel_range(start, end);
1102        }
1103}
1104
1105/* CPU capture. */
1106/* #define CAPTURE_DEBUG */
1107extern unsigned long xcall_capture;
1108
1109static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1110static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1111static unsigned long penguins_are_doing_time;
1112
1113void smp_capture(void)
1114{
1115        int result = atomic_add_ret(1, &smp_capture_depth);
1116
1117        if (result == 1) {
1118                int ncpus = num_online_cpus();
1119
1120#ifdef CAPTURE_DEBUG
1121                printk("CPU[%d]: Sending penguins to jail...",
1122                       smp_processor_id());
1123#endif
1124                penguins_are_doing_time = 1;
1125                atomic_inc(&smp_capture_registry);
1126                smp_cross_call(&xcall_capture, 0, 0, 0);
1127                while (atomic_read(&smp_capture_registry) != ncpus)
1128                        rmb();
1129#ifdef CAPTURE_DEBUG
1130                printk("done\n");
1131#endif
1132        }
1133}
1134
1135void smp_release(void)
1136{
1137        if (atomic_dec_and_test(&smp_capture_depth)) {
1138#ifdef CAPTURE_DEBUG
1139                printk("CPU[%d]: Giving pardon to "
1140                       "imprisoned penguins\n",
1141                       smp_processor_id());
1142#endif
1143                penguins_are_doing_time = 0;
1144                membar_safe("#StoreLoad");
1145                atomic_dec(&smp_capture_registry);
1146        }
1147}
1148
1149/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1150 * set, so they can service tlb flush xcalls...
1151 */
1152extern void prom_world(int);
1153
1154void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1155{
1156        clear_softint(1 << irq);
1157
1158        preempt_disable();
1159
1160        __asm__ __volatile__("flushw");
1161        prom_world(1);
1162        atomic_inc(&smp_capture_registry);
1163        membar_safe("#StoreLoad");
1164        while (penguins_are_doing_time)
1165                rmb();
1166        atomic_dec(&smp_capture_registry);
1167        prom_world(0);
1168
1169        preempt_enable();
1170}
1171
1172/* /proc/profile writes can call this, don't __init it please. */
1173int setup_profiling_timer(unsigned int multiplier)
1174{
1175        return -EINVAL;
1176}
1177
1178void __init smp_prepare_cpus(unsigned int max_cpus)
1179{
1180}
1181
1182void __devinit smp_prepare_boot_cpu(void)
1183{
1184}
1185
1186void __init smp_setup_processor_id(void)
1187{
1188        if (tlb_type == spitfire)
1189                xcall_deliver_impl = spitfire_xcall_deliver;
1190        else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1191                xcall_deliver_impl = cheetah_xcall_deliver;
1192        else
1193                xcall_deliver_impl = hypervisor_xcall_deliver;
1194}
1195
1196void __devinit smp_fill_in_sib_core_maps(void)
1197{
1198        unsigned int i;
1199
1200        for_each_present_cpu(i) {
1201                unsigned int j;
1202
1203                cpus_clear(cpu_core_map[i]);
1204                if (cpu_data(i).core_id == 0) {
1205                        cpu_set(i, cpu_core_map[i]);
1206                        continue;
1207                }
1208
1209                for_each_present_cpu(j) {
1210                        if (cpu_data(i).core_id ==
1211                            cpu_data(j).core_id)
1212                                cpu_set(j, cpu_core_map[i]);
1213                }
1214        }
1215
1216        for_each_present_cpu(i) {
1217                unsigned int j;
1218
1219                cpus_clear(per_cpu(cpu_sibling_map, i));
1220                if (cpu_data(i).proc_id == -1) {
1221                        cpu_set(i, per_cpu(cpu_sibling_map, i));
1222                        continue;
1223                }
1224
1225                for_each_present_cpu(j) {
1226                        if (cpu_data(i).proc_id ==
1227                            cpu_data(j).proc_id)
1228                                cpu_set(j, per_cpu(cpu_sibling_map, i));
1229                }
1230        }
1231}
1232
1233int __cpuinit __cpu_up(unsigned int cpu)
1234{
1235        int ret = smp_boot_one_cpu(cpu);
1236
1237        if (!ret) {
1238                cpu_set(cpu, smp_commenced_mask);
1239                while (!cpu_isset(cpu, cpu_online_map))
1240                        mb();
1241                if (!cpu_isset(cpu, cpu_online_map)) {
1242                        ret = -ENODEV;
1243                } else {
1244                        /* On SUN4V, writes to %tick and %stick are
1245                         * not allowed.
1246                         */
1247                        if (tlb_type != hypervisor)
1248                                smp_synchronize_one_tick(cpu);
1249                }
1250        }
1251        return ret;
1252}
1253
1254#ifdef CONFIG_HOTPLUG_CPU
1255void cpu_play_dead(void)
1256{
1257        int cpu = smp_processor_id();
1258        unsigned long pstate;
1259
1260        idle_task_exit();
1261
1262        if (tlb_type == hypervisor) {
1263                struct trap_per_cpu *tb = &trap_block[cpu];
1264
1265                sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1266                                tb->cpu_mondo_pa, 0);
1267                sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1268                                tb->dev_mondo_pa, 0);
1269                sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1270                                tb->resum_mondo_pa, 0);
1271                sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1272                                tb->nonresum_mondo_pa, 0);
1273        }
1274
1275        cpu_clear(cpu, smp_commenced_mask);
1276        membar_safe("#Sync");
1277
1278        local_irq_disable();
1279
1280        __asm__ __volatile__(
1281                "rdpr   %%pstate, %0\n\t"
1282                "wrpr   %0, %1, %%pstate"
1283                : "=r" (pstate)
1284                : "i" (PSTATE_IE));
1285
1286        while (1)
1287                barrier();
1288}
1289
1290int __cpu_disable(void)
1291{
1292        int cpu = smp_processor_id();
1293        cpuinfo_sparc *c;
1294        int i;
1295
1296        for_each_cpu_mask(i, cpu_core_map[cpu])
1297                cpu_clear(cpu, cpu_core_map[i]);
1298        cpus_clear(cpu_core_map[cpu]);
1299
1300        for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1301                cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1302        cpus_clear(per_cpu(cpu_sibling_map, cpu));
1303
1304        c = &cpu_data(cpu);
1305
1306        c->core_id = 0;
1307        c->proc_id = -1;
1308
1309        smp_wmb();
1310
1311        /* Make sure no interrupts point to this cpu.  */
1312        fixup_irqs();
1313
1314        local_irq_enable();
1315        mdelay(1);
1316        local_irq_disable();
1317
1318        ipi_call_lock();
1319        cpu_clear(cpu, cpu_online_map);
1320        ipi_call_unlock();
1321
1322        cpu_map_rebuild();
1323
1324        return 0;
1325}
1326
1327void __cpu_die(unsigned int cpu)
1328{
1329        int i;
1330
1331        for (i = 0; i < 100; i++) {
1332                smp_rmb();
1333                if (!cpu_isset(cpu, smp_commenced_mask))
1334                        break;
1335                msleep(100);
1336        }
1337        if (cpu_isset(cpu, smp_commenced_mask)) {
1338                printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1339        } else {
1340#if defined(CONFIG_SUN_LDOMS)
1341                unsigned long hv_err;
1342                int limit = 100;
1343
1344                do {
1345                        hv_err = sun4v_cpu_stop(cpu);
1346                        if (hv_err == HV_EOK) {
1347                                cpu_clear(cpu, cpu_present_map);
1348                                break;
1349                        }
1350                } while (--limit > 0);
1351                if (limit <= 0) {
1352                        printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1353                               hv_err);
1354                }
1355#endif
1356        }
1357}
1358#endif
1359
1360void __init smp_cpus_done(unsigned int max_cpus)
1361{
1362        pcr_arch_init();
1363}
1364
1365void smp_send_reschedule(int cpu)
1366{
1367        xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1368                      &cpumask_of_cpu(cpu));
1369}
1370
1371void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1372{
1373        clear_softint(1 << irq);
1374}
1375
1376/* This is a nop because we capture all other cpus
1377 * anyways when making the PROM active.
1378 */
1379void smp_send_stop(void)
1380{
1381}
1382
1383/**
1384 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1385 * @cpu: cpu to allocate for
1386 * @size: size allocation in bytes
1387 * @align: alignment
1388 *
1389 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1390 * does the right thing for NUMA regardless of the current
1391 * configuration.
1392 *
1393 * RETURNS:
1394 * Pointer to the allocated area on success, NULL on failure.
1395 */
1396static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1397                                        size_t align)
1398{
1399        const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1400#ifdef CONFIG_NEED_MULTIPLE_NODES
1401        int node = cpu_to_node(cpu);
1402        void *ptr;
1403
1404        if (!node_online(node) || !NODE_DATA(node)) {
1405                ptr = __alloc_bootmem(size, align, goal);
1406                pr_info("cpu %d has no node %d or node-local memory\n",
1407                        cpu, node);
1408                pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1409                         cpu, size, __pa(ptr));
1410        } else {
1411                ptr = __alloc_bootmem_node(NODE_DATA(node),
1412                                           size, align, goal);
1413                pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1414                         "%016lx\n", cpu, size, node, __pa(ptr));
1415        }
1416        return ptr;
1417#else
1418        return __alloc_bootmem(size, align, goal);
1419#endif
1420}
1421
1422static void __init pcpu_free_bootmem(void *ptr, size_t size)
1423{
1424        free_bootmem(__pa(ptr), size);
1425}
1426
1427static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1428{
1429        if (cpu_to_node(from) == cpu_to_node(to))
1430                return LOCAL_DISTANCE;
1431        else
1432                return REMOTE_DISTANCE;
1433}
1434
1435static void __init pcpu_populate_pte(unsigned long addr)
1436{
1437        pgd_t *pgd = pgd_offset_k(addr);
1438        pud_t *pud;
1439        pmd_t *pmd;
1440
1441        pud = pud_offset(pgd, addr);
1442        if (pud_none(*pud)) {
1443                pmd_t *new;
1444
1445                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1446                pud_populate(&init_mm, pud, new);
1447        }
1448
1449        pmd = pmd_offset(pud, addr);
1450        if (!pmd_present(*pmd)) {
1451                pte_t *new;
1452
1453                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1454                pmd_populate_kernel(&init_mm, pmd, new);
1455        }
1456}
1457
1458void __init setup_per_cpu_areas(void)
1459{
1460        unsigned long delta;
1461        unsigned int cpu;
1462        int rc = -EINVAL;
1463
1464        if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1465                rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1466                                            PERCPU_DYNAMIC_RESERVE, 4 << 20,
1467                                            pcpu_cpu_distance,
1468                                            pcpu_alloc_bootmem,
1469                                            pcpu_free_bootmem);
1470                if (rc)
1471                        pr_warning("PERCPU: %s allocator failed (%d), "
1472                                   "falling back to page size\n",
1473                                   pcpu_fc_names[pcpu_chosen_fc], rc);
1474        }
1475        if (rc < 0)
1476                rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1477                                           pcpu_alloc_bootmem,
1478                                           pcpu_free_bootmem,
1479                                           pcpu_populate_pte);
1480        if (rc < 0)
1481                panic("cannot initialize percpu area (err=%d)", rc);
1482
1483        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1484        for_each_possible_cpu(cpu)
1485                __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1486
1487        /* Setup %g5 for the boot cpu.  */
1488        __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1489
1490        of_fill_in_cpu_data();
1491        if (tlb_type == hypervisor)
1492                mdesc_fill_in_cpu_data(cpu_all_mask);
1493}
1494