linux/arch/sparc/mm/init_64.c
<<
>>
Prefs
   1/*
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/module.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/initrd.h>
  17#include <linux/swap.h>
  18#include <linux/pagemap.h>
  19#include <linux/poison.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/kprobes.h>
  23#include <linux/cache.h>
  24#include <linux/sort.h>
  25#include <linux/percpu.h>
  26#include <linux/memblock.h>
  27#include <linux/mmzone.h>
  28#include <linux/gfp.h>
  29
  30#include <asm/head.h>
  31#include <asm/system.h>
  32#include <asm/page.h>
  33#include <asm/pgalloc.h>
  34#include <asm/pgtable.h>
  35#include <asm/oplib.h>
  36#include <asm/iommu.h>
  37#include <asm/io.h>
  38#include <asm/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/tlbflush.h>
  41#include <asm/dma.h>
  42#include <asm/starfire.h>
  43#include <asm/tlb.h>
  44#include <asm/spitfire.h>
  45#include <asm/sections.h>
  46#include <asm/tsb.h>
  47#include <asm/hypervisor.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/cpudata.h>
  51#include <asm/irq.h>
  52
  53#include "init_64.h"
  54
  55unsigned long kern_linear_pte_xor[2] __read_mostly;
  56
  57/* A bitmap, one bit for every 256MB of physical memory.  If the bit
  58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
  60 */
  61unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  62
  63#ifndef CONFIG_DEBUG_PAGEALLOC
  64/* A special kernel TSB for 4MB and 256MB linear mappings.
  65 * Space is allocated for this right after the trap table
  66 * in arch/sparc64/kernel/head.S
  67 */
  68extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  69#endif
  70
  71#define MAX_BANKS       32
  72
  73static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
  74static int pavail_ents __devinitdata;
  75
  76static int cmp_p64(const void *a, const void *b)
  77{
  78        const struct linux_prom64_registers *x = a, *y = b;
  79
  80        if (x->phys_addr > y->phys_addr)
  81                return 1;
  82        if (x->phys_addr < y->phys_addr)
  83                return -1;
  84        return 0;
  85}
  86
  87static void __init read_obp_memory(const char *property,
  88                                   struct linux_prom64_registers *regs,
  89                                   int *num_ents)
  90{
  91        phandle node = prom_finddevice("/memory");
  92        int prop_size = prom_getproplen(node, property);
  93        int ents, ret, i;
  94
  95        ents = prop_size / sizeof(struct linux_prom64_registers);
  96        if (ents > MAX_BANKS) {
  97                prom_printf("The machine has more %s property entries than "
  98                            "this kernel can support (%d).\n",
  99                            property, MAX_BANKS);
 100                prom_halt();
 101        }
 102
 103        ret = prom_getproperty(node, property, (char *) regs, prop_size);
 104        if (ret == -1) {
 105                prom_printf("Couldn't get %s property from /memory.\n");
 106                prom_halt();
 107        }
 108
 109        /* Sanitize what we got from the firmware, by page aligning
 110         * everything.
 111         */
 112        for (i = 0; i < ents; i++) {
 113                unsigned long base, size;
 114
 115                base = regs[i].phys_addr;
 116                size = regs[i].reg_size;
 117
 118                size &= PAGE_MASK;
 119                if (base & ~PAGE_MASK) {
 120                        unsigned long new_base = PAGE_ALIGN(base);
 121
 122                        size -= new_base - base;
 123                        if ((long) size < 0L)
 124                                size = 0UL;
 125                        base = new_base;
 126                }
 127                if (size == 0UL) {
 128                        /* If it is empty, simply get rid of it.
 129                         * This simplifies the logic of the other
 130                         * functions that process these arrays.
 131                         */
 132                        memmove(&regs[i], &regs[i + 1],
 133                                (ents - i - 1) * sizeof(regs[0]));
 134                        i--;
 135                        ents--;
 136                        continue;
 137                }
 138                regs[i].phys_addr = base;
 139                regs[i].reg_size = size;
 140        }
 141
 142        *num_ents = ents;
 143
 144        sort(regs, ents, sizeof(struct linux_prom64_registers),
 145             cmp_p64, NULL);
 146}
 147
 148unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
 149                                        sizeof(unsigned long)];
 150EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
 151
 152/* Kernel physical address base and size in bytes.  */
 153unsigned long kern_base __read_mostly;
 154unsigned long kern_size __read_mostly;
 155
 156/* Initial ramdisk setup */
 157extern unsigned long sparc_ramdisk_image64;
 158extern unsigned int sparc_ramdisk_image;
 159extern unsigned int sparc_ramdisk_size;
 160
 161struct page *mem_map_zero __read_mostly;
 162EXPORT_SYMBOL(mem_map_zero);
 163
 164unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 165
 166unsigned long sparc64_kern_pri_context __read_mostly;
 167unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 168unsigned long sparc64_kern_sec_context __read_mostly;
 169
 170int num_kernel_image_mappings;
 171
 172#ifdef CONFIG_DEBUG_DCFLUSH
 173atomic_t dcpage_flushes = ATOMIC_INIT(0);
 174#ifdef CONFIG_SMP
 175atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 176#endif
 177#endif
 178
 179inline void flush_dcache_page_impl(struct page *page)
 180{
 181        BUG_ON(tlb_type == hypervisor);
 182#ifdef CONFIG_DEBUG_DCFLUSH
 183        atomic_inc(&dcpage_flushes);
 184#endif
 185
 186#ifdef DCACHE_ALIASING_POSSIBLE
 187        __flush_dcache_page(page_address(page),
 188                            ((tlb_type == spitfire) &&
 189                             page_mapping(page) != NULL));
 190#else
 191        if (page_mapping(page) != NULL &&
 192            tlb_type == spitfire)
 193                __flush_icache_page(__pa(page_address(page)));
 194#endif
 195}
 196
 197#define PG_dcache_dirty         PG_arch_1
 198#define PG_dcache_cpu_shift     32UL
 199#define PG_dcache_cpu_mask      \
 200        ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 201
 202#define dcache_dirty_cpu(page) \
 203        (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 204
 205static inline void set_dcache_dirty(struct page *page, int this_cpu)
 206{
 207        unsigned long mask = this_cpu;
 208        unsigned long non_cpu_bits;
 209
 210        non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 211        mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 212
 213        __asm__ __volatile__("1:\n\t"
 214                             "ldx       [%2], %%g7\n\t"
 215                             "and       %%g7, %1, %%g1\n\t"
 216                             "or        %%g1, %0, %%g1\n\t"
 217                             "casx      [%2], %%g7, %%g1\n\t"
 218                             "cmp       %%g7, %%g1\n\t"
 219                             "bne,pn    %%xcc, 1b\n\t"
 220                             " nop"
 221                             : /* no outputs */
 222                             : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 223                             : "g1", "g7");
 224}
 225
 226static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 227{
 228        unsigned long mask = (1UL << PG_dcache_dirty);
 229
 230        __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 231                             "1:\n\t"
 232                             "ldx       [%2], %%g7\n\t"
 233                             "srlx      %%g7, %4, %%g1\n\t"
 234                             "and       %%g1, %3, %%g1\n\t"
 235                             "cmp       %%g1, %0\n\t"
 236                             "bne,pn    %%icc, 2f\n\t"
 237                             " andn     %%g7, %1, %%g1\n\t"
 238                             "casx      [%2], %%g7, %%g1\n\t"
 239                             "cmp       %%g7, %%g1\n\t"
 240                             "bne,pn    %%xcc, 1b\n\t"
 241                             " nop\n"
 242                             "2:"
 243                             : /* no outputs */
 244                             : "r" (cpu), "r" (mask), "r" (&page->flags),
 245                               "i" (PG_dcache_cpu_mask),
 246                               "i" (PG_dcache_cpu_shift)
 247                             : "g1", "g7");
 248}
 249
 250static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 251{
 252        unsigned long tsb_addr = (unsigned long) ent;
 253
 254        if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 255                tsb_addr = __pa(tsb_addr);
 256
 257        __tsb_insert(tsb_addr, tag, pte);
 258}
 259
 260unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 261unsigned long _PAGE_SZBITS __read_mostly;
 262
 263static void flush_dcache(unsigned long pfn)
 264{
 265        struct page *page;
 266
 267        page = pfn_to_page(pfn);
 268        if (page) {
 269                unsigned long pg_flags;
 270
 271                pg_flags = page->flags;
 272                if (pg_flags & (1UL << PG_dcache_dirty)) {
 273                        int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 274                                   PG_dcache_cpu_mask);
 275                        int this_cpu = get_cpu();
 276
 277                        /* This is just to optimize away some function calls
 278                         * in the SMP case.
 279                         */
 280                        if (cpu == this_cpu)
 281                                flush_dcache_page_impl(page);
 282                        else
 283                                smp_flush_dcache_page_impl(page, cpu);
 284
 285                        clear_dcache_dirty_cpu(page, cpu);
 286
 287                        put_cpu();
 288                }
 289        }
 290}
 291
 292void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 293{
 294        struct mm_struct *mm;
 295        struct tsb *tsb;
 296        unsigned long tag, flags;
 297        unsigned long tsb_index, tsb_hash_shift;
 298        pte_t pte = *ptep;
 299
 300        if (tlb_type != hypervisor) {
 301                unsigned long pfn = pte_pfn(pte);
 302
 303                if (pfn_valid(pfn))
 304                        flush_dcache(pfn);
 305        }
 306
 307        mm = vma->vm_mm;
 308
 309        tsb_index = MM_TSB_BASE;
 310        tsb_hash_shift = PAGE_SHIFT;
 311
 312        spin_lock_irqsave(&mm->context.lock, flags);
 313
 314#ifdef CONFIG_HUGETLB_PAGE
 315        if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
 316                if ((tlb_type == hypervisor &&
 317                     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
 318                    (tlb_type != hypervisor &&
 319                     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
 320                        tsb_index = MM_TSB_HUGE;
 321                        tsb_hash_shift = HPAGE_SHIFT;
 322                }
 323        }
 324#endif
 325
 326        tsb = mm->context.tsb_block[tsb_index].tsb;
 327        tsb += ((address >> tsb_hash_shift) &
 328                (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 329        tag = (address >> 22UL);
 330        tsb_insert(tsb, tag, pte_val(pte));
 331
 332        spin_unlock_irqrestore(&mm->context.lock, flags);
 333}
 334
 335void flush_dcache_page(struct page *page)
 336{
 337        struct address_space *mapping;
 338        int this_cpu;
 339
 340        if (tlb_type == hypervisor)
 341                return;
 342
 343        /* Do not bother with the expensive D-cache flush if it
 344         * is merely the zero page.  The 'bigcore' testcase in GDB
 345         * causes this case to run millions of times.
 346         */
 347        if (page == ZERO_PAGE(0))
 348                return;
 349
 350        this_cpu = get_cpu();
 351
 352        mapping = page_mapping(page);
 353        if (mapping && !mapping_mapped(mapping)) {
 354                int dirty = test_bit(PG_dcache_dirty, &page->flags);
 355                if (dirty) {
 356                        int dirty_cpu = dcache_dirty_cpu(page);
 357
 358                        if (dirty_cpu == this_cpu)
 359                                goto out;
 360                        smp_flush_dcache_page_impl(page, dirty_cpu);
 361                }
 362                set_dcache_dirty(page, this_cpu);
 363        } else {
 364                /* We could delay the flush for the !page_mapping
 365                 * case too.  But that case is for exec env/arg
 366                 * pages and those are %99 certainly going to get
 367                 * faulted into the tlb (and thus flushed) anyways.
 368                 */
 369                flush_dcache_page_impl(page);
 370        }
 371
 372out:
 373        put_cpu();
 374}
 375EXPORT_SYMBOL(flush_dcache_page);
 376
 377void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 378{
 379        /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 380        if (tlb_type == spitfire) {
 381                unsigned long kaddr;
 382
 383                /* This code only runs on Spitfire cpus so this is
 384                 * why we can assume _PAGE_PADDR_4U.
 385                 */
 386                for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 387                        unsigned long paddr, mask = _PAGE_PADDR_4U;
 388
 389                        if (kaddr >= PAGE_OFFSET)
 390                                paddr = kaddr & mask;
 391                        else {
 392                                pgd_t *pgdp = pgd_offset_k(kaddr);
 393                                pud_t *pudp = pud_offset(pgdp, kaddr);
 394                                pmd_t *pmdp = pmd_offset(pudp, kaddr);
 395                                pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 396
 397                                paddr = pte_val(*ptep) & mask;
 398                        }
 399                        __flush_icache_page(paddr);
 400                }
 401        }
 402}
 403EXPORT_SYMBOL(flush_icache_range);
 404
 405void mmu_info(struct seq_file *m)
 406{
 407        if (tlb_type == cheetah)
 408                seq_printf(m, "MMU Type\t: Cheetah\n");
 409        else if (tlb_type == cheetah_plus)
 410                seq_printf(m, "MMU Type\t: Cheetah+\n");
 411        else if (tlb_type == spitfire)
 412                seq_printf(m, "MMU Type\t: Spitfire\n");
 413        else if (tlb_type == hypervisor)
 414                seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 415        else
 416                seq_printf(m, "MMU Type\t: ???\n");
 417
 418#ifdef CONFIG_DEBUG_DCFLUSH
 419        seq_printf(m, "DCPageFlushes\t: %d\n",
 420                   atomic_read(&dcpage_flushes));
 421#ifdef CONFIG_SMP
 422        seq_printf(m, "DCPageFlushesXC\t: %d\n",
 423                   atomic_read(&dcpage_flushes_xcall));
 424#endif /* CONFIG_SMP */
 425#endif /* CONFIG_DEBUG_DCFLUSH */
 426}
 427
 428struct linux_prom_translation prom_trans[512] __read_mostly;
 429unsigned int prom_trans_ents __read_mostly;
 430
 431unsigned long kern_locked_tte_data;
 432
 433/* The obp translations are saved based on 8k pagesize, since obp can
 434 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 435 * HI_OBP_ADDRESS range are handled in ktlb.S.
 436 */
 437static inline int in_obp_range(unsigned long vaddr)
 438{
 439        return (vaddr >= LOW_OBP_ADDRESS &&
 440                vaddr < HI_OBP_ADDRESS);
 441}
 442
 443static int cmp_ptrans(const void *a, const void *b)
 444{
 445        const struct linux_prom_translation *x = a, *y = b;
 446
 447        if (x->virt > y->virt)
 448                return 1;
 449        if (x->virt < y->virt)
 450                return -1;
 451        return 0;
 452}
 453
 454/* Read OBP translations property into 'prom_trans[]'.  */
 455static void __init read_obp_translations(void)
 456{
 457        int n, node, ents, first, last, i;
 458
 459        node = prom_finddevice("/virtual-memory");
 460        n = prom_getproplen(node, "translations");
 461        if (unlikely(n == 0 || n == -1)) {
 462                prom_printf("prom_mappings: Couldn't get size.\n");
 463                prom_halt();
 464        }
 465        if (unlikely(n > sizeof(prom_trans))) {
 466                prom_printf("prom_mappings: Size %Zd is too big.\n", n);
 467                prom_halt();
 468        }
 469
 470        if ((n = prom_getproperty(node, "translations",
 471                                  (char *)&prom_trans[0],
 472                                  sizeof(prom_trans))) == -1) {
 473                prom_printf("prom_mappings: Couldn't get property.\n");
 474                prom_halt();
 475        }
 476
 477        n = n / sizeof(struct linux_prom_translation);
 478
 479        ents = n;
 480
 481        sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 482             cmp_ptrans, NULL);
 483
 484        /* Now kick out all the non-OBP entries.  */
 485        for (i = 0; i < ents; i++) {
 486                if (in_obp_range(prom_trans[i].virt))
 487                        break;
 488        }
 489        first = i;
 490        for (; i < ents; i++) {
 491                if (!in_obp_range(prom_trans[i].virt))
 492                        break;
 493        }
 494        last = i;
 495
 496        for (i = 0; i < (last - first); i++) {
 497                struct linux_prom_translation *src = &prom_trans[i + first];
 498                struct linux_prom_translation *dest = &prom_trans[i];
 499
 500                *dest = *src;
 501        }
 502        for (; i < ents; i++) {
 503                struct linux_prom_translation *dest = &prom_trans[i];
 504                dest->virt = dest->size = dest->data = 0x0UL;
 505        }
 506
 507        prom_trans_ents = last - first;
 508
 509        if (tlb_type == spitfire) {
 510                /* Clear diag TTE bits. */
 511                for (i = 0; i < prom_trans_ents; i++)
 512                        prom_trans[i].data &= ~0x0003fe0000000000UL;
 513        }
 514}
 515
 516static void __init hypervisor_tlb_lock(unsigned long vaddr,
 517                                       unsigned long pte,
 518                                       unsigned long mmu)
 519{
 520        unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 521
 522        if (ret != 0) {
 523                prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
 524                            "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 525                prom_halt();
 526        }
 527}
 528
 529static unsigned long kern_large_tte(unsigned long paddr);
 530
 531static void __init remap_kernel(void)
 532{
 533        unsigned long phys_page, tte_vaddr, tte_data;
 534        int i, tlb_ent = sparc64_highest_locked_tlbent();
 535
 536        tte_vaddr = (unsigned long) KERNBASE;
 537        phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
 538        tte_data = kern_large_tte(phys_page);
 539
 540        kern_locked_tte_data = tte_data;
 541
 542        /* Now lock us into the TLBs via Hypervisor or OBP. */
 543        if (tlb_type == hypervisor) {
 544                for (i = 0; i < num_kernel_image_mappings; i++) {
 545                        hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 546                        hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 547                        tte_vaddr += 0x400000;
 548                        tte_data += 0x400000;
 549                }
 550        } else {
 551                for (i = 0; i < num_kernel_image_mappings; i++) {
 552                        prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 553                        prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 554                        tte_vaddr += 0x400000;
 555                        tte_data += 0x400000;
 556                }
 557                sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 558        }
 559        if (tlb_type == cheetah_plus) {
 560                sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 561                                            CTX_CHEETAH_PLUS_NUC);
 562                sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 563                sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 564        }
 565}
 566
 567
 568static void __init inherit_prom_mappings(void)
 569{
 570        /* Now fixup OBP's idea about where we really are mapped. */
 571        printk("Remapping the kernel... ");
 572        remap_kernel();
 573        printk("done.\n");
 574}
 575
 576void prom_world(int enter)
 577{
 578        if (!enter)
 579                set_fs((mm_segment_t) { get_thread_current_ds() });
 580
 581        __asm__ __volatile__("flushw");
 582}
 583
 584void __flush_dcache_range(unsigned long start, unsigned long end)
 585{
 586        unsigned long va;
 587
 588        if (tlb_type == spitfire) {
 589                int n = 0;
 590
 591                for (va = start; va < end; va += 32) {
 592                        spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 593                        if (++n >= 512)
 594                                break;
 595                }
 596        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 597                start = __pa(start);
 598                end = __pa(end);
 599                for (va = start; va < end; va += 32)
 600                        __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 601                                             "membar #Sync"
 602                                             : /* no outputs */
 603                                             : "r" (va),
 604                                               "i" (ASI_DCACHE_INVALIDATE));
 605        }
 606}
 607EXPORT_SYMBOL(__flush_dcache_range);
 608
 609/* get_new_mmu_context() uses "cache + 1".  */
 610DEFINE_SPINLOCK(ctx_alloc_lock);
 611unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 612#define MAX_CTX_NR      (1UL << CTX_NR_BITS)
 613#define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
 614DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 615
 616/* Caller does TLB context flushing on local CPU if necessary.
 617 * The caller also ensures that CTX_VALID(mm->context) is false.
 618 *
 619 * We must be careful about boundary cases so that we never
 620 * let the user have CTX 0 (nucleus) or we ever use a CTX
 621 * version of zero (and thus NO_CONTEXT would not be caught
 622 * by version mis-match tests in mmu_context.h).
 623 *
 624 * Always invoked with interrupts disabled.
 625 */
 626void get_new_mmu_context(struct mm_struct *mm)
 627{
 628        unsigned long ctx, new_ctx;
 629        unsigned long orig_pgsz_bits;
 630        unsigned long flags;
 631        int new_version;
 632
 633        spin_lock_irqsave(&ctx_alloc_lock, flags);
 634        orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 635        ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 636        new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 637        new_version = 0;
 638        if (new_ctx >= (1 << CTX_NR_BITS)) {
 639                new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 640                if (new_ctx >= ctx) {
 641                        int i;
 642                        new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 643                                CTX_FIRST_VERSION;
 644                        if (new_ctx == 1)
 645                                new_ctx = CTX_FIRST_VERSION;
 646
 647                        /* Don't call memset, for 16 entries that's just
 648                         * plain silly...
 649                         */
 650                        mmu_context_bmap[0] = 3;
 651                        mmu_context_bmap[1] = 0;
 652                        mmu_context_bmap[2] = 0;
 653                        mmu_context_bmap[3] = 0;
 654                        for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 655                                mmu_context_bmap[i + 0] = 0;
 656                                mmu_context_bmap[i + 1] = 0;
 657                                mmu_context_bmap[i + 2] = 0;
 658                                mmu_context_bmap[i + 3] = 0;
 659                        }
 660                        new_version = 1;
 661                        goto out;
 662                }
 663        }
 664        mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 665        new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 666out:
 667        tlb_context_cache = new_ctx;
 668        mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 669        spin_unlock_irqrestore(&ctx_alloc_lock, flags);
 670
 671        if (unlikely(new_version))
 672                smp_new_mmu_context_version();
 673}
 674
 675static int numa_enabled = 1;
 676static int numa_debug;
 677
 678static int __init early_numa(char *p)
 679{
 680        if (!p)
 681                return 0;
 682
 683        if (strstr(p, "off"))
 684                numa_enabled = 0;
 685
 686        if (strstr(p, "debug"))
 687                numa_debug = 1;
 688
 689        return 0;
 690}
 691early_param("numa", early_numa);
 692
 693#define numadbg(f, a...) \
 694do {    if (numa_debug) \
 695                printk(KERN_INFO f, ## a); \
 696} while (0)
 697
 698static void __init find_ramdisk(unsigned long phys_base)
 699{
 700#ifdef CONFIG_BLK_DEV_INITRD
 701        if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 702                unsigned long ramdisk_image;
 703
 704                /* Older versions of the bootloader only supported a
 705                 * 32-bit physical address for the ramdisk image
 706                 * location, stored at sparc_ramdisk_image.  Newer
 707                 * SILO versions set sparc_ramdisk_image to zero and
 708                 * provide a full 64-bit physical address at
 709                 * sparc_ramdisk_image64.
 710                 */
 711                ramdisk_image = sparc_ramdisk_image;
 712                if (!ramdisk_image)
 713                        ramdisk_image = sparc_ramdisk_image64;
 714
 715                /* Another bootloader quirk.  The bootloader normalizes
 716                 * the physical address to KERNBASE, so we have to
 717                 * factor that back out and add in the lowest valid
 718                 * physical page address to get the true physical address.
 719                 */
 720                ramdisk_image -= KERNBASE;
 721                ramdisk_image += phys_base;
 722
 723                numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 724                        ramdisk_image, sparc_ramdisk_size);
 725
 726                initrd_start = ramdisk_image;
 727                initrd_end = ramdisk_image + sparc_ramdisk_size;
 728
 729                memblock_reserve(initrd_start, sparc_ramdisk_size);
 730
 731                initrd_start += PAGE_OFFSET;
 732                initrd_end += PAGE_OFFSET;
 733        }
 734#endif
 735}
 736
 737struct node_mem_mask {
 738        unsigned long mask;
 739        unsigned long val;
 740        unsigned long bootmem_paddr;
 741};
 742static struct node_mem_mask node_masks[MAX_NUMNODES];
 743static int num_node_masks;
 744
 745int numa_cpu_lookup_table[NR_CPUS];
 746cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 747
 748#ifdef CONFIG_NEED_MULTIPLE_NODES
 749
 750struct mdesc_mblock {
 751        u64     base;
 752        u64     size;
 753        u64     offset; /* RA-to-PA */
 754};
 755static struct mdesc_mblock *mblocks;
 756static int num_mblocks;
 757
 758static unsigned long ra_to_pa(unsigned long addr)
 759{
 760        int i;
 761
 762        for (i = 0; i < num_mblocks; i++) {
 763                struct mdesc_mblock *m = &mblocks[i];
 764
 765                if (addr >= m->base &&
 766                    addr < (m->base + m->size)) {
 767                        addr += m->offset;
 768                        break;
 769                }
 770        }
 771        return addr;
 772}
 773
 774static int find_node(unsigned long addr)
 775{
 776        int i;
 777
 778        addr = ra_to_pa(addr);
 779        for (i = 0; i < num_node_masks; i++) {
 780                struct node_mem_mask *p = &node_masks[i];
 781
 782                if ((addr & p->mask) == p->val)
 783                        return i;
 784        }
 785        return -1;
 786}
 787
 788u64 memblock_nid_range(u64 start, u64 end, int *nid)
 789{
 790        *nid = find_node(start);
 791        start += PAGE_SIZE;
 792        while (start < end) {
 793                int n = find_node(start);
 794
 795                if (n != *nid)
 796                        break;
 797                start += PAGE_SIZE;
 798        }
 799
 800        if (start > end)
 801                start = end;
 802
 803        return start;
 804}
 805#else
 806u64 memblock_nid_range(u64 start, u64 end, int *nid)
 807{
 808        *nid = 0;
 809        return end;
 810}
 811#endif
 812
 813/* This must be invoked after performing all of the necessary
 814 * add_active_range() calls for 'nid'.  We need to be able to get
 815 * correct data from get_pfn_range_for_nid().
 816 */
 817static void __init allocate_node_data(int nid)
 818{
 819        unsigned long paddr, num_pages, start_pfn, end_pfn;
 820        struct pglist_data *p;
 821
 822#ifdef CONFIG_NEED_MULTIPLE_NODES
 823        paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 824        if (!paddr) {
 825                prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 826                prom_halt();
 827        }
 828        NODE_DATA(nid) = __va(paddr);
 829        memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 830
 831        NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
 832#endif
 833
 834        p = NODE_DATA(nid);
 835
 836        get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 837        p->node_start_pfn = start_pfn;
 838        p->node_spanned_pages = end_pfn - start_pfn;
 839
 840        if (p->node_spanned_pages) {
 841                num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
 842
 843                paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
 844                if (!paddr) {
 845                        prom_printf("Cannot allocate bootmap for nid[%d]\n",
 846                                  nid);
 847                        prom_halt();
 848                }
 849                node_masks[nid].bootmem_paddr = paddr;
 850        }
 851}
 852
 853static void init_node_masks_nonnuma(void)
 854{
 855        int i;
 856
 857        numadbg("Initializing tables for non-numa.\n");
 858
 859        node_masks[0].mask = node_masks[0].val = 0;
 860        num_node_masks = 1;
 861
 862        for (i = 0; i < NR_CPUS; i++)
 863                numa_cpu_lookup_table[i] = 0;
 864
 865        numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
 866}
 867
 868#ifdef CONFIG_NEED_MULTIPLE_NODES
 869struct pglist_data *node_data[MAX_NUMNODES];
 870
 871EXPORT_SYMBOL(numa_cpu_lookup_table);
 872EXPORT_SYMBOL(numa_cpumask_lookup_table);
 873EXPORT_SYMBOL(node_data);
 874
 875struct mdesc_mlgroup {
 876        u64     node;
 877        u64     latency;
 878        u64     match;
 879        u64     mask;
 880};
 881static struct mdesc_mlgroup *mlgroups;
 882static int num_mlgroups;
 883
 884static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 885                                   u32 cfg_handle)
 886{
 887        u64 arc;
 888
 889        mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 890                u64 target = mdesc_arc_target(md, arc);
 891                const u64 *val;
 892
 893                val = mdesc_get_property(md, target,
 894                                         "cfg-handle", NULL);
 895                if (val && *val == cfg_handle)
 896                        return 0;
 897        }
 898        return -ENODEV;
 899}
 900
 901static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 902                                    u32 cfg_handle)
 903{
 904        u64 arc, candidate, best_latency = ~(u64)0;
 905
 906        candidate = MDESC_NODE_NULL;
 907        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 908                u64 target = mdesc_arc_target(md, arc);
 909                const char *name = mdesc_node_name(md, target);
 910                const u64 *val;
 911
 912                if (strcmp(name, "pio-latency-group"))
 913                        continue;
 914
 915                val = mdesc_get_property(md, target, "latency", NULL);
 916                if (!val)
 917                        continue;
 918
 919                if (*val < best_latency) {
 920                        candidate = target;
 921                        best_latency = *val;
 922                }
 923        }
 924
 925        if (candidate == MDESC_NODE_NULL)
 926                return -ENODEV;
 927
 928        return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 929}
 930
 931int of_node_to_nid(struct device_node *dp)
 932{
 933        const struct linux_prom64_registers *regs;
 934        struct mdesc_handle *md;
 935        u32 cfg_handle;
 936        int count, nid;
 937        u64 grp;
 938
 939        /* This is the right thing to do on currently supported
 940         * SUN4U NUMA platforms as well, as the PCI controller does
 941         * not sit behind any particular memory controller.
 942         */
 943        if (!mlgroups)
 944                return -1;
 945
 946        regs = of_get_property(dp, "reg", NULL);
 947        if (!regs)
 948                return -1;
 949
 950        cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
 951
 952        md = mdesc_grab();
 953
 954        count = 0;
 955        nid = -1;
 956        mdesc_for_each_node_by_name(md, grp, "group") {
 957                if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
 958                        nid = count;
 959                        break;
 960                }
 961                count++;
 962        }
 963
 964        mdesc_release(md);
 965
 966        return nid;
 967}
 968
 969static void __init add_node_ranges(void)
 970{
 971        struct memblock_region *reg;
 972
 973        for_each_memblock(memory, reg) {
 974                unsigned long size = reg->size;
 975                unsigned long start, end;
 976
 977                start = reg->base;
 978                end = start + size;
 979                while (start < end) {
 980                        unsigned long this_end;
 981                        int nid;
 982
 983                        this_end = memblock_nid_range(start, end, &nid);
 984
 985                        numadbg("Adding active range nid[%d] "
 986                                "start[%lx] end[%lx]\n",
 987                                nid, start, this_end);
 988
 989                        add_active_range(nid,
 990                                         start >> PAGE_SHIFT,
 991                                         this_end >> PAGE_SHIFT);
 992
 993                        start = this_end;
 994                }
 995        }
 996}
 997
 998static int __init grab_mlgroups(struct mdesc_handle *md)
 999{
1000        unsigned long paddr;
1001        int count = 0;
1002        u64 node;
1003
1004        mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1005                count++;
1006        if (!count)
1007                return -ENOENT;
1008
1009        paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1010                          SMP_CACHE_BYTES);
1011        if (!paddr)
1012                return -ENOMEM;
1013
1014        mlgroups = __va(paddr);
1015        num_mlgroups = count;
1016
1017        count = 0;
1018        mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1019                struct mdesc_mlgroup *m = &mlgroups[count++];
1020                const u64 *val;
1021
1022                m->node = node;
1023
1024                val = mdesc_get_property(md, node, "latency", NULL);
1025                m->latency = *val;
1026                val = mdesc_get_property(md, node, "address-match", NULL);
1027                m->match = *val;
1028                val = mdesc_get_property(md, node, "address-mask", NULL);
1029                m->mask = *val;
1030
1031                numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1032                        "match[%llx] mask[%llx]\n",
1033                        count - 1, m->node, m->latency, m->match, m->mask);
1034        }
1035
1036        return 0;
1037}
1038
1039static int __init grab_mblocks(struct mdesc_handle *md)
1040{
1041        unsigned long paddr;
1042        int count = 0;
1043        u64 node;
1044
1045        mdesc_for_each_node_by_name(md, node, "mblock")
1046                count++;
1047        if (!count)
1048                return -ENOENT;
1049
1050        paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1051                          SMP_CACHE_BYTES);
1052        if (!paddr)
1053                return -ENOMEM;
1054
1055        mblocks = __va(paddr);
1056        num_mblocks = count;
1057
1058        count = 0;
1059        mdesc_for_each_node_by_name(md, node, "mblock") {
1060                struct mdesc_mblock *m = &mblocks[count++];
1061                const u64 *val;
1062
1063                val = mdesc_get_property(md, node, "base", NULL);
1064                m->base = *val;
1065                val = mdesc_get_property(md, node, "size", NULL);
1066                m->size = *val;
1067                val = mdesc_get_property(md, node,
1068                                         "address-congruence-offset", NULL);
1069                m->offset = *val;
1070
1071                numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1072                        count - 1, m->base, m->size, m->offset);
1073        }
1074
1075        return 0;
1076}
1077
1078static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1079                                               u64 grp, cpumask_t *mask)
1080{
1081        u64 arc;
1082
1083        cpus_clear(*mask);
1084
1085        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1086                u64 target = mdesc_arc_target(md, arc);
1087                const char *name = mdesc_node_name(md, target);
1088                const u64 *id;
1089
1090                if (strcmp(name, "cpu"))
1091                        continue;
1092                id = mdesc_get_property(md, target, "id", NULL);
1093                if (*id < nr_cpu_ids)
1094                        cpu_set(*id, *mask);
1095        }
1096}
1097
1098static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1099{
1100        int i;
1101
1102        for (i = 0; i < num_mlgroups; i++) {
1103                struct mdesc_mlgroup *m = &mlgroups[i];
1104                if (m->node == node)
1105                        return m;
1106        }
1107        return NULL;
1108}
1109
1110static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1111                                      int index)
1112{
1113        struct mdesc_mlgroup *candidate = NULL;
1114        u64 arc, best_latency = ~(u64)0;
1115        struct node_mem_mask *n;
1116
1117        mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1118                u64 target = mdesc_arc_target(md, arc);
1119                struct mdesc_mlgroup *m = find_mlgroup(target);
1120                if (!m)
1121                        continue;
1122                if (m->latency < best_latency) {
1123                        candidate = m;
1124                        best_latency = m->latency;
1125                }
1126        }
1127        if (!candidate)
1128                return -ENOENT;
1129
1130        if (num_node_masks != index) {
1131                printk(KERN_ERR "Inconsistent NUMA state, "
1132                       "index[%d] != num_node_masks[%d]\n",
1133                       index, num_node_masks);
1134                return -EINVAL;
1135        }
1136
1137        n = &node_masks[num_node_masks++];
1138
1139        n->mask = candidate->mask;
1140        n->val = candidate->match;
1141
1142        numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1143                index, n->mask, n->val, candidate->latency);
1144
1145        return 0;
1146}
1147
1148static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1149                                         int index)
1150{
1151        cpumask_t mask;
1152        int cpu;
1153
1154        numa_parse_mdesc_group_cpus(md, grp, &mask);
1155
1156        for_each_cpu_mask(cpu, mask)
1157                numa_cpu_lookup_table[cpu] = index;
1158        numa_cpumask_lookup_table[index] = mask;
1159
1160        if (numa_debug) {
1161                printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1162                for_each_cpu_mask(cpu, mask)
1163                        printk("%d ", cpu);
1164                printk("]\n");
1165        }
1166
1167        return numa_attach_mlgroup(md, grp, index);
1168}
1169
1170static int __init numa_parse_mdesc(void)
1171{
1172        struct mdesc_handle *md = mdesc_grab();
1173        int i, err, count;
1174        u64 node;
1175
1176        node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1177        if (node == MDESC_NODE_NULL) {
1178                mdesc_release(md);
1179                return -ENOENT;
1180        }
1181
1182        err = grab_mblocks(md);
1183        if (err < 0)
1184                goto out;
1185
1186        err = grab_mlgroups(md);
1187        if (err < 0)
1188                goto out;
1189
1190        count = 0;
1191        mdesc_for_each_node_by_name(md, node, "group") {
1192                err = numa_parse_mdesc_group(md, node, count);
1193                if (err < 0)
1194                        break;
1195                count++;
1196        }
1197
1198        add_node_ranges();
1199
1200        for (i = 0; i < num_node_masks; i++) {
1201                allocate_node_data(i);
1202                node_set_online(i);
1203        }
1204
1205        err = 0;
1206out:
1207        mdesc_release(md);
1208        return err;
1209}
1210
1211static int __init numa_parse_jbus(void)
1212{
1213        unsigned long cpu, index;
1214
1215        /* NUMA node id is encoded in bits 36 and higher, and there is
1216         * a 1-to-1 mapping from CPU ID to NUMA node ID.
1217         */
1218        index = 0;
1219        for_each_present_cpu(cpu) {
1220                numa_cpu_lookup_table[cpu] = index;
1221                numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu);
1222                node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1223                node_masks[index].val = cpu << 36UL;
1224
1225                index++;
1226        }
1227        num_node_masks = index;
1228
1229        add_node_ranges();
1230
1231        for (index = 0; index < num_node_masks; index++) {
1232                allocate_node_data(index);
1233                node_set_online(index);
1234        }
1235
1236        return 0;
1237}
1238
1239static int __init numa_parse_sun4u(void)
1240{
1241        if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1242                unsigned long ver;
1243
1244                __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1245                if ((ver >> 32UL) == __JALAPENO_ID ||
1246                    (ver >> 32UL) == __SERRANO_ID)
1247                        return numa_parse_jbus();
1248        }
1249        return -1;
1250}
1251
1252static int __init bootmem_init_numa(void)
1253{
1254        int err = -1;
1255
1256        numadbg("bootmem_init_numa()\n");
1257
1258        if (numa_enabled) {
1259                if (tlb_type == hypervisor)
1260                        err = numa_parse_mdesc();
1261                else
1262                        err = numa_parse_sun4u();
1263        }
1264        return err;
1265}
1266
1267#else
1268
1269static int bootmem_init_numa(void)
1270{
1271        return -1;
1272}
1273
1274#endif
1275
1276static void __init bootmem_init_nonnuma(void)
1277{
1278        unsigned long top_of_ram = memblock_end_of_DRAM();
1279        unsigned long total_ram = memblock_phys_mem_size();
1280        struct memblock_region *reg;
1281
1282        numadbg("bootmem_init_nonnuma()\n");
1283
1284        printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1285               top_of_ram, total_ram);
1286        printk(KERN_INFO "Memory hole size: %ldMB\n",
1287               (top_of_ram - total_ram) >> 20);
1288
1289        init_node_masks_nonnuma();
1290
1291        for_each_memblock(memory, reg) {
1292                unsigned long start_pfn, end_pfn;
1293
1294                if (!reg->size)
1295                        continue;
1296
1297                start_pfn = memblock_region_memory_base_pfn(reg);
1298                end_pfn = memblock_region_memory_end_pfn(reg);
1299                add_active_range(0, start_pfn, end_pfn);
1300        }
1301
1302        allocate_node_data(0);
1303
1304        node_set_online(0);
1305}
1306
1307static void __init reserve_range_in_node(int nid, unsigned long start,
1308                                         unsigned long end)
1309{
1310        numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1311                nid, start, end);
1312        while (start < end) {
1313                unsigned long this_end;
1314                int n;
1315
1316                this_end = memblock_nid_range(start, end, &n);
1317                if (n == nid) {
1318                        numadbg("      MATCH reserving range [%lx:%lx]\n",
1319                                start, this_end);
1320                        reserve_bootmem_node(NODE_DATA(nid), start,
1321                                             (this_end - start), BOOTMEM_DEFAULT);
1322                } else
1323                        numadbg("      NO MATCH, advancing start to %lx\n",
1324                                this_end);
1325
1326                start = this_end;
1327        }
1328}
1329
1330static void __init trim_reserved_in_node(int nid)
1331{
1332        struct memblock_region *reg;
1333
1334        numadbg("  trim_reserved_in_node(%d)\n", nid);
1335
1336        for_each_memblock(reserved, reg)
1337                reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1338}
1339
1340static void __init bootmem_init_one_node(int nid)
1341{
1342        struct pglist_data *p;
1343
1344        numadbg("bootmem_init_one_node(%d)\n", nid);
1345
1346        p = NODE_DATA(nid);
1347
1348        if (p->node_spanned_pages) {
1349                unsigned long paddr = node_masks[nid].bootmem_paddr;
1350                unsigned long end_pfn;
1351
1352                end_pfn = p->node_start_pfn + p->node_spanned_pages;
1353
1354                numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1355                        nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1356
1357                init_bootmem_node(p, paddr >> PAGE_SHIFT,
1358                                  p->node_start_pfn, end_pfn);
1359
1360                numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1361                        nid, end_pfn);
1362                free_bootmem_with_active_regions(nid, end_pfn);
1363
1364                trim_reserved_in_node(nid);
1365
1366                numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1367                        nid);
1368                sparse_memory_present_with_active_regions(nid);
1369        }
1370}
1371
1372static unsigned long __init bootmem_init(unsigned long phys_base)
1373{
1374        unsigned long end_pfn;
1375        int nid;
1376
1377        end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1378        max_pfn = max_low_pfn = end_pfn;
1379        min_low_pfn = (phys_base >> PAGE_SHIFT);
1380
1381        if (bootmem_init_numa() < 0)
1382                bootmem_init_nonnuma();
1383
1384        /* XXX cpu notifier XXX */
1385
1386        for_each_online_node(nid)
1387                bootmem_init_one_node(nid);
1388
1389        sparse_init();
1390
1391        return end_pfn;
1392}
1393
1394static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1395static int pall_ents __initdata;
1396
1397#ifdef CONFIG_DEBUG_PAGEALLOC
1398static unsigned long __ref kernel_map_range(unsigned long pstart,
1399                                            unsigned long pend, pgprot_t prot)
1400{
1401        unsigned long vstart = PAGE_OFFSET + pstart;
1402        unsigned long vend = PAGE_OFFSET + pend;
1403        unsigned long alloc_bytes = 0UL;
1404
1405        if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1406                prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1407                            vstart, vend);
1408                prom_halt();
1409        }
1410
1411        while (vstart < vend) {
1412                unsigned long this_end, paddr = __pa(vstart);
1413                pgd_t *pgd = pgd_offset_k(vstart);
1414                pud_t *pud;
1415                pmd_t *pmd;
1416                pte_t *pte;
1417
1418                pud = pud_offset(pgd, vstart);
1419                if (pud_none(*pud)) {
1420                        pmd_t *new;
1421
1422                        new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1423                        alloc_bytes += PAGE_SIZE;
1424                        pud_populate(&init_mm, pud, new);
1425                }
1426
1427                pmd = pmd_offset(pud, vstart);
1428                if (!pmd_present(*pmd)) {
1429                        pte_t *new;
1430
1431                        new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1432                        alloc_bytes += PAGE_SIZE;
1433                        pmd_populate_kernel(&init_mm, pmd, new);
1434                }
1435
1436                pte = pte_offset_kernel(pmd, vstart);
1437                this_end = (vstart + PMD_SIZE) & PMD_MASK;
1438                if (this_end > vend)
1439                        this_end = vend;
1440
1441                while (vstart < this_end) {
1442                        pte_val(*pte) = (paddr | pgprot_val(prot));
1443
1444                        vstart += PAGE_SIZE;
1445                        paddr += PAGE_SIZE;
1446                        pte++;
1447                }
1448        }
1449
1450        return alloc_bytes;
1451}
1452
1453extern unsigned int kvmap_linear_patch[1];
1454#endif /* CONFIG_DEBUG_PAGEALLOC */
1455
1456static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1457{
1458        const unsigned long shift_256MB = 28;
1459        const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1460        const unsigned long size_256MB = (1UL << shift_256MB);
1461
1462        while (start < end) {
1463                long remains;
1464
1465                remains = end - start;
1466                if (remains < size_256MB)
1467                        break;
1468
1469                if (start & mask_256MB) {
1470                        start = (start + size_256MB) & ~mask_256MB;
1471                        continue;
1472                }
1473
1474                while (remains >= size_256MB) {
1475                        unsigned long index = start >> shift_256MB;
1476
1477                        __set_bit(index, kpte_linear_bitmap);
1478
1479                        start += size_256MB;
1480                        remains -= size_256MB;
1481                }
1482        }
1483}
1484
1485static void __init init_kpte_bitmap(void)
1486{
1487        unsigned long i;
1488
1489        for (i = 0; i < pall_ents; i++) {
1490                unsigned long phys_start, phys_end;
1491
1492                phys_start = pall[i].phys_addr;
1493                phys_end = phys_start + pall[i].reg_size;
1494
1495                mark_kpte_bitmap(phys_start, phys_end);
1496        }
1497}
1498
1499static void __init kernel_physical_mapping_init(void)
1500{
1501#ifdef CONFIG_DEBUG_PAGEALLOC
1502        unsigned long i, mem_alloced = 0UL;
1503
1504        for (i = 0; i < pall_ents; i++) {
1505                unsigned long phys_start, phys_end;
1506
1507                phys_start = pall[i].phys_addr;
1508                phys_end = phys_start + pall[i].reg_size;
1509
1510                mem_alloced += kernel_map_range(phys_start, phys_end,
1511                                                PAGE_KERNEL);
1512        }
1513
1514        printk("Allocated %ld bytes for kernel page tables.\n",
1515               mem_alloced);
1516
1517        kvmap_linear_patch[0] = 0x01000000; /* nop */
1518        flushi(&kvmap_linear_patch[0]);
1519
1520        __flush_tlb_all();
1521#endif
1522}
1523
1524#ifdef CONFIG_DEBUG_PAGEALLOC
1525void kernel_map_pages(struct page *page, int numpages, int enable)
1526{
1527        unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1528        unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1529
1530        kernel_map_range(phys_start, phys_end,
1531                         (enable ? PAGE_KERNEL : __pgprot(0)));
1532
1533        flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1534                               PAGE_OFFSET + phys_end);
1535
1536        /* we should perform an IPI and flush all tlbs,
1537         * but that can deadlock->flush only current cpu.
1538         */
1539        __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1540                                 PAGE_OFFSET + phys_end);
1541}
1542#endif
1543
1544unsigned long __init find_ecache_flush_span(unsigned long size)
1545{
1546        int i;
1547
1548        for (i = 0; i < pavail_ents; i++) {
1549                if (pavail[i].reg_size >= size)
1550                        return pavail[i].phys_addr;
1551        }
1552
1553        return ~0UL;
1554}
1555
1556static void __init tsb_phys_patch(void)
1557{
1558        struct tsb_ldquad_phys_patch_entry *pquad;
1559        struct tsb_phys_patch_entry *p;
1560
1561        pquad = &__tsb_ldquad_phys_patch;
1562        while (pquad < &__tsb_ldquad_phys_patch_end) {
1563                unsigned long addr = pquad->addr;
1564
1565                if (tlb_type == hypervisor)
1566                        *(unsigned int *) addr = pquad->sun4v_insn;
1567                else
1568                        *(unsigned int *) addr = pquad->sun4u_insn;
1569                wmb();
1570                __asm__ __volatile__("flush     %0"
1571                                     : /* no outputs */
1572                                     : "r" (addr));
1573
1574                pquad++;
1575        }
1576
1577        p = &__tsb_phys_patch;
1578        while (p < &__tsb_phys_patch_end) {
1579                unsigned long addr = p->addr;
1580
1581                *(unsigned int *) addr = p->insn;
1582                wmb();
1583                __asm__ __volatile__("flush     %0"
1584                                     : /* no outputs */
1585                                     : "r" (addr));
1586
1587                p++;
1588        }
1589}
1590
1591/* Don't mark as init, we give this to the Hypervisor.  */
1592#ifndef CONFIG_DEBUG_PAGEALLOC
1593#define NUM_KTSB_DESCR  2
1594#else
1595#define NUM_KTSB_DESCR  1
1596#endif
1597static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1598extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1599
1600static void __init sun4v_ktsb_init(void)
1601{
1602        unsigned long ktsb_pa;
1603
1604        /* First KTSB for PAGE_SIZE mappings.  */
1605        ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1606
1607        switch (PAGE_SIZE) {
1608        case 8 * 1024:
1609        default:
1610                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1611                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1612                break;
1613
1614        case 64 * 1024:
1615                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1616                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1617                break;
1618
1619        case 512 * 1024:
1620                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1621                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1622                break;
1623
1624        case 4 * 1024 * 1024:
1625                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1626                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1627                break;
1628        };
1629
1630        ktsb_descr[0].assoc = 1;
1631        ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1632        ktsb_descr[0].ctx_idx = 0;
1633        ktsb_descr[0].tsb_base = ktsb_pa;
1634        ktsb_descr[0].resv = 0;
1635
1636#ifndef CONFIG_DEBUG_PAGEALLOC
1637        /* Second KTSB for 4MB/256MB mappings.  */
1638        ktsb_pa = (kern_base +
1639                   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1640
1641        ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1642        ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1643                                   HV_PGSZ_MASK_256MB);
1644        ktsb_descr[1].assoc = 1;
1645        ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1646        ktsb_descr[1].ctx_idx = 0;
1647        ktsb_descr[1].tsb_base = ktsb_pa;
1648        ktsb_descr[1].resv = 0;
1649#endif
1650}
1651
1652void __cpuinit sun4v_ktsb_register(void)
1653{
1654        unsigned long pa, ret;
1655
1656        pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1657
1658        ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1659        if (ret != 0) {
1660                prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1661                            "errors with %lx\n", pa, ret);
1662                prom_halt();
1663        }
1664}
1665
1666/* paging_init() sets up the page tables */
1667
1668static unsigned long last_valid_pfn;
1669pgd_t swapper_pg_dir[2048];
1670
1671static void sun4u_pgprot_init(void);
1672static void sun4v_pgprot_init(void);
1673
1674void __init paging_init(void)
1675{
1676        unsigned long end_pfn, shift, phys_base;
1677        unsigned long real_end, i;
1678
1679        /* These build time checkes make sure that the dcache_dirty_cpu()
1680         * page->flags usage will work.
1681         *
1682         * When a page gets marked as dcache-dirty, we store the
1683         * cpu number starting at bit 32 in the page->flags.  Also,
1684         * functions like clear_dcache_dirty_cpu use the cpu mask
1685         * in 13-bit signed-immediate instruction fields.
1686         */
1687
1688        /*
1689         * Page flags must not reach into upper 32 bits that are used
1690         * for the cpu number
1691         */
1692        BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1693
1694        /*
1695         * The bit fields placed in the high range must not reach below
1696         * the 32 bit boundary. Otherwise we cannot place the cpu field
1697         * at the 32 bit boundary.
1698         */
1699        BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1700                ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1701
1702        BUILD_BUG_ON(NR_CPUS > 4096);
1703
1704        kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1705        kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1706
1707        /* Invalidate both kernel TSBs.  */
1708        memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1709#ifndef CONFIG_DEBUG_PAGEALLOC
1710        memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1711#endif
1712
1713        if (tlb_type == hypervisor)
1714                sun4v_pgprot_init();
1715        else
1716                sun4u_pgprot_init();
1717
1718        if (tlb_type == cheetah_plus ||
1719            tlb_type == hypervisor)
1720                tsb_phys_patch();
1721
1722        if (tlb_type == hypervisor) {
1723                sun4v_patch_tlb_handlers();
1724                sun4v_ktsb_init();
1725        }
1726
1727        memblock_init();
1728
1729        /* Find available physical memory...
1730         *
1731         * Read it twice in order to work around a bug in openfirmware.
1732         * The call to grab this table itself can cause openfirmware to
1733         * allocate memory, which in turn can take away some space from
1734         * the list of available memory.  Reading it twice makes sure
1735         * we really do get the final value.
1736         */
1737        read_obp_translations();
1738        read_obp_memory("reg", &pall[0], &pall_ents);
1739        read_obp_memory("available", &pavail[0], &pavail_ents);
1740        read_obp_memory("available", &pavail[0], &pavail_ents);
1741
1742        phys_base = 0xffffffffffffffffUL;
1743        for (i = 0; i < pavail_ents; i++) {
1744                phys_base = min(phys_base, pavail[i].phys_addr);
1745                memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1746        }
1747
1748        memblock_reserve(kern_base, kern_size);
1749
1750        find_ramdisk(phys_base);
1751
1752        memblock_enforce_memory_limit(cmdline_memory_size);
1753
1754        memblock_analyze();
1755        memblock_dump_all();
1756
1757        set_bit(0, mmu_context_bmap);
1758
1759        shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1760
1761        real_end = (unsigned long)_end;
1762        num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1763        printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1764               num_kernel_image_mappings);
1765
1766        /* Set kernel pgd to upper alias so physical page computations
1767         * work.
1768         */
1769        init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1770        
1771        memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1772
1773        /* Now can init the kernel/bad page tables. */
1774        pud_set(pud_offset(&swapper_pg_dir[0], 0),
1775                swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1776        
1777        inherit_prom_mappings();
1778        
1779        init_kpte_bitmap();
1780
1781        /* Ok, we can use our TLB miss and window trap handlers safely.  */
1782        setup_tba();
1783
1784        __flush_tlb_all();
1785
1786        if (tlb_type == hypervisor)
1787                sun4v_ktsb_register();
1788
1789        prom_build_devicetree();
1790        of_populate_present_mask();
1791#ifndef CONFIG_SMP
1792        of_fill_in_cpu_data();
1793#endif
1794
1795        if (tlb_type == hypervisor) {
1796                sun4v_mdesc_init();
1797                mdesc_populate_present_mask(cpu_all_mask);
1798#ifndef CONFIG_SMP
1799                mdesc_fill_in_cpu_data(cpu_all_mask);
1800#endif
1801        }
1802
1803        /* Once the OF device tree and MDESC have been setup, we know
1804         * the list of possible cpus.  Therefore we can allocate the
1805         * IRQ stacks.
1806         */
1807        for_each_possible_cpu(i) {
1808                /* XXX Use node local allocations... XXX */
1809                softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1810                hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1811        }
1812
1813        /* Setup bootmem... */
1814        last_valid_pfn = end_pfn = bootmem_init(phys_base);
1815
1816#ifndef CONFIG_NEED_MULTIPLE_NODES
1817        max_mapnr = last_valid_pfn;
1818#endif
1819        kernel_physical_mapping_init();
1820
1821        {
1822                unsigned long max_zone_pfns[MAX_NR_ZONES];
1823
1824                memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1825
1826                max_zone_pfns[ZONE_NORMAL] = end_pfn;
1827
1828                free_area_init_nodes(max_zone_pfns);
1829        }
1830
1831        printk("Booting Linux...\n");
1832}
1833
1834int __devinit page_in_phys_avail(unsigned long paddr)
1835{
1836        int i;
1837
1838        paddr &= PAGE_MASK;
1839
1840        for (i = 0; i < pavail_ents; i++) {
1841                unsigned long start, end;
1842
1843                start = pavail[i].phys_addr;
1844                end = start + pavail[i].reg_size;
1845
1846                if (paddr >= start && paddr < end)
1847                        return 1;
1848        }
1849        if (paddr >= kern_base && paddr < (kern_base + kern_size))
1850                return 1;
1851#ifdef CONFIG_BLK_DEV_INITRD
1852        if (paddr >= __pa(initrd_start) &&
1853            paddr < __pa(PAGE_ALIGN(initrd_end)))
1854                return 1;
1855#endif
1856
1857        return 0;
1858}
1859
1860static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1861static int pavail_rescan_ents __initdata;
1862
1863/* Certain OBP calls, such as fetching "available" properties, can
1864 * claim physical memory.  So, along with initializing the valid
1865 * address bitmap, what we do here is refetch the physical available
1866 * memory list again, and make sure it provides at least as much
1867 * memory as 'pavail' does.
1868 */
1869static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1870{
1871        int i;
1872
1873        read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1874
1875        for (i = 0; i < pavail_ents; i++) {
1876                unsigned long old_start, old_end;
1877
1878                old_start = pavail[i].phys_addr;
1879                old_end = old_start + pavail[i].reg_size;
1880                while (old_start < old_end) {
1881                        int n;
1882
1883                        for (n = 0; n < pavail_rescan_ents; n++) {
1884                                unsigned long new_start, new_end;
1885
1886                                new_start = pavail_rescan[n].phys_addr;
1887                                new_end = new_start +
1888                                        pavail_rescan[n].reg_size;
1889
1890                                if (new_start <= old_start &&
1891                                    new_end >= (old_start + PAGE_SIZE)) {
1892                                        set_bit(old_start >> 22, bitmap);
1893                                        goto do_next_page;
1894                                }
1895                        }
1896
1897                        prom_printf("mem_init: Lost memory in pavail\n");
1898                        prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1899                                    pavail[i].phys_addr,
1900                                    pavail[i].reg_size);
1901                        prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1902                                    pavail_rescan[i].phys_addr,
1903                                    pavail_rescan[i].reg_size);
1904                        prom_printf("mem_init: Cannot continue, aborting.\n");
1905                        prom_halt();
1906
1907                do_next_page:
1908                        old_start += PAGE_SIZE;
1909                }
1910        }
1911}
1912
1913static void __init patch_tlb_miss_handler_bitmap(void)
1914{
1915        extern unsigned int valid_addr_bitmap_insn[];
1916        extern unsigned int valid_addr_bitmap_patch[];
1917
1918        valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1919        mb();
1920        valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1921        flushi(&valid_addr_bitmap_insn[0]);
1922}
1923
1924void __init mem_init(void)
1925{
1926        unsigned long codepages, datapages, initpages;
1927        unsigned long addr, last;
1928
1929        addr = PAGE_OFFSET + kern_base;
1930        last = PAGE_ALIGN(kern_size) + addr;
1931        while (addr < last) {
1932                set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1933                addr += PAGE_SIZE;
1934        }
1935
1936        setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1937        patch_tlb_miss_handler_bitmap();
1938
1939        high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1940
1941#ifdef CONFIG_NEED_MULTIPLE_NODES
1942        {
1943                int i;
1944                for_each_online_node(i) {
1945                        if (NODE_DATA(i)->node_spanned_pages != 0) {
1946                                totalram_pages +=
1947                                        free_all_bootmem_node(NODE_DATA(i));
1948                        }
1949                }
1950        }
1951#else
1952        totalram_pages = free_all_bootmem();
1953#endif
1954
1955        /* We subtract one to account for the mem_map_zero page
1956         * allocated below.
1957         */
1958        totalram_pages -= 1;
1959        num_physpages = totalram_pages;
1960
1961        /*
1962         * Set up the zero page, mark it reserved, so that page count
1963         * is not manipulated when freeing the page from user ptes.
1964         */
1965        mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1966        if (mem_map_zero == NULL) {
1967                prom_printf("paging_init: Cannot alloc zero page.\n");
1968                prom_halt();
1969        }
1970        SetPageReserved(mem_map_zero);
1971
1972        codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1973        codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1974        datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1975        datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1976        initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1977        initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1978
1979        printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1980               nr_free_pages() << (PAGE_SHIFT-10),
1981               codepages << (PAGE_SHIFT-10),
1982               datapages << (PAGE_SHIFT-10), 
1983               initpages << (PAGE_SHIFT-10), 
1984               PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1985
1986        if (tlb_type == cheetah || tlb_type == cheetah_plus)
1987                cheetah_ecache_flush_init();
1988}
1989
1990void free_initmem(void)
1991{
1992        unsigned long addr, initend;
1993        int do_free = 1;
1994
1995        /* If the physical memory maps were trimmed by kernel command
1996         * line options, don't even try freeing this initmem stuff up.
1997         * The kernel image could have been in the trimmed out region
1998         * and if so the freeing below will free invalid page structs.
1999         */
2000        if (cmdline_memory_size)
2001                do_free = 0;
2002
2003        /*
2004         * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2005         */
2006        addr = PAGE_ALIGN((unsigned long)(__init_begin));
2007        initend = (unsigned long)(__init_end) & PAGE_MASK;
2008        for (; addr < initend; addr += PAGE_SIZE) {
2009                unsigned long page;
2010                struct page *p;
2011
2012                page = (addr +
2013                        ((unsigned long) __va(kern_base)) -
2014                        ((unsigned long) KERNBASE));
2015                memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2016
2017                if (do_free) {
2018                        p = virt_to_page(page);
2019
2020                        ClearPageReserved(p);
2021                        init_page_count(p);
2022                        __free_page(p);
2023                        num_physpages++;
2024                        totalram_pages++;
2025                }
2026        }
2027}
2028
2029#ifdef CONFIG_BLK_DEV_INITRD
2030void free_initrd_mem(unsigned long start, unsigned long end)
2031{
2032        if (start < end)
2033                printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2034        for (; start < end; start += PAGE_SIZE) {
2035                struct page *p = virt_to_page(start);
2036
2037                ClearPageReserved(p);
2038                init_page_count(p);
2039                __free_page(p);
2040                num_physpages++;
2041                totalram_pages++;
2042        }
2043}
2044#endif
2045
2046#define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2047#define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2048#define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2049#define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2050#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2051#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2052
2053pgprot_t PAGE_KERNEL __read_mostly;
2054EXPORT_SYMBOL(PAGE_KERNEL);
2055
2056pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2057pgprot_t PAGE_COPY __read_mostly;
2058
2059pgprot_t PAGE_SHARED __read_mostly;
2060EXPORT_SYMBOL(PAGE_SHARED);
2061
2062unsigned long pg_iobits __read_mostly;
2063
2064unsigned long _PAGE_IE __read_mostly;
2065EXPORT_SYMBOL(_PAGE_IE);
2066
2067unsigned long _PAGE_E __read_mostly;
2068EXPORT_SYMBOL(_PAGE_E);
2069
2070unsigned long _PAGE_CACHE __read_mostly;
2071EXPORT_SYMBOL(_PAGE_CACHE);
2072
2073#ifdef CONFIG_SPARSEMEM_VMEMMAP
2074unsigned long vmemmap_table[VMEMMAP_SIZE];
2075
2076int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2077{
2078        unsigned long vstart = (unsigned long) start;
2079        unsigned long vend = (unsigned long) (start + nr);
2080        unsigned long phys_start = (vstart - VMEMMAP_BASE);
2081        unsigned long phys_end = (vend - VMEMMAP_BASE);
2082        unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2083        unsigned long end = VMEMMAP_ALIGN(phys_end);
2084        unsigned long pte_base;
2085
2086        pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2087                    _PAGE_CP_4U | _PAGE_CV_4U |
2088                    _PAGE_P_4U | _PAGE_W_4U);
2089        if (tlb_type == hypervisor)
2090                pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2091                            _PAGE_CP_4V | _PAGE_CV_4V |
2092                            _PAGE_P_4V | _PAGE_W_4V);
2093
2094        for (; addr < end; addr += VMEMMAP_CHUNK) {
2095                unsigned long *vmem_pp =
2096                        vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2097                void *block;
2098
2099                if (!(*vmem_pp & _PAGE_VALID)) {
2100                        block = vmemmap_alloc_block(1UL << 22, node);
2101                        if (!block)
2102                                return -ENOMEM;
2103
2104                        *vmem_pp = pte_base | __pa(block);
2105
2106                        printk(KERN_INFO "[%p-%p] page_structs=%lu "
2107                               "node=%d entry=%lu/%lu\n", start, block, nr,
2108                               node,
2109                               addr >> VMEMMAP_CHUNK_SHIFT,
2110                               VMEMMAP_SIZE);
2111                }
2112        }
2113        return 0;
2114}
2115#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2116
2117static void prot_init_common(unsigned long page_none,
2118                             unsigned long page_shared,
2119                             unsigned long page_copy,
2120                             unsigned long page_readonly,
2121                             unsigned long page_exec_bit)
2122{
2123        PAGE_COPY = __pgprot(page_copy);
2124        PAGE_SHARED = __pgprot(page_shared);
2125
2126        protection_map[0x0] = __pgprot(page_none);
2127        protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2128        protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2129        protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2130        protection_map[0x4] = __pgprot(page_readonly);
2131        protection_map[0x5] = __pgprot(page_readonly);
2132        protection_map[0x6] = __pgprot(page_copy);
2133        protection_map[0x7] = __pgprot(page_copy);
2134        protection_map[0x8] = __pgprot(page_none);
2135        protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2136        protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2137        protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2138        protection_map[0xc] = __pgprot(page_readonly);
2139        protection_map[0xd] = __pgprot(page_readonly);
2140        protection_map[0xe] = __pgprot(page_shared);
2141        protection_map[0xf] = __pgprot(page_shared);
2142}
2143
2144static void __init sun4u_pgprot_init(void)
2145{
2146        unsigned long page_none, page_shared, page_copy, page_readonly;
2147        unsigned long page_exec_bit;
2148
2149        PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2150                                _PAGE_CACHE_4U | _PAGE_P_4U |
2151                                __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2152                                _PAGE_EXEC_4U);
2153        PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2154                                       _PAGE_CACHE_4U | _PAGE_P_4U |
2155                                       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2156                                       _PAGE_EXEC_4U | _PAGE_L_4U);
2157
2158        _PAGE_IE = _PAGE_IE_4U;
2159        _PAGE_E = _PAGE_E_4U;
2160        _PAGE_CACHE = _PAGE_CACHE_4U;
2161
2162        pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2163                     __ACCESS_BITS_4U | _PAGE_E_4U);
2164
2165#ifdef CONFIG_DEBUG_PAGEALLOC
2166        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2167                0xfffff80000000000UL;
2168#else
2169        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2170                0xfffff80000000000UL;
2171#endif
2172        kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2173                                   _PAGE_P_4U | _PAGE_W_4U);
2174
2175        /* XXX Should use 256MB on Panther. XXX */
2176        kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2177
2178        _PAGE_SZBITS = _PAGE_SZBITS_4U;
2179        _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2180                              _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2181                              _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2182
2183
2184        page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2185        page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2186                       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2187        page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2188                       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2189        page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2190                           __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2191
2192        page_exec_bit = _PAGE_EXEC_4U;
2193
2194        prot_init_common(page_none, page_shared, page_copy, page_readonly,
2195                         page_exec_bit);
2196}
2197
2198static void __init sun4v_pgprot_init(void)
2199{
2200        unsigned long page_none, page_shared, page_copy, page_readonly;
2201        unsigned long page_exec_bit;
2202
2203        PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2204                                _PAGE_CACHE_4V | _PAGE_P_4V |
2205                                __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2206                                _PAGE_EXEC_4V);
2207        PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2208
2209        _PAGE_IE = _PAGE_IE_4V;
2210        _PAGE_E = _PAGE_E_4V;
2211        _PAGE_CACHE = _PAGE_CACHE_4V;
2212
2213#ifdef CONFIG_DEBUG_PAGEALLOC
2214        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2215                0xfffff80000000000UL;
2216#else
2217        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2218                0xfffff80000000000UL;
2219#endif
2220        kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2221                                   _PAGE_P_4V | _PAGE_W_4V);
2222
2223#ifdef CONFIG_DEBUG_PAGEALLOC
2224        kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2225                0xfffff80000000000UL;
2226#else
2227        kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2228                0xfffff80000000000UL;
2229#endif
2230        kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2231                                   _PAGE_P_4V | _PAGE_W_4V);
2232
2233        pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2234                     __ACCESS_BITS_4V | _PAGE_E_4V);
2235
2236        _PAGE_SZBITS = _PAGE_SZBITS_4V;
2237        _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2238                             _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2239                             _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2240                             _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2241
2242        page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2243        page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2244                       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2245        page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2246                       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2247        page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2248                         __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2249
2250        page_exec_bit = _PAGE_EXEC_4V;
2251
2252        prot_init_common(page_none, page_shared, page_copy, page_readonly,
2253                         page_exec_bit);
2254}
2255
2256unsigned long pte_sz_bits(unsigned long sz)
2257{
2258        if (tlb_type == hypervisor) {
2259                switch (sz) {
2260                case 8 * 1024:
2261                default:
2262                        return _PAGE_SZ8K_4V;
2263                case 64 * 1024:
2264                        return _PAGE_SZ64K_4V;
2265                case 512 * 1024:
2266                        return _PAGE_SZ512K_4V;
2267                case 4 * 1024 * 1024:
2268                        return _PAGE_SZ4MB_4V;
2269                };
2270        } else {
2271                switch (sz) {
2272                case 8 * 1024:
2273                default:
2274                        return _PAGE_SZ8K_4U;
2275                case 64 * 1024:
2276                        return _PAGE_SZ64K_4U;
2277                case 512 * 1024:
2278                        return _PAGE_SZ512K_4U;
2279                case 4 * 1024 * 1024:
2280                        return _PAGE_SZ4MB_4U;
2281                };
2282        }
2283}
2284
2285pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2286{
2287        pte_t pte;
2288
2289        pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2290        pte_val(pte) |= (((unsigned long)space) << 32);
2291        pte_val(pte) |= pte_sz_bits(page_size);
2292
2293        return pte;
2294}
2295
2296static unsigned long kern_large_tte(unsigned long paddr)
2297{
2298        unsigned long val;
2299
2300        val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2301               _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2302               _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2303        if (tlb_type == hypervisor)
2304                val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2305                       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2306                       _PAGE_EXEC_4V | _PAGE_W_4V);
2307
2308        return val | paddr;
2309}
2310
2311/* If not locked, zap it. */
2312void __flush_tlb_all(void)
2313{
2314        unsigned long pstate;
2315        int i;
2316
2317        __asm__ __volatile__("flushw\n\t"
2318                             "rdpr      %%pstate, %0\n\t"
2319                             "wrpr      %0, %1, %%pstate"
2320                             : "=r" (pstate)
2321                             : "i" (PSTATE_IE));
2322        if (tlb_type == hypervisor) {
2323                sun4v_mmu_demap_all();
2324        } else if (tlb_type == spitfire) {
2325                for (i = 0; i < 64; i++) {
2326                        /* Spitfire Errata #32 workaround */
2327                        /* NOTE: Always runs on spitfire, so no
2328                         *       cheetah+ page size encodings.
2329                         */
2330                        __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2331                                             "flush     %%g6"
2332                                             : /* No outputs */
2333                                             : "r" (0),
2334                                             "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2335
2336                        if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2337                                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2338                                                     "membar #Sync"
2339                                                     : /* no outputs */
2340                                                     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2341                                spitfire_put_dtlb_data(i, 0x0UL);
2342                        }
2343
2344                        /* Spitfire Errata #32 workaround */
2345                        /* NOTE: Always runs on spitfire, so no
2346                         *       cheetah+ page size encodings.
2347                         */
2348                        __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2349                                             "flush     %%g6"
2350                                             : /* No outputs */
2351                                             : "r" (0),
2352                                             "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2353
2354                        if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2355                                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2356                                                     "membar #Sync"
2357                                                     : /* no outputs */
2358                                                     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2359                                spitfire_put_itlb_data(i, 0x0UL);
2360                        }
2361                }
2362        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2363                cheetah_flush_dtlb_all();
2364                cheetah_flush_itlb_all();
2365        }
2366        __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2367                             : : "r" (pstate));
2368}
2369