linux/arch/tile/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 *
  14 * This file contains the functions and defines necessary to modify and use
  15 * the TILE page table tree.
  16 */
  17
  18#ifndef _ASM_TILE_PGTABLE_H
  19#define _ASM_TILE_PGTABLE_H
  20
  21#include <hv/hypervisor.h>
  22
  23#ifndef __ASSEMBLY__
  24
  25#include <linux/bitops.h>
  26#include <linux/threads.h>
  27#include <linux/slab.h>
  28#include <linux/list.h>
  29#include <linux/spinlock.h>
  30#include <asm/processor.h>
  31#include <asm/fixmap.h>
  32#include <asm/system.h>
  33
  34struct mm_struct;
  35struct vm_area_struct;
  36
  37/*
  38 * ZERO_PAGE is a global shared page that is always zero: used
  39 * for zero-mapped memory areas etc..
  40 */
  41extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
  42#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  43
  44extern pgd_t swapper_pg_dir[];
  45extern pgprot_t swapper_pgprot;
  46extern struct kmem_cache *pgd_cache;
  47extern spinlock_t pgd_lock;
  48extern struct list_head pgd_list;
  49
  50/*
  51 * The very last slots in the pgd_t are for addresses unusable by Linux
  52 * (pgd_addr_invalid() returns true).  So we use them for the list structure.
  53 * The x86 code we are modelled on uses the page->private/index fields
  54 * (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since
  55 * our pgds are so much smaller than a page, it seems a waste to
  56 * spend a whole page on each pgd.
  57 */
  58#define PGD_LIST_OFFSET \
  59  ((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head))
  60#define pgd_to_list(pgd) \
  61  ((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET))
  62#define list_to_pgd(list) \
  63  ((pgd_t *)((char *)(list) - PGD_LIST_OFFSET))
  64
  65extern void pgtable_cache_init(void);
  66extern void paging_init(void);
  67extern void set_page_homes(void);
  68
  69#define FIRST_USER_ADDRESS      0
  70
  71#define _PAGE_PRESENT           HV_PTE_PRESENT
  72#define _PAGE_HUGE_PAGE         HV_PTE_PAGE
  73#define _PAGE_READABLE          HV_PTE_READABLE
  74#define _PAGE_WRITABLE          HV_PTE_WRITABLE
  75#define _PAGE_EXECUTABLE        HV_PTE_EXECUTABLE
  76#define _PAGE_ACCESSED          HV_PTE_ACCESSED
  77#define _PAGE_DIRTY             HV_PTE_DIRTY
  78#define _PAGE_GLOBAL            HV_PTE_GLOBAL
  79#define _PAGE_USER              HV_PTE_USER
  80
  81/*
  82 * All the "standard" bits.  Cache-control bits are managed elsewhere.
  83 * This is used to test for valid level-2 page table pointers by checking
  84 * all the bits, and to mask away the cache control bits for mprotect.
  85 */
  86#define _PAGE_ALL (\
  87  _PAGE_PRESENT | \
  88  _PAGE_HUGE_PAGE | \
  89  _PAGE_READABLE | \
  90  _PAGE_WRITABLE | \
  91  _PAGE_EXECUTABLE | \
  92  _PAGE_ACCESSED | \
  93  _PAGE_DIRTY | \
  94  _PAGE_GLOBAL | \
  95  _PAGE_USER \
  96)
  97
  98#define PAGE_NONE \
  99        __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
 100#define PAGE_SHARED \
 101        __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
 102                 _PAGE_USER | _PAGE_ACCESSED)
 103
 104#define PAGE_SHARED_EXEC \
 105        __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
 106                 _PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED)
 107#define PAGE_COPY_NOEXEC \
 108        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
 109#define PAGE_COPY_EXEC \
 110        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
 111                 _PAGE_READABLE | _PAGE_EXECUTABLE)
 112#define PAGE_COPY \
 113        PAGE_COPY_NOEXEC
 114#define PAGE_READONLY \
 115        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
 116#define PAGE_READONLY_EXEC \
 117        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
 118                 _PAGE_READABLE | _PAGE_EXECUTABLE)
 119
 120#define _PAGE_KERNEL_RO \
 121 (_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED)
 122#define _PAGE_KERNEL \
 123 (_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY)
 124#define _PAGE_KERNEL_EXEC       (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE)
 125
 126#define PAGE_KERNEL             __pgprot(_PAGE_KERNEL)
 127#define PAGE_KERNEL_RO          __pgprot(_PAGE_KERNEL_RO)
 128#define PAGE_KERNEL_EXEC        __pgprot(_PAGE_KERNEL_EXEC)
 129
 130#define page_to_kpgprot(p) PAGE_KERNEL
 131
 132/*
 133 * We could tighten these up, but for now writable or executable
 134 * implies readable.
 135 */
 136#define __P000  PAGE_NONE
 137#define __P001  PAGE_READONLY
 138#define __P010  PAGE_COPY      /* this is write-only, which we won't support */
 139#define __P011  PAGE_COPY
 140#define __P100  PAGE_READONLY_EXEC
 141#define __P101  PAGE_READONLY_EXEC
 142#define __P110  PAGE_COPY_EXEC
 143#define __P111  PAGE_COPY_EXEC
 144
 145#define __S000  PAGE_NONE
 146#define __S001  PAGE_READONLY
 147#define __S010  PAGE_SHARED
 148#define __S011  PAGE_SHARED
 149#define __S100  PAGE_READONLY_EXEC
 150#define __S101  PAGE_READONLY_EXEC
 151#define __S110  PAGE_SHARED_EXEC
 152#define __S111  PAGE_SHARED_EXEC
 153
 154/*
 155 * All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT
 156 * and PAGE_HUGE_PAGE, which must be one and zero, respectively.
 157 * We set the ignored bits to zero.
 158 */
 159#define _PAGE_TABLE     _PAGE_PRESENT
 160
 161/* Inherit the caching flags from the old protection bits. */
 162#define pgprot_modify(oldprot, newprot) \
 163  (pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val }
 164
 165/* Just setting the PFN to zero suffices. */
 166#define pte_pgprot(x) hv_pte_set_pfn((x), 0)
 167
 168/*
 169 * For PTEs and PDEs, we must clear the Present bit first when
 170 * clearing a page table entry, so clear the bottom half first and
 171 * enforce ordering with a barrier.
 172 */
 173static inline void __pte_clear(pte_t *ptep)
 174{
 175#ifdef __tilegx__
 176        ptep->val = 0;
 177#else
 178        u32 *tmp = (u32 *)ptep;
 179        tmp[0] = 0;
 180        barrier();
 181        tmp[1] = 0;
 182#endif
 183}
 184#define pte_clear(mm, addr, ptep) __pte_clear(ptep)
 185
 186/*
 187 * The following only work if pte_present() is true.
 188 * Undefined behaviour if not..
 189 */
 190#define pte_present hv_pte_get_present
 191#define pte_user hv_pte_get_user
 192#define pte_read hv_pte_get_readable
 193#define pte_dirty hv_pte_get_dirty
 194#define pte_young hv_pte_get_accessed
 195#define pte_write hv_pte_get_writable
 196#define pte_exec hv_pte_get_executable
 197#define pte_huge hv_pte_get_page
 198#define pte_rdprotect hv_pte_clear_readable
 199#define pte_exprotect hv_pte_clear_executable
 200#define pte_mkclean hv_pte_clear_dirty
 201#define pte_mkold hv_pte_clear_accessed
 202#define pte_wrprotect hv_pte_clear_writable
 203#define pte_mksmall hv_pte_clear_page
 204#define pte_mkread hv_pte_set_readable
 205#define pte_mkexec hv_pte_set_executable
 206#define pte_mkdirty hv_pte_set_dirty
 207#define pte_mkyoung hv_pte_set_accessed
 208#define pte_mkwrite hv_pte_set_writable
 209#define pte_mkhuge hv_pte_set_page
 210
 211#define pte_special(pte) 0
 212#define pte_mkspecial(pte) (pte)
 213
 214/*
 215 * Use some spare bits in the PTE for user-caching tags.
 216 */
 217#define pte_set_forcecache hv_pte_set_client0
 218#define pte_get_forcecache hv_pte_get_client0
 219#define pte_clear_forcecache hv_pte_clear_client0
 220#define pte_set_anyhome hv_pte_set_client1
 221#define pte_get_anyhome hv_pte_get_client1
 222#define pte_clear_anyhome hv_pte_clear_client1
 223
 224/*
 225 * A migrating PTE has PAGE_PRESENT clear but all the other bits preserved.
 226 */
 227#define pte_migrating hv_pte_get_migrating
 228#define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x))
 229#define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x))
 230
 231#define pte_ERROR(e) \
 232        pr_err("%s:%d: bad pte 0x%016llx.\n", __FILE__, __LINE__, pte_val(e))
 233#define pgd_ERROR(e) \
 234        pr_err("%s:%d: bad pgd 0x%016llx.\n", __FILE__, __LINE__, pgd_val(e))
 235
 236/*
 237 * set_pte_order() sets the given PTE and also sanity-checks the
 238 * requested PTE against the page homecaching.  Unspecified parts
 239 * of the PTE are filled in when it is written to memory, i.e. all
 240 * caching attributes if "!forcecache", or the home cpu if "anyhome".
 241 */
 242extern void set_pte_order(pte_t *ptep, pte_t pte, int order);
 243
 244#define set_pte(ptep, pteval) set_pte_order(ptep, pteval, 0)
 245#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
 246#define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval)
 247
 248#define pte_page(x)             pfn_to_page(pte_pfn(x))
 249
 250static inline int pte_none(pte_t pte)
 251{
 252        return !pte.val;
 253}
 254
 255static inline unsigned long pte_pfn(pte_t pte)
 256{
 257        return hv_pte_get_pfn(pte);
 258}
 259
 260/* Set or get the remote cache cpu in a pgprot with remote caching. */
 261extern pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu);
 262extern int get_remote_cache_cpu(pgprot_t prot);
 263
 264static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
 265{
 266        return hv_pte_set_pfn(prot, pfn);
 267}
 268
 269/* Support for priority mappings. */
 270extern void start_mm_caching(struct mm_struct *mm);
 271extern void check_mm_caching(struct mm_struct *prev, struct mm_struct *next);
 272
 273/*
 274 * Support non-linear file mappings (see sys_remap_file_pages).
 275 * This is defined by CLIENT1 set but CLIENT0 and _PAGE_PRESENT clear, and the
 276 * file offset in the 32 high bits.
 277 */
 278#define _PAGE_FILE        HV_PTE_CLIENT1
 279#define PTE_FILE_MAX_BITS 32
 280#define pte_file(pte)     (hv_pte_get_client1(pte) && !hv_pte_get_client0(pte))
 281#define pte_to_pgoff(pte) ((pte).val >> 32)
 282#define pgoff_to_pte(off) ((pte_t) { (((long long)(off)) << 32) | _PAGE_FILE })
 283
 284/*
 285 * Encode and de-code a swap entry (see <linux/swapops.h>).
 286 * We put the swap file type+offset in the 32 high bits;
 287 * I believe we can just leave the low bits clear.
 288 */
 289#define __swp_type(swp)         ((swp).val & 0x1f)
 290#define __swp_offset(swp)       ((swp).val >> 5)
 291#define __swp_entry(type, off)  ((swp_entry_t) { (type) | ((off) << 5) })
 292#define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).val >> 32 })
 293#define __swp_entry_to_pte(swp) ((pte_t) { (((long long) ((swp).val)) << 32) })
 294
 295/*
 296 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
 297 *
 298 *  dst - pointer to pgd range anwhere on a pgd page
 299 *  src - ""
 300 *  count - the number of pgds to copy.
 301 *
 302 * dst and src can be on the same page, but the range must not overlap,
 303 * and must not cross a page boundary.
 304 */
 305static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
 306{
 307       memcpy(dst, src, count * sizeof(pgd_t));
 308}
 309
 310/*
 311 * Conversion functions: convert a page and protection to a page entry,
 312 * and a page entry and page directory to the page they refer to.
 313 */
 314
 315#define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
 316
 317/*
 318 * If we are doing an mprotect(), just accept the new vma->vm_page_prot
 319 * value and combine it with the PFN from the old PTE to get a new PTE.
 320 */
 321static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 322{
 323        return pfn_pte(hv_pte_get_pfn(pte), newprot);
 324}
 325
 326/*
 327 * The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
 328 *
 329 * This macro returns the index of the entry in the pgd page which would
 330 * control the given virtual address.
 331 */
 332#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
 333
 334/*
 335 * pgd_offset() returns a (pgd_t *)
 336 * pgd_index() is used get the offset into the pgd page's array of pgd_t's.
 337 */
 338#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
 339
 340/*
 341 * A shortcut which implies the use of the kernel's pgd, instead
 342 * of a process's.
 343 */
 344#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 345
 346#if defined(CONFIG_HIGHPTE)
 347extern pte_t *pte_offset_map(pmd_t *, unsigned long address);
 348#define pte_unmap(pte) kunmap_atomic(pte)
 349#else
 350#define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
 351#define pte_unmap(pte) do { } while (0)
 352#endif
 353
 354/* Clear a non-executable kernel PTE and flush it from the TLB. */
 355#define kpte_clear_flush(ptep, vaddr)           \
 356do {                                            \
 357        pte_clear(&init_mm, (vaddr), (ptep));   \
 358        local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \
 359} while (0)
 360
 361/*
 362 * The kernel page tables contain what we need, and we flush when we
 363 * change specific page table entries.
 364 */
 365#define update_mmu_cache(vma, address, pte) do { } while (0)
 366
 367#ifdef CONFIG_FLATMEM
 368#define kern_addr_valid(addr)   (1)
 369#endif /* CONFIG_FLATMEM */
 370
 371#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)         \
 372                remap_pfn_range(vma, vaddr, pfn, size, prot)
 373
 374extern void vmalloc_sync_all(void);
 375
 376#endif /* !__ASSEMBLY__ */
 377
 378#ifdef __tilegx__
 379#include <asm/pgtable_64.h>
 380#else
 381#include <asm/pgtable_32.h>
 382#endif
 383
 384#ifndef __ASSEMBLY__
 385
 386static inline int pmd_none(pmd_t pmd)
 387{
 388        /*
 389         * Only check low word on 32-bit platforms, since it might be
 390         * out of sync with upper half.
 391         */
 392        return (unsigned long)pmd_val(pmd) == 0;
 393}
 394
 395static inline int pmd_present(pmd_t pmd)
 396{
 397        return pmd_val(pmd) & _PAGE_PRESENT;
 398}
 399
 400static inline int pmd_bad(pmd_t pmd)
 401{
 402        return ((pmd_val(pmd) & _PAGE_ALL) != _PAGE_TABLE);
 403}
 404
 405static inline unsigned long pages_to_mb(unsigned long npg)
 406{
 407        return npg >> (20 - PAGE_SHIFT);
 408}
 409
 410/*
 411 * The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD]
 412 *
 413 * This function returns the index of the entry in the pmd which would
 414 * control the given virtual address.
 415 */
 416static inline unsigned long pmd_index(unsigned long address)
 417{
 418        return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
 419}
 420
 421/*
 422 * A given kernel pmd_t maps to a specific virtual address (either a
 423 * kernel huge page or a kernel pte_t table).  Since kernel pte_t
 424 * tables can be aligned at sub-page granularity, this function can
 425 * return non-page-aligned pointers, despite its name.
 426 */
 427static inline unsigned long pmd_page_vaddr(pmd_t pmd)
 428{
 429        phys_addr_t pa =
 430                (phys_addr_t)pmd_ptfn(pmd) << HV_LOG2_PAGE_TABLE_ALIGN;
 431        return (unsigned long)__va(pa);
 432}
 433
 434/*
 435 * A pmd_t points to the base of a huge page or to a pte_t array.
 436 * If a pte_t array, since we can have multiple per page, we don't
 437 * have a one-to-one mapping of pmd_t's to pages.  However, this is
 438 * OK for pte_lockptr(), since we just end up with potentially one
 439 * lock being used for several pte_t arrays.
 440 */
 441#define pmd_page(pmd) pfn_to_page(HV_PTFN_TO_PFN(pmd_ptfn(pmd)))
 442
 443/*
 444 * The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
 445 *
 446 * This macro returns the index of the entry in the pte page which would
 447 * control the given virtual address.
 448 */
 449static inline unsigned long pte_index(unsigned long address)
 450{
 451        return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
 452}
 453
 454static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
 455{
 456       return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
 457}
 458
 459static inline int pmd_huge_page(pmd_t pmd)
 460{
 461        return pmd_val(pmd) & _PAGE_HUGE_PAGE;
 462}
 463
 464#include <asm-generic/pgtable.h>
 465
 466/* Support /proc/NN/pgtable API. */
 467struct seq_file;
 468int arch_proc_pgtable_show(struct seq_file *m, struct mm_struct *mm,
 469                           unsigned long vaddr, pte_t *ptep, void **datap);
 470
 471#endif /* !__ASSEMBLY__ */
 472
 473#endif /* _ASM_TILE_PGTABLE_H */
 474