linux/arch/tile/mm/init.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1995  Linus Torvalds
   3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   4 *
   5 *   This program is free software; you can redistribute it and/or
   6 *   modify it under the terms of the GNU General Public License
   7 *   as published by the Free Software Foundation, version 2.
   8 *
   9 *   This program is distributed in the hope that it will be useful, but
  10 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12 *   NON INFRINGEMENT.  See the GNU General Public License for
  13 *   more details.
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/errno.h>
  21#include <linux/string.h>
  22#include <linux/types.h>
  23#include <linux/ptrace.h>
  24#include <linux/mman.h>
  25#include <linux/mm.h>
  26#include <linux/hugetlb.h>
  27#include <linux/swap.h>
  28#include <linux/smp.h>
  29#include <linux/init.h>
  30#include <linux/highmem.h>
  31#include <linux/pagemap.h>
  32#include <linux/poison.h>
  33#include <linux/bootmem.h>
  34#include <linux/slab.h>
  35#include <linux/proc_fs.h>
  36#include <linux/efi.h>
  37#include <linux/memory_hotplug.h>
  38#include <linux/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/processor.h>
  41#include <asm/system.h>
  42#include <asm/pgtable.h>
  43#include <asm/pgalloc.h>
  44#include <asm/dma.h>
  45#include <asm/fixmap.h>
  46#include <asm/tlb.h>
  47#include <asm/tlbflush.h>
  48#include <asm/sections.h>
  49#include <asm/setup.h>
  50#include <asm/homecache.h>
  51#include <hv/hypervisor.h>
  52#include <arch/chip.h>
  53
  54#include "migrate.h"
  55
  56/*
  57 * We could set FORCE_MAX_ZONEORDER to "(HPAGE_SHIFT - PAGE_SHIFT + 1)"
  58 * in the Tile Kconfig, but this generates configure warnings.
  59 * Do it here and force people to get it right to compile this file.
  60 * The problem is that with 4KB small pages and 16MB huge pages,
  61 * the default value doesn't allow us to group enough small pages
  62 * together to make up a huge page.
  63 */
  64#if CONFIG_FORCE_MAX_ZONEORDER < HPAGE_SHIFT - PAGE_SHIFT + 1
  65# error "Change FORCE_MAX_ZONEORDER in arch/tile/Kconfig to match page size"
  66#endif
  67
  68#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
  69
  70#ifndef __tilegx__
  71unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
  72#endif
  73
  74DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  75
  76/* Create an L2 page table */
  77static pte_t * __init alloc_pte(void)
  78{
  79        return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
  80}
  81
  82/*
  83 * L2 page tables per controller.  We allocate these all at once from
  84 * the bootmem allocator and store them here.  This saves on kernel L2
  85 * page table memory, compared to allocating a full 64K page per L2
  86 * page table, and also means that in cases where we use huge pages,
  87 * we are guaranteed to later be able to shatter those huge pages and
  88 * switch to using these page tables instead, without requiring
  89 * further allocation.  Each l2_ptes[] entry points to the first page
  90 * table for the first hugepage-size piece of memory on the
  91 * controller; other page tables are just indexed directly, i.e. the
  92 * L2 page tables are contiguous in memory for each controller.
  93 */
  94static pte_t *l2_ptes[MAX_NUMNODES];
  95static int num_l2_ptes[MAX_NUMNODES];
  96
  97static void init_prealloc_ptes(int node, int pages)
  98{
  99        BUG_ON(pages & (HV_L2_ENTRIES-1));
 100        if (pages) {
 101                num_l2_ptes[node] = pages;
 102                l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
 103                                                HV_PAGE_TABLE_ALIGN, 0);
 104        }
 105}
 106
 107pte_t *get_prealloc_pte(unsigned long pfn)
 108{
 109        int node = pfn_to_nid(pfn);
 110        pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
 111        BUG_ON(node >= MAX_NUMNODES);
 112        BUG_ON(pfn >= num_l2_ptes[node]);
 113        return &l2_ptes[node][pfn];
 114}
 115
 116/*
 117 * What caching do we expect pages from the heap to have when
 118 * they are allocated during bootup?  (Once we've installed the
 119 * "real" swapper_pg_dir.)
 120 */
 121static int initial_heap_home(void)
 122{
 123#if CHIP_HAS_CBOX_HOME_MAP()
 124        if (hash_default)
 125                return PAGE_HOME_HASH;
 126#endif
 127        return smp_processor_id();
 128}
 129
 130/*
 131 * Place a pointer to an L2 page table in a middle page
 132 * directory entry.
 133 */
 134static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
 135{
 136        phys_addr_t pa = __pa(page_table);
 137        unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
 138        pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
 139        BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
 140        pteval = pte_set_home(pteval, initial_heap_home());
 141        *(pte_t *)pmd = pteval;
 142        if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
 143                BUG();
 144}
 145
 146#ifdef __tilegx__
 147
 148#if HV_L1_SIZE != HV_L2_SIZE
 149# error Rework assumption that L1 and L2 page tables are same size.
 150#endif
 151
 152/* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
 153static inline pmd_t *alloc_pmd(void)
 154{
 155        return (pmd_t *)alloc_pte();
 156}
 157
 158static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
 159{
 160        assign_pte((pmd_t *)pud, (pte_t *)pmd);
 161}
 162
 163#endif /* __tilegx__ */
 164
 165/* Replace the given pmd with a full PTE table. */
 166void __init shatter_pmd(pmd_t *pmd)
 167{
 168        pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
 169        assign_pte(pmd, pte);
 170}
 171
 172#ifdef CONFIG_HIGHMEM
 173/*
 174 * This function initializes a certain range of kernel virtual memory
 175 * with new bootmem page tables, everywhere page tables are missing in
 176 * the given range.
 177 */
 178
 179/*
 180 * NOTE: The pagetables are allocated contiguous on the physical space
 181 * so we can cache the place of the first one and move around without
 182 * checking the pgd every time.
 183 */
 184static void __init page_table_range_init(unsigned long start,
 185                                         unsigned long end, pgd_t *pgd_base)
 186{
 187        pgd_t *pgd;
 188        int pgd_idx;
 189        unsigned long vaddr;
 190
 191        vaddr = start;
 192        pgd_idx = pgd_index(vaddr);
 193        pgd = pgd_base + pgd_idx;
 194
 195        for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
 196                pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
 197                if (pmd_none(*pmd))
 198                        assign_pte(pmd, alloc_pte());
 199                vaddr += PMD_SIZE;
 200        }
 201}
 202#endif /* CONFIG_HIGHMEM */
 203
 204
 205#if CHIP_HAS_CBOX_HOME_MAP()
 206
 207static int __initdata ktext_hash = 1;  /* .text pages */
 208static int __initdata kdata_hash = 1;  /* .data and .bss pages */
 209int __write_once hash_default = 1;     /* kernel allocator pages */
 210EXPORT_SYMBOL(hash_default);
 211int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
 212#endif /* CHIP_HAS_CBOX_HOME_MAP */
 213
 214/*
 215 * CPUs to use to for striping the pages of kernel data.  If hash-for-home
 216 * is available, this is only relevant if kcache_hash sets up the
 217 * .data and .bss to be page-homed, and we don't want the default mode
 218 * of using the full set of kernel cpus for the striping.
 219 */
 220static __initdata struct cpumask kdata_mask;
 221static __initdata int kdata_arg_seen;
 222
 223int __write_once kdata_huge;       /* if no homecaching, small pages */
 224
 225
 226/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
 227static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
 228{
 229        prot = pte_set_home(prot, home);
 230#if CHIP_HAS_CBOX_HOME_MAP()
 231        if (home == PAGE_HOME_IMMUTABLE) {
 232                if (ktext_hash)
 233                        prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
 234                else
 235                        prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
 236        }
 237#endif
 238        return prot;
 239}
 240
 241/*
 242 * For a given kernel data VA, how should it be cached?
 243 * We return the complete pgprot_t with caching bits set.
 244 */
 245static pgprot_t __init init_pgprot(ulong address)
 246{
 247        int cpu;
 248        unsigned long page;
 249        enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
 250
 251#if CHIP_HAS_CBOX_HOME_MAP()
 252        /* For kdata=huge, everything is just hash-for-home. */
 253        if (kdata_huge)
 254                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 255#endif
 256
 257        /* We map the aliased pages of permanent text inaccessible. */
 258        if (address < (ulong) _sinittext - CODE_DELTA)
 259                return PAGE_NONE;
 260
 261        /*
 262         * We map read-only data non-coherent for performance.  We could
 263         * use neighborhood caching on TILE64, but it's not clear it's a win.
 264         */
 265        if ((address >= (ulong) __start_rodata &&
 266             address < (ulong) __end_rodata) ||
 267            address == (ulong) empty_zero_page) {
 268                return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
 269        }
 270
 271        /* As a performance optimization, keep the boot init stack here. */
 272        if (address >= (ulong)&init_thread_union &&
 273            address < (ulong)&init_thread_union + THREAD_SIZE)
 274                return construct_pgprot(PAGE_KERNEL, smp_processor_id());
 275
 276#ifndef __tilegx__
 277#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
 278        /* Force the atomic_locks[] array page to be hash-for-home. */
 279        if (address == (ulong) atomic_locks)
 280                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 281#endif
 282#endif
 283
 284        /*
 285         * Everything else that isn't data or bss is heap, so mark it
 286         * with the initial heap home (hash-for-home, or this cpu).  This
 287         * includes any addresses after the loaded image and any address before
 288         * _einitdata, since we already captured the case of text before
 289         * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
 290         *
 291         * All the LOWMEM pages that we mark this way will get their
 292         * struct page homecache properly marked later, in set_page_homes().
 293         * The HIGHMEM pages we leave with a default zero for their
 294         * homes, but with a zero free_time we don't have to actually
 295         * do a flush action the first time we use them, either.
 296         */
 297        if (address >= (ulong) _end || address < (ulong) _einitdata)
 298                return construct_pgprot(PAGE_KERNEL, initial_heap_home());
 299
 300#if CHIP_HAS_CBOX_HOME_MAP()
 301        /* Use hash-for-home if requested for data/bss. */
 302        if (kdata_hash)
 303                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 304#endif
 305
 306        /*
 307         * Make the w1data homed like heap to start with, to avoid
 308         * making it part of the page-striped data area when we're just
 309         * going to convert it to read-only soon anyway.
 310         */
 311        if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
 312                return construct_pgprot(PAGE_KERNEL, initial_heap_home());
 313
 314        /*
 315         * Otherwise we just hand out consecutive cpus.  To avoid
 316         * requiring this function to hold state, we just walk forward from
 317         * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
 318         * the requested address, while walking cpu home around kdata_mask.
 319         * This is typically no more than a dozen or so iterations.
 320         */
 321        page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
 322        BUG_ON(address < page || address >= (ulong)_end);
 323        cpu = cpumask_first(&kdata_mask);
 324        for (; page < address; page += PAGE_SIZE) {
 325                if (page >= (ulong)&init_thread_union &&
 326                    page < (ulong)&init_thread_union + THREAD_SIZE)
 327                        continue;
 328                if (page == (ulong)empty_zero_page)
 329                        continue;
 330#ifndef __tilegx__
 331#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
 332                if (page == (ulong)atomic_locks)
 333                        continue;
 334#endif
 335#endif
 336                cpu = cpumask_next(cpu, &kdata_mask);
 337                if (cpu == NR_CPUS)
 338                        cpu = cpumask_first(&kdata_mask);
 339        }
 340        return construct_pgprot(PAGE_KERNEL, cpu);
 341}
 342
 343/*
 344 * This function sets up how we cache the kernel text.  If we have
 345 * hash-for-home support, normally that is used instead (see the
 346 * kcache_hash boot flag for more information).  But if we end up
 347 * using a page-based caching technique, this option sets up the
 348 * details of that.  In addition, the "ktext=nocache" option may
 349 * always be used to disable local caching of text pages, if desired.
 350 */
 351
 352static int __initdata ktext_arg_seen;
 353static int __initdata ktext_small;
 354static int __initdata ktext_local;
 355static int __initdata ktext_all;
 356static int __initdata ktext_nondataplane;
 357static int __initdata ktext_nocache;
 358static struct cpumask __initdata ktext_mask;
 359
 360static int __init setup_ktext(char *str)
 361{
 362        if (str == NULL)
 363                return -EINVAL;
 364
 365        /* If you have a leading "nocache", turn off ktext caching */
 366        if (strncmp(str, "nocache", 7) == 0) {
 367                ktext_nocache = 1;
 368                pr_info("ktext: disabling local caching of kernel text\n");
 369                str += 7;
 370                if (*str == ',')
 371                        ++str;
 372                if (*str == '\0')
 373                        return 0;
 374        }
 375
 376        ktext_arg_seen = 1;
 377
 378        /* Default setting on Tile64: use a huge page */
 379        if (strcmp(str, "huge") == 0)
 380                pr_info("ktext: using one huge locally cached page\n");
 381
 382        /* Pay TLB cost but get no cache benefit: cache small pages locally */
 383        else if (strcmp(str, "local") == 0) {
 384                ktext_small = 1;
 385                ktext_local = 1;
 386                pr_info("ktext: using small pages with local caching\n");
 387        }
 388
 389        /* Neighborhood cache ktext pages on all cpus. */
 390        else if (strcmp(str, "all") == 0) {
 391                ktext_small = 1;
 392                ktext_all = 1;
 393                pr_info("ktext: using maximal caching neighborhood\n");
 394        }
 395
 396
 397        /* Neighborhood ktext pages on specified mask */
 398        else if (cpulist_parse(str, &ktext_mask) == 0) {
 399                char buf[NR_CPUS * 5];
 400                cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
 401                if (cpumask_weight(&ktext_mask) > 1) {
 402                        ktext_small = 1;
 403                        pr_info("ktext: using caching neighborhood %s "
 404                               "with small pages\n", buf);
 405                } else {
 406                        pr_info("ktext: caching on cpu %s with one huge page\n",
 407                               buf);
 408                }
 409        }
 410
 411        else if (*str)
 412                return -EINVAL;
 413
 414        return 0;
 415}
 416
 417early_param("ktext", setup_ktext);
 418
 419
 420static inline pgprot_t ktext_set_nocache(pgprot_t prot)
 421{
 422        if (!ktext_nocache)
 423                prot = hv_pte_set_nc(prot);
 424#if CHIP_HAS_NC_AND_NOALLOC_BITS()
 425        else
 426                prot = hv_pte_set_no_alloc_l2(prot);
 427#endif
 428        return prot;
 429}
 430
 431#ifndef __tilegx__
 432static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 433{
 434        return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
 435}
 436#else
 437static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 438{
 439        pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
 440        if (pud_none(*pud))
 441                assign_pmd(pud, alloc_pmd());
 442        return pmd_offset(pud, va);
 443}
 444#endif
 445
 446/* Temporary page table we use for staging. */
 447static pgd_t pgtables[PTRS_PER_PGD]
 448 __attribute__((section(".init.page")));
 449
 450/*
 451 * This maps the physical memory to kernel virtual address space, a total
 452 * of max_low_pfn pages, by creating page tables starting from address
 453 * PAGE_OFFSET.
 454 *
 455 * This routine transitions us from using a set of compiled-in large
 456 * pages to using some more precise caching, including removing access
 457 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
 458 * marking read-only data as locally cacheable, striping the remaining
 459 * .data and .bss across all the available tiles, and removing access
 460 * to pages above the top of RAM (thus ensuring a page fault from a bad
 461 * virtual address rather than a hypervisor shoot down for accessing
 462 * memory outside the assigned limits).
 463 */
 464static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
 465{
 466        unsigned long address, pfn;
 467        pmd_t *pmd;
 468        pte_t *pte;
 469        int pte_ofs;
 470        const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
 471        struct cpumask kstripe_mask;
 472        int rc, i;
 473
 474#if CHIP_HAS_CBOX_HOME_MAP()
 475        if (ktext_arg_seen && ktext_hash) {
 476                pr_warning("warning: \"ktext\" boot argument ignored"
 477                           " if \"kcache_hash\" sets up text hash-for-home\n");
 478                ktext_small = 0;
 479        }
 480
 481        if (kdata_arg_seen && kdata_hash) {
 482                pr_warning("warning: \"kdata\" boot argument ignored"
 483                           " if \"kcache_hash\" sets up data hash-for-home\n");
 484        }
 485
 486        if (kdata_huge && !hash_default) {
 487                pr_warning("warning: disabling \"kdata=huge\"; requires"
 488                          " kcache_hash=all or =allbutstack\n");
 489                kdata_huge = 0;
 490        }
 491#endif
 492
 493        /*
 494         * Set up a mask for cpus to use for kernel striping.
 495         * This is normally all cpus, but minus dataplane cpus if any.
 496         * If the dataplane covers the whole chip, we stripe over
 497         * the whole chip too.
 498         */
 499        cpumask_copy(&kstripe_mask, cpu_possible_mask);
 500        if (!kdata_arg_seen)
 501                kdata_mask = kstripe_mask;
 502
 503        /* Allocate and fill in L2 page tables */
 504        for (i = 0; i < MAX_NUMNODES; ++i) {
 505#ifdef CONFIG_HIGHMEM
 506                unsigned long end_pfn = node_lowmem_end_pfn[i];
 507#else
 508                unsigned long end_pfn = node_end_pfn[i];
 509#endif
 510                unsigned long end_huge_pfn = 0;
 511
 512                /* Pre-shatter the last huge page to allow per-cpu pages. */
 513                if (kdata_huge)
 514                        end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
 515
 516                pfn = node_start_pfn[i];
 517
 518                /* Allocate enough memory to hold L2 page tables for node. */
 519                init_prealloc_ptes(i, end_pfn - pfn);
 520
 521                address = (unsigned long) pfn_to_kaddr(pfn);
 522                while (pfn < end_pfn) {
 523                        BUG_ON(address & (HPAGE_SIZE-1));
 524                        pmd = get_pmd(pgtables, address);
 525                        pte = get_prealloc_pte(pfn);
 526                        if (pfn < end_huge_pfn) {
 527                                pgprot_t prot = init_pgprot(address);
 528                                *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
 529                                for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 530                                     pfn++, pte_ofs++, address += PAGE_SIZE)
 531                                        pte[pte_ofs] = pfn_pte(pfn, prot);
 532                        } else {
 533                                if (kdata_huge)
 534                                        printk(KERN_DEBUG "pre-shattered huge"
 535                                               " page at %#lx\n", address);
 536                                for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 537                                     pfn++, pte_ofs++, address += PAGE_SIZE) {
 538                                        pgprot_t prot = init_pgprot(address);
 539                                        pte[pte_ofs] = pfn_pte(pfn, prot);
 540                                }
 541                                assign_pte(pmd, pte);
 542                        }
 543                }
 544        }
 545
 546        /*
 547         * Set or check ktext_map now that we have cpu_possible_mask
 548         * and kstripe_mask to work with.
 549         */
 550        if (ktext_all)
 551                cpumask_copy(&ktext_mask, cpu_possible_mask);
 552        else if (ktext_nondataplane)
 553                ktext_mask = kstripe_mask;
 554        else if (!cpumask_empty(&ktext_mask)) {
 555                /* Sanity-check any mask that was requested */
 556                struct cpumask bad;
 557                cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
 558                cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
 559                if (!cpumask_empty(&bad)) {
 560                        char buf[NR_CPUS * 5];
 561                        cpulist_scnprintf(buf, sizeof(buf), &bad);
 562                        pr_info("ktext: not using unavailable cpus %s\n", buf);
 563                }
 564                if (cpumask_empty(&ktext_mask)) {
 565                        pr_warning("ktext: no valid cpus; caching on %d.\n",
 566                                   smp_processor_id());
 567                        cpumask_copy(&ktext_mask,
 568                                     cpumask_of(smp_processor_id()));
 569                }
 570        }
 571
 572        address = MEM_SV_INTRPT;
 573        pmd = get_pmd(pgtables, address);
 574        if (ktext_small) {
 575                /* Allocate an L2 PTE for the kernel text */
 576                int cpu = 0;
 577                pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
 578                                                 PAGE_HOME_IMMUTABLE);
 579
 580                if (ktext_local) {
 581                        if (ktext_nocache)
 582                                prot = hv_pte_set_mode(prot,
 583                                                       HV_PTE_MODE_UNCACHED);
 584                        else
 585                                prot = hv_pte_set_mode(prot,
 586                                                       HV_PTE_MODE_CACHE_NO_L3);
 587                } else {
 588                        prot = hv_pte_set_mode(prot,
 589                                               HV_PTE_MODE_CACHE_TILE_L3);
 590                        cpu = cpumask_first(&ktext_mask);
 591
 592                        prot = ktext_set_nocache(prot);
 593                }
 594
 595                BUG_ON(address != (unsigned long)_stext);
 596                pfn = 0;  /* code starts at PA 0 */
 597                pte = alloc_pte();
 598                for (pte_ofs = 0; address < (unsigned long)_einittext;
 599                     pfn++, pte_ofs++, address += PAGE_SIZE) {
 600                        if (!ktext_local) {
 601                                prot = set_remote_cache_cpu(prot, cpu);
 602                                cpu = cpumask_next(cpu, &ktext_mask);
 603                                if (cpu == NR_CPUS)
 604                                        cpu = cpumask_first(&ktext_mask);
 605                        }
 606                        pte[pte_ofs] = pfn_pte(pfn, prot);
 607                }
 608                assign_pte(pmd, pte);
 609        } else {
 610                pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
 611                pteval = pte_mkhuge(pteval);
 612#if CHIP_HAS_CBOX_HOME_MAP()
 613                if (ktext_hash) {
 614                        pteval = hv_pte_set_mode(pteval,
 615                                                 HV_PTE_MODE_CACHE_HASH_L3);
 616                        pteval = ktext_set_nocache(pteval);
 617                } else
 618#endif /* CHIP_HAS_CBOX_HOME_MAP() */
 619                if (cpumask_weight(&ktext_mask) == 1) {
 620                        pteval = set_remote_cache_cpu(pteval,
 621                                              cpumask_first(&ktext_mask));
 622                        pteval = hv_pte_set_mode(pteval,
 623                                                 HV_PTE_MODE_CACHE_TILE_L3);
 624                        pteval = ktext_set_nocache(pteval);
 625                } else if (ktext_nocache)
 626                        pteval = hv_pte_set_mode(pteval,
 627                                                 HV_PTE_MODE_UNCACHED);
 628                else
 629                        pteval = hv_pte_set_mode(pteval,
 630                                                 HV_PTE_MODE_CACHE_NO_L3);
 631                *(pte_t *)pmd = pteval;
 632        }
 633
 634        /* Set swapper_pgprot here so it is flushed to memory right away. */
 635        swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
 636
 637        /*
 638         * Since we may be changing the caching of the stack and page
 639         * table itself, we invoke an assembly helper to do the
 640         * following steps:
 641         *
 642         *  - flush the cache so we start with an empty slate
 643         *  - install pgtables[] as the real page table
 644         *  - flush the TLB so the new page table takes effect
 645         */
 646        rc = flush_and_install_context(__pa(pgtables),
 647                                       init_pgprot((unsigned long)pgtables),
 648                                       __get_cpu_var(current_asid),
 649                                       cpumask_bits(my_cpu_mask));
 650        BUG_ON(rc != 0);
 651
 652        /* Copy the page table back to the normal swapper_pg_dir. */
 653        memcpy(pgd_base, pgtables, sizeof(pgtables));
 654        __install_page_table(pgd_base, __get_cpu_var(current_asid),
 655                             swapper_pgprot);
 656}
 657
 658/*
 659 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 660 * is valid. The argument is a physical page number.
 661 *
 662 * On Tile, the only valid things for which we can just hand out unchecked
 663 * PTEs are the kernel code and data.  Anything else might change its
 664 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
 665 * Note that init_thread_union is released to heap soon after boot,
 666 * so we include it in the init data.
 667 *
 668 * For TILE-Gx, we might want to consider allowing access to PA
 669 * regions corresponding to PCI space, etc.
 670 */
 671int devmem_is_allowed(unsigned long pagenr)
 672{
 673        return pagenr < kaddr_to_pfn(_end) &&
 674                !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
 675                  pagenr < kaddr_to_pfn(_einitdata)) &&
 676                !(pagenr >= kaddr_to_pfn(_sinittext) ||
 677                  pagenr <= kaddr_to_pfn(_einittext-1));
 678}
 679
 680#ifdef CONFIG_HIGHMEM
 681static void __init permanent_kmaps_init(pgd_t *pgd_base)
 682{
 683        pgd_t *pgd;
 684        pud_t *pud;
 685        pmd_t *pmd;
 686        pte_t *pte;
 687        unsigned long vaddr;
 688
 689        vaddr = PKMAP_BASE;
 690        page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
 691
 692        pgd = swapper_pg_dir + pgd_index(vaddr);
 693        pud = pud_offset(pgd, vaddr);
 694        pmd = pmd_offset(pud, vaddr);
 695        pte = pte_offset_kernel(pmd, vaddr);
 696        pkmap_page_table = pte;
 697}
 698#endif /* CONFIG_HIGHMEM */
 699
 700
 701static void __init init_free_pfn_range(unsigned long start, unsigned long end)
 702{
 703        unsigned long pfn;
 704        struct page *page = pfn_to_page(start);
 705
 706        for (pfn = start; pfn < end; ) {
 707                /* Optimize by freeing pages in large batches */
 708                int order = __ffs(pfn);
 709                int count, i;
 710                struct page *p;
 711
 712                if (order >= MAX_ORDER)
 713                        order = MAX_ORDER-1;
 714                count = 1 << order;
 715                while (pfn + count > end) {
 716                        count >>= 1;
 717                        --order;
 718                }
 719                for (p = page, i = 0; i < count; ++i, ++p) {
 720                        __ClearPageReserved(p);
 721                        /*
 722                         * Hacky direct set to avoid unnecessary
 723                         * lock take/release for EVERY page here.
 724                         */
 725                        p->_count.counter = 0;
 726                        p->_mapcount.counter = -1;
 727                }
 728                init_page_count(page);
 729                __free_pages(page, order);
 730                totalram_pages += count;
 731
 732                page += count;
 733                pfn += count;
 734        }
 735}
 736
 737static void __init set_non_bootmem_pages_init(void)
 738{
 739        struct zone *z;
 740        for_each_zone(z) {
 741                unsigned long start, end;
 742                int nid = z->zone_pgdat->node_id;
 743                int idx = zone_idx(z);
 744
 745                start = z->zone_start_pfn;
 746                if (start == 0)
 747                        continue;  /* bootmem */
 748                end = start + z->spanned_pages;
 749                if (idx == ZONE_NORMAL) {
 750                        BUG_ON(start != node_start_pfn[nid]);
 751                        start = node_free_pfn[nid];
 752                }
 753#ifdef CONFIG_HIGHMEM
 754                if (idx == ZONE_HIGHMEM)
 755                        totalhigh_pages += z->spanned_pages;
 756#endif
 757                if (kdata_huge) {
 758                        unsigned long percpu_pfn = node_percpu_pfn[nid];
 759                        if (start < percpu_pfn && end > percpu_pfn)
 760                                end = percpu_pfn;
 761                }
 762#ifdef CONFIG_PCI
 763                if (start <= pci_reserve_start_pfn &&
 764                    end > pci_reserve_start_pfn) {
 765                        if (end > pci_reserve_end_pfn)
 766                                init_free_pfn_range(pci_reserve_end_pfn, end);
 767                        end = pci_reserve_start_pfn;
 768                }
 769#endif
 770                init_free_pfn_range(start, end);
 771        }
 772}
 773
 774/*
 775 * paging_init() sets up the page tables - note that all of lowmem is
 776 * already mapped by head.S.
 777 */
 778void __init paging_init(void)
 779{
 780#ifdef CONFIG_HIGHMEM
 781        unsigned long vaddr, end;
 782#endif
 783#ifdef __tilegx__
 784        pud_t *pud;
 785#endif
 786        pgd_t *pgd_base = swapper_pg_dir;
 787
 788        kernel_physical_mapping_init(pgd_base);
 789
 790#ifdef CONFIG_HIGHMEM
 791        /*
 792         * Fixed mappings, only the page table structure has to be
 793         * created - mappings will be set by set_fixmap():
 794         */
 795        vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
 796        end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
 797        page_table_range_init(vaddr, end, pgd_base);
 798        permanent_kmaps_init(pgd_base);
 799#endif
 800
 801#ifdef __tilegx__
 802        /*
 803         * Since GX allocates just one pmd_t array worth of vmalloc space,
 804         * we go ahead and allocate it statically here, then share it
 805         * globally.  As a result we don't have to worry about any task
 806         * changing init_mm once we get up and running, and there's no
 807         * need for e.g. vmalloc_sync_all().
 808         */
 809        BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
 810        pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
 811        assign_pmd(pud, alloc_pmd());
 812#endif
 813}
 814
 815
 816/*
 817 * Walk the kernel page tables and derive the page_home() from
 818 * the PTEs, so that set_pte() can properly validate the caching
 819 * of all PTEs it sees.
 820 */
 821void __init set_page_homes(void)
 822{
 823}
 824
 825static void __init set_max_mapnr_init(void)
 826{
 827#ifdef CONFIG_FLATMEM
 828        max_mapnr = max_low_pfn;
 829#endif
 830}
 831
 832void __init mem_init(void)
 833{
 834        int codesize, datasize, initsize;
 835        int i;
 836#ifndef __tilegx__
 837        void *last;
 838#endif
 839
 840#ifdef CONFIG_FLATMEM
 841        if (!mem_map)
 842                BUG();
 843#endif
 844
 845#ifdef CONFIG_HIGHMEM
 846        /* check that fixmap and pkmap do not overlap */
 847        if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
 848                pr_err("fixmap and kmap areas overlap"
 849                       " - this will crash\n");
 850                pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
 851                       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
 852                       FIXADDR_START);
 853                BUG();
 854        }
 855#endif
 856
 857        set_max_mapnr_init();
 858
 859        /* this will put all bootmem onto the freelists */
 860        totalram_pages += free_all_bootmem();
 861
 862        /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
 863        set_non_bootmem_pages_init();
 864
 865        codesize =  (unsigned long)&_etext - (unsigned long)&_text;
 866        datasize =  (unsigned long)&_end - (unsigned long)&_sdata;
 867        initsize =  (unsigned long)&_einittext - (unsigned long)&_sinittext;
 868        initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
 869
 870        pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
 871                (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
 872                num_physpages << (PAGE_SHIFT-10),
 873                codesize >> 10,
 874                datasize >> 10,
 875                initsize >> 10,
 876                (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
 877               );
 878
 879        /*
 880         * In debug mode, dump some interesting memory mappings.
 881         */
 882#ifdef CONFIG_HIGHMEM
 883        printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
 884               FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
 885        printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
 886               PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
 887#endif
 888#ifdef CONFIG_HUGEVMAP
 889        printk(KERN_DEBUG "  HUGEMAP %#lx - %#lx\n",
 890               HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
 891#endif
 892        printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
 893               _VMALLOC_START, _VMALLOC_END - 1);
 894#ifdef __tilegx__
 895        for (i = MAX_NUMNODES-1; i >= 0; --i) {
 896                struct pglist_data *node = &node_data[i];
 897                if (node->node_present_pages) {
 898                        unsigned long start = (unsigned long)
 899                                pfn_to_kaddr(node->node_start_pfn);
 900                        unsigned long end = start +
 901                                (node->node_present_pages << PAGE_SHIFT);
 902                        printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
 903                               i, start, end - 1);
 904                }
 905        }
 906#else
 907        last = high_memory;
 908        for (i = MAX_NUMNODES-1; i >= 0; --i) {
 909                if ((unsigned long)vbase_map[i] != -1UL) {
 910                        printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
 911                               i, (unsigned long) (vbase_map[i]),
 912                               (unsigned long) (last-1));
 913                        last = vbase_map[i];
 914                }
 915        }
 916#endif
 917
 918#ifndef __tilegx__
 919        /*
 920         * Convert from using one lock for all atomic operations to
 921         * one per cpu.
 922         */
 923        __init_atomic_per_cpu();
 924#endif
 925}
 926
 927/*
 928 * this is for the non-NUMA, single node SMP system case.
 929 * Specifically, in the case of x86, we will always add
 930 * memory to the highmem for now.
 931 */
 932#ifndef CONFIG_NEED_MULTIPLE_NODES
 933int arch_add_memory(u64 start, u64 size)
 934{
 935        struct pglist_data *pgdata = &contig_page_data;
 936        struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
 937        unsigned long start_pfn = start >> PAGE_SHIFT;
 938        unsigned long nr_pages = size >> PAGE_SHIFT;
 939
 940        return __add_pages(zone, start_pfn, nr_pages);
 941}
 942
 943int remove_memory(u64 start, u64 size)
 944{
 945        return -EINVAL;
 946}
 947#endif
 948
 949struct kmem_cache *pgd_cache;
 950
 951void __init pgtable_cache_init(void)
 952{
 953        pgd_cache = kmem_cache_create("pgd",
 954                                PTRS_PER_PGD*sizeof(pgd_t),
 955                                PTRS_PER_PGD*sizeof(pgd_t),
 956                                0,
 957                                NULL);
 958        if (!pgd_cache)
 959                panic("pgtable_cache_init(): Cannot create pgd cache");
 960}
 961
 962#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
 963/*
 964 * The __w1data area holds data that is only written during initialization,
 965 * and is read-only and thus freely cacheable thereafter.  Fix the page
 966 * table entries that cover that region accordingly.
 967 */
 968static void mark_w1data_ro(void)
 969{
 970        /* Loop over page table entries */
 971        unsigned long addr = (unsigned long)__w1data_begin;
 972        BUG_ON((addr & (PAGE_SIZE-1)) != 0);
 973        for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
 974                unsigned long pfn = kaddr_to_pfn((void *)addr);
 975                pte_t *ptep = virt_to_pte(NULL, addr);
 976                BUG_ON(pte_huge(*ptep));   /* not relevant for kdata_huge */
 977                set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
 978        }
 979}
 980#endif
 981
 982#ifdef CONFIG_DEBUG_PAGEALLOC
 983static long __write_once initfree;
 984#else
 985static long __write_once initfree = 1;
 986#endif
 987
 988/* Select whether to free (1) or mark unusable (0) the __init pages. */
 989static int __init set_initfree(char *str)
 990{
 991        long val;
 992        if (strict_strtol(str, 0, &val)) {
 993                initfree = val;
 994                pr_info("initfree: %s free init pages\n",
 995                        initfree ? "will" : "won't");
 996        }
 997        return 1;
 998}
 999__setup("initfree=", set_initfree);
1000
1001static void free_init_pages(char *what, unsigned long begin, unsigned long end)
1002{
1003        unsigned long addr = (unsigned long) begin;
1004
1005        if (kdata_huge && !initfree) {
1006                pr_warning("Warning: ignoring initfree=0:"
1007                           " incompatible with kdata=huge\n");
1008                initfree = 1;
1009        }
1010        end = (end + PAGE_SIZE - 1) & PAGE_MASK;
1011        local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
1012        for (addr = begin; addr < end; addr += PAGE_SIZE) {
1013                /*
1014                 * Note we just reset the home here directly in the
1015                 * page table.  We know this is safe because our caller
1016                 * just flushed the caches on all the other cpus,
1017                 * and they won't be touching any of these pages.
1018                 */
1019                int pfn = kaddr_to_pfn((void *)addr);
1020                struct page *page = pfn_to_page(pfn);
1021                pte_t *ptep = virt_to_pte(NULL, addr);
1022                if (!initfree) {
1023                        /*
1024                         * If debugging page accesses then do not free
1025                         * this memory but mark them not present - any
1026                         * buggy init-section access will create a
1027                         * kernel page fault:
1028                         */
1029                        pte_clear(&init_mm, addr, ptep);
1030                        continue;
1031                }
1032                __ClearPageReserved(page);
1033                init_page_count(page);
1034                if (pte_huge(*ptep))
1035                        BUG_ON(!kdata_huge);
1036                else
1037                        set_pte_at(&init_mm, addr, ptep,
1038                                   pfn_pte(pfn, PAGE_KERNEL));
1039                memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1040                free_page(addr);
1041                totalram_pages++;
1042        }
1043        pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1044}
1045
1046void free_initmem(void)
1047{
1048        const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1049
1050        /*
1051         * Evict the dirty initdata on the boot cpu, evict the w1data
1052         * wherever it's homed, and evict all the init code everywhere.
1053         * We are guaranteed that no one will touch the init pages any
1054         * more, and although other cpus may be touching the w1data,
1055         * we only actually change the caching on tile64, which won't
1056         * be keeping local copies in the other tiles' caches anyway.
1057         */
1058        homecache_evict(&cpu_cacheable_map);
1059
1060        /* Free the data pages that we won't use again after init. */
1061        free_init_pages("unused kernel data",
1062                        (unsigned long)_sinitdata,
1063                        (unsigned long)_einitdata);
1064
1065        /*
1066         * Free the pages mapped from 0xc0000000 that correspond to code
1067         * pages from MEM_SV_INTRPT that we won't use again after init.
1068         */
1069        free_init_pages("unused kernel text",
1070                        (unsigned long)_sinittext - text_delta,
1071                        (unsigned long)_einittext - text_delta);
1072
1073#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1074        /*
1075         * Upgrade the .w1data section to globally cached.
1076         * We don't do this on tilepro, since the cache architecture
1077         * pretty much makes it irrelevant, and in any case we end
1078         * up having racing issues with other tiles that may touch
1079         * the data after we flush the cache but before we update
1080         * the PTEs and flush the TLBs, causing sharer shootdowns
1081         * later.  Even though this is to clean data, it seems like
1082         * an unnecessary complication.
1083         */
1084        mark_w1data_ro();
1085#endif
1086
1087        /* Do a global TLB flush so everyone sees the changes. */
1088        flush_tlb_all();
1089}
1090