linux/arch/x86/kernel/apb_timer.c
<<
>>
Prefs
   1/*
   2 * apb_timer.c: Driver for Langwell APB timers
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 * Author: Jacob Pan (jacob.jun.pan@intel.com)
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; version 2
  10 * of the License.
  11 *
  12 * Note:
  13 * Langwell is the south complex of Intel Moorestown MID platform. There are
  14 * eight external timers in total that can be used by the operating system.
  15 * The timer information, such as frequency and addresses, is provided to the
  16 * OS via SFI tables.
  17 * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
  18 * individual redirection table entries (RTE).
  19 * Unlike HPET, there is no master counter, therefore one of the timers are
  20 * used as clocksource. The overall allocation looks like:
  21 *  - timer 0 - NR_CPUs for per cpu timer
  22 *  - one timer for clocksource
  23 *  - one timer for watchdog driver.
  24 * It is also worth notice that APB timer does not support true one-shot mode,
  25 * free-running mode will be used here to emulate one-shot mode.
  26 * APB timer can also be used as broadcast timer along with per cpu local APIC
  27 * timer, but by default APB timer has higher rating than local APIC timers.
  28 */
  29
  30#include <linux/clocksource.h>
  31#include <linux/clockchips.h>
  32#include <linux/delay.h>
  33#include <linux/errno.h>
  34#include <linux/init.h>
  35#include <linux/sysdev.h>
  36#include <linux/slab.h>
  37#include <linux/pm.h>
  38#include <linux/pci.h>
  39#include <linux/sfi.h>
  40#include <linux/interrupt.h>
  41#include <linux/cpu.h>
  42#include <linux/irq.h>
  43
  44#include <asm/fixmap.h>
  45#include <asm/apb_timer.h>
  46#include <asm/mrst.h>
  47
  48#define APBT_MASK                       CLOCKSOURCE_MASK(32)
  49#define APBT_SHIFT                      22
  50#define APBT_CLOCKEVENT_RATING          110
  51#define APBT_CLOCKSOURCE_RATING         250
  52#define APBT_MIN_DELTA_USEC             200
  53
  54#define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt)
  55#define APBT_CLOCKEVENT0_NUM   (0)
  56#define APBT_CLOCKEVENT1_NUM   (1)
  57#define APBT_CLOCKSOURCE_NUM   (2)
  58
  59static unsigned long apbt_address;
  60static int apb_timer_block_enabled;
  61static void __iomem *apbt_virt_address;
  62static int phy_cs_timer_id;
  63
  64/*
  65 * Common DW APB timer info
  66 */
  67static uint64_t apbt_freq;
  68
  69static void apbt_set_mode(enum clock_event_mode mode,
  70                          struct clock_event_device *evt);
  71static int apbt_next_event(unsigned long delta,
  72                           struct clock_event_device *evt);
  73static cycle_t apbt_read_clocksource(struct clocksource *cs);
  74static void apbt_restart_clocksource(struct clocksource *cs);
  75
  76struct apbt_dev {
  77        struct clock_event_device evt;
  78        unsigned int num;
  79        int cpu;
  80        unsigned int irq;
  81        unsigned int tick;
  82        unsigned int count;
  83        unsigned int flags;
  84        char name[10];
  85};
  86
  87static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
  88
  89#ifdef CONFIG_SMP
  90static unsigned int apbt_num_timers_used;
  91static struct apbt_dev *apbt_devs;
  92#endif
  93
  94static  inline unsigned long apbt_readl_reg(unsigned long a)
  95{
  96        return readl(apbt_virt_address + a);
  97}
  98
  99static inline void apbt_writel_reg(unsigned long d, unsigned long a)
 100{
 101        writel(d, apbt_virt_address + a);
 102}
 103
 104static inline unsigned long apbt_readl(int n, unsigned long a)
 105{
 106        return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
 107}
 108
 109static inline void apbt_writel(int n, unsigned long d, unsigned long a)
 110{
 111        writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
 112}
 113
 114static inline void apbt_set_mapping(void)
 115{
 116        struct sfi_timer_table_entry *mtmr;
 117
 118        if (apbt_virt_address) {
 119                pr_debug("APBT base already mapped\n");
 120                return;
 121        }
 122        mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
 123        if (mtmr == NULL) {
 124                printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
 125                       APBT_CLOCKEVENT0_NUM);
 126                return;
 127        }
 128        apbt_address = (unsigned long)mtmr->phys_addr;
 129        if (!apbt_address) {
 130                printk(KERN_WARNING "No timer base from SFI, use default\n");
 131                apbt_address = APBT_DEFAULT_BASE;
 132        }
 133        apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
 134        if (apbt_virt_address) {
 135                pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
 136                         (void *)apbt_address, (void *)apbt_virt_address);
 137        } else {
 138                pr_debug("Failed mapping APBT phy address at %p\n",\
 139                         (void *)apbt_address);
 140                goto panic_noapbt;
 141        }
 142        apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
 143        sfi_free_mtmr(mtmr);
 144
 145        /* Now figure out the physical timer id for clocksource device */
 146        mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
 147        if (mtmr == NULL)
 148                goto panic_noapbt;
 149
 150        /* Now figure out the physical timer id */
 151        phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
 152                / APBTMRS_REG_SIZE;
 153        pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
 154        return;
 155
 156panic_noapbt:
 157        panic("Failed to setup APB system timer\n");
 158
 159}
 160
 161static inline void apbt_clear_mapping(void)
 162{
 163        iounmap(apbt_virt_address);
 164        apbt_virt_address = NULL;
 165}
 166
 167/*
 168 * APBT timer interrupt enable / disable
 169 */
 170static inline int is_apbt_capable(void)
 171{
 172        return apbt_virt_address ? 1 : 0;
 173}
 174
 175static struct clocksource clocksource_apbt = {
 176        .name           = "apbt",
 177        .rating         = APBT_CLOCKSOURCE_RATING,
 178        .read           = apbt_read_clocksource,
 179        .mask           = APBT_MASK,
 180        .shift          = APBT_SHIFT,
 181        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 182        .resume         = apbt_restart_clocksource,
 183};
 184
 185/* boot APB clock event device */
 186static struct clock_event_device apbt_clockevent = {
 187        .name           = "apbt0",
 188        .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 189        .set_mode       = apbt_set_mode,
 190        .set_next_event = apbt_next_event,
 191        .shift          = APBT_SHIFT,
 192        .irq            = 0,
 193        .rating         = APBT_CLOCKEVENT_RATING,
 194};
 195
 196/*
 197 * start count down from 0xffff_ffff. this is done by toggling the enable bit
 198 * then load initial load count to ~0.
 199 */
 200static void apbt_start_counter(int n)
 201{
 202        unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
 203
 204        ctrl &= ~APBTMR_CONTROL_ENABLE;
 205        apbt_writel(n, ctrl, APBTMR_N_CONTROL);
 206        apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
 207        /* enable, mask interrupt */
 208        ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
 209        ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
 210        apbt_writel(n, ctrl, APBTMR_N_CONTROL);
 211        /* read it once to get cached counter value initialized */
 212        apbt_read_clocksource(&clocksource_apbt);
 213}
 214
 215static irqreturn_t apbt_interrupt_handler(int irq, void *data)
 216{
 217        struct apbt_dev *dev = (struct apbt_dev *)data;
 218        struct clock_event_device *aevt = &dev->evt;
 219
 220        if (!aevt->event_handler) {
 221                printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
 222                       dev->num);
 223                return IRQ_NONE;
 224        }
 225        aevt->event_handler(aevt);
 226        return IRQ_HANDLED;
 227}
 228
 229static void apbt_restart_clocksource(struct clocksource *cs)
 230{
 231        apbt_start_counter(phy_cs_timer_id);
 232}
 233
 234static void apbt_enable_int(int n)
 235{
 236        unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
 237        /* clear pending intr */
 238        apbt_readl(n, APBTMR_N_EOI);
 239        ctrl &= ~APBTMR_CONTROL_INT;
 240        apbt_writel(n, ctrl, APBTMR_N_CONTROL);
 241}
 242
 243static void apbt_disable_int(int n)
 244{
 245        unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
 246
 247        ctrl |= APBTMR_CONTROL_INT;
 248        apbt_writel(n, ctrl, APBTMR_N_CONTROL);
 249}
 250
 251
 252static int __init apbt_clockevent_register(void)
 253{
 254        struct sfi_timer_table_entry *mtmr;
 255        struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
 256
 257        mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
 258        if (mtmr == NULL) {
 259                printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
 260                       APBT_CLOCKEVENT0_NUM);
 261                return -ENODEV;
 262        }
 263
 264        /*
 265         * We need to calculate the scaled math multiplication factor for
 266         * nanosecond to apbt tick conversion.
 267         * mult = (nsec/cycle)*2^APBT_SHIFT
 268         */
 269        apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
 270                                      , NSEC_PER_SEC, APBT_SHIFT);
 271
 272        /* Calculate the min / max delta */
 273        apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
 274                                                           &apbt_clockevent);
 275        apbt_clockevent.min_delta_ns = clockevent_delta2ns(
 276                APBT_MIN_DELTA_USEC*apbt_freq,
 277                &apbt_clockevent);
 278        /*
 279         * Start apbt with the boot cpu mask and make it
 280         * global if not used for per cpu timer.
 281         */
 282        apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
 283        adev->num = smp_processor_id();
 284        memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));
 285
 286        if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
 287                adev->evt.rating = APBT_CLOCKEVENT_RATING - 100;
 288                global_clock_event = &adev->evt;
 289                printk(KERN_DEBUG "%s clockevent registered as global\n",
 290                       global_clock_event->name);
 291        }
 292
 293        if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
 294                        IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
 295                        apbt_clockevent.name, adev)) {
 296                printk(KERN_ERR "Failed request IRQ for APBT%d\n",
 297                       apbt_clockevent.irq);
 298        }
 299
 300        clockevents_register_device(&adev->evt);
 301        /* Start APBT 0 interrupts */
 302        apbt_enable_int(APBT_CLOCKEVENT0_NUM);
 303
 304        sfi_free_mtmr(mtmr);
 305        return 0;
 306}
 307
 308#ifdef CONFIG_SMP
 309
 310static void apbt_setup_irq(struct apbt_dev *adev)
 311{
 312        /* timer0 irq has been setup early */
 313        if (adev->irq == 0)
 314                return;
 315
 316        irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
 317        irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
 318        /* APB timer irqs are set up as mp_irqs, timer is edge type */
 319        __set_irq_handler(adev->irq, handle_edge_irq, 0, "edge");
 320
 321        if (system_state == SYSTEM_BOOTING) {
 322                if (request_irq(adev->irq, apbt_interrupt_handler,
 323                                        IRQF_TIMER | IRQF_DISABLED |
 324                                        IRQF_NOBALANCING,
 325                                        adev->name, adev)) {
 326                        printk(KERN_ERR "Failed request IRQ for APBT%d\n",
 327                               adev->num);
 328                }
 329        } else
 330                enable_irq(adev->irq);
 331}
 332
 333/* Should be called with per cpu */
 334void apbt_setup_secondary_clock(void)
 335{
 336        struct apbt_dev *adev;
 337        struct clock_event_device *aevt;
 338        int cpu;
 339
 340        /* Don't register boot CPU clockevent */
 341        cpu = smp_processor_id();
 342        if (!cpu)
 343                return;
 344        /*
 345         * We need to calculate the scaled math multiplication factor for
 346         * nanosecond to apbt tick conversion.
 347         * mult = (nsec/cycle)*2^APBT_SHIFT
 348         */
 349        printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
 350        adev = &per_cpu(cpu_apbt_dev, cpu);
 351        aevt = &adev->evt;
 352
 353        memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
 354        aevt->cpumask = cpumask_of(cpu);
 355        aevt->name = adev->name;
 356        aevt->mode = CLOCK_EVT_MODE_UNUSED;
 357
 358        printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
 359               cpu, aevt->name, *(u32 *)aevt->cpumask);
 360
 361        apbt_setup_irq(adev);
 362
 363        clockevents_register_device(aevt);
 364
 365        apbt_enable_int(cpu);
 366
 367        return;
 368}
 369
 370/*
 371 * this notify handler process CPU hotplug events. in case of S0i3, nonboot
 372 * cpus are disabled/enabled frequently, for performance reasons, we keep the
 373 * per cpu timer irq registered so that we do need to do free_irq/request_irq.
 374 *
 375 * TODO: it might be more reliable to directly disable percpu clockevent device
 376 * without the notifier chain. currently, cpu 0 may get interrupts from other
 377 * cpu timers during the offline process due to the ordering of notification.
 378 * the extra interrupt is harmless.
 379 */
 380static int apbt_cpuhp_notify(struct notifier_block *n,
 381                             unsigned long action, void *hcpu)
 382{
 383        unsigned long cpu = (unsigned long)hcpu;
 384        struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
 385
 386        switch (action & 0xf) {
 387        case CPU_DEAD:
 388                disable_irq(adev->irq);
 389                apbt_disable_int(cpu);
 390                if (system_state == SYSTEM_RUNNING) {
 391                        pr_debug("skipping APBT CPU %lu offline\n", cpu);
 392                } else if (adev) {
 393                        pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
 394                        free_irq(adev->irq, adev);
 395                }
 396                break;
 397        default:
 398                pr_debug("APBT notified %lu, no action\n", action);
 399        }
 400        return NOTIFY_OK;
 401}
 402
 403static __init int apbt_late_init(void)
 404{
 405        if (mrst_timer_options == MRST_TIMER_LAPIC_APBT ||
 406                !apb_timer_block_enabled)
 407                return 0;
 408        /* This notifier should be called after workqueue is ready */
 409        hotcpu_notifier(apbt_cpuhp_notify, -20);
 410        return 0;
 411}
 412fs_initcall(apbt_late_init);
 413#else
 414
 415void apbt_setup_secondary_clock(void) {}
 416
 417#endif /* CONFIG_SMP */
 418
 419static void apbt_set_mode(enum clock_event_mode mode,
 420                          struct clock_event_device *evt)
 421{
 422        unsigned long ctrl;
 423        uint64_t delta;
 424        int timer_num;
 425        struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
 426
 427        BUG_ON(!apbt_virt_address);
 428
 429        timer_num = adev->num;
 430        pr_debug("%s CPU %d timer %d mode=%d\n",
 431                 __func__, first_cpu(*evt->cpumask), timer_num, mode);
 432
 433        switch (mode) {
 434        case CLOCK_EVT_MODE_PERIODIC:
 435                delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
 436                delta >>= apbt_clockevent.shift;
 437                ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
 438                ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
 439                apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 440                /*
 441                 * DW APB p. 46, have to disable timer before load counter,
 442                 * may cause sync problem.
 443                 */
 444                ctrl &= ~APBTMR_CONTROL_ENABLE;
 445                apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 446                udelay(1);
 447                pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
 448                apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
 449                ctrl |= APBTMR_CONTROL_ENABLE;
 450                apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 451                break;
 452                /* APB timer does not have one-shot mode, use free running mode */
 453        case CLOCK_EVT_MODE_ONESHOT:
 454                ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
 455                /*
 456                 * set free running mode, this mode will let timer reload max
 457                 * timeout which will give time (3min on 25MHz clock) to rearm
 458                 * the next event, therefore emulate the one-shot mode.
 459                 */
 460                ctrl &= ~APBTMR_CONTROL_ENABLE;
 461                ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
 462
 463                apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 464                /* write again to set free running mode */
 465                apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 466
 467                /*
 468                 * DW APB p. 46, load counter with all 1s before starting free
 469                 * running mode.
 470                 */
 471                apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
 472                ctrl &= ~APBTMR_CONTROL_INT;
 473                ctrl |= APBTMR_CONTROL_ENABLE;
 474                apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 475                break;
 476
 477        case CLOCK_EVT_MODE_UNUSED:
 478        case CLOCK_EVT_MODE_SHUTDOWN:
 479                apbt_disable_int(timer_num);
 480                ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
 481                ctrl &= ~APBTMR_CONTROL_ENABLE;
 482                apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 483                break;
 484
 485        case CLOCK_EVT_MODE_RESUME:
 486                apbt_enable_int(timer_num);
 487                break;
 488        }
 489}
 490
 491static int apbt_next_event(unsigned long delta,
 492                           struct clock_event_device *evt)
 493{
 494        unsigned long ctrl;
 495        int timer_num;
 496
 497        struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
 498
 499        timer_num = adev->num;
 500        /* Disable timer */
 501        ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
 502        ctrl &= ~APBTMR_CONTROL_ENABLE;
 503        apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 504        /* write new count */
 505        apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
 506        ctrl |= APBTMR_CONTROL_ENABLE;
 507        apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
 508        return 0;
 509}
 510
 511/*
 512 * APB timer clock is not in sync with pclk on Langwell, which translates to
 513 * unreliable read value caused by sampling error. the error does not add up
 514 * overtime and only happens when sampling a 0 as a 1 by mistake. so the time
 515 * would go backwards. the following code is trying to prevent time traveling
 516 * backwards. little bit paranoid.
 517 */
 518static cycle_t apbt_read_clocksource(struct clocksource *cs)
 519{
 520        unsigned long t0, t1, t2;
 521        static unsigned long last_read;
 522
 523bad_count:
 524        t1 = apbt_readl(phy_cs_timer_id,
 525                        APBTMR_N_CURRENT_VALUE);
 526        t2 = apbt_readl(phy_cs_timer_id,
 527                        APBTMR_N_CURRENT_VALUE);
 528        if (unlikely(t1 < t2)) {
 529                pr_debug("APBT: read current count error %lx:%lx:%lx\n",
 530                         t1, t2, t2 - t1);
 531                goto bad_count;
 532        }
 533        /*
 534         * check against cached last read, makes sure time does not go back.
 535         * it could be a normal rollover but we will do tripple check anyway
 536         */
 537        if (unlikely(t2 > last_read)) {
 538                /* check if we have a normal rollover */
 539                unsigned long raw_intr_status =
 540                        apbt_readl_reg(APBTMRS_RAW_INT_STATUS);
 541                /*
 542                 * cs timer interrupt is masked but raw intr bit is set if
 543                 * rollover occurs. then we read EOI reg to clear it.
 544                 */
 545                if (raw_intr_status & (1 << phy_cs_timer_id)) {
 546                        apbt_readl(phy_cs_timer_id, APBTMR_N_EOI);
 547                        goto out;
 548                }
 549                pr_debug("APB CS going back %lx:%lx:%lx ",
 550                         t2, last_read, t2 - last_read);
 551bad_count_x3:
 552                pr_debug("triple check enforced\n");
 553                t0 = apbt_readl(phy_cs_timer_id,
 554                                APBTMR_N_CURRENT_VALUE);
 555                udelay(1);
 556                t1 = apbt_readl(phy_cs_timer_id,
 557                                APBTMR_N_CURRENT_VALUE);
 558                udelay(1);
 559                t2 = apbt_readl(phy_cs_timer_id,
 560                                APBTMR_N_CURRENT_VALUE);
 561                if ((t2 > t1) || (t1 > t0)) {
 562                        printk(KERN_ERR "Error: APB CS tripple check failed\n");
 563                        goto bad_count_x3;
 564                }
 565        }
 566out:
 567        last_read = t2;
 568        return (cycle_t)~t2;
 569}
 570
 571static int apbt_clocksource_register(void)
 572{
 573        u64 start, now;
 574        cycle_t t1;
 575
 576        /* Start the counter, use timer 2 as source, timer 0/1 for event */
 577        apbt_start_counter(phy_cs_timer_id);
 578
 579        /* Verify whether apbt counter works */
 580        t1 = apbt_read_clocksource(&clocksource_apbt);
 581        rdtscll(start);
 582
 583        /*
 584         * We don't know the TSC frequency yet, but waiting for
 585         * 200000 TSC cycles is safe:
 586         * 4 GHz == 50us
 587         * 1 GHz == 200us
 588         */
 589        do {
 590                rep_nop();
 591                rdtscll(now);
 592        } while ((now - start) < 200000UL);
 593
 594        /* APBT is the only always on clocksource, it has to work! */
 595        if (t1 == apbt_read_clocksource(&clocksource_apbt))
 596                panic("APBT counter not counting. APBT disabled\n");
 597
 598        /*
 599         * initialize and register APBT clocksource
 600         * convert that to ns/clock cycle
 601         * mult = (ns/c) * 2^APBT_SHIFT
 602         */
 603        clocksource_apbt.mult = div_sc(MSEC_PER_SEC,
 604                                       (unsigned long) apbt_freq, APBT_SHIFT);
 605        clocksource_register(&clocksource_apbt);
 606
 607        return 0;
 608}
 609
 610/*
 611 * Early setup the APBT timer, only use timer 0 for booting then switch to
 612 * per CPU timer if possible.
 613 * returns 1 if per cpu apbt is setup
 614 * returns 0 if no per cpu apbt is chosen
 615 * panic if set up failed, this is the only platform timer on Moorestown.
 616 */
 617void __init apbt_time_init(void)
 618{
 619#ifdef CONFIG_SMP
 620        int i;
 621        struct sfi_timer_table_entry *p_mtmr;
 622        unsigned int percpu_timer;
 623        struct apbt_dev *adev;
 624#endif
 625
 626        if (apb_timer_block_enabled)
 627                return;
 628        apbt_set_mapping();
 629        if (apbt_virt_address) {
 630                pr_debug("Found APBT version 0x%lx\n",\
 631                         apbt_readl_reg(APBTMRS_COMP_VERSION));
 632        } else
 633                goto out_noapbt;
 634        /*
 635         * Read the frequency and check for a sane value, for ESL model
 636         * we extend the possible clock range to allow time scaling.
 637         */
 638
 639        if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
 640                pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
 641                goto out_noapbt;
 642        }
 643        if (apbt_clocksource_register()) {
 644                pr_debug("APBT has failed to register clocksource\n");
 645                goto out_noapbt;
 646        }
 647        if (!apbt_clockevent_register())
 648                apb_timer_block_enabled = 1;
 649        else {
 650                pr_debug("APBT has failed to register clockevent\n");
 651                goto out_noapbt;
 652        }
 653#ifdef CONFIG_SMP
 654        /* kernel cmdline disable apb timer, so we will use lapic timers */
 655        if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
 656                printk(KERN_INFO "apbt: disabled per cpu timer\n");
 657                return;
 658        }
 659        pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
 660        if (num_possible_cpus() <= sfi_mtimer_num) {
 661                percpu_timer = 1;
 662                apbt_num_timers_used = num_possible_cpus();
 663        } else {
 664                percpu_timer = 0;
 665                apbt_num_timers_used = 1;
 666                adev = &per_cpu(cpu_apbt_dev, 0);
 667                adev->flags &= ~APBT_DEV_USED;
 668        }
 669        pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
 670
 671        /* here we set up per CPU timer data structure */
 672        apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
 673                            GFP_KERNEL);
 674        if (!apbt_devs) {
 675                printk(KERN_ERR "Failed to allocate APB timer devices\n");
 676                return;
 677        }
 678        for (i = 0; i < apbt_num_timers_used; i++) {
 679                adev = &per_cpu(cpu_apbt_dev, i);
 680                adev->num = i;
 681                adev->cpu = i;
 682                p_mtmr = sfi_get_mtmr(i);
 683                if (p_mtmr) {
 684                        adev->tick = p_mtmr->freq_hz;
 685                        adev->irq = p_mtmr->irq;
 686                } else
 687                        printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
 688                adev->count = 0;
 689                sprintf(adev->name, "apbt%d", i);
 690        }
 691#endif
 692
 693        return;
 694
 695out_noapbt:
 696        apbt_clear_mapping();
 697        apb_timer_block_enabled = 0;
 698        panic("failed to enable APB timer\n");
 699}
 700
 701static inline void apbt_disable(int n)
 702{
 703        if (is_apbt_capable()) {
 704                unsigned long ctrl =  apbt_readl(n, APBTMR_N_CONTROL);
 705                ctrl &= ~APBTMR_CONTROL_ENABLE;
 706                apbt_writel(n, ctrl, APBTMR_N_CONTROL);
 707        }
 708}
 709
 710/* called before apb_timer_enable, use early map */
 711unsigned long apbt_quick_calibrate()
 712{
 713        int i, scale;
 714        u64 old, new;
 715        cycle_t t1, t2;
 716        unsigned long khz = 0;
 717        u32 loop, shift;
 718
 719        apbt_set_mapping();
 720        apbt_start_counter(phy_cs_timer_id);
 721
 722        /* check if the timer can count down, otherwise return */
 723        old = apbt_read_clocksource(&clocksource_apbt);
 724        i = 10000;
 725        while (--i) {
 726                if (old != apbt_read_clocksource(&clocksource_apbt))
 727                        break;
 728        }
 729        if (!i)
 730                goto failed;
 731
 732        /* count 16 ms */
 733        loop = (apbt_freq * 1000) << 4;
 734
 735        /* restart the timer to ensure it won't get to 0 in the calibration */
 736        apbt_start_counter(phy_cs_timer_id);
 737
 738        old = apbt_read_clocksource(&clocksource_apbt);
 739        old += loop;
 740
 741        t1 = __native_read_tsc();
 742
 743        do {
 744                new = apbt_read_clocksource(&clocksource_apbt);
 745        } while (new < old);
 746
 747        t2 = __native_read_tsc();
 748
 749        shift = 5;
 750        if (unlikely(loop >> shift == 0)) {
 751                printk(KERN_INFO
 752                       "APBT TSC calibration failed, not enough resolution\n");
 753                return 0;
 754        }
 755        scale = (int)div_u64((t2 - t1), loop >> shift);
 756        khz = (scale * apbt_freq * 1000) >> shift;
 757        printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
 758        return khz;
 759failed:
 760        return 0;
 761}
 762