linux/arch/x86/kernel/kvmclock.c
<<
>>
Prefs
   1/*  KVM paravirtual clock driver. A clocksource implementation
   2    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
   3
   4    This program is free software; you can redistribute it and/or modify
   5    it under the terms of the GNU General Public License as published by
   6    the Free Software Foundation; either version 2 of the License, or
   7    (at your option) any later version.
   8
   9    This program is distributed in the hope that it will be useful,
  10    but WITHOUT ANY WARRANTY; without even the implied warranty of
  11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12    GNU General Public License for more details.
  13
  14    You should have received a copy of the GNU General Public License
  15    along with this program; if not, write to the Free Software
  16    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17*/
  18
  19#include <linux/clocksource.h>
  20#include <linux/kvm_para.h>
  21#include <asm/pvclock.h>
  22#include <asm/msr.h>
  23#include <asm/apic.h>
  24#include <linux/percpu.h>
  25
  26#include <asm/x86_init.h>
  27#include <asm/reboot.h>
  28
  29#define KVM_SCALE 22
  30
  31static int kvmclock = 1;
  32static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
  33static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
  34
  35static int parse_no_kvmclock(char *arg)
  36{
  37        kvmclock = 0;
  38        return 0;
  39}
  40early_param("no-kvmclock", parse_no_kvmclock);
  41
  42/* The hypervisor will put information about time periodically here */
  43static DEFINE_PER_CPU_SHARED_ALIGNED(struct pvclock_vcpu_time_info, hv_clock);
  44static struct pvclock_wall_clock wall_clock;
  45
  46/*
  47 * The wallclock is the time of day when we booted. Since then, some time may
  48 * have elapsed since the hypervisor wrote the data. So we try to account for
  49 * that with system time
  50 */
  51static unsigned long kvm_get_wallclock(void)
  52{
  53        struct pvclock_vcpu_time_info *vcpu_time;
  54        struct timespec ts;
  55        int low, high;
  56
  57        low = (int)__pa_symbol(&wall_clock);
  58        high = ((u64)__pa_symbol(&wall_clock) >> 32);
  59
  60        native_write_msr(msr_kvm_wall_clock, low, high);
  61
  62        vcpu_time = &get_cpu_var(hv_clock);
  63        pvclock_read_wallclock(&wall_clock, vcpu_time, &ts);
  64        put_cpu_var(hv_clock);
  65
  66        return ts.tv_sec;
  67}
  68
  69static int kvm_set_wallclock(unsigned long now)
  70{
  71        return -1;
  72}
  73
  74static cycle_t kvm_clock_read(void)
  75{
  76        struct pvclock_vcpu_time_info *src;
  77        cycle_t ret;
  78
  79        src = &get_cpu_var(hv_clock);
  80        ret = pvclock_clocksource_read(src);
  81        put_cpu_var(hv_clock);
  82        return ret;
  83}
  84
  85static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
  86{
  87        return kvm_clock_read();
  88}
  89
  90/*
  91 * If we don't do that, there is the possibility that the guest
  92 * will calibrate under heavy load - thus, getting a lower lpj -
  93 * and execute the delays themselves without load. This is wrong,
  94 * because no delay loop can finish beforehand.
  95 * Any heuristics is subject to fail, because ultimately, a large
  96 * poll of guests can be running and trouble each other. So we preset
  97 * lpj here
  98 */
  99static unsigned long kvm_get_tsc_khz(void)
 100{
 101        struct pvclock_vcpu_time_info *src;
 102        src = &per_cpu(hv_clock, 0);
 103        return pvclock_tsc_khz(src);
 104}
 105
 106static void kvm_get_preset_lpj(void)
 107{
 108        unsigned long khz;
 109        u64 lpj;
 110
 111        khz = kvm_get_tsc_khz();
 112
 113        lpj = ((u64)khz * 1000);
 114        do_div(lpj, HZ);
 115        preset_lpj = lpj;
 116}
 117
 118static struct clocksource kvm_clock = {
 119        .name = "kvm-clock",
 120        .read = kvm_clock_get_cycles,
 121        .rating = 400,
 122        .mask = CLOCKSOURCE_MASK(64),
 123        .mult = 1 << KVM_SCALE,
 124        .shift = KVM_SCALE,
 125        .flags = CLOCK_SOURCE_IS_CONTINUOUS,
 126};
 127
 128int kvm_register_clock(char *txt)
 129{
 130        int cpu = smp_processor_id();
 131        int low, high, ret;
 132
 133        low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1;
 134        high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32);
 135        ret = native_write_msr_safe(msr_kvm_system_time, low, high);
 136        printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
 137               cpu, high, low, txt);
 138
 139        return ret;
 140}
 141
 142#ifdef CONFIG_X86_LOCAL_APIC
 143static void __cpuinit kvm_setup_secondary_clock(void)
 144{
 145        /*
 146         * Now that the first cpu already had this clocksource initialized,
 147         * we shouldn't fail.
 148         */
 149        WARN_ON(kvm_register_clock("secondary cpu clock"));
 150        /* ok, done with our trickery, call native */
 151        setup_secondary_APIC_clock();
 152}
 153#endif
 154
 155/*
 156 * After the clock is registered, the host will keep writing to the
 157 * registered memory location. If the guest happens to shutdown, this memory
 158 * won't be valid. In cases like kexec, in which you install a new kernel, this
 159 * means a random memory location will be kept being written. So before any
 160 * kind of shutdown from our side, we unregister the clock by writting anything
 161 * that does not have the 'enable' bit set in the msr
 162 */
 163#ifdef CONFIG_KEXEC
 164static void kvm_crash_shutdown(struct pt_regs *regs)
 165{
 166        native_write_msr(msr_kvm_system_time, 0, 0);
 167        native_machine_crash_shutdown(regs);
 168}
 169#endif
 170
 171static void kvm_shutdown(void)
 172{
 173        native_write_msr(msr_kvm_system_time, 0, 0);
 174        native_machine_shutdown();
 175}
 176
 177void __init kvmclock_init(void)
 178{
 179        if (!kvm_para_available())
 180                return;
 181
 182        if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
 183                msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
 184                msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
 185        } else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
 186                return;
 187
 188        printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
 189                msr_kvm_system_time, msr_kvm_wall_clock);
 190
 191        if (kvm_register_clock("boot clock"))
 192                return;
 193        pv_time_ops.sched_clock = kvm_clock_read;
 194        x86_platform.calibrate_tsc = kvm_get_tsc_khz;
 195        x86_platform.get_wallclock = kvm_get_wallclock;
 196        x86_platform.set_wallclock = kvm_set_wallclock;
 197#ifdef CONFIG_X86_LOCAL_APIC
 198        x86_cpuinit.setup_percpu_clockev =
 199                kvm_setup_secondary_clock;
 200#endif
 201        machine_ops.shutdown  = kvm_shutdown;
 202#ifdef CONFIG_KEXEC
 203        machine_ops.crash_shutdown  = kvm_crash_shutdown;
 204#endif
 205        kvm_get_preset_lpj();
 206        clocksource_register(&kvm_clock);
 207        pv_info.paravirt_enabled = 1;
 208        pv_info.name = "KVM";
 209
 210        if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
 211                pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
 212}
 213