linux/arch/x86/kernel/vm86_32.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1994  Linus Torvalds
   3 *
   4 *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
   5 *                stack - Manfred Spraul <manfred@colorfullife.com>
   6 *
   7 *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
   8 *                them correctly. Now the emulation will be in a
   9 *                consistent state after stackfaults - Kasper Dupont
  10 *                <kasperd@daimi.au.dk>
  11 *
  12 *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  13 *                <kasperd@daimi.au.dk>
  14 *
  15 *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  16 *                caused by Kasper Dupont's changes - Stas Sergeev
  17 *
  18 *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  19 *                Kasper Dupont <kasperd@daimi.au.dk>
  20 *
  21 *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  22 *                Kasper Dupont <kasperd@daimi.au.dk>
  23 *
  24 *   9 apr 2002 - Changed stack access macros to jump to a label
  25 *                instead of returning to userspace. This simplifies
  26 *                do_int, and is needed by handle_vm6_fault. Kasper
  27 *                Dupont <kasperd@daimi.au.dk>
  28 *
  29 */
  30
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/interrupt.h>
  34#include <linux/sched.h>
  35#include <linux/kernel.h>
  36#include <linux/signal.h>
  37#include <linux/string.h>
  38#include <linux/mm.h>
  39#include <linux/smp.h>
  40#include <linux/highmem.h>
  41#include <linux/ptrace.h>
  42#include <linux/audit.h>
  43#include <linux/stddef.h>
  44
  45#include <asm/uaccess.h>
  46#include <asm/io.h>
  47#include <asm/tlbflush.h>
  48#include <asm/irq.h>
  49#include <asm/syscalls.h>
  50
  51/*
  52 * Known problems:
  53 *
  54 * Interrupt handling is not guaranteed:
  55 * - a real x86 will disable all interrupts for one instruction
  56 *   after a "mov ss,xx" to make stack handling atomic even without
  57 *   the 'lss' instruction. We can't guarantee this in v86 mode,
  58 *   as the next instruction might result in a page fault or similar.
  59 * - a real x86 will have interrupts disabled for one instruction
  60 *   past the 'sti' that enables them. We don't bother with all the
  61 *   details yet.
  62 *
  63 * Let's hope these problems do not actually matter for anything.
  64 */
  65
  66
  67#define KVM86   ((struct kernel_vm86_struct *)regs)
  68#define VMPI    KVM86->vm86plus
  69
  70
  71/*
  72 * 8- and 16-bit register defines..
  73 */
  74#define AL(regs)        (((unsigned char *)&((regs)->pt.ax))[0])
  75#define AH(regs)        (((unsigned char *)&((regs)->pt.ax))[1])
  76#define IP(regs)        (*(unsigned short *)&((regs)->pt.ip))
  77#define SP(regs)        (*(unsigned short *)&((regs)->pt.sp))
  78
  79/*
  80 * virtual flags (16 and 32-bit versions)
  81 */
  82#define VFLAGS  (*(unsigned short *)&(current->thread.v86flags))
  83#define VEFLAGS (current->thread.v86flags)
  84
  85#define set_flags(X, new, mask) \
  86((X) = ((X) & ~(mask)) | ((new) & (mask)))
  87
  88#define SAFE_MASK       (0xDD5)
  89#define RETURN_MASK     (0xDFF)
  90
  91/* convert kernel_vm86_regs to vm86_regs */
  92static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
  93                                  const struct kernel_vm86_regs *regs)
  94{
  95        int ret = 0;
  96
  97        /*
  98         * kernel_vm86_regs is missing gs, so copy everything up to
  99         * (but not including) orig_eax, and then rest including orig_eax.
 100         */
 101        ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
 102        ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
 103                            sizeof(struct kernel_vm86_regs) -
 104                            offsetof(struct kernel_vm86_regs, pt.orig_ax));
 105
 106        return ret;
 107}
 108
 109/* convert vm86_regs to kernel_vm86_regs */
 110static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
 111                                    const struct vm86_regs __user *user,
 112                                    unsigned extra)
 113{
 114        int ret = 0;
 115
 116        /* copy ax-fs inclusive */
 117        ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
 118        /* copy orig_ax-__gsh+extra */
 119        ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
 120                              sizeof(struct kernel_vm86_regs) -
 121                              offsetof(struct kernel_vm86_regs, pt.orig_ax) +
 122                              extra);
 123        return ret;
 124}
 125
 126struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
 127{
 128        struct tss_struct *tss;
 129        struct pt_regs *ret;
 130        unsigned long tmp;
 131
 132        /*
 133         * This gets called from entry.S with interrupts disabled, but
 134         * from process context. Enable interrupts here, before trying
 135         * to access user space.
 136         */
 137        local_irq_enable();
 138
 139        if (!current->thread.vm86_info) {
 140                printk("no vm86_info: BAD\n");
 141                do_exit(SIGSEGV);
 142        }
 143        set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask);
 144        tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
 145        tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
 146        if (tmp) {
 147                printk("vm86: could not access userspace vm86_info\n");
 148                do_exit(SIGSEGV);
 149        }
 150
 151        tss = &per_cpu(init_tss, get_cpu());
 152        current->thread.sp0 = current->thread.saved_sp0;
 153        current->thread.sysenter_cs = __KERNEL_CS;
 154        load_sp0(tss, &current->thread);
 155        current->thread.saved_sp0 = 0;
 156        put_cpu();
 157
 158        ret = KVM86->regs32;
 159
 160        ret->fs = current->thread.saved_fs;
 161        set_user_gs(ret, current->thread.saved_gs);
 162
 163        return ret;
 164}
 165
 166static void mark_screen_rdonly(struct mm_struct *mm)
 167{
 168        pgd_t *pgd;
 169        pud_t *pud;
 170        pmd_t *pmd;
 171        pte_t *pte;
 172        spinlock_t *ptl;
 173        int i;
 174
 175        pgd = pgd_offset(mm, 0xA0000);
 176        if (pgd_none_or_clear_bad(pgd))
 177                goto out;
 178        pud = pud_offset(pgd, 0xA0000);
 179        if (pud_none_or_clear_bad(pud))
 180                goto out;
 181        pmd = pmd_offset(pud, 0xA0000);
 182        split_huge_page_pmd(mm, pmd);
 183        if (pmd_none_or_clear_bad(pmd))
 184                goto out;
 185        pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
 186        for (i = 0; i < 32; i++) {
 187                if (pte_present(*pte))
 188                        set_pte(pte, pte_wrprotect(*pte));
 189                pte++;
 190        }
 191        pte_unmap_unlock(pte, ptl);
 192out:
 193        flush_tlb();
 194}
 195
 196
 197
 198static int do_vm86_irq_handling(int subfunction, int irqnumber);
 199static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
 200
 201int sys_vm86old(struct vm86_struct __user *v86, struct pt_regs *regs)
 202{
 203        struct kernel_vm86_struct info; /* declare this _on top_,
 204                                         * this avoids wasting of stack space.
 205                                         * This remains on the stack until we
 206                                         * return to 32 bit user space.
 207                                         */
 208        struct task_struct *tsk;
 209        int tmp, ret = -EPERM;
 210
 211        tsk = current;
 212        if (tsk->thread.saved_sp0)
 213                goto out;
 214        tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
 215                                       offsetof(struct kernel_vm86_struct, vm86plus) -
 216                                       sizeof(info.regs));
 217        ret = -EFAULT;
 218        if (tmp)
 219                goto out;
 220        memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
 221        info.regs32 = regs;
 222        tsk->thread.vm86_info = v86;
 223        do_sys_vm86(&info, tsk);
 224        ret = 0;        /* we never return here */
 225out:
 226        return ret;
 227}
 228
 229
 230int sys_vm86(unsigned long cmd, unsigned long arg, struct pt_regs *regs)
 231{
 232        struct kernel_vm86_struct info; /* declare this _on top_,
 233                                         * this avoids wasting of stack space.
 234                                         * This remains on the stack until we
 235                                         * return to 32 bit user space.
 236                                         */
 237        struct task_struct *tsk;
 238        int tmp, ret;
 239        struct vm86plus_struct __user *v86;
 240
 241        tsk = current;
 242        switch (cmd) {
 243        case VM86_REQUEST_IRQ:
 244        case VM86_FREE_IRQ:
 245        case VM86_GET_IRQ_BITS:
 246        case VM86_GET_AND_RESET_IRQ:
 247                ret = do_vm86_irq_handling(cmd, (int)arg);
 248                goto out;
 249        case VM86_PLUS_INSTALL_CHECK:
 250                /*
 251                 * NOTE: on old vm86 stuff this will return the error
 252                 *  from access_ok(), because the subfunction is
 253                 *  interpreted as (invalid) address to vm86_struct.
 254                 *  So the installation check works.
 255                 */
 256                ret = 0;
 257                goto out;
 258        }
 259
 260        /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
 261        ret = -EPERM;
 262        if (tsk->thread.saved_sp0)
 263                goto out;
 264        v86 = (struct vm86plus_struct __user *)arg;
 265        tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
 266                                       offsetof(struct kernel_vm86_struct, regs32) -
 267                                       sizeof(info.regs));
 268        ret = -EFAULT;
 269        if (tmp)
 270                goto out;
 271        info.regs32 = regs;
 272        info.vm86plus.is_vm86pus = 1;
 273        tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
 274        do_sys_vm86(&info, tsk);
 275        ret = 0;        /* we never return here */
 276out:
 277        return ret;
 278}
 279
 280
 281static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
 282{
 283        struct tss_struct *tss;
 284/*
 285 * make sure the vm86() system call doesn't try to do anything silly
 286 */
 287        info->regs.pt.ds = 0;
 288        info->regs.pt.es = 0;
 289        info->regs.pt.fs = 0;
 290#ifndef CONFIG_X86_32_LAZY_GS
 291        info->regs.pt.gs = 0;
 292#endif
 293
 294/*
 295 * The flags register is also special: we cannot trust that the user
 296 * has set it up safely, so this makes sure interrupt etc flags are
 297 * inherited from protected mode.
 298 */
 299        VEFLAGS = info->regs.pt.flags;
 300        info->regs.pt.flags &= SAFE_MASK;
 301        info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
 302        info->regs.pt.flags |= X86_VM_MASK;
 303
 304        switch (info->cpu_type) {
 305        case CPU_286:
 306                tsk->thread.v86mask = 0;
 307                break;
 308        case CPU_386:
 309                tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 310                break;
 311        case CPU_486:
 312                tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 313                break;
 314        default:
 315                tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 316                break;
 317        }
 318
 319/*
 320 * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL)
 321 */
 322        info->regs32->ax = VM86_SIGNAL;
 323        tsk->thread.saved_sp0 = tsk->thread.sp0;
 324        tsk->thread.saved_fs = info->regs32->fs;
 325        tsk->thread.saved_gs = get_user_gs(info->regs32);
 326
 327        tss = &per_cpu(init_tss, get_cpu());
 328        tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
 329        if (cpu_has_sep)
 330                tsk->thread.sysenter_cs = 0;
 331        load_sp0(tss, &tsk->thread);
 332        put_cpu();
 333
 334        tsk->thread.screen_bitmap = info->screen_bitmap;
 335        if (info->flags & VM86_SCREEN_BITMAP)
 336                mark_screen_rdonly(tsk->mm);
 337
 338        /*call audit_syscall_exit since we do not exit via the normal paths */
 339        if (unlikely(current->audit_context))
 340                audit_syscall_exit(AUDITSC_RESULT(0), 0);
 341
 342        __asm__ __volatile__(
 343                "movl %0,%%esp\n\t"
 344                "movl %1,%%ebp\n\t"
 345#ifdef CONFIG_X86_32_LAZY_GS
 346                "mov  %2, %%gs\n\t"
 347#endif
 348                "jmp resume_userspace"
 349                : /* no outputs */
 350                :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
 351        /* we never return here */
 352}
 353
 354static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
 355{
 356        struct pt_regs *regs32;
 357
 358        regs32 = save_v86_state(regs16);
 359        regs32->ax = retval;
 360        __asm__ __volatile__("movl %0,%%esp\n\t"
 361                "movl %1,%%ebp\n\t"
 362                "jmp resume_userspace"
 363                : : "r" (regs32), "r" (current_thread_info()));
 364}
 365
 366static inline void set_IF(struct kernel_vm86_regs *regs)
 367{
 368        VEFLAGS |= X86_EFLAGS_VIF;
 369        if (VEFLAGS & X86_EFLAGS_VIP)
 370                return_to_32bit(regs, VM86_STI);
 371}
 372
 373static inline void clear_IF(struct kernel_vm86_regs *regs)
 374{
 375        VEFLAGS &= ~X86_EFLAGS_VIF;
 376}
 377
 378static inline void clear_TF(struct kernel_vm86_regs *regs)
 379{
 380        regs->pt.flags &= ~X86_EFLAGS_TF;
 381}
 382
 383static inline void clear_AC(struct kernel_vm86_regs *regs)
 384{
 385        regs->pt.flags &= ~X86_EFLAGS_AC;
 386}
 387
 388/*
 389 * It is correct to call set_IF(regs) from the set_vflags_*
 390 * functions. However someone forgot to call clear_IF(regs)
 391 * in the opposite case.
 392 * After the command sequence CLI PUSHF STI POPF you should
 393 * end up with interrupts disabled, but you ended up with
 394 * interrupts enabled.
 395 *  ( I was testing my own changes, but the only bug I
 396 *    could find was in a function I had not changed. )
 397 * [KD]
 398 */
 399
 400static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
 401{
 402        set_flags(VEFLAGS, flags, current->thread.v86mask);
 403        set_flags(regs->pt.flags, flags, SAFE_MASK);
 404        if (flags & X86_EFLAGS_IF)
 405                set_IF(regs);
 406        else
 407                clear_IF(regs);
 408}
 409
 410static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
 411{
 412        set_flags(VFLAGS, flags, current->thread.v86mask);
 413        set_flags(regs->pt.flags, flags, SAFE_MASK);
 414        if (flags & X86_EFLAGS_IF)
 415                set_IF(regs);
 416        else
 417                clear_IF(regs);
 418}
 419
 420static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
 421{
 422        unsigned long flags = regs->pt.flags & RETURN_MASK;
 423
 424        if (VEFLAGS & X86_EFLAGS_VIF)
 425                flags |= X86_EFLAGS_IF;
 426        flags |= X86_EFLAGS_IOPL;
 427        return flags | (VEFLAGS & current->thread.v86mask);
 428}
 429
 430static inline int is_revectored(int nr, struct revectored_struct *bitmap)
 431{
 432        __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
 433                :"=r" (nr)
 434                :"m" (*bitmap), "r" (nr));
 435        return nr;
 436}
 437
 438#define val_byte(val, n) (((__u8 *)&val)[n])
 439
 440#define pushb(base, ptr, val, err_label) \
 441        do { \
 442                __u8 __val = val; \
 443                ptr--; \
 444                if (put_user(__val, base + ptr) < 0) \
 445                        goto err_label; \
 446        } while (0)
 447
 448#define pushw(base, ptr, val, err_label) \
 449        do { \
 450                __u16 __val = val; \
 451                ptr--; \
 452                if (put_user(val_byte(__val, 1), base + ptr) < 0) \
 453                        goto err_label; \
 454                ptr--; \
 455                if (put_user(val_byte(__val, 0), base + ptr) < 0) \
 456                        goto err_label; \
 457        } while (0)
 458
 459#define pushl(base, ptr, val, err_label) \
 460        do { \
 461                __u32 __val = val; \
 462                ptr--; \
 463                if (put_user(val_byte(__val, 3), base + ptr) < 0) \
 464                        goto err_label; \
 465                ptr--; \
 466                if (put_user(val_byte(__val, 2), base + ptr) < 0) \
 467                        goto err_label; \
 468                ptr--; \
 469                if (put_user(val_byte(__val, 1), base + ptr) < 0) \
 470                        goto err_label; \
 471                ptr--; \
 472                if (put_user(val_byte(__val, 0), base + ptr) < 0) \
 473                        goto err_label; \
 474        } while (0)
 475
 476#define popb(base, ptr, err_label) \
 477        ({ \
 478                __u8 __res; \
 479                if (get_user(__res, base + ptr) < 0) \
 480                        goto err_label; \
 481                ptr++; \
 482                __res; \
 483        })
 484
 485#define popw(base, ptr, err_label) \
 486        ({ \
 487                __u16 __res; \
 488                if (get_user(val_byte(__res, 0), base + ptr) < 0) \
 489                        goto err_label; \
 490                ptr++; \
 491                if (get_user(val_byte(__res, 1), base + ptr) < 0) \
 492                        goto err_label; \
 493                ptr++; \
 494                __res; \
 495        })
 496
 497#define popl(base, ptr, err_label) \
 498        ({ \
 499                __u32 __res; \
 500                if (get_user(val_byte(__res, 0), base + ptr) < 0) \
 501                        goto err_label; \
 502                ptr++; \
 503                if (get_user(val_byte(__res, 1), base + ptr) < 0) \
 504                        goto err_label; \
 505                ptr++; \
 506                if (get_user(val_byte(__res, 2), base + ptr) < 0) \
 507                        goto err_label; \
 508                ptr++; \
 509                if (get_user(val_byte(__res, 3), base + ptr) < 0) \
 510                        goto err_label; \
 511                ptr++; \
 512                __res; \
 513        })
 514
 515/* There are so many possible reasons for this function to return
 516 * VM86_INTx, so adding another doesn't bother me. We can expect
 517 * userspace programs to be able to handle it. (Getting a problem
 518 * in userspace is always better than an Oops anyway.) [KD]
 519 */
 520static void do_int(struct kernel_vm86_regs *regs, int i,
 521    unsigned char __user *ssp, unsigned short sp)
 522{
 523        unsigned long __user *intr_ptr;
 524        unsigned long segoffs;
 525
 526        if (regs->pt.cs == BIOSSEG)
 527                goto cannot_handle;
 528        if (is_revectored(i, &KVM86->int_revectored))
 529                goto cannot_handle;
 530        if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
 531                goto cannot_handle;
 532        intr_ptr = (unsigned long __user *) (i << 2);
 533        if (get_user(segoffs, intr_ptr))
 534                goto cannot_handle;
 535        if ((segoffs >> 16) == BIOSSEG)
 536                goto cannot_handle;
 537        pushw(ssp, sp, get_vflags(regs), cannot_handle);
 538        pushw(ssp, sp, regs->pt.cs, cannot_handle);
 539        pushw(ssp, sp, IP(regs), cannot_handle);
 540        regs->pt.cs = segoffs >> 16;
 541        SP(regs) -= 6;
 542        IP(regs) = segoffs & 0xffff;
 543        clear_TF(regs);
 544        clear_IF(regs);
 545        clear_AC(regs);
 546        return;
 547
 548cannot_handle:
 549        return_to_32bit(regs, VM86_INTx + (i << 8));
 550}
 551
 552int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
 553{
 554        if (VMPI.is_vm86pus) {
 555                if ((trapno == 3) || (trapno == 1)) {
 556                        KVM86->regs32->ax = VM86_TRAP + (trapno << 8);
 557                        /* setting this flag forces the code in entry_32.S to
 558                           call save_v86_state() and change the stack pointer
 559                           to KVM86->regs32 */
 560                        set_thread_flag(TIF_IRET);
 561                        return 0;
 562                }
 563                do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
 564                return 0;
 565        }
 566        if (trapno != 1)
 567                return 1; /* we let this handle by the calling routine */
 568        current->thread.trap_no = trapno;
 569        current->thread.error_code = error_code;
 570        force_sig(SIGTRAP, current);
 571        return 0;
 572}
 573
 574void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
 575{
 576        unsigned char opcode;
 577        unsigned char __user *csp;
 578        unsigned char __user *ssp;
 579        unsigned short ip, sp, orig_flags;
 580        int data32, pref_done;
 581
 582#define CHECK_IF_IN_TRAP \
 583        if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
 584                newflags |= X86_EFLAGS_TF
 585#define VM86_FAULT_RETURN do { \
 586        if (VMPI.force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
 587                return_to_32bit(regs, VM86_PICRETURN); \
 588        if (orig_flags & X86_EFLAGS_TF) \
 589                handle_vm86_trap(regs, 0, 1); \
 590        return; } while (0)
 591
 592        orig_flags = *(unsigned short *)&regs->pt.flags;
 593
 594        csp = (unsigned char __user *) (regs->pt.cs << 4);
 595        ssp = (unsigned char __user *) (regs->pt.ss << 4);
 596        sp = SP(regs);
 597        ip = IP(regs);
 598
 599        data32 = 0;
 600        pref_done = 0;
 601        do {
 602                switch (opcode = popb(csp, ip, simulate_sigsegv)) {
 603                case 0x66:      /* 32-bit data */     data32 = 1; break;
 604                case 0x67:      /* 32-bit address */  break;
 605                case 0x2e:      /* CS */              break;
 606                case 0x3e:      /* DS */              break;
 607                case 0x26:      /* ES */              break;
 608                case 0x36:      /* SS */              break;
 609                case 0x65:      /* GS */              break;
 610                case 0x64:      /* FS */              break;
 611                case 0xf2:      /* repnz */       break;
 612                case 0xf3:      /* rep */             break;
 613                default: pref_done = 1;
 614                }
 615        } while (!pref_done);
 616
 617        switch (opcode) {
 618
 619        /* pushf */
 620        case 0x9c:
 621                if (data32) {
 622                        pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
 623                        SP(regs) -= 4;
 624                } else {
 625                        pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
 626                        SP(regs) -= 2;
 627                }
 628                IP(regs) = ip;
 629                VM86_FAULT_RETURN;
 630
 631        /* popf */
 632        case 0x9d:
 633                {
 634                unsigned long newflags;
 635                if (data32) {
 636                        newflags = popl(ssp, sp, simulate_sigsegv);
 637                        SP(regs) += 4;
 638                } else {
 639                        newflags = popw(ssp, sp, simulate_sigsegv);
 640                        SP(regs) += 2;
 641                }
 642                IP(regs) = ip;
 643                CHECK_IF_IN_TRAP;
 644                if (data32)
 645                        set_vflags_long(newflags, regs);
 646                else
 647                        set_vflags_short(newflags, regs);
 648
 649                VM86_FAULT_RETURN;
 650                }
 651
 652        /* int xx */
 653        case 0xcd: {
 654                int intno = popb(csp, ip, simulate_sigsegv);
 655                IP(regs) = ip;
 656                if (VMPI.vm86dbg_active) {
 657                        if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
 658                                return_to_32bit(regs, VM86_INTx + (intno << 8));
 659                }
 660                do_int(regs, intno, ssp, sp);
 661                return;
 662        }
 663
 664        /* iret */
 665        case 0xcf:
 666                {
 667                unsigned long newip;
 668                unsigned long newcs;
 669                unsigned long newflags;
 670                if (data32) {
 671                        newip = popl(ssp, sp, simulate_sigsegv);
 672                        newcs = popl(ssp, sp, simulate_sigsegv);
 673                        newflags = popl(ssp, sp, simulate_sigsegv);
 674                        SP(regs) += 12;
 675                } else {
 676                        newip = popw(ssp, sp, simulate_sigsegv);
 677                        newcs = popw(ssp, sp, simulate_sigsegv);
 678                        newflags = popw(ssp, sp, simulate_sigsegv);
 679                        SP(regs) += 6;
 680                }
 681                IP(regs) = newip;
 682                regs->pt.cs = newcs;
 683                CHECK_IF_IN_TRAP;
 684                if (data32) {
 685                        set_vflags_long(newflags, regs);
 686                } else {
 687                        set_vflags_short(newflags, regs);
 688                }
 689                VM86_FAULT_RETURN;
 690                }
 691
 692        /* cli */
 693        case 0xfa:
 694                IP(regs) = ip;
 695                clear_IF(regs);
 696                VM86_FAULT_RETURN;
 697
 698        /* sti */
 699        /*
 700         * Damn. This is incorrect: the 'sti' instruction should actually
 701         * enable interrupts after the /next/ instruction. Not good.
 702         *
 703         * Probably needs some horsing around with the TF flag. Aiee..
 704         */
 705        case 0xfb:
 706                IP(regs) = ip;
 707                set_IF(regs);
 708                VM86_FAULT_RETURN;
 709
 710        default:
 711                return_to_32bit(regs, VM86_UNKNOWN);
 712        }
 713
 714        return;
 715
 716simulate_sigsegv:
 717        /* FIXME: After a long discussion with Stas we finally
 718         *        agreed, that this is wrong. Here we should
 719         *        really send a SIGSEGV to the user program.
 720         *        But how do we create the correct context? We
 721         *        are inside a general protection fault handler
 722         *        and has just returned from a page fault handler.
 723         *        The correct context for the signal handler
 724         *        should be a mixture of the two, but how do we
 725         *        get the information? [KD]
 726         */
 727        return_to_32bit(regs, VM86_UNKNOWN);
 728}
 729
 730/* ---------------- vm86 special IRQ passing stuff ----------------- */
 731
 732#define VM86_IRQNAME            "vm86irq"
 733
 734static struct vm86_irqs {
 735        struct task_struct *tsk;
 736        int sig;
 737} vm86_irqs[16];
 738
 739static DEFINE_SPINLOCK(irqbits_lock);
 740static int irqbits;
 741
 742#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
 743        | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
 744        | (1 << SIGUNUSED))
 745
 746static irqreturn_t irq_handler(int intno, void *dev_id)
 747{
 748        int irq_bit;
 749        unsigned long flags;
 750
 751        spin_lock_irqsave(&irqbits_lock, flags);
 752        irq_bit = 1 << intno;
 753        if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
 754                goto out;
 755        irqbits |= irq_bit;
 756        if (vm86_irqs[intno].sig)
 757                send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
 758        /*
 759         * IRQ will be re-enabled when user asks for the irq (whether
 760         * polling or as a result of the signal)
 761         */
 762        disable_irq_nosync(intno);
 763        spin_unlock_irqrestore(&irqbits_lock, flags);
 764        return IRQ_HANDLED;
 765
 766out:
 767        spin_unlock_irqrestore(&irqbits_lock, flags);
 768        return IRQ_NONE;
 769}
 770
 771static inline void free_vm86_irq(int irqnumber)
 772{
 773        unsigned long flags;
 774
 775        free_irq(irqnumber, NULL);
 776        vm86_irqs[irqnumber].tsk = NULL;
 777
 778        spin_lock_irqsave(&irqbits_lock, flags);
 779        irqbits &= ~(1 << irqnumber);
 780        spin_unlock_irqrestore(&irqbits_lock, flags);
 781}
 782
 783void release_vm86_irqs(struct task_struct *task)
 784{
 785        int i;
 786        for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
 787            if (vm86_irqs[i].tsk == task)
 788                free_vm86_irq(i);
 789}
 790
 791static inline int get_and_reset_irq(int irqnumber)
 792{
 793        int bit;
 794        unsigned long flags;
 795        int ret = 0;
 796
 797        if (invalid_vm86_irq(irqnumber)) return 0;
 798        if (vm86_irqs[irqnumber].tsk != current) return 0;
 799        spin_lock_irqsave(&irqbits_lock, flags);
 800        bit = irqbits & (1 << irqnumber);
 801        irqbits &= ~bit;
 802        if (bit) {
 803                enable_irq(irqnumber);
 804                ret = 1;
 805        }
 806
 807        spin_unlock_irqrestore(&irqbits_lock, flags);
 808        return ret;
 809}
 810
 811
 812static int do_vm86_irq_handling(int subfunction, int irqnumber)
 813{
 814        int ret;
 815        switch (subfunction) {
 816                case VM86_GET_AND_RESET_IRQ: {
 817                        return get_and_reset_irq(irqnumber);
 818                }
 819                case VM86_GET_IRQ_BITS: {
 820                        return irqbits;
 821                }
 822                case VM86_REQUEST_IRQ: {
 823                        int sig = irqnumber >> 8;
 824                        int irq = irqnumber & 255;
 825                        if (!capable(CAP_SYS_ADMIN)) return -EPERM;
 826                        if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
 827                        if (invalid_vm86_irq(irq)) return -EPERM;
 828                        if (vm86_irqs[irq].tsk) return -EPERM;
 829                        ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
 830                        if (ret) return ret;
 831                        vm86_irqs[irq].sig = sig;
 832                        vm86_irqs[irq].tsk = current;
 833                        return irq;
 834                }
 835                case  VM86_FREE_IRQ: {
 836                        if (invalid_vm86_irq(irqnumber)) return -EPERM;
 837                        if (!vm86_irqs[irqnumber].tsk) return 0;
 838                        if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
 839                        free_vm86_irq(irqnumber);
 840                        return 0;
 841                }
 842        }
 843        return -EINVAL;
 844}
 845
 846