linux/arch/x86/kvm/i8254.c
<<
>>
Prefs
   1/*
   2 * 8253/8254 interval timer emulation
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 * Copyright (c) 2006 Intel Corporation
   6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
   7 * Copyright (c) 2008 Intel Corporation
   8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Permission is hereby granted, free of charge, to any person obtaining a copy
  11 * of this software and associated documentation files (the "Software"), to deal
  12 * in the Software without restriction, including without limitation the rights
  13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  14 * copies of the Software, and to permit persons to whom the Software is
  15 * furnished to do so, subject to the following conditions:
  16 *
  17 * The above copyright notice and this permission notice shall be included in
  18 * all copies or substantial portions of the Software.
  19 *
  20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  26 * THE SOFTWARE.
  27 *
  28 * Authors:
  29 *   Sheng Yang <sheng.yang@intel.com>
  30 *   Based on QEMU and Xen.
  31 */
  32
  33#define pr_fmt(fmt) "pit: " fmt
  34
  35#include <linux/kvm_host.h>
  36#include <linux/slab.h>
  37#include <linux/workqueue.h>
  38
  39#include "irq.h"
  40#include "i8254.h"
  41
  42#ifndef CONFIG_X86_64
  43#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
  44#else
  45#define mod_64(x, y) ((x) % (y))
  46#endif
  47
  48#define RW_STATE_LSB 1
  49#define RW_STATE_MSB 2
  50#define RW_STATE_WORD0 3
  51#define RW_STATE_WORD1 4
  52
  53/* Compute with 96 bit intermediate result: (a*b)/c */
  54static u64 muldiv64(u64 a, u32 b, u32 c)
  55{
  56        union {
  57                u64 ll;
  58                struct {
  59                        u32 low, high;
  60                } l;
  61        } u, res;
  62        u64 rl, rh;
  63
  64        u.ll = a;
  65        rl = (u64)u.l.low * (u64)b;
  66        rh = (u64)u.l.high * (u64)b;
  67        rh += (rl >> 32);
  68        res.l.high = div64_u64(rh, c);
  69        res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
  70        return res.ll;
  71}
  72
  73static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
  74{
  75        struct kvm_kpit_channel_state *c =
  76                &kvm->arch.vpit->pit_state.channels[channel];
  77
  78        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  79
  80        switch (c->mode) {
  81        default:
  82        case 0:
  83        case 4:
  84                /* XXX: just disable/enable counting */
  85                break;
  86        case 1:
  87        case 2:
  88        case 3:
  89        case 5:
  90                /* Restart counting on rising edge. */
  91                if (c->gate < val)
  92                        c->count_load_time = ktime_get();
  93                break;
  94        }
  95
  96        c->gate = val;
  97}
  98
  99static int pit_get_gate(struct kvm *kvm, int channel)
 100{
 101        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
 102
 103        return kvm->arch.vpit->pit_state.channels[channel].gate;
 104}
 105
 106static s64 __kpit_elapsed(struct kvm *kvm)
 107{
 108        s64 elapsed;
 109        ktime_t remaining;
 110        struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
 111
 112        if (!ps->pit_timer.period)
 113                return 0;
 114
 115        /*
 116         * The Counter does not stop when it reaches zero. In
 117         * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
 118         * the highest count, either FFFF hex for binary counting
 119         * or 9999 for BCD counting, and continues counting.
 120         * Modes 2 and 3 are periodic; the Counter reloads
 121         * itself with the initial count and continues counting
 122         * from there.
 123         */
 124        remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
 125        elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
 126        elapsed = mod_64(elapsed, ps->pit_timer.period);
 127
 128        return elapsed;
 129}
 130
 131static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
 132                        int channel)
 133{
 134        if (channel == 0)
 135                return __kpit_elapsed(kvm);
 136
 137        return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
 138}
 139
 140static int pit_get_count(struct kvm *kvm, int channel)
 141{
 142        struct kvm_kpit_channel_state *c =
 143                &kvm->arch.vpit->pit_state.channels[channel];
 144        s64 d, t;
 145        int counter;
 146
 147        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
 148
 149        t = kpit_elapsed(kvm, c, channel);
 150        d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
 151
 152        switch (c->mode) {
 153        case 0:
 154        case 1:
 155        case 4:
 156        case 5:
 157                counter = (c->count - d) & 0xffff;
 158                break;
 159        case 3:
 160                /* XXX: may be incorrect for odd counts */
 161                counter = c->count - (mod_64((2 * d), c->count));
 162                break;
 163        default:
 164                counter = c->count - mod_64(d, c->count);
 165                break;
 166        }
 167        return counter;
 168}
 169
 170static int pit_get_out(struct kvm *kvm, int channel)
 171{
 172        struct kvm_kpit_channel_state *c =
 173                &kvm->arch.vpit->pit_state.channels[channel];
 174        s64 d, t;
 175        int out;
 176
 177        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
 178
 179        t = kpit_elapsed(kvm, c, channel);
 180        d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
 181
 182        switch (c->mode) {
 183        default:
 184        case 0:
 185                out = (d >= c->count);
 186                break;
 187        case 1:
 188                out = (d < c->count);
 189                break;
 190        case 2:
 191                out = ((mod_64(d, c->count) == 0) && (d != 0));
 192                break;
 193        case 3:
 194                out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
 195                break;
 196        case 4:
 197        case 5:
 198                out = (d == c->count);
 199                break;
 200        }
 201
 202        return out;
 203}
 204
 205static void pit_latch_count(struct kvm *kvm, int channel)
 206{
 207        struct kvm_kpit_channel_state *c =
 208                &kvm->arch.vpit->pit_state.channels[channel];
 209
 210        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
 211
 212        if (!c->count_latched) {
 213                c->latched_count = pit_get_count(kvm, channel);
 214                c->count_latched = c->rw_mode;
 215        }
 216}
 217
 218static void pit_latch_status(struct kvm *kvm, int channel)
 219{
 220        struct kvm_kpit_channel_state *c =
 221                &kvm->arch.vpit->pit_state.channels[channel];
 222
 223        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
 224
 225        if (!c->status_latched) {
 226                /* TODO: Return NULL COUNT (bit 6). */
 227                c->status = ((pit_get_out(kvm, channel) << 7) |
 228                                (c->rw_mode << 4) |
 229                                (c->mode << 1) |
 230                                c->bcd);
 231                c->status_latched = 1;
 232        }
 233}
 234
 235static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
 236{
 237        struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
 238                                                 irq_ack_notifier);
 239        int value;
 240
 241        spin_lock(&ps->inject_lock);
 242        value = atomic_dec_return(&ps->pit_timer.pending);
 243        if (value < 0)
 244                /* spurious acks can be generated if, for example, the
 245                 * PIC is being reset.  Handle it gracefully here
 246                 */
 247                atomic_inc(&ps->pit_timer.pending);
 248        else if (value > 0)
 249                /* in this case, we had multiple outstanding pit interrupts
 250                 * that we needed to inject.  Reinject
 251                 */
 252                queue_work(ps->pit->wq, &ps->pit->expired);
 253        ps->irq_ack = 1;
 254        spin_unlock(&ps->inject_lock);
 255}
 256
 257void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
 258{
 259        struct kvm_pit *pit = vcpu->kvm->arch.vpit;
 260        struct hrtimer *timer;
 261
 262        if (!kvm_vcpu_is_bsp(vcpu) || !pit)
 263                return;
 264
 265        timer = &pit->pit_state.pit_timer.timer;
 266        if (hrtimer_cancel(timer))
 267                hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
 268}
 269
 270static void destroy_pit_timer(struct kvm_pit *pit)
 271{
 272        hrtimer_cancel(&pit->pit_state.pit_timer.timer);
 273        cancel_work_sync(&pit->expired);
 274}
 275
 276static bool kpit_is_periodic(struct kvm_timer *ktimer)
 277{
 278        struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
 279                                                 pit_timer);
 280        return ps->is_periodic;
 281}
 282
 283static struct kvm_timer_ops kpit_ops = {
 284        .is_periodic = kpit_is_periodic,
 285};
 286
 287static void pit_do_work(struct work_struct *work)
 288{
 289        struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
 290        struct kvm *kvm = pit->kvm;
 291        struct kvm_vcpu *vcpu;
 292        int i;
 293        struct kvm_kpit_state *ps = &pit->pit_state;
 294        int inject = 0;
 295
 296        /* Try to inject pending interrupts when
 297         * last one has been acked.
 298         */
 299        spin_lock(&ps->inject_lock);
 300        if (ps->irq_ack) {
 301                ps->irq_ack = 0;
 302                inject = 1;
 303        }
 304        spin_unlock(&ps->inject_lock);
 305        if (inject) {
 306                kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
 307                kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
 308
 309                /*
 310                 * Provides NMI watchdog support via Virtual Wire mode.
 311                 * The route is: PIT -> PIC -> LVT0 in NMI mode.
 312                 *
 313                 * Note: Our Virtual Wire implementation is simplified, only
 314                 * propagating PIT interrupts to all VCPUs when they have set
 315                 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
 316                 * VCPU0, and only if its LVT0 is in EXTINT mode.
 317                 */
 318                if (kvm->arch.vapics_in_nmi_mode > 0)
 319                        kvm_for_each_vcpu(i, vcpu, kvm)
 320                                kvm_apic_nmi_wd_deliver(vcpu);
 321        }
 322}
 323
 324static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
 325{
 326        struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
 327        struct kvm_pit *pt = ktimer->kvm->arch.vpit;
 328
 329        if (ktimer->reinject || !atomic_read(&ktimer->pending)) {
 330                atomic_inc(&ktimer->pending);
 331                queue_work(pt->wq, &pt->expired);
 332        }
 333
 334        if (ktimer->t_ops->is_periodic(ktimer)) {
 335                hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
 336                return HRTIMER_RESTART;
 337        } else
 338                return HRTIMER_NORESTART;
 339}
 340
 341static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
 342{
 343        struct kvm_timer *pt = &ps->pit_timer;
 344        s64 interval;
 345
 346        interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
 347
 348        pr_debug("create pit timer, interval is %llu nsec\n", interval);
 349
 350        /* TODO The new value only affected after the retriggered */
 351        hrtimer_cancel(&pt->timer);
 352        cancel_work_sync(&ps->pit->expired);
 353        pt->period = interval;
 354        ps->is_periodic = is_period;
 355
 356        pt->timer.function = pit_timer_fn;
 357        pt->t_ops = &kpit_ops;
 358        pt->kvm = ps->pit->kvm;
 359
 360        atomic_set(&pt->pending, 0);
 361        ps->irq_ack = 1;
 362
 363        hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
 364                      HRTIMER_MODE_ABS);
 365}
 366
 367static void pit_load_count(struct kvm *kvm, int channel, u32 val)
 368{
 369        struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
 370
 371        WARN_ON(!mutex_is_locked(&ps->lock));
 372
 373        pr_debug("load_count val is %d, channel is %d\n", val, channel);
 374
 375        /*
 376         * The largest possible initial count is 0; this is equivalent
 377         * to 216 for binary counting and 104 for BCD counting.
 378         */
 379        if (val == 0)
 380                val = 0x10000;
 381
 382        ps->channels[channel].count = val;
 383
 384        if (channel != 0) {
 385                ps->channels[channel].count_load_time = ktime_get();
 386                return;
 387        }
 388
 389        /* Two types of timer
 390         * mode 1 is one shot, mode 2 is period, otherwise del timer */
 391        switch (ps->channels[0].mode) {
 392        case 0:
 393        case 1:
 394        /* FIXME: enhance mode 4 precision */
 395        case 4:
 396                if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)) {
 397                        create_pit_timer(ps, val, 0);
 398                }
 399                break;
 400        case 2:
 401        case 3:
 402                if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)){
 403                        create_pit_timer(ps, val, 1);
 404                }
 405                break;
 406        default:
 407                destroy_pit_timer(kvm->arch.vpit);
 408        }
 409}
 410
 411void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
 412{
 413        u8 saved_mode;
 414        if (hpet_legacy_start) {
 415                /* save existing mode for later reenablement */
 416                saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
 417                kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
 418                pit_load_count(kvm, channel, val);
 419                kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
 420        } else {
 421                pit_load_count(kvm, channel, val);
 422        }
 423}
 424
 425static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
 426{
 427        return container_of(dev, struct kvm_pit, dev);
 428}
 429
 430static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
 431{
 432        return container_of(dev, struct kvm_pit, speaker_dev);
 433}
 434
 435static inline int pit_in_range(gpa_t addr)
 436{
 437        return ((addr >= KVM_PIT_BASE_ADDRESS) &&
 438                (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
 439}
 440
 441static int pit_ioport_write(struct kvm_io_device *this,
 442                            gpa_t addr, int len, const void *data)
 443{
 444        struct kvm_pit *pit = dev_to_pit(this);
 445        struct kvm_kpit_state *pit_state = &pit->pit_state;
 446        struct kvm *kvm = pit->kvm;
 447        int channel, access;
 448        struct kvm_kpit_channel_state *s;
 449        u32 val = *(u32 *) data;
 450        if (!pit_in_range(addr))
 451                return -EOPNOTSUPP;
 452
 453        val  &= 0xff;
 454        addr &= KVM_PIT_CHANNEL_MASK;
 455
 456        mutex_lock(&pit_state->lock);
 457
 458        if (val != 0)
 459                pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
 460                         (unsigned int)addr, len, val);
 461
 462        if (addr == 3) {
 463                channel = val >> 6;
 464                if (channel == 3) {
 465                        /* Read-Back Command. */
 466                        for (channel = 0; channel < 3; channel++) {
 467                                s = &pit_state->channels[channel];
 468                                if (val & (2 << channel)) {
 469                                        if (!(val & 0x20))
 470                                                pit_latch_count(kvm, channel);
 471                                        if (!(val & 0x10))
 472                                                pit_latch_status(kvm, channel);
 473                                }
 474                        }
 475                } else {
 476                        /* Select Counter <channel>. */
 477                        s = &pit_state->channels[channel];
 478                        access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
 479                        if (access == 0) {
 480                                pit_latch_count(kvm, channel);
 481                        } else {
 482                                s->rw_mode = access;
 483                                s->read_state = access;
 484                                s->write_state = access;
 485                                s->mode = (val >> 1) & 7;
 486                                if (s->mode > 5)
 487                                        s->mode -= 4;
 488                                s->bcd = val & 1;
 489                        }
 490                }
 491        } else {
 492                /* Write Count. */
 493                s = &pit_state->channels[addr];
 494                switch (s->write_state) {
 495                default:
 496                case RW_STATE_LSB:
 497                        pit_load_count(kvm, addr, val);
 498                        break;
 499                case RW_STATE_MSB:
 500                        pit_load_count(kvm, addr, val << 8);
 501                        break;
 502                case RW_STATE_WORD0:
 503                        s->write_latch = val;
 504                        s->write_state = RW_STATE_WORD1;
 505                        break;
 506                case RW_STATE_WORD1:
 507                        pit_load_count(kvm, addr, s->write_latch | (val << 8));
 508                        s->write_state = RW_STATE_WORD0;
 509                        break;
 510                }
 511        }
 512
 513        mutex_unlock(&pit_state->lock);
 514        return 0;
 515}
 516
 517static int pit_ioport_read(struct kvm_io_device *this,
 518                           gpa_t addr, int len, void *data)
 519{
 520        struct kvm_pit *pit = dev_to_pit(this);
 521        struct kvm_kpit_state *pit_state = &pit->pit_state;
 522        struct kvm *kvm = pit->kvm;
 523        int ret, count;
 524        struct kvm_kpit_channel_state *s;
 525        if (!pit_in_range(addr))
 526                return -EOPNOTSUPP;
 527
 528        addr &= KVM_PIT_CHANNEL_MASK;
 529        if (addr == 3)
 530                return 0;
 531
 532        s = &pit_state->channels[addr];
 533
 534        mutex_lock(&pit_state->lock);
 535
 536        if (s->status_latched) {
 537                s->status_latched = 0;
 538                ret = s->status;
 539        } else if (s->count_latched) {
 540                switch (s->count_latched) {
 541                default:
 542                case RW_STATE_LSB:
 543                        ret = s->latched_count & 0xff;
 544                        s->count_latched = 0;
 545                        break;
 546                case RW_STATE_MSB:
 547                        ret = s->latched_count >> 8;
 548                        s->count_latched = 0;
 549                        break;
 550                case RW_STATE_WORD0:
 551                        ret = s->latched_count & 0xff;
 552                        s->count_latched = RW_STATE_MSB;
 553                        break;
 554                }
 555        } else {
 556                switch (s->read_state) {
 557                default:
 558                case RW_STATE_LSB:
 559                        count = pit_get_count(kvm, addr);
 560                        ret = count & 0xff;
 561                        break;
 562                case RW_STATE_MSB:
 563                        count = pit_get_count(kvm, addr);
 564                        ret = (count >> 8) & 0xff;
 565                        break;
 566                case RW_STATE_WORD0:
 567                        count = pit_get_count(kvm, addr);
 568                        ret = count & 0xff;
 569                        s->read_state = RW_STATE_WORD1;
 570                        break;
 571                case RW_STATE_WORD1:
 572                        count = pit_get_count(kvm, addr);
 573                        ret = (count >> 8) & 0xff;
 574                        s->read_state = RW_STATE_WORD0;
 575                        break;
 576                }
 577        }
 578
 579        if (len > sizeof(ret))
 580                len = sizeof(ret);
 581        memcpy(data, (char *)&ret, len);
 582
 583        mutex_unlock(&pit_state->lock);
 584        return 0;
 585}
 586
 587static int speaker_ioport_write(struct kvm_io_device *this,
 588                                gpa_t addr, int len, const void *data)
 589{
 590        struct kvm_pit *pit = speaker_to_pit(this);
 591        struct kvm_kpit_state *pit_state = &pit->pit_state;
 592        struct kvm *kvm = pit->kvm;
 593        u32 val = *(u32 *) data;
 594        if (addr != KVM_SPEAKER_BASE_ADDRESS)
 595                return -EOPNOTSUPP;
 596
 597        mutex_lock(&pit_state->lock);
 598        pit_state->speaker_data_on = (val >> 1) & 1;
 599        pit_set_gate(kvm, 2, val & 1);
 600        mutex_unlock(&pit_state->lock);
 601        return 0;
 602}
 603
 604static int speaker_ioport_read(struct kvm_io_device *this,
 605                               gpa_t addr, int len, void *data)
 606{
 607        struct kvm_pit *pit = speaker_to_pit(this);
 608        struct kvm_kpit_state *pit_state = &pit->pit_state;
 609        struct kvm *kvm = pit->kvm;
 610        unsigned int refresh_clock;
 611        int ret;
 612        if (addr != KVM_SPEAKER_BASE_ADDRESS)
 613                return -EOPNOTSUPP;
 614
 615        /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
 616        refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
 617
 618        mutex_lock(&pit_state->lock);
 619        ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
 620                (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
 621        if (len > sizeof(ret))
 622                len = sizeof(ret);
 623        memcpy(data, (char *)&ret, len);
 624        mutex_unlock(&pit_state->lock);
 625        return 0;
 626}
 627
 628void kvm_pit_reset(struct kvm_pit *pit)
 629{
 630        int i;
 631        struct kvm_kpit_channel_state *c;
 632
 633        mutex_lock(&pit->pit_state.lock);
 634        pit->pit_state.flags = 0;
 635        for (i = 0; i < 3; i++) {
 636                c = &pit->pit_state.channels[i];
 637                c->mode = 0xff;
 638                c->gate = (i != 2);
 639                pit_load_count(pit->kvm, i, 0);
 640        }
 641        mutex_unlock(&pit->pit_state.lock);
 642
 643        atomic_set(&pit->pit_state.pit_timer.pending, 0);
 644        pit->pit_state.irq_ack = 1;
 645}
 646
 647static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
 648{
 649        struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
 650
 651        if (!mask) {
 652                atomic_set(&pit->pit_state.pit_timer.pending, 0);
 653                pit->pit_state.irq_ack = 1;
 654        }
 655}
 656
 657static const struct kvm_io_device_ops pit_dev_ops = {
 658        .read     = pit_ioport_read,
 659        .write    = pit_ioport_write,
 660};
 661
 662static const struct kvm_io_device_ops speaker_dev_ops = {
 663        .read     = speaker_ioport_read,
 664        .write    = speaker_ioport_write,
 665};
 666
 667/* Caller must hold slots_lock */
 668struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
 669{
 670        struct kvm_pit *pit;
 671        struct kvm_kpit_state *pit_state;
 672        int ret;
 673
 674        pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
 675        if (!pit)
 676                return NULL;
 677
 678        pit->irq_source_id = kvm_request_irq_source_id(kvm);
 679        if (pit->irq_source_id < 0) {
 680                kfree(pit);
 681                return NULL;
 682        }
 683
 684        mutex_init(&pit->pit_state.lock);
 685        mutex_lock(&pit->pit_state.lock);
 686        spin_lock_init(&pit->pit_state.inject_lock);
 687
 688        pit->wq = create_singlethread_workqueue("kvm-pit-wq");
 689        if (!pit->wq) {
 690                mutex_unlock(&pit->pit_state.lock);
 691                kvm_free_irq_source_id(kvm, pit->irq_source_id);
 692                kfree(pit);
 693                return NULL;
 694        }
 695        INIT_WORK(&pit->expired, pit_do_work);
 696
 697        kvm->arch.vpit = pit;
 698        pit->kvm = kvm;
 699
 700        pit_state = &pit->pit_state;
 701        pit_state->pit = pit;
 702        hrtimer_init(&pit_state->pit_timer.timer,
 703                     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 704        pit_state->irq_ack_notifier.gsi = 0;
 705        pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
 706        kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
 707        pit_state->pit_timer.reinject = true;
 708        mutex_unlock(&pit->pit_state.lock);
 709
 710        kvm_pit_reset(pit);
 711
 712        pit->mask_notifier.func = pit_mask_notifer;
 713        kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
 714
 715        kvm_iodevice_init(&pit->dev, &pit_dev_ops);
 716        ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, &pit->dev);
 717        if (ret < 0)
 718                goto fail;
 719
 720        if (flags & KVM_PIT_SPEAKER_DUMMY) {
 721                kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
 722                ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
 723                                                &pit->speaker_dev);
 724                if (ret < 0)
 725                        goto fail_unregister;
 726        }
 727
 728        return pit;
 729
 730fail_unregister:
 731        kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
 732
 733fail:
 734        kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
 735        kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
 736        kvm_free_irq_source_id(kvm, pit->irq_source_id);
 737        destroy_workqueue(pit->wq);
 738        kfree(pit);
 739        return NULL;
 740}
 741
 742void kvm_free_pit(struct kvm *kvm)
 743{
 744        struct hrtimer *timer;
 745
 746        if (kvm->arch.vpit) {
 747                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
 748                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
 749                                              &kvm->arch.vpit->speaker_dev);
 750                kvm_unregister_irq_mask_notifier(kvm, 0,
 751                                               &kvm->arch.vpit->mask_notifier);
 752                kvm_unregister_irq_ack_notifier(kvm,
 753                                &kvm->arch.vpit->pit_state.irq_ack_notifier);
 754                mutex_lock(&kvm->arch.vpit->pit_state.lock);
 755                timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
 756                hrtimer_cancel(timer);
 757                cancel_work_sync(&kvm->arch.vpit->expired);
 758                kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
 759                mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 760                destroy_workqueue(kvm->arch.vpit->wq);
 761                kfree(kvm->arch.vpit);
 762        }
 763}
 764