linux/arch/x86/kvm/svm.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * AMD SVM support
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   8 *
   9 * Authors:
  10 *   Yaniv Kamay  <yaniv@qumranet.com>
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *
  13 * This work is licensed under the terms of the GNU GPL, version 2.  See
  14 * the COPYING file in the top-level directory.
  15 *
  16 */
  17#include <linux/kvm_host.h>
  18
  19#include "irq.h"
  20#include "mmu.h"
  21#include "kvm_cache_regs.h"
  22#include "x86.h"
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/vmalloc.h>
  27#include <linux/highmem.h>
  28#include <linux/sched.h>
  29#include <linux/ftrace_event.h>
  30#include <linux/slab.h>
  31
  32#include <asm/tlbflush.h>
  33#include <asm/desc.h>
  34#include <asm/kvm_para.h>
  35
  36#include <asm/virtext.h>
  37#include "trace.h"
  38
  39#define __ex(x) __kvm_handle_fault_on_reboot(x)
  40
  41MODULE_AUTHOR("Qumranet");
  42MODULE_LICENSE("GPL");
  43
  44#define IOPM_ALLOC_ORDER 2
  45#define MSRPM_ALLOC_ORDER 1
  46
  47#define SEG_TYPE_LDT 2
  48#define SEG_TYPE_BUSY_TSS16 3
  49
  50#define SVM_FEATURE_NPT            (1 <<  0)
  51#define SVM_FEATURE_LBRV           (1 <<  1)
  52#define SVM_FEATURE_SVML           (1 <<  2)
  53#define SVM_FEATURE_NRIP           (1 <<  3)
  54#define SVM_FEATURE_TSC_RATE       (1 <<  4)
  55#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
  56#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
  57#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
  58#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
  59
  60#define NESTED_EXIT_HOST        0       /* Exit handled on host level */
  61#define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
  62#define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
  63
  64#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  65
  66static bool erratum_383_found __read_mostly;
  67
  68static const u32 host_save_user_msrs[] = {
  69#ifdef CONFIG_X86_64
  70        MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
  71        MSR_FS_BASE,
  72#endif
  73        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  74};
  75
  76#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
  77
  78struct kvm_vcpu;
  79
  80struct nested_state {
  81        struct vmcb *hsave;
  82        u64 hsave_msr;
  83        u64 vm_cr_msr;
  84        u64 vmcb;
  85
  86        /* These are the merged vectors */
  87        u32 *msrpm;
  88
  89        /* gpa pointers to the real vectors */
  90        u64 vmcb_msrpm;
  91        u64 vmcb_iopm;
  92
  93        /* A VMEXIT is required but not yet emulated */
  94        bool exit_required;
  95
  96        /*
  97         * If we vmexit during an instruction emulation we need this to restore
  98         * the l1 guest rip after the emulation
  99         */
 100        unsigned long vmexit_rip;
 101        unsigned long vmexit_rsp;
 102        unsigned long vmexit_rax;
 103
 104        /* cache for intercepts of the guest */
 105        u32 intercept_cr;
 106        u32 intercept_dr;
 107        u32 intercept_exceptions;
 108        u64 intercept;
 109
 110        /* Nested Paging related state */
 111        u64 nested_cr3;
 112};
 113
 114#define MSRPM_OFFSETS   16
 115static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
 116
 117struct vcpu_svm {
 118        struct kvm_vcpu vcpu;
 119        struct vmcb *vmcb;
 120        unsigned long vmcb_pa;
 121        struct svm_cpu_data *svm_data;
 122        uint64_t asid_generation;
 123        uint64_t sysenter_esp;
 124        uint64_t sysenter_eip;
 125
 126        u64 next_rip;
 127
 128        u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
 129        struct {
 130                u16 fs;
 131                u16 gs;
 132                u16 ldt;
 133                u64 gs_base;
 134        } host;
 135
 136        u32 *msrpm;
 137
 138        struct nested_state nested;
 139
 140        bool nmi_singlestep;
 141
 142        unsigned int3_injected;
 143        unsigned long int3_rip;
 144        u32 apf_reason;
 145};
 146
 147#define MSR_INVALID                     0xffffffffU
 148
 149static struct svm_direct_access_msrs {
 150        u32 index;   /* Index of the MSR */
 151        bool always; /* True if intercept is always on */
 152} direct_access_msrs[] = {
 153        { .index = MSR_STAR,                            .always = true  },
 154        { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
 155#ifdef CONFIG_X86_64
 156        { .index = MSR_GS_BASE,                         .always = true  },
 157        { .index = MSR_FS_BASE,                         .always = true  },
 158        { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
 159        { .index = MSR_LSTAR,                           .always = true  },
 160        { .index = MSR_CSTAR,                           .always = true  },
 161        { .index = MSR_SYSCALL_MASK,                    .always = true  },
 162#endif
 163        { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
 164        { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
 165        { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
 166        { .index = MSR_IA32_LASTINTTOIP,                .always = false },
 167        { .index = MSR_INVALID,                         .always = false },
 168};
 169
 170/* enable NPT for AMD64 and X86 with PAE */
 171#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 172static bool npt_enabled = true;
 173#else
 174static bool npt_enabled;
 175#endif
 176static int npt = 1;
 177
 178module_param(npt, int, S_IRUGO);
 179
 180static int nested = 1;
 181module_param(nested, int, S_IRUGO);
 182
 183static void svm_flush_tlb(struct kvm_vcpu *vcpu);
 184static void svm_complete_interrupts(struct vcpu_svm *svm);
 185
 186static int nested_svm_exit_handled(struct vcpu_svm *svm);
 187static int nested_svm_intercept(struct vcpu_svm *svm);
 188static int nested_svm_vmexit(struct vcpu_svm *svm);
 189static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
 190                                      bool has_error_code, u32 error_code);
 191
 192enum {
 193        VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
 194                            pause filter count */
 195        VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
 196        VMCB_ASID,       /* ASID */
 197        VMCB_INTR,       /* int_ctl, int_vector */
 198        VMCB_NPT,        /* npt_en, nCR3, gPAT */
 199        VMCB_CR,         /* CR0, CR3, CR4, EFER */
 200        VMCB_DR,         /* DR6, DR7 */
 201        VMCB_DT,         /* GDT, IDT */
 202        VMCB_SEG,        /* CS, DS, SS, ES, CPL */
 203        VMCB_CR2,        /* CR2 only */
 204        VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
 205        VMCB_DIRTY_MAX,
 206};
 207
 208/* TPR and CR2 are always written before VMRUN */
 209#define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
 210
 211static inline void mark_all_dirty(struct vmcb *vmcb)
 212{
 213        vmcb->control.clean = 0;
 214}
 215
 216static inline void mark_all_clean(struct vmcb *vmcb)
 217{
 218        vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
 219                               & ~VMCB_ALWAYS_DIRTY_MASK;
 220}
 221
 222static inline void mark_dirty(struct vmcb *vmcb, int bit)
 223{
 224        vmcb->control.clean &= ~(1 << bit);
 225}
 226
 227static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
 228{
 229        return container_of(vcpu, struct vcpu_svm, vcpu);
 230}
 231
 232static void recalc_intercepts(struct vcpu_svm *svm)
 233{
 234        struct vmcb_control_area *c, *h;
 235        struct nested_state *g;
 236
 237        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 238
 239        if (!is_guest_mode(&svm->vcpu))
 240                return;
 241
 242        c = &svm->vmcb->control;
 243        h = &svm->nested.hsave->control;
 244        g = &svm->nested;
 245
 246        c->intercept_cr = h->intercept_cr | g->intercept_cr;
 247        c->intercept_dr = h->intercept_dr | g->intercept_dr;
 248        c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
 249        c->intercept = h->intercept | g->intercept;
 250}
 251
 252static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
 253{
 254        if (is_guest_mode(&svm->vcpu))
 255                return svm->nested.hsave;
 256        else
 257                return svm->vmcb;
 258}
 259
 260static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
 261{
 262        struct vmcb *vmcb = get_host_vmcb(svm);
 263
 264        vmcb->control.intercept_cr |= (1U << bit);
 265
 266        recalc_intercepts(svm);
 267}
 268
 269static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
 270{
 271        struct vmcb *vmcb = get_host_vmcb(svm);
 272
 273        vmcb->control.intercept_cr &= ~(1U << bit);
 274
 275        recalc_intercepts(svm);
 276}
 277
 278static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
 279{
 280        struct vmcb *vmcb = get_host_vmcb(svm);
 281
 282        return vmcb->control.intercept_cr & (1U << bit);
 283}
 284
 285static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
 286{
 287        struct vmcb *vmcb = get_host_vmcb(svm);
 288
 289        vmcb->control.intercept_dr |= (1U << bit);
 290
 291        recalc_intercepts(svm);
 292}
 293
 294static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
 295{
 296        struct vmcb *vmcb = get_host_vmcb(svm);
 297
 298        vmcb->control.intercept_dr &= ~(1U << bit);
 299
 300        recalc_intercepts(svm);
 301}
 302
 303static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
 304{
 305        struct vmcb *vmcb = get_host_vmcb(svm);
 306
 307        vmcb->control.intercept_exceptions |= (1U << bit);
 308
 309        recalc_intercepts(svm);
 310}
 311
 312static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
 313{
 314        struct vmcb *vmcb = get_host_vmcb(svm);
 315
 316        vmcb->control.intercept_exceptions &= ~(1U << bit);
 317
 318        recalc_intercepts(svm);
 319}
 320
 321static inline void set_intercept(struct vcpu_svm *svm, int bit)
 322{
 323        struct vmcb *vmcb = get_host_vmcb(svm);
 324
 325        vmcb->control.intercept |= (1ULL << bit);
 326
 327        recalc_intercepts(svm);
 328}
 329
 330static inline void clr_intercept(struct vcpu_svm *svm, int bit)
 331{
 332        struct vmcb *vmcb = get_host_vmcb(svm);
 333
 334        vmcb->control.intercept &= ~(1ULL << bit);
 335
 336        recalc_intercepts(svm);
 337}
 338
 339static inline void enable_gif(struct vcpu_svm *svm)
 340{
 341        svm->vcpu.arch.hflags |= HF_GIF_MASK;
 342}
 343
 344static inline void disable_gif(struct vcpu_svm *svm)
 345{
 346        svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
 347}
 348
 349static inline bool gif_set(struct vcpu_svm *svm)
 350{
 351        return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
 352}
 353
 354static unsigned long iopm_base;
 355
 356struct kvm_ldttss_desc {
 357        u16 limit0;
 358        u16 base0;
 359        unsigned base1:8, type:5, dpl:2, p:1;
 360        unsigned limit1:4, zero0:3, g:1, base2:8;
 361        u32 base3;
 362        u32 zero1;
 363} __attribute__((packed));
 364
 365struct svm_cpu_data {
 366        int cpu;
 367
 368        u64 asid_generation;
 369        u32 max_asid;
 370        u32 next_asid;
 371        struct kvm_ldttss_desc *tss_desc;
 372
 373        struct page *save_area;
 374};
 375
 376static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 377static uint32_t svm_features;
 378
 379struct svm_init_data {
 380        int cpu;
 381        int r;
 382};
 383
 384static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 385
 386#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
 387#define MSRS_RANGE_SIZE 2048
 388#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
 389
 390static u32 svm_msrpm_offset(u32 msr)
 391{
 392        u32 offset;
 393        int i;
 394
 395        for (i = 0; i < NUM_MSR_MAPS; i++) {
 396                if (msr < msrpm_ranges[i] ||
 397                    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
 398                        continue;
 399
 400                offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
 401                offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
 402
 403                /* Now we have the u8 offset - but need the u32 offset */
 404                return offset / 4;
 405        }
 406
 407        /* MSR not in any range */
 408        return MSR_INVALID;
 409}
 410
 411#define MAX_INST_SIZE 15
 412
 413static inline void clgi(void)
 414{
 415        asm volatile (__ex(SVM_CLGI));
 416}
 417
 418static inline void stgi(void)
 419{
 420        asm volatile (__ex(SVM_STGI));
 421}
 422
 423static inline void invlpga(unsigned long addr, u32 asid)
 424{
 425        asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
 426}
 427
 428static int get_npt_level(void)
 429{
 430#ifdef CONFIG_X86_64
 431        return PT64_ROOT_LEVEL;
 432#else
 433        return PT32E_ROOT_LEVEL;
 434#endif
 435}
 436
 437static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 438{
 439        vcpu->arch.efer = efer;
 440        if (!npt_enabled && !(efer & EFER_LMA))
 441                efer &= ~EFER_LME;
 442
 443        to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
 444        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
 445}
 446
 447static int is_external_interrupt(u32 info)
 448{
 449        info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
 450        return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
 451}
 452
 453static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 454{
 455        struct vcpu_svm *svm = to_svm(vcpu);
 456        u32 ret = 0;
 457
 458        if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
 459                ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
 460        return ret & mask;
 461}
 462
 463static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 464{
 465        struct vcpu_svm *svm = to_svm(vcpu);
 466
 467        if (mask == 0)
 468                svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
 469        else
 470                svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
 471
 472}
 473
 474static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
 475{
 476        struct vcpu_svm *svm = to_svm(vcpu);
 477
 478        if (svm->vmcb->control.next_rip != 0)
 479                svm->next_rip = svm->vmcb->control.next_rip;
 480
 481        if (!svm->next_rip) {
 482                if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
 483                                EMULATE_DONE)
 484                        printk(KERN_DEBUG "%s: NOP\n", __func__);
 485                return;
 486        }
 487        if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
 488                printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
 489                       __func__, kvm_rip_read(vcpu), svm->next_rip);
 490
 491        kvm_rip_write(vcpu, svm->next_rip);
 492        svm_set_interrupt_shadow(vcpu, 0);
 493}
 494
 495static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
 496                                bool has_error_code, u32 error_code,
 497                                bool reinject)
 498{
 499        struct vcpu_svm *svm = to_svm(vcpu);
 500
 501        /*
 502         * If we are within a nested VM we'd better #VMEXIT and let the guest
 503         * handle the exception
 504         */
 505        if (!reinject &&
 506            nested_svm_check_exception(svm, nr, has_error_code, error_code))
 507                return;
 508
 509        if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
 510                unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 511
 512                /*
 513                 * For guest debugging where we have to reinject #BP if some
 514                 * INT3 is guest-owned:
 515                 * Emulate nRIP by moving RIP forward. Will fail if injection
 516                 * raises a fault that is not intercepted. Still better than
 517                 * failing in all cases.
 518                 */
 519                skip_emulated_instruction(&svm->vcpu);
 520                rip = kvm_rip_read(&svm->vcpu);
 521                svm->int3_rip = rip + svm->vmcb->save.cs.base;
 522                svm->int3_injected = rip - old_rip;
 523        }
 524
 525        svm->vmcb->control.event_inj = nr
 526                | SVM_EVTINJ_VALID
 527                | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
 528                | SVM_EVTINJ_TYPE_EXEPT;
 529        svm->vmcb->control.event_inj_err = error_code;
 530}
 531
 532static void svm_init_erratum_383(void)
 533{
 534        u32 low, high;
 535        int err;
 536        u64 val;
 537
 538        if (!cpu_has_amd_erratum(amd_erratum_383))
 539                return;
 540
 541        /* Use _safe variants to not break nested virtualization */
 542        val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
 543        if (err)
 544                return;
 545
 546        val |= (1ULL << 47);
 547
 548        low  = lower_32_bits(val);
 549        high = upper_32_bits(val);
 550
 551        native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
 552
 553        erratum_383_found = true;
 554}
 555
 556static int has_svm(void)
 557{
 558        const char *msg;
 559
 560        if (!cpu_has_svm(&msg)) {
 561                printk(KERN_INFO "has_svm: %s\n", msg);
 562                return 0;
 563        }
 564
 565        return 1;
 566}
 567
 568static void svm_hardware_disable(void *garbage)
 569{
 570        cpu_svm_disable();
 571}
 572
 573static int svm_hardware_enable(void *garbage)
 574{
 575
 576        struct svm_cpu_data *sd;
 577        uint64_t efer;
 578        struct desc_ptr gdt_descr;
 579        struct desc_struct *gdt;
 580        int me = raw_smp_processor_id();
 581
 582        rdmsrl(MSR_EFER, efer);
 583        if (efer & EFER_SVME)
 584                return -EBUSY;
 585
 586        if (!has_svm()) {
 587                printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
 588                       me);
 589                return -EINVAL;
 590        }
 591        sd = per_cpu(svm_data, me);
 592
 593        if (!sd) {
 594                printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
 595                       me);
 596                return -EINVAL;
 597        }
 598
 599        sd->asid_generation = 1;
 600        sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
 601        sd->next_asid = sd->max_asid + 1;
 602
 603        native_store_gdt(&gdt_descr);
 604        gdt = (struct desc_struct *)gdt_descr.address;
 605        sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
 606
 607        wrmsrl(MSR_EFER, efer | EFER_SVME);
 608
 609        wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
 610
 611        svm_init_erratum_383();
 612
 613        return 0;
 614}
 615
 616static void svm_cpu_uninit(int cpu)
 617{
 618        struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
 619
 620        if (!sd)
 621                return;
 622
 623        per_cpu(svm_data, raw_smp_processor_id()) = NULL;
 624        __free_page(sd->save_area);
 625        kfree(sd);
 626}
 627
 628static int svm_cpu_init(int cpu)
 629{
 630        struct svm_cpu_data *sd;
 631        int r;
 632
 633        sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
 634        if (!sd)
 635                return -ENOMEM;
 636        sd->cpu = cpu;
 637        sd->save_area = alloc_page(GFP_KERNEL);
 638        r = -ENOMEM;
 639        if (!sd->save_area)
 640                goto err_1;
 641
 642        per_cpu(svm_data, cpu) = sd;
 643
 644        return 0;
 645
 646err_1:
 647        kfree(sd);
 648        return r;
 649
 650}
 651
 652static bool valid_msr_intercept(u32 index)
 653{
 654        int i;
 655
 656        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
 657                if (direct_access_msrs[i].index == index)
 658                        return true;
 659
 660        return false;
 661}
 662
 663static void set_msr_interception(u32 *msrpm, unsigned msr,
 664                                 int read, int write)
 665{
 666        u8 bit_read, bit_write;
 667        unsigned long tmp;
 668        u32 offset;
 669
 670        /*
 671         * If this warning triggers extend the direct_access_msrs list at the
 672         * beginning of the file
 673         */
 674        WARN_ON(!valid_msr_intercept(msr));
 675
 676        offset    = svm_msrpm_offset(msr);
 677        bit_read  = 2 * (msr & 0x0f);
 678        bit_write = 2 * (msr & 0x0f) + 1;
 679        tmp       = msrpm[offset];
 680
 681        BUG_ON(offset == MSR_INVALID);
 682
 683        read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
 684        write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
 685
 686        msrpm[offset] = tmp;
 687}
 688
 689static void svm_vcpu_init_msrpm(u32 *msrpm)
 690{
 691        int i;
 692
 693        memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
 694
 695        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 696                if (!direct_access_msrs[i].always)
 697                        continue;
 698
 699                set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
 700        }
 701}
 702
 703static void add_msr_offset(u32 offset)
 704{
 705        int i;
 706
 707        for (i = 0; i < MSRPM_OFFSETS; ++i) {
 708
 709                /* Offset already in list? */
 710                if (msrpm_offsets[i] == offset)
 711                        return;
 712
 713                /* Slot used by another offset? */
 714                if (msrpm_offsets[i] != MSR_INVALID)
 715                        continue;
 716
 717                /* Add offset to list */
 718                msrpm_offsets[i] = offset;
 719
 720                return;
 721        }
 722
 723        /*
 724         * If this BUG triggers the msrpm_offsets table has an overflow. Just
 725         * increase MSRPM_OFFSETS in this case.
 726         */
 727        BUG();
 728}
 729
 730static void init_msrpm_offsets(void)
 731{
 732        int i;
 733
 734        memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
 735
 736        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 737                u32 offset;
 738
 739                offset = svm_msrpm_offset(direct_access_msrs[i].index);
 740                BUG_ON(offset == MSR_INVALID);
 741
 742                add_msr_offset(offset);
 743        }
 744}
 745
 746static void svm_enable_lbrv(struct vcpu_svm *svm)
 747{
 748        u32 *msrpm = svm->msrpm;
 749
 750        svm->vmcb->control.lbr_ctl = 1;
 751        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
 752        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
 753        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
 754        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
 755}
 756
 757static void svm_disable_lbrv(struct vcpu_svm *svm)
 758{
 759        u32 *msrpm = svm->msrpm;
 760
 761        svm->vmcb->control.lbr_ctl = 0;
 762        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
 763        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
 764        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
 765        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
 766}
 767
 768static __init int svm_hardware_setup(void)
 769{
 770        int cpu;
 771        struct page *iopm_pages;
 772        void *iopm_va;
 773        int r;
 774
 775        iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
 776
 777        if (!iopm_pages)
 778                return -ENOMEM;
 779
 780        iopm_va = page_address(iopm_pages);
 781        memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
 782        iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
 783
 784        init_msrpm_offsets();
 785
 786        if (boot_cpu_has(X86_FEATURE_NX))
 787                kvm_enable_efer_bits(EFER_NX);
 788
 789        if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
 790                kvm_enable_efer_bits(EFER_FFXSR);
 791
 792        if (nested) {
 793                printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
 794                kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
 795        }
 796
 797        for_each_possible_cpu(cpu) {
 798                r = svm_cpu_init(cpu);
 799                if (r)
 800                        goto err;
 801        }
 802
 803        svm_features = cpuid_edx(SVM_CPUID_FUNC);
 804
 805        if (!boot_cpu_has(X86_FEATURE_NPT))
 806                npt_enabled = false;
 807
 808        if (npt_enabled && !npt) {
 809                printk(KERN_INFO "kvm: Nested Paging disabled\n");
 810                npt_enabled = false;
 811        }
 812
 813        if (npt_enabled) {
 814                printk(KERN_INFO "kvm: Nested Paging enabled\n");
 815                kvm_enable_tdp();
 816        } else
 817                kvm_disable_tdp();
 818
 819        return 0;
 820
 821err:
 822        __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
 823        iopm_base = 0;
 824        return r;
 825}
 826
 827static __exit void svm_hardware_unsetup(void)
 828{
 829        int cpu;
 830
 831        for_each_possible_cpu(cpu)
 832                svm_cpu_uninit(cpu);
 833
 834        __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
 835        iopm_base = 0;
 836}
 837
 838static void init_seg(struct vmcb_seg *seg)
 839{
 840        seg->selector = 0;
 841        seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
 842                      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
 843        seg->limit = 0xffff;
 844        seg->base = 0;
 845}
 846
 847static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
 848{
 849        seg->selector = 0;
 850        seg->attrib = SVM_SELECTOR_P_MASK | type;
 851        seg->limit = 0xffff;
 852        seg->base = 0;
 853}
 854
 855static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
 856{
 857        struct vcpu_svm *svm = to_svm(vcpu);
 858        u64 g_tsc_offset = 0;
 859
 860        if (is_guest_mode(vcpu)) {
 861                g_tsc_offset = svm->vmcb->control.tsc_offset -
 862                               svm->nested.hsave->control.tsc_offset;
 863                svm->nested.hsave->control.tsc_offset = offset;
 864        }
 865
 866        svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
 867
 868        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 869}
 870
 871static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
 872{
 873        struct vcpu_svm *svm = to_svm(vcpu);
 874
 875        svm->vmcb->control.tsc_offset += adjustment;
 876        if (is_guest_mode(vcpu))
 877                svm->nested.hsave->control.tsc_offset += adjustment;
 878        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 879}
 880
 881static void init_vmcb(struct vcpu_svm *svm)
 882{
 883        struct vmcb_control_area *control = &svm->vmcb->control;
 884        struct vmcb_save_area *save = &svm->vmcb->save;
 885
 886        svm->vcpu.fpu_active = 1;
 887        svm->vcpu.arch.hflags = 0;
 888
 889        set_cr_intercept(svm, INTERCEPT_CR0_READ);
 890        set_cr_intercept(svm, INTERCEPT_CR3_READ);
 891        set_cr_intercept(svm, INTERCEPT_CR4_READ);
 892        set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
 893        set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
 894        set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
 895        set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
 896
 897        set_dr_intercept(svm, INTERCEPT_DR0_READ);
 898        set_dr_intercept(svm, INTERCEPT_DR1_READ);
 899        set_dr_intercept(svm, INTERCEPT_DR2_READ);
 900        set_dr_intercept(svm, INTERCEPT_DR3_READ);
 901        set_dr_intercept(svm, INTERCEPT_DR4_READ);
 902        set_dr_intercept(svm, INTERCEPT_DR5_READ);
 903        set_dr_intercept(svm, INTERCEPT_DR6_READ);
 904        set_dr_intercept(svm, INTERCEPT_DR7_READ);
 905
 906        set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
 907        set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
 908        set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
 909        set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
 910        set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
 911        set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
 912        set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
 913        set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
 914
 915        set_exception_intercept(svm, PF_VECTOR);
 916        set_exception_intercept(svm, UD_VECTOR);
 917        set_exception_intercept(svm, MC_VECTOR);
 918
 919        set_intercept(svm, INTERCEPT_INTR);
 920        set_intercept(svm, INTERCEPT_NMI);
 921        set_intercept(svm, INTERCEPT_SMI);
 922        set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
 923        set_intercept(svm, INTERCEPT_CPUID);
 924        set_intercept(svm, INTERCEPT_INVD);
 925        set_intercept(svm, INTERCEPT_HLT);
 926        set_intercept(svm, INTERCEPT_INVLPG);
 927        set_intercept(svm, INTERCEPT_INVLPGA);
 928        set_intercept(svm, INTERCEPT_IOIO_PROT);
 929        set_intercept(svm, INTERCEPT_MSR_PROT);
 930        set_intercept(svm, INTERCEPT_TASK_SWITCH);
 931        set_intercept(svm, INTERCEPT_SHUTDOWN);
 932        set_intercept(svm, INTERCEPT_VMRUN);
 933        set_intercept(svm, INTERCEPT_VMMCALL);
 934        set_intercept(svm, INTERCEPT_VMLOAD);
 935        set_intercept(svm, INTERCEPT_VMSAVE);
 936        set_intercept(svm, INTERCEPT_STGI);
 937        set_intercept(svm, INTERCEPT_CLGI);
 938        set_intercept(svm, INTERCEPT_SKINIT);
 939        set_intercept(svm, INTERCEPT_WBINVD);
 940        set_intercept(svm, INTERCEPT_MONITOR);
 941        set_intercept(svm, INTERCEPT_MWAIT);
 942        set_intercept(svm, INTERCEPT_XSETBV);
 943
 944        control->iopm_base_pa = iopm_base;
 945        control->msrpm_base_pa = __pa(svm->msrpm);
 946        control->int_ctl = V_INTR_MASKING_MASK;
 947
 948        init_seg(&save->es);
 949        init_seg(&save->ss);
 950        init_seg(&save->ds);
 951        init_seg(&save->fs);
 952        init_seg(&save->gs);
 953
 954        save->cs.selector = 0xf000;
 955        /* Executable/Readable Code Segment */
 956        save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
 957                SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
 958        save->cs.limit = 0xffff;
 959        /*
 960         * cs.base should really be 0xffff0000, but vmx can't handle that, so
 961         * be consistent with it.
 962         *
 963         * Replace when we have real mode working for vmx.
 964         */
 965        save->cs.base = 0xf0000;
 966
 967        save->gdtr.limit = 0xffff;
 968        save->idtr.limit = 0xffff;
 969
 970        init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
 971        init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
 972
 973        svm_set_efer(&svm->vcpu, 0);
 974        save->dr6 = 0xffff0ff0;
 975        save->dr7 = 0x400;
 976        save->rflags = 2;
 977        save->rip = 0x0000fff0;
 978        svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
 979
 980        /*
 981         * This is the guest-visible cr0 value.
 982         * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
 983         */
 984        svm->vcpu.arch.cr0 = 0;
 985        (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
 986
 987        save->cr4 = X86_CR4_PAE;
 988        /* rdx = ?? */
 989
 990        if (npt_enabled) {
 991                /* Setup VMCB for Nested Paging */
 992                control->nested_ctl = 1;
 993                clr_intercept(svm, INTERCEPT_TASK_SWITCH);
 994                clr_intercept(svm, INTERCEPT_INVLPG);
 995                clr_exception_intercept(svm, PF_VECTOR);
 996                clr_cr_intercept(svm, INTERCEPT_CR3_READ);
 997                clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
 998                save->g_pat = 0x0007040600070406ULL;
 999                save->cr3 = 0;
1000                save->cr4 = 0;
1001        }
1002        svm->asid_generation = 0;
1003
1004        svm->nested.vmcb = 0;
1005        svm->vcpu.arch.hflags = 0;
1006
1007        if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1008                control->pause_filter_count = 3000;
1009                set_intercept(svm, INTERCEPT_PAUSE);
1010        }
1011
1012        mark_all_dirty(svm->vmcb);
1013
1014        enable_gif(svm);
1015}
1016
1017static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1018{
1019        struct vcpu_svm *svm = to_svm(vcpu);
1020
1021        init_vmcb(svm);
1022
1023        if (!kvm_vcpu_is_bsp(vcpu)) {
1024                kvm_rip_write(vcpu, 0);
1025                svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1026                svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1027        }
1028        vcpu->arch.regs_avail = ~0;
1029        vcpu->arch.regs_dirty = ~0;
1030
1031        return 0;
1032}
1033
1034static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1035{
1036        struct vcpu_svm *svm;
1037        struct page *page;
1038        struct page *msrpm_pages;
1039        struct page *hsave_page;
1040        struct page *nested_msrpm_pages;
1041        int err;
1042
1043        svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1044        if (!svm) {
1045                err = -ENOMEM;
1046                goto out;
1047        }
1048
1049        err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1050        if (err)
1051                goto free_svm;
1052
1053        err = -ENOMEM;
1054        page = alloc_page(GFP_KERNEL);
1055        if (!page)
1056                goto uninit;
1057
1058        msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1059        if (!msrpm_pages)
1060                goto free_page1;
1061
1062        nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1063        if (!nested_msrpm_pages)
1064                goto free_page2;
1065
1066        hsave_page = alloc_page(GFP_KERNEL);
1067        if (!hsave_page)
1068                goto free_page3;
1069
1070        svm->nested.hsave = page_address(hsave_page);
1071
1072        svm->msrpm = page_address(msrpm_pages);
1073        svm_vcpu_init_msrpm(svm->msrpm);
1074
1075        svm->nested.msrpm = page_address(nested_msrpm_pages);
1076        svm_vcpu_init_msrpm(svm->nested.msrpm);
1077
1078        svm->vmcb = page_address(page);
1079        clear_page(svm->vmcb);
1080        svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1081        svm->asid_generation = 0;
1082        init_vmcb(svm);
1083        kvm_write_tsc(&svm->vcpu, 0);
1084
1085        err = fx_init(&svm->vcpu);
1086        if (err)
1087                goto free_page4;
1088
1089        svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1090        if (kvm_vcpu_is_bsp(&svm->vcpu))
1091                svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1092
1093        return &svm->vcpu;
1094
1095free_page4:
1096        __free_page(hsave_page);
1097free_page3:
1098        __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1099free_page2:
1100        __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1101free_page1:
1102        __free_page(page);
1103uninit:
1104        kvm_vcpu_uninit(&svm->vcpu);
1105free_svm:
1106        kmem_cache_free(kvm_vcpu_cache, svm);
1107out:
1108        return ERR_PTR(err);
1109}
1110
1111static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1112{
1113        struct vcpu_svm *svm = to_svm(vcpu);
1114
1115        __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1116        __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1117        __free_page(virt_to_page(svm->nested.hsave));
1118        __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1119        kvm_vcpu_uninit(vcpu);
1120        kmem_cache_free(kvm_vcpu_cache, svm);
1121}
1122
1123static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1124{
1125        struct vcpu_svm *svm = to_svm(vcpu);
1126        int i;
1127
1128        if (unlikely(cpu != vcpu->cpu)) {
1129                svm->asid_generation = 0;
1130                mark_all_dirty(svm->vmcb);
1131        }
1132
1133#ifdef CONFIG_X86_64
1134        rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1135#endif
1136        savesegment(fs, svm->host.fs);
1137        savesegment(gs, svm->host.gs);
1138        svm->host.ldt = kvm_read_ldt();
1139
1140        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1141                rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1142}
1143
1144static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1145{
1146        struct vcpu_svm *svm = to_svm(vcpu);
1147        int i;
1148
1149        ++vcpu->stat.host_state_reload;
1150        kvm_load_ldt(svm->host.ldt);
1151#ifdef CONFIG_X86_64
1152        loadsegment(fs, svm->host.fs);
1153        wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1154        load_gs_index(svm->host.gs);
1155#else
1156        loadsegment(gs, svm->host.gs);
1157#endif
1158        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1159                wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1160}
1161
1162static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1163{
1164        return to_svm(vcpu)->vmcb->save.rflags;
1165}
1166
1167static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1168{
1169        to_svm(vcpu)->vmcb->save.rflags = rflags;
1170}
1171
1172static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1173{
1174        switch (reg) {
1175        case VCPU_EXREG_PDPTR:
1176                BUG_ON(!npt_enabled);
1177                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1178                break;
1179        default:
1180                BUG();
1181        }
1182}
1183
1184static void svm_set_vintr(struct vcpu_svm *svm)
1185{
1186        set_intercept(svm, INTERCEPT_VINTR);
1187}
1188
1189static void svm_clear_vintr(struct vcpu_svm *svm)
1190{
1191        clr_intercept(svm, INTERCEPT_VINTR);
1192}
1193
1194static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1195{
1196        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1197
1198        switch (seg) {
1199        case VCPU_SREG_CS: return &save->cs;
1200        case VCPU_SREG_DS: return &save->ds;
1201        case VCPU_SREG_ES: return &save->es;
1202        case VCPU_SREG_FS: return &save->fs;
1203        case VCPU_SREG_GS: return &save->gs;
1204        case VCPU_SREG_SS: return &save->ss;
1205        case VCPU_SREG_TR: return &save->tr;
1206        case VCPU_SREG_LDTR: return &save->ldtr;
1207        }
1208        BUG();
1209        return NULL;
1210}
1211
1212static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1213{
1214        struct vmcb_seg *s = svm_seg(vcpu, seg);
1215
1216        return s->base;
1217}
1218
1219static void svm_get_segment(struct kvm_vcpu *vcpu,
1220                            struct kvm_segment *var, int seg)
1221{
1222        struct vmcb_seg *s = svm_seg(vcpu, seg);
1223
1224        var->base = s->base;
1225        var->limit = s->limit;
1226        var->selector = s->selector;
1227        var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1228        var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1229        var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1230        var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1231        var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1232        var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1233        var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1234        var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1235
1236        /*
1237         * AMD's VMCB does not have an explicit unusable field, so emulate it
1238         * for cross vendor migration purposes by "not present"
1239         */
1240        var->unusable = !var->present || (var->type == 0);
1241
1242        switch (seg) {
1243        case VCPU_SREG_CS:
1244                /*
1245                 * SVM always stores 0 for the 'G' bit in the CS selector in
1246                 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1247                 * Intel's VMENTRY has a check on the 'G' bit.
1248                 */
1249                var->g = s->limit > 0xfffff;
1250                break;
1251        case VCPU_SREG_TR:
1252                /*
1253                 * Work around a bug where the busy flag in the tr selector
1254                 * isn't exposed
1255                 */
1256                var->type |= 0x2;
1257                break;
1258        case VCPU_SREG_DS:
1259        case VCPU_SREG_ES:
1260        case VCPU_SREG_FS:
1261        case VCPU_SREG_GS:
1262                /*
1263                 * The accessed bit must always be set in the segment
1264                 * descriptor cache, although it can be cleared in the
1265                 * descriptor, the cached bit always remains at 1. Since
1266                 * Intel has a check on this, set it here to support
1267                 * cross-vendor migration.
1268                 */
1269                if (!var->unusable)
1270                        var->type |= 0x1;
1271                break;
1272        case VCPU_SREG_SS:
1273                /*
1274                 * On AMD CPUs sometimes the DB bit in the segment
1275                 * descriptor is left as 1, although the whole segment has
1276                 * been made unusable. Clear it here to pass an Intel VMX
1277                 * entry check when cross vendor migrating.
1278                 */
1279                if (var->unusable)
1280                        var->db = 0;
1281                break;
1282        }
1283}
1284
1285static int svm_get_cpl(struct kvm_vcpu *vcpu)
1286{
1287        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1288
1289        return save->cpl;
1290}
1291
1292static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1293{
1294        struct vcpu_svm *svm = to_svm(vcpu);
1295
1296        dt->size = svm->vmcb->save.idtr.limit;
1297        dt->address = svm->vmcb->save.idtr.base;
1298}
1299
1300static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1301{
1302        struct vcpu_svm *svm = to_svm(vcpu);
1303
1304        svm->vmcb->save.idtr.limit = dt->size;
1305        svm->vmcb->save.idtr.base = dt->address ;
1306        mark_dirty(svm->vmcb, VMCB_DT);
1307}
1308
1309static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1310{
1311        struct vcpu_svm *svm = to_svm(vcpu);
1312
1313        dt->size = svm->vmcb->save.gdtr.limit;
1314        dt->address = svm->vmcb->save.gdtr.base;
1315}
1316
1317static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1318{
1319        struct vcpu_svm *svm = to_svm(vcpu);
1320
1321        svm->vmcb->save.gdtr.limit = dt->size;
1322        svm->vmcb->save.gdtr.base = dt->address ;
1323        mark_dirty(svm->vmcb, VMCB_DT);
1324}
1325
1326static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1327{
1328}
1329
1330static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1331{
1332}
1333
1334static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1335{
1336}
1337
1338static void update_cr0_intercept(struct vcpu_svm *svm)
1339{
1340        ulong gcr0 = svm->vcpu.arch.cr0;
1341        u64 *hcr0 = &svm->vmcb->save.cr0;
1342
1343        if (!svm->vcpu.fpu_active)
1344                *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1345        else
1346                *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1347                        | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1348
1349        mark_dirty(svm->vmcb, VMCB_CR);
1350
1351        if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1352                clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1353                clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1354        } else {
1355                set_cr_intercept(svm, INTERCEPT_CR0_READ);
1356                set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1357        }
1358}
1359
1360static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1361{
1362        struct vcpu_svm *svm = to_svm(vcpu);
1363
1364        if (is_guest_mode(vcpu)) {
1365                /*
1366                 * We are here because we run in nested mode, the host kvm
1367                 * intercepts cr0 writes but the l1 hypervisor does not.
1368                 * But the L1 hypervisor may intercept selective cr0 writes.
1369                 * This needs to be checked here.
1370                 */
1371                unsigned long old, new;
1372
1373                /* Remove bits that would trigger a real cr0 write intercept */
1374                old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1375                new = cr0 & SVM_CR0_SELECTIVE_MASK;
1376
1377                if (old == new) {
1378                        /* cr0 write with ts and mp unchanged */
1379                        svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1380                        if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
1381                                svm->nested.vmexit_rip = kvm_rip_read(vcpu);
1382                                svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
1383                                svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
1384                                return;
1385                        }
1386                }
1387        }
1388
1389#ifdef CONFIG_X86_64
1390        if (vcpu->arch.efer & EFER_LME) {
1391                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1392                        vcpu->arch.efer |= EFER_LMA;
1393                        svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1394                }
1395
1396                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1397                        vcpu->arch.efer &= ~EFER_LMA;
1398                        svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1399                }
1400        }
1401#endif
1402        vcpu->arch.cr0 = cr0;
1403
1404        if (!npt_enabled)
1405                cr0 |= X86_CR0_PG | X86_CR0_WP;
1406
1407        if (!vcpu->fpu_active)
1408                cr0 |= X86_CR0_TS;
1409        /*
1410         * re-enable caching here because the QEMU bios
1411         * does not do it - this results in some delay at
1412         * reboot
1413         */
1414        cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1415        svm->vmcb->save.cr0 = cr0;
1416        mark_dirty(svm->vmcb, VMCB_CR);
1417        update_cr0_intercept(svm);
1418}
1419
1420static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1421{
1422        unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1423        unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1424
1425        if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1426                svm_flush_tlb(vcpu);
1427
1428        vcpu->arch.cr4 = cr4;
1429        if (!npt_enabled)
1430                cr4 |= X86_CR4_PAE;
1431        cr4 |= host_cr4_mce;
1432        to_svm(vcpu)->vmcb->save.cr4 = cr4;
1433        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1434}
1435
1436static void svm_set_segment(struct kvm_vcpu *vcpu,
1437                            struct kvm_segment *var, int seg)
1438{
1439        struct vcpu_svm *svm = to_svm(vcpu);
1440        struct vmcb_seg *s = svm_seg(vcpu, seg);
1441
1442        s->base = var->base;
1443        s->limit = var->limit;
1444        s->selector = var->selector;
1445        if (var->unusable)
1446                s->attrib = 0;
1447        else {
1448                s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1449                s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1450                s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1451                s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1452                s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1453                s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1454                s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1455                s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1456        }
1457        if (seg == VCPU_SREG_CS)
1458                svm->vmcb->save.cpl
1459                        = (svm->vmcb->save.cs.attrib
1460                           >> SVM_SELECTOR_DPL_SHIFT) & 3;
1461
1462        mark_dirty(svm->vmcb, VMCB_SEG);
1463}
1464
1465static void update_db_intercept(struct kvm_vcpu *vcpu)
1466{
1467        struct vcpu_svm *svm = to_svm(vcpu);
1468
1469        clr_exception_intercept(svm, DB_VECTOR);
1470        clr_exception_intercept(svm, BP_VECTOR);
1471
1472        if (svm->nmi_singlestep)
1473                set_exception_intercept(svm, DB_VECTOR);
1474
1475        if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1476                if (vcpu->guest_debug &
1477                    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1478                        set_exception_intercept(svm, DB_VECTOR);
1479                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1480                        set_exception_intercept(svm, BP_VECTOR);
1481        } else
1482                vcpu->guest_debug = 0;
1483}
1484
1485static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1486{
1487        struct vcpu_svm *svm = to_svm(vcpu);
1488
1489        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1490                svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1491        else
1492                svm->vmcb->save.dr7 = vcpu->arch.dr7;
1493
1494        mark_dirty(svm->vmcb, VMCB_DR);
1495
1496        update_db_intercept(vcpu);
1497}
1498
1499static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1500{
1501        if (sd->next_asid > sd->max_asid) {
1502                ++sd->asid_generation;
1503                sd->next_asid = 1;
1504                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1505        }
1506
1507        svm->asid_generation = sd->asid_generation;
1508        svm->vmcb->control.asid = sd->next_asid++;
1509
1510        mark_dirty(svm->vmcb, VMCB_ASID);
1511}
1512
1513static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1514{
1515        struct vcpu_svm *svm = to_svm(vcpu);
1516
1517        svm->vmcb->save.dr7 = value;
1518        mark_dirty(svm->vmcb, VMCB_DR);
1519}
1520
1521static int pf_interception(struct vcpu_svm *svm)
1522{
1523        u64 fault_address = svm->vmcb->control.exit_info_2;
1524        u32 error_code;
1525        int r = 1;
1526
1527        switch (svm->apf_reason) {
1528        default:
1529                error_code = svm->vmcb->control.exit_info_1;
1530
1531                trace_kvm_page_fault(fault_address, error_code);
1532                if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1533                        kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1534                r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1535                        svm->vmcb->control.insn_bytes,
1536                        svm->vmcb->control.insn_len);
1537                break;
1538        case KVM_PV_REASON_PAGE_NOT_PRESENT:
1539                svm->apf_reason = 0;
1540                local_irq_disable();
1541                kvm_async_pf_task_wait(fault_address);
1542                local_irq_enable();
1543                break;
1544        case KVM_PV_REASON_PAGE_READY:
1545                svm->apf_reason = 0;
1546                local_irq_disable();
1547                kvm_async_pf_task_wake(fault_address);
1548                local_irq_enable();
1549                break;
1550        }
1551        return r;
1552}
1553
1554static int db_interception(struct vcpu_svm *svm)
1555{
1556        struct kvm_run *kvm_run = svm->vcpu.run;
1557
1558        if (!(svm->vcpu.guest_debug &
1559              (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1560                !svm->nmi_singlestep) {
1561                kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1562                return 1;
1563        }
1564
1565        if (svm->nmi_singlestep) {
1566                svm->nmi_singlestep = false;
1567                if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1568                        svm->vmcb->save.rflags &=
1569                                ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1570                update_db_intercept(&svm->vcpu);
1571        }
1572
1573        if (svm->vcpu.guest_debug &
1574            (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1575                kvm_run->exit_reason = KVM_EXIT_DEBUG;
1576                kvm_run->debug.arch.pc =
1577                        svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1578                kvm_run->debug.arch.exception = DB_VECTOR;
1579                return 0;
1580        }
1581
1582        return 1;
1583}
1584
1585static int bp_interception(struct vcpu_svm *svm)
1586{
1587        struct kvm_run *kvm_run = svm->vcpu.run;
1588
1589        kvm_run->exit_reason = KVM_EXIT_DEBUG;
1590        kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1591        kvm_run->debug.arch.exception = BP_VECTOR;
1592        return 0;
1593}
1594
1595static int ud_interception(struct vcpu_svm *svm)
1596{
1597        int er;
1598
1599        er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1600        if (er != EMULATE_DONE)
1601                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1602        return 1;
1603}
1604
1605static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1606{
1607        struct vcpu_svm *svm = to_svm(vcpu);
1608
1609        clr_exception_intercept(svm, NM_VECTOR);
1610
1611        svm->vcpu.fpu_active = 1;
1612        update_cr0_intercept(svm);
1613}
1614
1615static int nm_interception(struct vcpu_svm *svm)
1616{
1617        svm_fpu_activate(&svm->vcpu);
1618        return 1;
1619}
1620
1621static bool is_erratum_383(void)
1622{
1623        int err, i;
1624        u64 value;
1625
1626        if (!erratum_383_found)
1627                return false;
1628
1629        value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1630        if (err)
1631                return false;
1632
1633        /* Bit 62 may or may not be set for this mce */
1634        value &= ~(1ULL << 62);
1635
1636        if (value != 0xb600000000010015ULL)
1637                return false;
1638
1639        /* Clear MCi_STATUS registers */
1640        for (i = 0; i < 6; ++i)
1641                native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1642
1643        value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1644        if (!err) {
1645                u32 low, high;
1646
1647                value &= ~(1ULL << 2);
1648                low    = lower_32_bits(value);
1649                high   = upper_32_bits(value);
1650
1651                native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1652        }
1653
1654        /* Flush tlb to evict multi-match entries */
1655        __flush_tlb_all();
1656
1657        return true;
1658}
1659
1660static void svm_handle_mce(struct vcpu_svm *svm)
1661{
1662        if (is_erratum_383()) {
1663                /*
1664                 * Erratum 383 triggered. Guest state is corrupt so kill the
1665                 * guest.
1666                 */
1667                pr_err("KVM: Guest triggered AMD Erratum 383\n");
1668
1669                kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1670
1671                return;
1672        }
1673
1674        /*
1675         * On an #MC intercept the MCE handler is not called automatically in
1676         * the host. So do it by hand here.
1677         */
1678        asm volatile (
1679                "int $0x12\n");
1680        /* not sure if we ever come back to this point */
1681
1682        return;
1683}
1684
1685static int mc_interception(struct vcpu_svm *svm)
1686{
1687        return 1;
1688}
1689
1690static int shutdown_interception(struct vcpu_svm *svm)
1691{
1692        struct kvm_run *kvm_run = svm->vcpu.run;
1693
1694        /*
1695         * VMCB is undefined after a SHUTDOWN intercept
1696         * so reinitialize it.
1697         */
1698        clear_page(svm->vmcb);
1699        init_vmcb(svm);
1700
1701        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1702        return 0;
1703}
1704
1705static int io_interception(struct vcpu_svm *svm)
1706{
1707        struct kvm_vcpu *vcpu = &svm->vcpu;
1708        u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1709        int size, in, string;
1710        unsigned port;
1711
1712        ++svm->vcpu.stat.io_exits;
1713        string = (io_info & SVM_IOIO_STR_MASK) != 0;
1714        in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1715        if (string || in)
1716                return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1717
1718        port = io_info >> 16;
1719        size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1720        svm->next_rip = svm->vmcb->control.exit_info_2;
1721        skip_emulated_instruction(&svm->vcpu);
1722
1723        return kvm_fast_pio_out(vcpu, size, port);
1724}
1725
1726static int nmi_interception(struct vcpu_svm *svm)
1727{
1728        return 1;
1729}
1730
1731static int intr_interception(struct vcpu_svm *svm)
1732{
1733        ++svm->vcpu.stat.irq_exits;
1734        return 1;
1735}
1736
1737static int nop_on_interception(struct vcpu_svm *svm)
1738{
1739        return 1;
1740}
1741
1742static int halt_interception(struct vcpu_svm *svm)
1743{
1744        svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1745        skip_emulated_instruction(&svm->vcpu);
1746        return kvm_emulate_halt(&svm->vcpu);
1747}
1748
1749static int vmmcall_interception(struct vcpu_svm *svm)
1750{
1751        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1752        skip_emulated_instruction(&svm->vcpu);
1753        kvm_emulate_hypercall(&svm->vcpu);
1754        return 1;
1755}
1756
1757static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1758{
1759        struct vcpu_svm *svm = to_svm(vcpu);
1760
1761        return svm->nested.nested_cr3;
1762}
1763
1764static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1765                                   unsigned long root)
1766{
1767        struct vcpu_svm *svm = to_svm(vcpu);
1768
1769        svm->vmcb->control.nested_cr3 = root;
1770        mark_dirty(svm->vmcb, VMCB_NPT);
1771        svm_flush_tlb(vcpu);
1772}
1773
1774static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1775                                       struct x86_exception *fault)
1776{
1777        struct vcpu_svm *svm = to_svm(vcpu);
1778
1779        svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1780        svm->vmcb->control.exit_code_hi = 0;
1781        svm->vmcb->control.exit_info_1 = fault->error_code;
1782        svm->vmcb->control.exit_info_2 = fault->address;
1783
1784        nested_svm_vmexit(svm);
1785}
1786
1787static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1788{
1789        int r;
1790
1791        r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1792
1793        vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1794        vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1795        vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1796        vcpu->arch.mmu.shadow_root_level = get_npt_level();
1797        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1798
1799        return r;
1800}
1801
1802static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1803{
1804        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1805}
1806
1807static int nested_svm_check_permissions(struct vcpu_svm *svm)
1808{
1809        if (!(svm->vcpu.arch.efer & EFER_SVME)
1810            || !is_paging(&svm->vcpu)) {
1811                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1812                return 1;
1813        }
1814
1815        if (svm->vmcb->save.cpl) {
1816                kvm_inject_gp(&svm->vcpu, 0);
1817                return 1;
1818        }
1819
1820       return 0;
1821}
1822
1823static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1824                                      bool has_error_code, u32 error_code)
1825{
1826        int vmexit;
1827
1828        if (!is_guest_mode(&svm->vcpu))
1829                return 0;
1830
1831        svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1832        svm->vmcb->control.exit_code_hi = 0;
1833        svm->vmcb->control.exit_info_1 = error_code;
1834        svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1835
1836        vmexit = nested_svm_intercept(svm);
1837        if (vmexit == NESTED_EXIT_DONE)
1838                svm->nested.exit_required = true;
1839
1840        return vmexit;
1841}
1842
1843/* This function returns true if it is save to enable the irq window */
1844static inline bool nested_svm_intr(struct vcpu_svm *svm)
1845{
1846        if (!is_guest_mode(&svm->vcpu))
1847                return true;
1848
1849        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1850                return true;
1851
1852        if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1853                return false;
1854
1855        /*
1856         * if vmexit was already requested (by intercepted exception
1857         * for instance) do not overwrite it with "external interrupt"
1858         * vmexit.
1859         */
1860        if (svm->nested.exit_required)
1861                return false;
1862
1863        svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1864        svm->vmcb->control.exit_info_1 = 0;
1865        svm->vmcb->control.exit_info_2 = 0;
1866
1867        if (svm->nested.intercept & 1ULL) {
1868                /*
1869                 * The #vmexit can't be emulated here directly because this
1870                 * code path runs with irqs and preemtion disabled. A
1871                 * #vmexit emulation might sleep. Only signal request for
1872                 * the #vmexit here.
1873                 */
1874                svm->nested.exit_required = true;
1875                trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1876                return false;
1877        }
1878
1879        return true;
1880}
1881
1882/* This function returns true if it is save to enable the nmi window */
1883static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1884{
1885        if (!is_guest_mode(&svm->vcpu))
1886                return true;
1887
1888        if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1889                return true;
1890
1891        svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1892        svm->nested.exit_required = true;
1893
1894        return false;
1895}
1896
1897static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1898{
1899        struct page *page;
1900
1901        might_sleep();
1902
1903        page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1904        if (is_error_page(page))
1905                goto error;
1906
1907        *_page = page;
1908
1909        return kmap(page);
1910
1911error:
1912        kvm_release_page_clean(page);
1913        kvm_inject_gp(&svm->vcpu, 0);
1914
1915        return NULL;
1916}
1917
1918static void nested_svm_unmap(struct page *page)
1919{
1920        kunmap(page);
1921        kvm_release_page_dirty(page);
1922}
1923
1924static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1925{
1926        unsigned port;
1927        u8 val, bit;
1928        u64 gpa;
1929
1930        if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1931                return NESTED_EXIT_HOST;
1932
1933        port = svm->vmcb->control.exit_info_1 >> 16;
1934        gpa  = svm->nested.vmcb_iopm + (port / 8);
1935        bit  = port % 8;
1936        val  = 0;
1937
1938        if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1939                val &= (1 << bit);
1940
1941        return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1942}
1943
1944static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1945{
1946        u32 offset, msr, value;
1947        int write, mask;
1948
1949        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1950                return NESTED_EXIT_HOST;
1951
1952        msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1953        offset = svm_msrpm_offset(msr);
1954        write  = svm->vmcb->control.exit_info_1 & 1;
1955        mask   = 1 << ((2 * (msr & 0xf)) + write);
1956
1957        if (offset == MSR_INVALID)
1958                return NESTED_EXIT_DONE;
1959
1960        /* Offset is in 32 bit units but need in 8 bit units */
1961        offset *= 4;
1962
1963        if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1964                return NESTED_EXIT_DONE;
1965
1966        return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1967}
1968
1969static int nested_svm_exit_special(struct vcpu_svm *svm)
1970{
1971        u32 exit_code = svm->vmcb->control.exit_code;
1972
1973        switch (exit_code) {
1974        case SVM_EXIT_INTR:
1975        case SVM_EXIT_NMI:
1976        case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1977                return NESTED_EXIT_HOST;
1978        case SVM_EXIT_NPF:
1979                /* For now we are always handling NPFs when using them */
1980                if (npt_enabled)
1981                        return NESTED_EXIT_HOST;
1982                break;
1983        case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1984                /* When we're shadowing, trap PFs, but not async PF */
1985                if (!npt_enabled && svm->apf_reason == 0)
1986                        return NESTED_EXIT_HOST;
1987                break;
1988        case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1989                nm_interception(svm);
1990                break;
1991        default:
1992                break;
1993        }
1994
1995        return NESTED_EXIT_CONTINUE;
1996}
1997
1998/*
1999 * If this function returns true, this #vmexit was already handled
2000 */
2001static int nested_svm_intercept(struct vcpu_svm *svm)
2002{
2003        u32 exit_code = svm->vmcb->control.exit_code;
2004        int vmexit = NESTED_EXIT_HOST;
2005
2006        switch (exit_code) {
2007        case SVM_EXIT_MSR:
2008                vmexit = nested_svm_exit_handled_msr(svm);
2009                break;
2010        case SVM_EXIT_IOIO:
2011                vmexit = nested_svm_intercept_ioio(svm);
2012                break;
2013        case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2014                u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2015                if (svm->nested.intercept_cr & bit)
2016                        vmexit = NESTED_EXIT_DONE;
2017                break;
2018        }
2019        case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2020                u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2021                if (svm->nested.intercept_dr & bit)
2022                        vmexit = NESTED_EXIT_DONE;
2023                break;
2024        }
2025        case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2026                u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2027                if (svm->nested.intercept_exceptions & excp_bits)
2028                        vmexit = NESTED_EXIT_DONE;
2029                /* async page fault always cause vmexit */
2030                else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2031                         svm->apf_reason != 0)
2032                        vmexit = NESTED_EXIT_DONE;
2033                break;
2034        }
2035        case SVM_EXIT_ERR: {
2036                vmexit = NESTED_EXIT_DONE;
2037                break;
2038        }
2039        default: {
2040                u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2041                if (svm->nested.intercept & exit_bits)
2042                        vmexit = NESTED_EXIT_DONE;
2043        }
2044        }
2045
2046        return vmexit;
2047}
2048
2049static int nested_svm_exit_handled(struct vcpu_svm *svm)
2050{
2051        int vmexit;
2052
2053        vmexit = nested_svm_intercept(svm);
2054
2055        if (vmexit == NESTED_EXIT_DONE)
2056                nested_svm_vmexit(svm);
2057
2058        return vmexit;
2059}
2060
2061static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2062{
2063        struct vmcb_control_area *dst  = &dst_vmcb->control;
2064        struct vmcb_control_area *from = &from_vmcb->control;
2065
2066        dst->intercept_cr         = from->intercept_cr;
2067        dst->intercept_dr         = from->intercept_dr;
2068        dst->intercept_exceptions = from->intercept_exceptions;
2069        dst->intercept            = from->intercept;
2070        dst->iopm_base_pa         = from->iopm_base_pa;
2071        dst->msrpm_base_pa        = from->msrpm_base_pa;
2072        dst->tsc_offset           = from->tsc_offset;
2073        dst->asid                 = from->asid;
2074        dst->tlb_ctl              = from->tlb_ctl;
2075        dst->int_ctl              = from->int_ctl;
2076        dst->int_vector           = from->int_vector;
2077        dst->int_state            = from->int_state;
2078        dst->exit_code            = from->exit_code;
2079        dst->exit_code_hi         = from->exit_code_hi;
2080        dst->exit_info_1          = from->exit_info_1;
2081        dst->exit_info_2          = from->exit_info_2;
2082        dst->exit_int_info        = from->exit_int_info;
2083        dst->exit_int_info_err    = from->exit_int_info_err;
2084        dst->nested_ctl           = from->nested_ctl;
2085        dst->event_inj            = from->event_inj;
2086        dst->event_inj_err        = from->event_inj_err;
2087        dst->nested_cr3           = from->nested_cr3;
2088        dst->lbr_ctl              = from->lbr_ctl;
2089}
2090
2091static int nested_svm_vmexit(struct vcpu_svm *svm)
2092{
2093        struct vmcb *nested_vmcb;
2094        struct vmcb *hsave = svm->nested.hsave;
2095        struct vmcb *vmcb = svm->vmcb;
2096        struct page *page;
2097
2098        trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2099                                       vmcb->control.exit_info_1,
2100                                       vmcb->control.exit_info_2,
2101                                       vmcb->control.exit_int_info,
2102                                       vmcb->control.exit_int_info_err);
2103
2104        nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2105        if (!nested_vmcb)
2106                return 1;
2107
2108        /* Exit Guest-Mode */
2109        leave_guest_mode(&svm->vcpu);
2110        svm->nested.vmcb = 0;
2111
2112        /* Give the current vmcb to the guest */
2113        disable_gif(svm);
2114
2115        nested_vmcb->save.es     = vmcb->save.es;
2116        nested_vmcb->save.cs     = vmcb->save.cs;
2117        nested_vmcb->save.ss     = vmcb->save.ss;
2118        nested_vmcb->save.ds     = vmcb->save.ds;
2119        nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2120        nested_vmcb->save.idtr   = vmcb->save.idtr;
2121        nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2122        nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2123        nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2124        nested_vmcb->save.cr2    = vmcb->save.cr2;
2125        nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2126        nested_vmcb->save.rflags = vmcb->save.rflags;
2127        nested_vmcb->save.rip    = vmcb->save.rip;
2128        nested_vmcb->save.rsp    = vmcb->save.rsp;
2129        nested_vmcb->save.rax    = vmcb->save.rax;
2130        nested_vmcb->save.dr7    = vmcb->save.dr7;
2131        nested_vmcb->save.dr6    = vmcb->save.dr6;
2132        nested_vmcb->save.cpl    = vmcb->save.cpl;
2133
2134        nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2135        nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2136        nested_vmcb->control.int_state         = vmcb->control.int_state;
2137        nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2138        nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2139        nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2140        nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2141        nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2142        nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2143        nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2144
2145        /*
2146         * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2147         * to make sure that we do not lose injected events. So check event_inj
2148         * here and copy it to exit_int_info if it is valid.
2149         * Exit_int_info and event_inj can't be both valid because the case
2150         * below only happens on a VMRUN instruction intercept which has
2151         * no valid exit_int_info set.
2152         */
2153        if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2154                struct vmcb_control_area *nc = &nested_vmcb->control;
2155
2156                nc->exit_int_info     = vmcb->control.event_inj;
2157                nc->exit_int_info_err = vmcb->control.event_inj_err;
2158        }
2159
2160        nested_vmcb->control.tlb_ctl           = 0;
2161        nested_vmcb->control.event_inj         = 0;
2162        nested_vmcb->control.event_inj_err     = 0;
2163
2164        /* We always set V_INTR_MASKING and remember the old value in hflags */
2165        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2166                nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2167
2168        /* Restore the original control entries */
2169        copy_vmcb_control_area(vmcb, hsave);
2170
2171        kvm_clear_exception_queue(&svm->vcpu);
2172        kvm_clear_interrupt_queue(&svm->vcpu);
2173
2174        svm->nested.nested_cr3 = 0;
2175
2176        /* Restore selected save entries */
2177        svm->vmcb->save.es = hsave->save.es;
2178        svm->vmcb->save.cs = hsave->save.cs;
2179        svm->vmcb->save.ss = hsave->save.ss;
2180        svm->vmcb->save.ds = hsave->save.ds;
2181        svm->vmcb->save.gdtr = hsave->save.gdtr;
2182        svm->vmcb->save.idtr = hsave->save.idtr;
2183        svm->vmcb->save.rflags = hsave->save.rflags;
2184        svm_set_efer(&svm->vcpu, hsave->save.efer);
2185        svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2186        svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2187        if (npt_enabled) {
2188                svm->vmcb->save.cr3 = hsave->save.cr3;
2189                svm->vcpu.arch.cr3 = hsave->save.cr3;
2190        } else {
2191                (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2192        }
2193        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2194        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2195        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2196        svm->vmcb->save.dr7 = 0;
2197        svm->vmcb->save.cpl = 0;
2198        svm->vmcb->control.exit_int_info = 0;
2199
2200        mark_all_dirty(svm->vmcb);
2201
2202        nested_svm_unmap(page);
2203
2204        nested_svm_uninit_mmu_context(&svm->vcpu);
2205        kvm_mmu_reset_context(&svm->vcpu);
2206        kvm_mmu_load(&svm->vcpu);
2207
2208        return 0;
2209}
2210
2211static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2212{
2213        /*
2214         * This function merges the msr permission bitmaps of kvm and the
2215         * nested vmcb. It is omptimized in that it only merges the parts where
2216         * the kvm msr permission bitmap may contain zero bits
2217         */
2218        int i;
2219
2220        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2221                return true;
2222
2223        for (i = 0; i < MSRPM_OFFSETS; i++) {
2224                u32 value, p;
2225                u64 offset;
2226
2227                if (msrpm_offsets[i] == 0xffffffff)
2228                        break;
2229
2230                p      = msrpm_offsets[i];
2231                offset = svm->nested.vmcb_msrpm + (p * 4);
2232
2233                if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2234                        return false;
2235
2236                svm->nested.msrpm[p] = svm->msrpm[p] | value;
2237        }
2238
2239        svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2240
2241        return true;
2242}
2243
2244static bool nested_vmcb_checks(struct vmcb *vmcb)
2245{
2246        if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2247                return false;
2248
2249        if (vmcb->control.asid == 0)
2250                return false;
2251
2252        if (vmcb->control.nested_ctl && !npt_enabled)
2253                return false;
2254
2255        return true;
2256}
2257
2258static bool nested_svm_vmrun(struct vcpu_svm *svm)
2259{
2260        struct vmcb *nested_vmcb;
2261        struct vmcb *hsave = svm->nested.hsave;
2262        struct vmcb *vmcb = svm->vmcb;
2263        struct page *page;
2264        u64 vmcb_gpa;
2265
2266        vmcb_gpa = svm->vmcb->save.rax;
2267
2268        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2269        if (!nested_vmcb)
2270                return false;
2271
2272        if (!nested_vmcb_checks(nested_vmcb)) {
2273                nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2274                nested_vmcb->control.exit_code_hi = 0;
2275                nested_vmcb->control.exit_info_1  = 0;
2276                nested_vmcb->control.exit_info_2  = 0;
2277
2278                nested_svm_unmap(page);
2279
2280                return false;
2281        }
2282
2283        trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2284                               nested_vmcb->save.rip,
2285                               nested_vmcb->control.int_ctl,
2286                               nested_vmcb->control.event_inj,
2287                               nested_vmcb->control.nested_ctl);
2288
2289        trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2290                                    nested_vmcb->control.intercept_cr >> 16,
2291                                    nested_vmcb->control.intercept_exceptions,
2292                                    nested_vmcb->control.intercept);
2293
2294        /* Clear internal status */
2295        kvm_clear_exception_queue(&svm->vcpu);
2296        kvm_clear_interrupt_queue(&svm->vcpu);
2297
2298        /*
2299         * Save the old vmcb, so we don't need to pick what we save, but can
2300         * restore everything when a VMEXIT occurs
2301         */
2302        hsave->save.es     = vmcb->save.es;
2303        hsave->save.cs     = vmcb->save.cs;
2304        hsave->save.ss     = vmcb->save.ss;
2305        hsave->save.ds     = vmcb->save.ds;
2306        hsave->save.gdtr   = vmcb->save.gdtr;
2307        hsave->save.idtr   = vmcb->save.idtr;
2308        hsave->save.efer   = svm->vcpu.arch.efer;
2309        hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2310        hsave->save.cr4    = svm->vcpu.arch.cr4;
2311        hsave->save.rflags = vmcb->save.rflags;
2312        hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2313        hsave->save.rsp    = vmcb->save.rsp;
2314        hsave->save.rax    = vmcb->save.rax;
2315        if (npt_enabled)
2316                hsave->save.cr3    = vmcb->save.cr3;
2317        else
2318                hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2319
2320        copy_vmcb_control_area(hsave, vmcb);
2321
2322        if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2323                svm->vcpu.arch.hflags |= HF_HIF_MASK;
2324        else
2325                svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2326
2327        if (nested_vmcb->control.nested_ctl) {
2328                kvm_mmu_unload(&svm->vcpu);
2329                svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2330                nested_svm_init_mmu_context(&svm->vcpu);
2331        }
2332
2333        /* Load the nested guest state */
2334        svm->vmcb->save.es = nested_vmcb->save.es;
2335        svm->vmcb->save.cs = nested_vmcb->save.cs;
2336        svm->vmcb->save.ss = nested_vmcb->save.ss;
2337        svm->vmcb->save.ds = nested_vmcb->save.ds;
2338        svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2339        svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2340        svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2341        svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2342        svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2343        svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2344        if (npt_enabled) {
2345                svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2346                svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2347        } else
2348                (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2349
2350        /* Guest paging mode is active - reset mmu */
2351        kvm_mmu_reset_context(&svm->vcpu);
2352
2353        svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2354        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2355        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2356        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2357
2358        /* In case we don't even reach vcpu_run, the fields are not updated */
2359        svm->vmcb->save.rax = nested_vmcb->save.rax;
2360        svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2361        svm->vmcb->save.rip = nested_vmcb->save.rip;
2362        svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2363        svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2364        svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2365
2366        svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2367        svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2368
2369        /* cache intercepts */
2370        svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2371        svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2372        svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2373        svm->nested.intercept            = nested_vmcb->control.intercept;
2374
2375        svm_flush_tlb(&svm->vcpu);
2376        svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2377        if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2378                svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2379        else
2380                svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2381
2382        if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2383                /* We only want the cr8 intercept bits of the guest */
2384                clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2385                clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2386        }
2387
2388        /* We don't want to see VMMCALLs from a nested guest */
2389        clr_intercept(svm, INTERCEPT_VMMCALL);
2390
2391        svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2392        svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2393        svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2394        svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2395        svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2396        svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2397
2398        nested_svm_unmap(page);
2399
2400        /* Enter Guest-Mode */
2401        enter_guest_mode(&svm->vcpu);
2402
2403        /*
2404         * Merge guest and host intercepts - must be called  with vcpu in
2405         * guest-mode to take affect here
2406         */
2407        recalc_intercepts(svm);
2408
2409        svm->nested.vmcb = vmcb_gpa;
2410
2411        enable_gif(svm);
2412
2413        mark_all_dirty(svm->vmcb);
2414
2415        return true;
2416}
2417
2418static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2419{
2420        to_vmcb->save.fs = from_vmcb->save.fs;
2421        to_vmcb->save.gs = from_vmcb->save.gs;
2422        to_vmcb->save.tr = from_vmcb->save.tr;
2423        to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2424        to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2425        to_vmcb->save.star = from_vmcb->save.star;
2426        to_vmcb->save.lstar = from_vmcb->save.lstar;
2427        to_vmcb->save.cstar = from_vmcb->save.cstar;
2428        to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2429        to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2430        to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2431        to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2432}
2433
2434static int vmload_interception(struct vcpu_svm *svm)
2435{
2436        struct vmcb *nested_vmcb;
2437        struct page *page;
2438
2439        if (nested_svm_check_permissions(svm))
2440                return 1;
2441
2442        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2443        skip_emulated_instruction(&svm->vcpu);
2444
2445        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2446        if (!nested_vmcb)
2447                return 1;
2448
2449        nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2450        nested_svm_unmap(page);
2451
2452        return 1;
2453}
2454
2455static int vmsave_interception(struct vcpu_svm *svm)
2456{
2457        struct vmcb *nested_vmcb;
2458        struct page *page;
2459
2460        if (nested_svm_check_permissions(svm))
2461                return 1;
2462
2463        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2464        skip_emulated_instruction(&svm->vcpu);
2465
2466        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2467        if (!nested_vmcb)
2468                return 1;
2469
2470        nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2471        nested_svm_unmap(page);
2472
2473        return 1;
2474}
2475
2476static int vmrun_interception(struct vcpu_svm *svm)
2477{
2478        if (nested_svm_check_permissions(svm))
2479                return 1;
2480
2481        /* Save rip after vmrun instruction */
2482        kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2483
2484        if (!nested_svm_vmrun(svm))
2485                return 1;
2486
2487        if (!nested_svm_vmrun_msrpm(svm))
2488                goto failed;
2489
2490        return 1;
2491
2492failed:
2493
2494        svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2495        svm->vmcb->control.exit_code_hi = 0;
2496        svm->vmcb->control.exit_info_1  = 0;
2497        svm->vmcb->control.exit_info_2  = 0;
2498
2499        nested_svm_vmexit(svm);
2500
2501        return 1;
2502}
2503
2504static int stgi_interception(struct vcpu_svm *svm)
2505{
2506        if (nested_svm_check_permissions(svm))
2507                return 1;
2508
2509        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2510        skip_emulated_instruction(&svm->vcpu);
2511        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2512
2513        enable_gif(svm);
2514
2515        return 1;
2516}
2517
2518static int clgi_interception(struct vcpu_svm *svm)
2519{
2520        if (nested_svm_check_permissions(svm))
2521                return 1;
2522
2523        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2524        skip_emulated_instruction(&svm->vcpu);
2525
2526        disable_gif(svm);
2527
2528        /* After a CLGI no interrupts should come */
2529        svm_clear_vintr(svm);
2530        svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2531
2532        mark_dirty(svm->vmcb, VMCB_INTR);
2533
2534        return 1;
2535}
2536
2537static int invlpga_interception(struct vcpu_svm *svm)
2538{
2539        struct kvm_vcpu *vcpu = &svm->vcpu;
2540
2541        trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2542                          vcpu->arch.regs[VCPU_REGS_RAX]);
2543
2544        /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2545        kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2546
2547        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2548        skip_emulated_instruction(&svm->vcpu);
2549        return 1;
2550}
2551
2552static int skinit_interception(struct vcpu_svm *svm)
2553{
2554        trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2555
2556        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2557        return 1;
2558}
2559
2560static int xsetbv_interception(struct vcpu_svm *svm)
2561{
2562        u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2563        u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2564
2565        if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2566                svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2567                skip_emulated_instruction(&svm->vcpu);
2568        }
2569
2570        return 1;
2571}
2572
2573static int invalid_op_interception(struct vcpu_svm *svm)
2574{
2575        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2576        return 1;
2577}
2578
2579static int task_switch_interception(struct vcpu_svm *svm)
2580{
2581        u16 tss_selector;
2582        int reason;
2583        int int_type = svm->vmcb->control.exit_int_info &
2584                SVM_EXITINTINFO_TYPE_MASK;
2585        int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2586        uint32_t type =
2587                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2588        uint32_t idt_v =
2589                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2590        bool has_error_code = false;
2591        u32 error_code = 0;
2592
2593        tss_selector = (u16)svm->vmcb->control.exit_info_1;
2594
2595        if (svm->vmcb->control.exit_info_2 &
2596            (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2597                reason = TASK_SWITCH_IRET;
2598        else if (svm->vmcb->control.exit_info_2 &
2599                 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2600                reason = TASK_SWITCH_JMP;
2601        else if (idt_v)
2602                reason = TASK_SWITCH_GATE;
2603        else
2604                reason = TASK_SWITCH_CALL;
2605
2606        if (reason == TASK_SWITCH_GATE) {
2607                switch (type) {
2608                case SVM_EXITINTINFO_TYPE_NMI:
2609                        svm->vcpu.arch.nmi_injected = false;
2610                        break;
2611                case SVM_EXITINTINFO_TYPE_EXEPT:
2612                        if (svm->vmcb->control.exit_info_2 &
2613                            (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2614                                has_error_code = true;
2615                                error_code =
2616                                        (u32)svm->vmcb->control.exit_info_2;
2617                        }
2618                        kvm_clear_exception_queue(&svm->vcpu);
2619                        break;
2620                case SVM_EXITINTINFO_TYPE_INTR:
2621                        kvm_clear_interrupt_queue(&svm->vcpu);
2622                        break;
2623                default:
2624                        break;
2625                }
2626        }
2627
2628        if (reason != TASK_SWITCH_GATE ||
2629            int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2630            (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2631             (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2632                skip_emulated_instruction(&svm->vcpu);
2633
2634        if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2635                                has_error_code, error_code) == EMULATE_FAIL) {
2636                svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2637                svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2638                svm->vcpu.run->internal.ndata = 0;
2639                return 0;
2640        }
2641        return 1;
2642}
2643
2644static int cpuid_interception(struct vcpu_svm *svm)
2645{
2646        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2647        kvm_emulate_cpuid(&svm->vcpu);
2648        return 1;
2649}
2650
2651static int iret_interception(struct vcpu_svm *svm)
2652{
2653        ++svm->vcpu.stat.nmi_window_exits;
2654        clr_intercept(svm, INTERCEPT_IRET);
2655        svm->vcpu.arch.hflags |= HF_IRET_MASK;
2656        return 1;
2657}
2658
2659static int invlpg_interception(struct vcpu_svm *svm)
2660{
2661        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2662                return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2663
2664        kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2665        skip_emulated_instruction(&svm->vcpu);
2666        return 1;
2667}
2668
2669static int emulate_on_interception(struct vcpu_svm *svm)
2670{
2671        return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2672}
2673
2674#define CR_VALID (1ULL << 63)
2675
2676static int cr_interception(struct vcpu_svm *svm)
2677{
2678        int reg, cr;
2679        unsigned long val;
2680        int err;
2681
2682        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2683                return emulate_on_interception(svm);
2684
2685        if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2686                return emulate_on_interception(svm);
2687
2688        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2689        cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2690
2691        err = 0;
2692        if (cr >= 16) { /* mov to cr */
2693                cr -= 16;
2694                val = kvm_register_read(&svm->vcpu, reg);
2695                switch (cr) {
2696                case 0:
2697                        err = kvm_set_cr0(&svm->vcpu, val);
2698                        break;
2699                case 3:
2700                        err = kvm_set_cr3(&svm->vcpu, val);
2701                        break;
2702                case 4:
2703                        err = kvm_set_cr4(&svm->vcpu, val);
2704                        break;
2705                case 8:
2706                        err = kvm_set_cr8(&svm->vcpu, val);
2707                        break;
2708                default:
2709                        WARN(1, "unhandled write to CR%d", cr);
2710                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2711                        return 1;
2712                }
2713        } else { /* mov from cr */
2714                switch (cr) {
2715                case 0:
2716                        val = kvm_read_cr0(&svm->vcpu);
2717                        break;
2718                case 2:
2719                        val = svm->vcpu.arch.cr2;
2720                        break;
2721                case 3:
2722                        val = kvm_read_cr3(&svm->vcpu);
2723                        break;
2724                case 4:
2725                        val = kvm_read_cr4(&svm->vcpu);
2726                        break;
2727                case 8:
2728                        val = kvm_get_cr8(&svm->vcpu);
2729                        break;
2730                default:
2731                        WARN(1, "unhandled read from CR%d", cr);
2732                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2733                        return 1;
2734                }
2735                kvm_register_write(&svm->vcpu, reg, val);
2736        }
2737        kvm_complete_insn_gp(&svm->vcpu, err);
2738
2739        return 1;
2740}
2741
2742static int cr0_write_interception(struct vcpu_svm *svm)
2743{
2744        struct kvm_vcpu *vcpu = &svm->vcpu;
2745        int r;
2746
2747        r = cr_interception(svm);
2748
2749        if (svm->nested.vmexit_rip) {
2750                kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
2751                kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
2752                kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
2753                svm->nested.vmexit_rip = 0;
2754        }
2755
2756        return r;
2757}
2758
2759static int dr_interception(struct vcpu_svm *svm)
2760{
2761        int reg, dr;
2762        unsigned long val;
2763        int err;
2764
2765        if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2766                return emulate_on_interception(svm);
2767
2768        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2769        dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2770
2771        if (dr >= 16) { /* mov to DRn */
2772                val = kvm_register_read(&svm->vcpu, reg);
2773                kvm_set_dr(&svm->vcpu, dr - 16, val);
2774        } else {
2775                err = kvm_get_dr(&svm->vcpu, dr, &val);
2776                if (!err)
2777                        kvm_register_write(&svm->vcpu, reg, val);
2778        }
2779
2780        skip_emulated_instruction(&svm->vcpu);
2781
2782        return 1;
2783}
2784
2785static int cr8_write_interception(struct vcpu_svm *svm)
2786{
2787        struct kvm_run *kvm_run = svm->vcpu.run;
2788        int r;
2789
2790        u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2791        /* instruction emulation calls kvm_set_cr8() */
2792        r = cr_interception(svm);
2793        if (irqchip_in_kernel(svm->vcpu.kvm)) {
2794                clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2795                return r;
2796        }
2797        if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2798                return r;
2799        kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2800        return 0;
2801}
2802
2803static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2804{
2805        struct vcpu_svm *svm = to_svm(vcpu);
2806
2807        switch (ecx) {
2808        case MSR_IA32_TSC: {
2809                struct vmcb *vmcb = get_host_vmcb(svm);
2810
2811                *data = vmcb->control.tsc_offset + native_read_tsc();
2812                break;
2813        }
2814        case MSR_STAR:
2815                *data = svm->vmcb->save.star;
2816                break;
2817#ifdef CONFIG_X86_64
2818        case MSR_LSTAR:
2819                *data = svm->vmcb->save.lstar;
2820                break;
2821        case MSR_CSTAR:
2822                *data = svm->vmcb->save.cstar;
2823                break;
2824        case MSR_KERNEL_GS_BASE:
2825                *data = svm->vmcb->save.kernel_gs_base;
2826                break;
2827        case MSR_SYSCALL_MASK:
2828                *data = svm->vmcb->save.sfmask;
2829                break;
2830#endif
2831        case MSR_IA32_SYSENTER_CS:
2832                *data = svm->vmcb->save.sysenter_cs;
2833                break;
2834        case MSR_IA32_SYSENTER_EIP:
2835                *data = svm->sysenter_eip;
2836                break;
2837        case MSR_IA32_SYSENTER_ESP:
2838                *data = svm->sysenter_esp;
2839                break;
2840        /*
2841         * Nobody will change the following 5 values in the VMCB so we can
2842         * safely return them on rdmsr. They will always be 0 until LBRV is
2843         * implemented.
2844         */
2845        case MSR_IA32_DEBUGCTLMSR:
2846                *data = svm->vmcb->save.dbgctl;
2847                break;
2848        case MSR_IA32_LASTBRANCHFROMIP:
2849                *data = svm->vmcb->save.br_from;
2850                break;
2851        case MSR_IA32_LASTBRANCHTOIP:
2852                *data = svm->vmcb->save.br_to;
2853                break;
2854        case MSR_IA32_LASTINTFROMIP:
2855                *data = svm->vmcb->save.last_excp_from;
2856                break;
2857        case MSR_IA32_LASTINTTOIP:
2858                *data = svm->vmcb->save.last_excp_to;
2859                break;
2860        case MSR_VM_HSAVE_PA:
2861                *data = svm->nested.hsave_msr;
2862                break;
2863        case MSR_VM_CR:
2864                *data = svm->nested.vm_cr_msr;
2865                break;
2866        case MSR_IA32_UCODE_REV:
2867                *data = 0x01000065;
2868                break;
2869        default:
2870                return kvm_get_msr_common(vcpu, ecx, data);
2871        }
2872        return 0;
2873}
2874
2875static int rdmsr_interception(struct vcpu_svm *svm)
2876{
2877        u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2878        u64 data;
2879
2880        if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2881                trace_kvm_msr_read_ex(ecx);
2882                kvm_inject_gp(&svm->vcpu, 0);
2883        } else {
2884                trace_kvm_msr_read(ecx, data);
2885
2886                svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2887                svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2888                svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2889                skip_emulated_instruction(&svm->vcpu);
2890        }
2891        return 1;
2892}
2893
2894static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2895{
2896        struct vcpu_svm *svm = to_svm(vcpu);
2897        int svm_dis, chg_mask;
2898
2899        if (data & ~SVM_VM_CR_VALID_MASK)
2900                return 1;
2901
2902        chg_mask = SVM_VM_CR_VALID_MASK;
2903
2904        if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2905                chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2906
2907        svm->nested.vm_cr_msr &= ~chg_mask;
2908        svm->nested.vm_cr_msr |= (data & chg_mask);
2909
2910        svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2911
2912        /* check for svm_disable while efer.svme is set */
2913        if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2914                return 1;
2915
2916        return 0;
2917}
2918
2919static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2920{
2921        struct vcpu_svm *svm = to_svm(vcpu);
2922
2923        switch (ecx) {
2924        case MSR_IA32_TSC:
2925                kvm_write_tsc(vcpu, data);
2926                break;
2927        case MSR_STAR:
2928                svm->vmcb->save.star = data;
2929                break;
2930#ifdef CONFIG_X86_64
2931        case MSR_LSTAR:
2932                svm->vmcb->save.lstar = data;
2933                break;
2934        case MSR_CSTAR:
2935                svm->vmcb->save.cstar = data;
2936                break;
2937        case MSR_KERNEL_GS_BASE:
2938                svm->vmcb->save.kernel_gs_base = data;
2939                break;
2940        case MSR_SYSCALL_MASK:
2941                svm->vmcb->save.sfmask = data;
2942                break;
2943#endif
2944        case MSR_IA32_SYSENTER_CS:
2945                svm->vmcb->save.sysenter_cs = data;
2946                break;
2947        case MSR_IA32_SYSENTER_EIP:
2948                svm->sysenter_eip = data;
2949                svm->vmcb->save.sysenter_eip = data;
2950                break;
2951        case MSR_IA32_SYSENTER_ESP:
2952                svm->sysenter_esp = data;
2953                svm->vmcb->save.sysenter_esp = data;
2954                break;
2955        case MSR_IA32_DEBUGCTLMSR:
2956                if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2957                        pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2958                                        __func__, data);
2959                        break;
2960                }
2961                if (data & DEBUGCTL_RESERVED_BITS)
2962                        return 1;
2963
2964                svm->vmcb->save.dbgctl = data;
2965                mark_dirty(svm->vmcb, VMCB_LBR);
2966                if (data & (1ULL<<0))
2967                        svm_enable_lbrv(svm);
2968                else
2969                        svm_disable_lbrv(svm);
2970                break;
2971        case MSR_VM_HSAVE_PA:
2972                svm->nested.hsave_msr = data;
2973                break;
2974        case MSR_VM_CR:
2975                return svm_set_vm_cr(vcpu, data);
2976        case MSR_VM_IGNNE:
2977                pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2978                break;
2979        default:
2980                return kvm_set_msr_common(vcpu, ecx, data);
2981        }
2982        return 0;
2983}
2984
2985static int wrmsr_interception(struct vcpu_svm *svm)
2986{
2987        u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2988        u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2989                | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2990
2991
2992        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2993        if (svm_set_msr(&svm->vcpu, ecx, data)) {
2994                trace_kvm_msr_write_ex(ecx, data);
2995                kvm_inject_gp(&svm->vcpu, 0);
2996        } else {
2997                trace_kvm_msr_write(ecx, data);
2998                skip_emulated_instruction(&svm->vcpu);
2999        }
3000        return 1;
3001}
3002
3003static int msr_interception(struct vcpu_svm *svm)
3004{
3005        if (svm->vmcb->control.exit_info_1)
3006                return wrmsr_interception(svm);
3007        else
3008                return rdmsr_interception(svm);
3009}
3010
3011static int interrupt_window_interception(struct vcpu_svm *svm)
3012{
3013        struct kvm_run *kvm_run = svm->vcpu.run;
3014
3015        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3016        svm_clear_vintr(svm);
3017        svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3018        mark_dirty(svm->vmcb, VMCB_INTR);
3019        /*
3020         * If the user space waits to inject interrupts, exit as soon as
3021         * possible
3022         */
3023        if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3024            kvm_run->request_interrupt_window &&
3025            !kvm_cpu_has_interrupt(&svm->vcpu)) {
3026                ++svm->vcpu.stat.irq_window_exits;
3027                kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3028                return 0;
3029        }
3030
3031        return 1;
3032}
3033
3034static int pause_interception(struct vcpu_svm *svm)
3035{
3036        kvm_vcpu_on_spin(&(svm->vcpu));
3037        return 1;
3038}
3039
3040static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
3041        [SVM_EXIT_READ_CR0]                     = cr_interception,
3042        [SVM_EXIT_READ_CR3]                     = cr_interception,
3043        [SVM_EXIT_READ_CR4]                     = cr_interception,
3044        [SVM_EXIT_READ_CR8]                     = cr_interception,
3045        [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3046        [SVM_EXIT_WRITE_CR0]                    = cr0_write_interception,
3047        [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3048        [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3049        [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3050        [SVM_EXIT_READ_DR0]                     = dr_interception,
3051        [SVM_EXIT_READ_DR1]                     = dr_interception,
3052        [SVM_EXIT_READ_DR2]                     = dr_interception,
3053        [SVM_EXIT_READ_DR3]                     = dr_interception,
3054        [SVM_EXIT_READ_DR4]                     = dr_interception,
3055        [SVM_EXIT_READ_DR5]                     = dr_interception,
3056        [SVM_EXIT_READ_DR6]                     = dr_interception,
3057        [SVM_EXIT_READ_DR7]                     = dr_interception,
3058        [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3059        [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3060        [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3061        [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3062        [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3063        [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3064        [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3065        [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3066        [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3067        [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3068        [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3069        [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3070        [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3071        [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3072        [SVM_EXIT_INTR]                         = intr_interception,
3073        [SVM_EXIT_NMI]                          = nmi_interception,
3074        [SVM_EXIT_SMI]                          = nop_on_interception,
3075        [SVM_EXIT_INIT]                         = nop_on_interception,
3076        [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3077        [SVM_EXIT_CPUID]                        = cpuid_interception,
3078        [SVM_EXIT_IRET]                         = iret_interception,
3079        [SVM_EXIT_INVD]                         = emulate_on_interception,
3080        [SVM_EXIT_PAUSE]                        = pause_interception,
3081        [SVM_EXIT_HLT]                          = halt_interception,
3082        [SVM_EXIT_INVLPG]                       = invlpg_interception,
3083        [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3084        [SVM_EXIT_IOIO]                         = io_interception,
3085        [SVM_EXIT_MSR]                          = msr_interception,
3086        [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3087        [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3088        [SVM_EXIT_VMRUN]                        = vmrun_interception,
3089        [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3090        [SVM_EXIT_VMLOAD]                       = vmload_interception,
3091        [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3092        [SVM_EXIT_STGI]                         = stgi_interception,
3093        [SVM_EXIT_CLGI]                         = clgi_interception,
3094        [SVM_EXIT_SKINIT]                       = skinit_interception,
3095        [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3096        [SVM_EXIT_MONITOR]                      = invalid_op_interception,
3097        [SVM_EXIT_MWAIT]                        = invalid_op_interception,
3098        [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3099        [SVM_EXIT_NPF]                          = pf_interception,
3100};
3101
3102void dump_vmcb(struct kvm_vcpu *vcpu)
3103{
3104        struct vcpu_svm *svm = to_svm(vcpu);
3105        struct vmcb_control_area *control = &svm->vmcb->control;
3106        struct vmcb_save_area *save = &svm->vmcb->save;
3107
3108        pr_err("VMCB Control Area:\n");
3109        pr_err("cr_read:            %04x\n", control->intercept_cr & 0xffff);
3110        pr_err("cr_write:           %04x\n", control->intercept_cr >> 16);
3111        pr_err("dr_read:            %04x\n", control->intercept_dr & 0xffff);
3112        pr_err("dr_write:           %04x\n", control->intercept_dr >> 16);
3113        pr_err("exceptions:         %08x\n", control->intercept_exceptions);
3114        pr_err("intercepts:         %016llx\n", control->intercept);
3115        pr_err("pause filter count: %d\n", control->pause_filter_count);
3116        pr_err("iopm_base_pa:       %016llx\n", control->iopm_base_pa);
3117        pr_err("msrpm_base_pa:      %016llx\n", control->msrpm_base_pa);
3118        pr_err("tsc_offset:         %016llx\n", control->tsc_offset);
3119        pr_err("asid:               %d\n", control->asid);
3120        pr_err("tlb_ctl:            %d\n", control->tlb_ctl);
3121        pr_err("int_ctl:            %08x\n", control->int_ctl);
3122        pr_err("int_vector:         %08x\n", control->int_vector);
3123        pr_err("int_state:          %08x\n", control->int_state);
3124        pr_err("exit_code:          %08x\n", control->exit_code);
3125        pr_err("exit_info1:         %016llx\n", control->exit_info_1);
3126        pr_err("exit_info2:         %016llx\n", control->exit_info_2);
3127        pr_err("exit_int_info:      %08x\n", control->exit_int_info);
3128        pr_err("exit_int_info_err:  %08x\n", control->exit_int_info_err);
3129        pr_err("nested_ctl:         %lld\n", control->nested_ctl);
3130        pr_err("nested_cr3:         %016llx\n", control->nested_cr3);
3131        pr_err("event_inj:          %08x\n", control->event_inj);
3132        pr_err("event_inj_err:      %08x\n", control->event_inj_err);
3133        pr_err("lbr_ctl:            %lld\n", control->lbr_ctl);
3134        pr_err("next_rip:           %016llx\n", control->next_rip);
3135        pr_err("VMCB State Save Area:\n");
3136        pr_err("es:   s: %04x a: %04x l: %08x b: %016llx\n",
3137                save->es.selector, save->es.attrib,
3138                save->es.limit, save->es.base);
3139        pr_err("cs:   s: %04x a: %04x l: %08x b: %016llx\n",
3140                save->cs.selector, save->cs.attrib,
3141                save->cs.limit, save->cs.base);
3142        pr_err("ss:   s: %04x a: %04x l: %08x b: %016llx\n",
3143                save->ss.selector, save->ss.attrib,
3144                save->ss.limit, save->ss.base);
3145        pr_err("ds:   s: %04x a: %04x l: %08x b: %016llx\n",
3146                save->ds.selector, save->ds.attrib,
3147                save->ds.limit, save->ds.base);
3148        pr_err("fs:   s: %04x a: %04x l: %08x b: %016llx\n",
3149                save->fs.selector, save->fs.attrib,
3150                save->fs.limit, save->fs.base);
3151        pr_err("gs:   s: %04x a: %04x l: %08x b: %016llx\n",
3152                save->gs.selector, save->gs.attrib,
3153                save->gs.limit, save->gs.base);
3154        pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
3155                save->gdtr.selector, save->gdtr.attrib,
3156                save->gdtr.limit, save->gdtr.base);
3157        pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
3158                save->ldtr.selector, save->ldtr.attrib,
3159                save->ldtr.limit, save->ldtr.base);
3160        pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
3161                save->idtr.selector, save->idtr.attrib,
3162                save->idtr.limit, save->idtr.base);
3163        pr_err("tr:   s: %04x a: %04x l: %08x b: %016llx\n",
3164                save->tr.selector, save->tr.attrib,
3165                save->tr.limit, save->tr.base);
3166        pr_err("cpl:            %d                efer:         %016llx\n",
3167                save->cpl, save->efer);
3168        pr_err("cr0:            %016llx cr2:          %016llx\n",
3169                save->cr0, save->cr2);
3170        pr_err("cr3:            %016llx cr4:          %016llx\n",
3171                save->cr3, save->cr4);
3172        pr_err("dr6:            %016llx dr7:          %016llx\n",
3173                save->dr6, save->dr7);
3174        pr_err("rip:            %016llx rflags:       %016llx\n",
3175                save->rip, save->rflags);
3176        pr_err("rsp:            %016llx rax:          %016llx\n",
3177                save->rsp, save->rax);
3178        pr_err("star:           %016llx lstar:        %016llx\n",
3179                save->star, save->lstar);
3180        pr_err("cstar:          %016llx sfmask:       %016llx\n",
3181                save->cstar, save->sfmask);
3182        pr_err("kernel_gs_base: %016llx sysenter_cs:  %016llx\n",
3183                save->kernel_gs_base, save->sysenter_cs);
3184        pr_err("sysenter_esp:   %016llx sysenter_eip: %016llx\n",
3185                save->sysenter_esp, save->sysenter_eip);
3186        pr_err("gpat:           %016llx dbgctl:       %016llx\n",
3187                save->g_pat, save->dbgctl);
3188        pr_err("br_from:        %016llx br_to:        %016llx\n",
3189                save->br_from, save->br_to);
3190        pr_err("excp_from:      %016llx excp_to:      %016llx\n",
3191                save->last_excp_from, save->last_excp_to);
3192
3193}
3194
3195static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3196{
3197        struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3198
3199        *info1 = control->exit_info_1;
3200        *info2 = control->exit_info_2;
3201}
3202
3203static int handle_exit(struct kvm_vcpu *vcpu)
3204{
3205        struct vcpu_svm *svm = to_svm(vcpu);
3206        struct kvm_run *kvm_run = vcpu->run;
3207        u32 exit_code = svm->vmcb->control.exit_code;
3208
3209        trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3210
3211        if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3212                vcpu->arch.cr0 = svm->vmcb->save.cr0;
3213        if (npt_enabled)
3214                vcpu->arch.cr3 = svm->vmcb->save.cr3;
3215
3216        if (unlikely(svm->nested.exit_required)) {
3217                nested_svm_vmexit(svm);
3218                svm->nested.exit_required = false;
3219
3220                return 1;
3221        }
3222
3223        if (is_guest_mode(vcpu)) {
3224                int vmexit;
3225
3226                trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3227                                        svm->vmcb->control.exit_info_1,
3228                                        svm->vmcb->control.exit_info_2,
3229                                        svm->vmcb->control.exit_int_info,
3230                                        svm->vmcb->control.exit_int_info_err);
3231
3232                vmexit = nested_svm_exit_special(svm);
3233
3234                if (vmexit == NESTED_EXIT_CONTINUE)
3235                        vmexit = nested_svm_exit_handled(svm);
3236
3237                if (vmexit == NESTED_EXIT_DONE)
3238                        return 1;
3239        }
3240
3241        svm_complete_interrupts(svm);
3242
3243        if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3244                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3245                kvm_run->fail_entry.hardware_entry_failure_reason
3246                        = svm->vmcb->control.exit_code;
3247                pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3248                dump_vmcb(vcpu);
3249                return 0;
3250        }
3251
3252        if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3253            exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3254            exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3255            exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3256                printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3257                       "exit_code 0x%x\n",
3258                       __func__, svm->vmcb->control.exit_int_info,
3259                       exit_code);
3260
3261        if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3262            || !svm_exit_handlers[exit_code]) {
3263                kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3264                kvm_run->hw.hardware_exit_reason = exit_code;
3265                return 0;
3266        }
3267
3268        return svm_exit_handlers[exit_code](svm);
3269}
3270
3271static void reload_tss(struct kvm_vcpu *vcpu)
3272{
3273        int cpu = raw_smp_processor_id();
3274
3275        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3276        sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3277        load_TR_desc();
3278}
3279
3280static void pre_svm_run(struct vcpu_svm *svm)
3281{
3282        int cpu = raw_smp_processor_id();
3283
3284        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3285
3286        /* FIXME: handle wraparound of asid_generation */
3287        if (svm->asid_generation != sd->asid_generation)
3288                new_asid(svm, sd);
3289}
3290
3291static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3292{
3293        struct vcpu_svm *svm = to_svm(vcpu);
3294
3295        svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3296        vcpu->arch.hflags |= HF_NMI_MASK;
3297        set_intercept(svm, INTERCEPT_IRET);
3298        ++vcpu->stat.nmi_injections;
3299}
3300
3301static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3302{
3303        struct vmcb_control_area *control;
3304
3305        control = &svm->vmcb->control;
3306        control->int_vector = irq;
3307        control->int_ctl &= ~V_INTR_PRIO_MASK;
3308        control->int_ctl |= V_IRQ_MASK |
3309                ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3310        mark_dirty(svm->vmcb, VMCB_INTR);
3311}
3312
3313static void svm_set_irq(struct kvm_vcpu *vcpu)
3314{
3315        struct vcpu_svm *svm = to_svm(vcpu);
3316
3317        BUG_ON(!(gif_set(svm)));
3318
3319        trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3320        ++vcpu->stat.irq_injections;
3321
3322        svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3323                SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3324}
3325
3326static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3327{
3328        struct vcpu_svm *svm = to_svm(vcpu);
3329
3330        if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3331                return;
3332
3333        if (irr == -1)
3334                return;
3335
3336        if (tpr >= irr)
3337                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3338}
3339
3340static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3341{
3342        struct vcpu_svm *svm = to_svm(vcpu);
3343        struct vmcb *vmcb = svm->vmcb;
3344        int ret;
3345        ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3346              !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3347        ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3348
3349        return ret;
3350}
3351
3352static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3353{
3354        struct vcpu_svm *svm = to_svm(vcpu);
3355
3356        return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3357}
3358
3359static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3360{
3361        struct vcpu_svm *svm = to_svm(vcpu);
3362
3363        if (masked) {
3364                svm->vcpu.arch.hflags |= HF_NMI_MASK;
3365                set_intercept(svm, INTERCEPT_IRET);
3366        } else {
3367                svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3368                clr_intercept(svm, INTERCEPT_IRET);
3369        }
3370}
3371
3372static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3373{
3374        struct vcpu_svm *svm = to_svm(vcpu);
3375        struct vmcb *vmcb = svm->vmcb;
3376        int ret;
3377
3378        if (!gif_set(svm) ||
3379             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3380                return 0;
3381
3382        ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3383
3384        if (is_guest_mode(vcpu))
3385                return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3386
3387        return ret;
3388}
3389
3390static void enable_irq_window(struct kvm_vcpu *vcpu)
3391{
3392        struct vcpu_svm *svm = to_svm(vcpu);
3393
3394        /*
3395         * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3396         * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3397         * get that intercept, this function will be called again though and
3398         * we'll get the vintr intercept.
3399         */
3400        if (gif_set(svm) && nested_svm_intr(svm)) {
3401                svm_set_vintr(svm);
3402                svm_inject_irq(svm, 0x0);
3403        }
3404}
3405
3406static void enable_nmi_window(struct kvm_vcpu *vcpu)
3407{
3408        struct vcpu_svm *svm = to_svm(vcpu);
3409
3410        if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3411            == HF_NMI_MASK)
3412                return; /* IRET will cause a vm exit */
3413
3414        /*
3415         * Something prevents NMI from been injected. Single step over possible
3416         * problem (IRET or exception injection or interrupt shadow)
3417         */
3418        svm->nmi_singlestep = true;
3419        svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3420        update_db_intercept(vcpu);
3421}
3422
3423static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3424{
3425        return 0;
3426}
3427
3428static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3429{
3430        struct vcpu_svm *svm = to_svm(vcpu);
3431
3432        if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3433                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3434        else
3435                svm->asid_generation--;
3436}
3437
3438static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3439{
3440}
3441
3442static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3443{
3444        struct vcpu_svm *svm = to_svm(vcpu);
3445
3446        if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3447                return;
3448
3449        if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3450                int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3451                kvm_set_cr8(vcpu, cr8);
3452        }
3453}
3454
3455static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3456{
3457        struct vcpu_svm *svm = to_svm(vcpu);
3458        u64 cr8;
3459
3460        if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3461                return;
3462
3463        cr8 = kvm_get_cr8(vcpu);
3464        svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3465        svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3466}
3467
3468static void svm_complete_interrupts(struct vcpu_svm *svm)
3469{
3470        u8 vector;
3471        int type;
3472        u32 exitintinfo = svm->vmcb->control.exit_int_info;
3473        unsigned int3_injected = svm->int3_injected;
3474
3475        svm->int3_injected = 0;
3476
3477        if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
3478                svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3479                kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3480        }
3481
3482        svm->vcpu.arch.nmi_injected = false;
3483        kvm_clear_exception_queue(&svm->vcpu);
3484        kvm_clear_interrupt_queue(&svm->vcpu);
3485
3486        if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3487                return;
3488
3489        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3490
3491        vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3492        type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3493
3494        switch (type) {
3495        case SVM_EXITINTINFO_TYPE_NMI:
3496                svm->vcpu.arch.nmi_injected = true;
3497                break;
3498        case SVM_EXITINTINFO_TYPE_EXEPT:
3499                /*
3500                 * In case of software exceptions, do not reinject the vector,
3501                 * but re-execute the instruction instead. Rewind RIP first
3502                 * if we emulated INT3 before.
3503                 */
3504                if (kvm_exception_is_soft(vector)) {
3505                        if (vector == BP_VECTOR && int3_injected &&
3506                            kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3507                                kvm_rip_write(&svm->vcpu,
3508                                              kvm_rip_read(&svm->vcpu) -
3509                                              int3_injected);
3510                        break;
3511                }
3512                if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3513                        u32 err = svm->vmcb->control.exit_int_info_err;
3514                        kvm_requeue_exception_e(&svm->vcpu, vector, err);
3515
3516                } else
3517                        kvm_requeue_exception(&svm->vcpu, vector);
3518                break;
3519        case SVM_EXITINTINFO_TYPE_INTR:
3520                kvm_queue_interrupt(&svm->vcpu, vector, false);
3521                break;
3522        default:
3523                break;
3524        }
3525}
3526
3527static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3528{
3529        struct vcpu_svm *svm = to_svm(vcpu);
3530        struct vmcb_control_area *control = &svm->vmcb->control;
3531
3532        control->exit_int_info = control->event_inj;
3533        control->exit_int_info_err = control->event_inj_err;
3534        control->event_inj = 0;
3535        svm_complete_interrupts(svm);
3536}
3537
3538#ifdef CONFIG_X86_64
3539#define R "r"
3540#else
3541#define R "e"
3542#endif
3543
3544static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3545{
3546        struct vcpu_svm *svm = to_svm(vcpu);
3547
3548        svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3549        svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3550        svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3551
3552        /*
3553         * A vmexit emulation is required before the vcpu can be executed
3554         * again.
3555         */
3556        if (unlikely(svm->nested.exit_required))
3557                return;
3558
3559        pre_svm_run(svm);
3560
3561        sync_lapic_to_cr8(vcpu);
3562
3563        svm->vmcb->save.cr2 = vcpu->arch.cr2;
3564
3565        clgi();
3566
3567        local_irq_enable();
3568
3569        asm volatile (
3570                "push %%"R"bp; \n\t"
3571                "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3572                "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3573                "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3574                "mov %c[rsi](%[svm]), %%"R"si \n\t"
3575                "mov %c[rdi](%[svm]), %%"R"di \n\t"
3576                "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3577#ifdef CONFIG_X86_64
3578                "mov %c[r8](%[svm]),  %%r8  \n\t"
3579                "mov %c[r9](%[svm]),  %%r9  \n\t"
3580                "mov %c[r10](%[svm]), %%r10 \n\t"
3581                "mov %c[r11](%[svm]), %%r11 \n\t"
3582                "mov %c[r12](%[svm]), %%r12 \n\t"
3583                "mov %c[r13](%[svm]), %%r13 \n\t"
3584                "mov %c[r14](%[svm]), %%r14 \n\t"
3585                "mov %c[r15](%[svm]), %%r15 \n\t"
3586#endif
3587
3588                /* Enter guest mode */
3589                "push %%"R"ax \n\t"
3590                "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3591                __ex(SVM_VMLOAD) "\n\t"
3592                __ex(SVM_VMRUN) "\n\t"
3593                __ex(SVM_VMSAVE) "\n\t"
3594                "pop %%"R"ax \n\t"
3595
3596                /* Save guest registers, load host registers */
3597                "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3598                "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3599                "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3600                "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3601                "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3602                "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3603#ifdef CONFIG_X86_64
3604                "mov %%r8,  %c[r8](%[svm]) \n\t"
3605                "mov %%r9,  %c[r9](%[svm]) \n\t"
3606                "mov %%r10, %c[r10](%[svm]) \n\t"
3607                "mov %%r11, %c[r11](%[svm]) \n\t"
3608                "mov %%r12, %c[r12](%[svm]) \n\t"
3609                "mov %%r13, %c[r13](%[svm]) \n\t"
3610                "mov %%r14, %c[r14](%[svm]) \n\t"
3611                "mov %%r15, %c[r15](%[svm]) \n\t"
3612#endif
3613                "pop %%"R"bp"
3614                :
3615                : [svm]"a"(svm),
3616                  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3617                  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3618                  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3619                  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3620                  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3621                  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3622                  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3623#ifdef CONFIG_X86_64
3624                  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3625                  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3626                  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3627                  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3628                  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3629                  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3630                  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3631                  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3632#endif
3633                : "cc", "memory"
3634                , R"bx", R"cx", R"dx", R"si", R"di"
3635#ifdef CONFIG_X86_64
3636                , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3637#endif
3638                );
3639
3640#ifdef CONFIG_X86_64
3641        wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3642#else
3643        loadsegment(fs, svm->host.fs);
3644#endif
3645
3646        reload_tss(vcpu);
3647
3648        local_irq_disable();
3649
3650        stgi();
3651
3652        vcpu->arch.cr2 = svm->vmcb->save.cr2;
3653        vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3654        vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3655        vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3656
3657        sync_cr8_to_lapic(vcpu);
3658
3659        svm->next_rip = 0;
3660
3661        svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3662
3663        /* if exit due to PF check for async PF */
3664        if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3665                svm->apf_reason = kvm_read_and_reset_pf_reason();
3666
3667        if (npt_enabled) {
3668                vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3669                vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3670        }
3671
3672        /*
3673         * We need to handle MC intercepts here before the vcpu has a chance to
3674         * change the physical cpu
3675         */
3676        if (unlikely(svm->vmcb->control.exit_code ==
3677                     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3678                svm_handle_mce(svm);
3679
3680        mark_all_clean(svm->vmcb);
3681}
3682
3683#undef R
3684
3685static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3686{
3687        struct vcpu_svm *svm = to_svm(vcpu);
3688
3689        svm->vmcb->save.cr3 = root;
3690        mark_dirty(svm->vmcb, VMCB_CR);
3691        svm_flush_tlb(vcpu);
3692}
3693
3694static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3695{
3696        struct vcpu_svm *svm = to_svm(vcpu);
3697
3698        svm->vmcb->control.nested_cr3 = root;
3699        mark_dirty(svm->vmcb, VMCB_NPT);
3700
3701        /* Also sync guest cr3 here in case we live migrate */
3702        svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3703        mark_dirty(svm->vmcb, VMCB_CR);
3704
3705        svm_flush_tlb(vcpu);
3706}
3707
3708static int is_disabled(void)
3709{
3710        u64 vm_cr;
3711
3712        rdmsrl(MSR_VM_CR, vm_cr);
3713        if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3714                return 1;
3715
3716        return 0;
3717}
3718
3719static void
3720svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3721{
3722        /*
3723         * Patch in the VMMCALL instruction:
3724         */
3725        hypercall[0] = 0x0f;
3726        hypercall[1] = 0x01;
3727        hypercall[2] = 0xd9;
3728}
3729
3730static void svm_check_processor_compat(void *rtn)
3731{
3732        *(int *)rtn = 0;
3733}
3734
3735static bool svm_cpu_has_accelerated_tpr(void)
3736{
3737        return false;
3738}
3739
3740static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3741{
3742        return 0;
3743}
3744
3745static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3746{
3747}
3748
3749static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3750{
3751        switch (func) {
3752        case 0x80000001:
3753                if (nested)
3754                        entry->ecx |= (1 << 2); /* Set SVM bit */
3755                break;
3756        case 0x8000000A:
3757                entry->eax = 1; /* SVM revision 1 */
3758                entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3759                                   ASID emulation to nested SVM */
3760                entry->ecx = 0; /* Reserved */
3761                entry->edx = 0; /* Per default do not support any
3762                                   additional features */
3763
3764                /* Support next_rip if host supports it */
3765                if (boot_cpu_has(X86_FEATURE_NRIPS))
3766                        entry->edx |= SVM_FEATURE_NRIP;
3767
3768                /* Support NPT for the guest if enabled */
3769                if (npt_enabled)
3770                        entry->edx |= SVM_FEATURE_NPT;
3771
3772                break;
3773        }
3774}
3775
3776static const struct trace_print_flags svm_exit_reasons_str[] = {
3777        { SVM_EXIT_READ_CR0,                    "read_cr0" },
3778        { SVM_EXIT_READ_CR3,                    "read_cr3" },
3779        { SVM_EXIT_READ_CR4,                    "read_cr4" },
3780        { SVM_EXIT_READ_CR8,                    "read_cr8" },
3781        { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3782        { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3783        { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3784        { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3785        { SVM_EXIT_READ_DR0,                    "read_dr0" },
3786        { SVM_EXIT_READ_DR1,                    "read_dr1" },
3787        { SVM_EXIT_READ_DR2,                    "read_dr2" },
3788        { SVM_EXIT_READ_DR3,                    "read_dr3" },
3789        { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3790        { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3791        { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3792        { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3793        { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3794        { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3795        { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3796        { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3797        { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3798        { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3799        { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3800        { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3801        { SVM_EXIT_INTR,                        "interrupt" },
3802        { SVM_EXIT_NMI,                         "nmi" },
3803        { SVM_EXIT_SMI,                         "smi" },
3804        { SVM_EXIT_INIT,                        "init" },
3805        { SVM_EXIT_VINTR,                       "vintr" },
3806        { SVM_EXIT_CPUID,                       "cpuid" },
3807        { SVM_EXIT_INVD,                        "invd" },
3808        { SVM_EXIT_HLT,                         "hlt" },
3809        { SVM_EXIT_INVLPG,                      "invlpg" },
3810        { SVM_EXIT_INVLPGA,                     "invlpga" },
3811        { SVM_EXIT_IOIO,                        "io" },
3812        { SVM_EXIT_MSR,                         "msr" },
3813        { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3814        { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3815        { SVM_EXIT_VMRUN,                       "vmrun" },
3816        { SVM_EXIT_VMMCALL,                     "hypercall" },
3817        { SVM_EXIT_VMLOAD,                      "vmload" },
3818        { SVM_EXIT_VMSAVE,                      "vmsave" },
3819        { SVM_EXIT_STGI,                        "stgi" },
3820        { SVM_EXIT_CLGI,                        "clgi" },
3821        { SVM_EXIT_SKINIT,                      "skinit" },
3822        { SVM_EXIT_WBINVD,                      "wbinvd" },
3823        { SVM_EXIT_MONITOR,                     "monitor" },
3824        { SVM_EXIT_MWAIT,                       "mwait" },
3825        { SVM_EXIT_XSETBV,                      "xsetbv" },
3826        { SVM_EXIT_NPF,                         "npf" },
3827        { -1, NULL }
3828};
3829
3830static int svm_get_lpage_level(void)
3831{
3832        return PT_PDPE_LEVEL;
3833}
3834
3835static bool svm_rdtscp_supported(void)
3836{
3837        return false;
3838}
3839
3840static bool svm_has_wbinvd_exit(void)
3841{
3842        return true;
3843}
3844
3845static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3846{
3847        struct vcpu_svm *svm = to_svm(vcpu);
3848
3849        set_exception_intercept(svm, NM_VECTOR);
3850        update_cr0_intercept(svm);
3851}
3852
3853static struct kvm_x86_ops svm_x86_ops = {
3854        .cpu_has_kvm_support = has_svm,
3855        .disabled_by_bios = is_disabled,
3856        .hardware_setup = svm_hardware_setup,
3857        .hardware_unsetup = svm_hardware_unsetup,
3858        .check_processor_compatibility = svm_check_processor_compat,
3859        .hardware_enable = svm_hardware_enable,
3860        .hardware_disable = svm_hardware_disable,
3861        .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3862
3863        .vcpu_create = svm_create_vcpu,
3864        .vcpu_free = svm_free_vcpu,
3865        .vcpu_reset = svm_vcpu_reset,
3866
3867        .prepare_guest_switch = svm_prepare_guest_switch,
3868        .vcpu_load = svm_vcpu_load,
3869        .vcpu_put = svm_vcpu_put,
3870
3871        .set_guest_debug = svm_guest_debug,
3872        .get_msr = svm_get_msr,
3873        .set_msr = svm_set_msr,
3874        .get_segment_base = svm_get_segment_base,
3875        .get_segment = svm_get_segment,
3876        .set_segment = svm_set_segment,
3877        .get_cpl = svm_get_cpl,
3878        .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3879        .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3880        .decache_cr3 = svm_decache_cr3,
3881        .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3882        .set_cr0 = svm_set_cr0,
3883        .set_cr3 = svm_set_cr3,
3884        .set_cr4 = svm_set_cr4,
3885        .set_efer = svm_set_efer,
3886        .get_idt = svm_get_idt,
3887        .set_idt = svm_set_idt,
3888        .get_gdt = svm_get_gdt,
3889        .set_gdt = svm_set_gdt,
3890        .set_dr7 = svm_set_dr7,
3891        .cache_reg = svm_cache_reg,
3892        .get_rflags = svm_get_rflags,
3893        .set_rflags = svm_set_rflags,
3894        .fpu_activate = svm_fpu_activate,
3895        .fpu_deactivate = svm_fpu_deactivate,
3896
3897        .tlb_flush = svm_flush_tlb,
3898
3899        .run = svm_vcpu_run,
3900        .handle_exit = handle_exit,
3901        .skip_emulated_instruction = skip_emulated_instruction,
3902        .set_interrupt_shadow = svm_set_interrupt_shadow,
3903        .get_interrupt_shadow = svm_get_interrupt_shadow,
3904        .patch_hypercall = svm_patch_hypercall,
3905        .set_irq = svm_set_irq,
3906        .set_nmi = svm_inject_nmi,
3907        .queue_exception = svm_queue_exception,
3908        .cancel_injection = svm_cancel_injection,
3909        .interrupt_allowed = svm_interrupt_allowed,
3910        .nmi_allowed = svm_nmi_allowed,
3911        .get_nmi_mask = svm_get_nmi_mask,
3912        .set_nmi_mask = svm_set_nmi_mask,
3913        .enable_nmi_window = enable_nmi_window,
3914        .enable_irq_window = enable_irq_window,
3915        .update_cr8_intercept = update_cr8_intercept,
3916
3917        .set_tss_addr = svm_set_tss_addr,
3918        .get_tdp_level = get_npt_level,
3919        .get_mt_mask = svm_get_mt_mask,
3920
3921        .get_exit_info = svm_get_exit_info,
3922        .exit_reasons_str = svm_exit_reasons_str,
3923
3924        .get_lpage_level = svm_get_lpage_level,
3925
3926        .cpuid_update = svm_cpuid_update,
3927
3928        .rdtscp_supported = svm_rdtscp_supported,
3929
3930        .set_supported_cpuid = svm_set_supported_cpuid,
3931
3932        .has_wbinvd_exit = svm_has_wbinvd_exit,
3933
3934        .write_tsc_offset = svm_write_tsc_offset,
3935        .adjust_tsc_offset = svm_adjust_tsc_offset,
3936
3937        .set_tdp_cr3 = set_tdp_cr3,
3938};
3939
3940static int __init svm_init(void)
3941{
3942        return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3943                        __alignof__(struct vcpu_svm), THIS_MODULE);
3944}
3945
3946static void __exit svm_exit(void)
3947{
3948        kvm_exit();
3949}
3950
3951module_init(svm_init)
3952module_exit(svm_exit)
3953