linux/arch/x86/mm/fault.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   4 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   5 */
   6#include <linux/magic.h>                /* STACK_END_MAGIC              */
   7#include <linux/sched.h>                /* test_thread_flag(), ...      */
   8#include <linux/kdebug.h>               /* oops_begin/end, ...          */
   9#include <linux/module.h>               /* search_exception_table       */
  10#include <linux/bootmem.h>              /* max_low_pfn                  */
  11#include <linux/kprobes.h>              /* __kprobes, ...               */
  12#include <linux/mmiotrace.h>            /* kmmio_handler, ...           */
  13#include <linux/perf_event.h>           /* perf_sw_event                */
  14#include <linux/hugetlb.h>              /* hstate_index_to_shift        */
  15
  16#include <asm/traps.h>                  /* dotraplinkage, ...           */
  17#include <asm/pgalloc.h>                /* pgd_*(), ...                 */
  18#include <asm/kmemcheck.h>              /* kmemcheck_*(), ...           */
  19
  20/*
  21 * Page fault error code bits:
  22 *
  23 *   bit 0 ==    0: no page found       1: protection fault
  24 *   bit 1 ==    0: read access         1: write access
  25 *   bit 2 ==    0: kernel-mode access  1: user-mode access
  26 *   bit 3 ==                           1: use of reserved bit detected
  27 *   bit 4 ==                           1: fault was an instruction fetch
  28 */
  29enum x86_pf_error_code {
  30
  31        PF_PROT         =               1 << 0,
  32        PF_WRITE        =               1 << 1,
  33        PF_USER         =               1 << 2,
  34        PF_RSVD         =               1 << 3,
  35        PF_INSTR        =               1 << 4,
  36};
  37
  38/*
  39 * Returns 0 if mmiotrace is disabled, or if the fault is not
  40 * handled by mmiotrace:
  41 */
  42static inline int __kprobes
  43kmmio_fault(struct pt_regs *regs, unsigned long addr)
  44{
  45        if (unlikely(is_kmmio_active()))
  46                if (kmmio_handler(regs, addr) == 1)
  47                        return -1;
  48        return 0;
  49}
  50
  51static inline int __kprobes notify_page_fault(struct pt_regs *regs)
  52{
  53        int ret = 0;
  54
  55        /* kprobe_running() needs smp_processor_id() */
  56        if (kprobes_built_in() && !user_mode_vm(regs)) {
  57                preempt_disable();
  58                if (kprobe_running() && kprobe_fault_handler(regs, 14))
  59                        ret = 1;
  60                preempt_enable();
  61        }
  62
  63        return ret;
  64}
  65
  66/*
  67 * Prefetch quirks:
  68 *
  69 * 32-bit mode:
  70 *
  71 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  72 *   Check that here and ignore it.
  73 *
  74 * 64-bit mode:
  75 *
  76 *   Sometimes the CPU reports invalid exceptions on prefetch.
  77 *   Check that here and ignore it.
  78 *
  79 * Opcode checker based on code by Richard Brunner.
  80 */
  81static inline int
  82check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  83                      unsigned char opcode, int *prefetch)
  84{
  85        unsigned char instr_hi = opcode & 0xf0;
  86        unsigned char instr_lo = opcode & 0x0f;
  87
  88        switch (instr_hi) {
  89        case 0x20:
  90        case 0x30:
  91                /*
  92                 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  93                 * In X86_64 long mode, the CPU will signal invalid
  94                 * opcode if some of these prefixes are present so
  95                 * X86_64 will never get here anyway
  96                 */
  97                return ((instr_lo & 7) == 0x6);
  98#ifdef CONFIG_X86_64
  99        case 0x40:
 100                /*
 101                 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
 102                 * Need to figure out under what instruction mode the
 103                 * instruction was issued. Could check the LDT for lm,
 104                 * but for now it's good enough to assume that long
 105                 * mode only uses well known segments or kernel.
 106                 */
 107                return (!user_mode(regs)) || (regs->cs == __USER_CS);
 108#endif
 109        case 0x60:
 110                /* 0x64 thru 0x67 are valid prefixes in all modes. */
 111                return (instr_lo & 0xC) == 0x4;
 112        case 0xF0:
 113                /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 114                return !instr_lo || (instr_lo>>1) == 1;
 115        case 0x00:
 116                /* Prefetch instruction is 0x0F0D or 0x0F18 */
 117                if (probe_kernel_address(instr, opcode))
 118                        return 0;
 119
 120                *prefetch = (instr_lo == 0xF) &&
 121                        (opcode == 0x0D || opcode == 0x18);
 122                return 0;
 123        default:
 124                return 0;
 125        }
 126}
 127
 128static int
 129is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 130{
 131        unsigned char *max_instr;
 132        unsigned char *instr;
 133        int prefetch = 0;
 134
 135        /*
 136         * If it was a exec (instruction fetch) fault on NX page, then
 137         * do not ignore the fault:
 138         */
 139        if (error_code & PF_INSTR)
 140                return 0;
 141
 142        instr = (void *)convert_ip_to_linear(current, regs);
 143        max_instr = instr + 15;
 144
 145        if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
 146                return 0;
 147
 148        while (instr < max_instr) {
 149                unsigned char opcode;
 150
 151                if (probe_kernel_address(instr, opcode))
 152                        break;
 153
 154                instr++;
 155
 156                if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 157                        break;
 158        }
 159        return prefetch;
 160}
 161
 162static void
 163force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 164                     struct task_struct *tsk, int fault)
 165{
 166        unsigned lsb = 0;
 167        siginfo_t info;
 168
 169        info.si_signo   = si_signo;
 170        info.si_errno   = 0;
 171        info.si_code    = si_code;
 172        info.si_addr    = (void __user *)address;
 173        if (fault & VM_FAULT_HWPOISON_LARGE)
 174                lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
 175        if (fault & VM_FAULT_HWPOISON)
 176                lsb = PAGE_SHIFT;
 177        info.si_addr_lsb = lsb;
 178
 179        force_sig_info(si_signo, &info, tsk);
 180}
 181
 182DEFINE_SPINLOCK(pgd_lock);
 183LIST_HEAD(pgd_list);
 184
 185#ifdef CONFIG_X86_32
 186static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 187{
 188        unsigned index = pgd_index(address);
 189        pgd_t *pgd_k;
 190        pud_t *pud, *pud_k;
 191        pmd_t *pmd, *pmd_k;
 192
 193        pgd += index;
 194        pgd_k = init_mm.pgd + index;
 195
 196        if (!pgd_present(*pgd_k))
 197                return NULL;
 198
 199        /*
 200         * set_pgd(pgd, *pgd_k); here would be useless on PAE
 201         * and redundant with the set_pmd() on non-PAE. As would
 202         * set_pud.
 203         */
 204        pud = pud_offset(pgd, address);
 205        pud_k = pud_offset(pgd_k, address);
 206        if (!pud_present(*pud_k))
 207                return NULL;
 208
 209        pmd = pmd_offset(pud, address);
 210        pmd_k = pmd_offset(pud_k, address);
 211        if (!pmd_present(*pmd_k))
 212                return NULL;
 213
 214        if (!pmd_present(*pmd))
 215                set_pmd(pmd, *pmd_k);
 216        else
 217                BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
 218
 219        return pmd_k;
 220}
 221
 222void vmalloc_sync_all(void)
 223{
 224        unsigned long address;
 225
 226        if (SHARED_KERNEL_PMD)
 227                return;
 228
 229        for (address = VMALLOC_START & PMD_MASK;
 230             address >= TASK_SIZE && address < FIXADDR_TOP;
 231             address += PMD_SIZE) {
 232                struct page *page;
 233
 234                spin_lock(&pgd_lock);
 235                list_for_each_entry(page, &pgd_list, lru) {
 236                        spinlock_t *pgt_lock;
 237                        pmd_t *ret;
 238
 239                        /* the pgt_lock only for Xen */
 240                        pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 241
 242                        spin_lock(pgt_lock);
 243                        ret = vmalloc_sync_one(page_address(page), address);
 244                        spin_unlock(pgt_lock);
 245
 246                        if (!ret)
 247                                break;
 248                }
 249                spin_unlock(&pgd_lock);
 250        }
 251}
 252
 253/*
 254 * 32-bit:
 255 *
 256 *   Handle a fault on the vmalloc or module mapping area
 257 */
 258static noinline __kprobes int vmalloc_fault(unsigned long address)
 259{
 260        unsigned long pgd_paddr;
 261        pmd_t *pmd_k;
 262        pte_t *pte_k;
 263
 264        /* Make sure we are in vmalloc area: */
 265        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 266                return -1;
 267
 268        WARN_ON_ONCE(in_nmi());
 269
 270        /*
 271         * Synchronize this task's top level page-table
 272         * with the 'reference' page table.
 273         *
 274         * Do _not_ use "current" here. We might be inside
 275         * an interrupt in the middle of a task switch..
 276         */
 277        pgd_paddr = read_cr3();
 278        pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 279        if (!pmd_k)
 280                return -1;
 281
 282        pte_k = pte_offset_kernel(pmd_k, address);
 283        if (!pte_present(*pte_k))
 284                return -1;
 285
 286        return 0;
 287}
 288
 289/*
 290 * Did it hit the DOS screen memory VA from vm86 mode?
 291 */
 292static inline void
 293check_v8086_mode(struct pt_regs *regs, unsigned long address,
 294                 struct task_struct *tsk)
 295{
 296        unsigned long bit;
 297
 298        if (!v8086_mode(regs))
 299                return;
 300
 301        bit = (address - 0xA0000) >> PAGE_SHIFT;
 302        if (bit < 32)
 303                tsk->thread.screen_bitmap |= 1 << bit;
 304}
 305
 306static bool low_pfn(unsigned long pfn)
 307{
 308        return pfn < max_low_pfn;
 309}
 310
 311static void dump_pagetable(unsigned long address)
 312{
 313        pgd_t *base = __va(read_cr3());
 314        pgd_t *pgd = &base[pgd_index(address)];
 315        pmd_t *pmd;
 316        pte_t *pte;
 317
 318#ifdef CONFIG_X86_PAE
 319        printk("*pdpt = %016Lx ", pgd_val(*pgd));
 320        if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 321                goto out;
 322#endif
 323        pmd = pmd_offset(pud_offset(pgd, address), address);
 324        printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 325
 326        /*
 327         * We must not directly access the pte in the highpte
 328         * case if the page table is located in highmem.
 329         * And let's rather not kmap-atomic the pte, just in case
 330         * it's allocated already:
 331         */
 332        if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 333                goto out;
 334
 335        pte = pte_offset_kernel(pmd, address);
 336        printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 337out:
 338        printk("\n");
 339}
 340
 341#else /* CONFIG_X86_64: */
 342
 343void vmalloc_sync_all(void)
 344{
 345        sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
 346}
 347
 348/*
 349 * 64-bit:
 350 *
 351 *   Handle a fault on the vmalloc area
 352 *
 353 * This assumes no large pages in there.
 354 */
 355static noinline __kprobes int vmalloc_fault(unsigned long address)
 356{
 357        pgd_t *pgd, *pgd_ref;
 358        pud_t *pud, *pud_ref;
 359        pmd_t *pmd, *pmd_ref;
 360        pte_t *pte, *pte_ref;
 361
 362        /* Make sure we are in vmalloc area: */
 363        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 364                return -1;
 365
 366        WARN_ON_ONCE(in_nmi());
 367
 368        /*
 369         * Copy kernel mappings over when needed. This can also
 370         * happen within a race in page table update. In the later
 371         * case just flush:
 372         */
 373        pgd = pgd_offset(current->active_mm, address);
 374        pgd_ref = pgd_offset_k(address);
 375        if (pgd_none(*pgd_ref))
 376                return -1;
 377
 378        if (pgd_none(*pgd))
 379                set_pgd(pgd, *pgd_ref);
 380        else
 381                BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 382
 383        /*
 384         * Below here mismatches are bugs because these lower tables
 385         * are shared:
 386         */
 387
 388        pud = pud_offset(pgd, address);
 389        pud_ref = pud_offset(pgd_ref, address);
 390        if (pud_none(*pud_ref))
 391                return -1;
 392
 393        if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
 394                BUG();
 395
 396        pmd = pmd_offset(pud, address);
 397        pmd_ref = pmd_offset(pud_ref, address);
 398        if (pmd_none(*pmd_ref))
 399                return -1;
 400
 401        if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
 402                BUG();
 403
 404        pte_ref = pte_offset_kernel(pmd_ref, address);
 405        if (!pte_present(*pte_ref))
 406                return -1;
 407
 408        pte = pte_offset_kernel(pmd, address);
 409
 410        /*
 411         * Don't use pte_page here, because the mappings can point
 412         * outside mem_map, and the NUMA hash lookup cannot handle
 413         * that:
 414         */
 415        if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
 416                BUG();
 417
 418        return 0;
 419}
 420
 421static const char errata93_warning[] =
 422KERN_ERR 
 423"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 424"******* Working around it, but it may cause SEGVs or burn power.\n"
 425"******* Please consider a BIOS update.\n"
 426"******* Disabling USB legacy in the BIOS may also help.\n";
 427
 428/*
 429 * No vm86 mode in 64-bit mode:
 430 */
 431static inline void
 432check_v8086_mode(struct pt_regs *regs, unsigned long address,
 433                 struct task_struct *tsk)
 434{
 435}
 436
 437static int bad_address(void *p)
 438{
 439        unsigned long dummy;
 440
 441        return probe_kernel_address((unsigned long *)p, dummy);
 442}
 443
 444static void dump_pagetable(unsigned long address)
 445{
 446        pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
 447        pgd_t *pgd = base + pgd_index(address);
 448        pud_t *pud;
 449        pmd_t *pmd;
 450        pte_t *pte;
 451
 452        if (bad_address(pgd))
 453                goto bad;
 454
 455        printk("PGD %lx ", pgd_val(*pgd));
 456
 457        if (!pgd_present(*pgd))
 458                goto out;
 459
 460        pud = pud_offset(pgd, address);
 461        if (bad_address(pud))
 462                goto bad;
 463
 464        printk("PUD %lx ", pud_val(*pud));
 465        if (!pud_present(*pud) || pud_large(*pud))
 466                goto out;
 467
 468        pmd = pmd_offset(pud, address);
 469        if (bad_address(pmd))
 470                goto bad;
 471
 472        printk("PMD %lx ", pmd_val(*pmd));
 473        if (!pmd_present(*pmd) || pmd_large(*pmd))
 474                goto out;
 475
 476        pte = pte_offset_kernel(pmd, address);
 477        if (bad_address(pte))
 478                goto bad;
 479
 480        printk("PTE %lx", pte_val(*pte));
 481out:
 482        printk("\n");
 483        return;
 484bad:
 485        printk("BAD\n");
 486}
 487
 488#endif /* CONFIG_X86_64 */
 489
 490/*
 491 * Workaround for K8 erratum #93 & buggy BIOS.
 492 *
 493 * BIOS SMM functions are required to use a specific workaround
 494 * to avoid corruption of the 64bit RIP register on C stepping K8.
 495 *
 496 * A lot of BIOS that didn't get tested properly miss this.
 497 *
 498 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 499 * Try to work around it here.
 500 *
 501 * Note we only handle faults in kernel here.
 502 * Does nothing on 32-bit.
 503 */
 504static int is_errata93(struct pt_regs *regs, unsigned long address)
 505{
 506#ifdef CONFIG_X86_64
 507        if (address != regs->ip)
 508                return 0;
 509
 510        if ((address >> 32) != 0)
 511                return 0;
 512
 513        address |= 0xffffffffUL << 32;
 514        if ((address >= (u64)_stext && address <= (u64)_etext) ||
 515            (address >= MODULES_VADDR && address <= MODULES_END)) {
 516                printk_once(errata93_warning);
 517                regs->ip = address;
 518                return 1;
 519        }
 520#endif
 521        return 0;
 522}
 523
 524/*
 525 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 526 * to illegal addresses >4GB.
 527 *
 528 * We catch this in the page fault handler because these addresses
 529 * are not reachable. Just detect this case and return.  Any code
 530 * segment in LDT is compatibility mode.
 531 */
 532static int is_errata100(struct pt_regs *regs, unsigned long address)
 533{
 534#ifdef CONFIG_X86_64
 535        if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 536                return 1;
 537#endif
 538        return 0;
 539}
 540
 541static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 542{
 543#ifdef CONFIG_X86_F00F_BUG
 544        unsigned long nr;
 545
 546        /*
 547         * Pentium F0 0F C7 C8 bug workaround:
 548         */
 549        if (boot_cpu_data.f00f_bug) {
 550                nr = (address - idt_descr.address) >> 3;
 551
 552                if (nr == 6) {
 553                        do_invalid_op(regs, 0);
 554                        return 1;
 555                }
 556        }
 557#endif
 558        return 0;
 559}
 560
 561static const char nx_warning[] = KERN_CRIT
 562"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
 563
 564static void
 565show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 566                unsigned long address)
 567{
 568        if (!oops_may_print())
 569                return;
 570
 571        if (error_code & PF_INSTR) {
 572                unsigned int level;
 573
 574                pte_t *pte = lookup_address(address, &level);
 575
 576                if (pte && pte_present(*pte) && !pte_exec(*pte))
 577                        printk(nx_warning, current_uid());
 578        }
 579
 580        printk(KERN_ALERT "BUG: unable to handle kernel ");
 581        if (address < PAGE_SIZE)
 582                printk(KERN_CONT "NULL pointer dereference");
 583        else
 584                printk(KERN_CONT "paging request");
 585
 586        printk(KERN_CONT " at %p\n", (void *) address);
 587        printk(KERN_ALERT "IP:");
 588        printk_address(regs->ip, 1);
 589
 590        dump_pagetable(address);
 591}
 592
 593static noinline void
 594pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 595            unsigned long address)
 596{
 597        struct task_struct *tsk;
 598        unsigned long flags;
 599        int sig;
 600
 601        flags = oops_begin();
 602        tsk = current;
 603        sig = SIGKILL;
 604
 605        printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 606               tsk->comm, address);
 607        dump_pagetable(address);
 608
 609        tsk->thread.cr2         = address;
 610        tsk->thread.trap_no     = 14;
 611        tsk->thread.error_code  = error_code;
 612
 613        if (__die("Bad pagetable", regs, error_code))
 614                sig = 0;
 615
 616        oops_end(flags, regs, sig);
 617}
 618
 619static noinline void
 620no_context(struct pt_regs *regs, unsigned long error_code,
 621           unsigned long address)
 622{
 623        struct task_struct *tsk = current;
 624        unsigned long *stackend;
 625        unsigned long flags;
 626        int sig;
 627
 628        /* Are we prepared to handle this kernel fault? */
 629        if (fixup_exception(regs))
 630                return;
 631
 632        /*
 633         * 32-bit:
 634         *
 635         *   Valid to do another page fault here, because if this fault
 636         *   had been triggered by is_prefetch fixup_exception would have
 637         *   handled it.
 638         *
 639         * 64-bit:
 640         *
 641         *   Hall of shame of CPU/BIOS bugs.
 642         */
 643        if (is_prefetch(regs, error_code, address))
 644                return;
 645
 646        if (is_errata93(regs, address))
 647                return;
 648
 649        /*
 650         * Oops. The kernel tried to access some bad page. We'll have to
 651         * terminate things with extreme prejudice:
 652         */
 653        flags = oops_begin();
 654
 655        show_fault_oops(regs, error_code, address);
 656
 657        stackend = end_of_stack(tsk);
 658        if (tsk != &init_task && *stackend != STACK_END_MAGIC)
 659                printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
 660
 661        tsk->thread.cr2         = address;
 662        tsk->thread.trap_no     = 14;
 663        tsk->thread.error_code  = error_code;
 664
 665        sig = SIGKILL;
 666        if (__die("Oops", regs, error_code))
 667                sig = 0;
 668
 669        /* Executive summary in case the body of the oops scrolled away */
 670        printk(KERN_EMERG "CR2: %016lx\n", address);
 671
 672        oops_end(flags, regs, sig);
 673}
 674
 675/*
 676 * Print out info about fatal segfaults, if the show_unhandled_signals
 677 * sysctl is set:
 678 */
 679static inline void
 680show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 681                unsigned long address, struct task_struct *tsk)
 682{
 683        if (!unhandled_signal(tsk, SIGSEGV))
 684                return;
 685
 686        if (!printk_ratelimit())
 687                return;
 688
 689        printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
 690                task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 691                tsk->comm, task_pid_nr(tsk), address,
 692                (void *)regs->ip, (void *)regs->sp, error_code);
 693
 694        print_vma_addr(KERN_CONT " in ", regs->ip);
 695
 696        printk(KERN_CONT "\n");
 697}
 698
 699static void
 700__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 701                       unsigned long address, int si_code)
 702{
 703        struct task_struct *tsk = current;
 704
 705        /* User mode accesses just cause a SIGSEGV */
 706        if (error_code & PF_USER) {
 707                /*
 708                 * It's possible to have interrupts off here:
 709                 */
 710                local_irq_enable();
 711
 712                /*
 713                 * Valid to do another page fault here because this one came
 714                 * from user space:
 715                 */
 716                if (is_prefetch(regs, error_code, address))
 717                        return;
 718
 719                if (is_errata100(regs, address))
 720                        return;
 721
 722                if (unlikely(show_unhandled_signals))
 723                        show_signal_msg(regs, error_code, address, tsk);
 724
 725                /* Kernel addresses are always protection faults: */
 726                tsk->thread.cr2         = address;
 727                tsk->thread.error_code  = error_code | (address >= TASK_SIZE);
 728                tsk->thread.trap_no     = 14;
 729
 730                force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
 731
 732                return;
 733        }
 734
 735        if (is_f00f_bug(regs, address))
 736                return;
 737
 738        no_context(regs, error_code, address);
 739}
 740
 741static noinline void
 742bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 743                     unsigned long address)
 744{
 745        __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
 746}
 747
 748static void
 749__bad_area(struct pt_regs *regs, unsigned long error_code,
 750           unsigned long address, int si_code)
 751{
 752        struct mm_struct *mm = current->mm;
 753
 754        /*
 755         * Something tried to access memory that isn't in our memory map..
 756         * Fix it, but check if it's kernel or user first..
 757         */
 758        up_read(&mm->mmap_sem);
 759
 760        __bad_area_nosemaphore(regs, error_code, address, si_code);
 761}
 762
 763static noinline void
 764bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 765{
 766        __bad_area(regs, error_code, address, SEGV_MAPERR);
 767}
 768
 769static noinline void
 770bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 771                      unsigned long address)
 772{
 773        __bad_area(regs, error_code, address, SEGV_ACCERR);
 774}
 775
 776/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
 777static void
 778out_of_memory(struct pt_regs *regs, unsigned long error_code,
 779              unsigned long address)
 780{
 781        /*
 782         * We ran out of memory, call the OOM killer, and return the userspace
 783         * (which will retry the fault, or kill us if we got oom-killed):
 784         */
 785        up_read(&current->mm->mmap_sem);
 786
 787        pagefault_out_of_memory();
 788}
 789
 790static void
 791do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 792          unsigned int fault)
 793{
 794        struct task_struct *tsk = current;
 795        struct mm_struct *mm = tsk->mm;
 796        int code = BUS_ADRERR;
 797
 798        up_read(&mm->mmap_sem);
 799
 800        /* Kernel mode? Handle exceptions or die: */
 801        if (!(error_code & PF_USER)) {
 802                no_context(regs, error_code, address);
 803                return;
 804        }
 805
 806        /* User-space => ok to do another page fault: */
 807        if (is_prefetch(regs, error_code, address))
 808                return;
 809
 810        tsk->thread.cr2         = address;
 811        tsk->thread.error_code  = error_code;
 812        tsk->thread.trap_no     = 14;
 813
 814#ifdef CONFIG_MEMORY_FAILURE
 815        if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 816                printk(KERN_ERR
 817        "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 818                        tsk->comm, tsk->pid, address);
 819                code = BUS_MCEERR_AR;
 820        }
 821#endif
 822        force_sig_info_fault(SIGBUS, code, address, tsk, fault);
 823}
 824
 825static noinline void
 826mm_fault_error(struct pt_regs *regs, unsigned long error_code,
 827               unsigned long address, unsigned int fault)
 828{
 829        if (fault & VM_FAULT_OOM) {
 830                /* Kernel mode? Handle exceptions or die: */
 831                if (!(error_code & PF_USER)) {
 832                        up_read(&current->mm->mmap_sem);
 833                        no_context(regs, error_code, address);
 834                        return;
 835                }
 836
 837                out_of_memory(regs, error_code, address);
 838        } else {
 839                if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 840                             VM_FAULT_HWPOISON_LARGE))
 841                        do_sigbus(regs, error_code, address, fault);
 842                else
 843                        BUG();
 844        }
 845}
 846
 847static int spurious_fault_check(unsigned long error_code, pte_t *pte)
 848{
 849        if ((error_code & PF_WRITE) && !pte_write(*pte))
 850                return 0;
 851
 852        if ((error_code & PF_INSTR) && !pte_exec(*pte))
 853                return 0;
 854
 855        return 1;
 856}
 857
 858/*
 859 * Handle a spurious fault caused by a stale TLB entry.
 860 *
 861 * This allows us to lazily refresh the TLB when increasing the
 862 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 863 * eagerly is very expensive since that implies doing a full
 864 * cross-processor TLB flush, even if no stale TLB entries exist
 865 * on other processors.
 866 *
 867 * There are no security implications to leaving a stale TLB when
 868 * increasing the permissions on a page.
 869 */
 870static noinline __kprobes int
 871spurious_fault(unsigned long error_code, unsigned long address)
 872{
 873        pgd_t *pgd;
 874        pud_t *pud;
 875        pmd_t *pmd;
 876        pte_t *pte;
 877        int ret;
 878
 879        /* Reserved-bit violation or user access to kernel space? */
 880        if (error_code & (PF_USER | PF_RSVD))
 881                return 0;
 882
 883        pgd = init_mm.pgd + pgd_index(address);
 884        if (!pgd_present(*pgd))
 885                return 0;
 886
 887        pud = pud_offset(pgd, address);
 888        if (!pud_present(*pud))
 889                return 0;
 890
 891        if (pud_large(*pud))
 892                return spurious_fault_check(error_code, (pte_t *) pud);
 893
 894        pmd = pmd_offset(pud, address);
 895        if (!pmd_present(*pmd))
 896                return 0;
 897
 898        if (pmd_large(*pmd))
 899                return spurious_fault_check(error_code, (pte_t *) pmd);
 900
 901        /*
 902         * Note: don't use pte_present() here, since it returns true
 903         * if the _PAGE_PROTNONE bit is set.  However, this aliases the
 904         * _PAGE_GLOBAL bit, which for kernel pages give false positives
 905         * when CONFIG_DEBUG_PAGEALLOC is used.
 906         */
 907        pte = pte_offset_kernel(pmd, address);
 908        if (!(pte_flags(*pte) & _PAGE_PRESENT))
 909                return 0;
 910
 911        ret = spurious_fault_check(error_code, pte);
 912        if (!ret)
 913                return 0;
 914
 915        /*
 916         * Make sure we have permissions in PMD.
 917         * If not, then there's a bug in the page tables:
 918         */
 919        ret = spurious_fault_check(error_code, (pte_t *) pmd);
 920        WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
 921
 922        return ret;
 923}
 924
 925int show_unhandled_signals = 1;
 926
 927static inline int
 928access_error(unsigned long error_code, struct vm_area_struct *vma)
 929{
 930        if (error_code & PF_WRITE) {
 931                /* write, present and write, not present: */
 932                if (unlikely(!(vma->vm_flags & VM_WRITE)))
 933                        return 1;
 934                return 0;
 935        }
 936
 937        /* read, present: */
 938        if (unlikely(error_code & PF_PROT))
 939                return 1;
 940
 941        /* read, not present: */
 942        if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 943                return 1;
 944
 945        return 0;
 946}
 947
 948static int fault_in_kernel_space(unsigned long address)
 949{
 950        return address >= TASK_SIZE_MAX;
 951}
 952
 953/*
 954 * This routine handles page faults.  It determines the address,
 955 * and the problem, and then passes it off to one of the appropriate
 956 * routines.
 957 */
 958dotraplinkage void __kprobes
 959do_page_fault(struct pt_regs *regs, unsigned long error_code)
 960{
 961        struct vm_area_struct *vma;
 962        struct task_struct *tsk;
 963        unsigned long address;
 964        struct mm_struct *mm;
 965        int fault;
 966        int write = error_code & PF_WRITE;
 967        unsigned int flags = FAULT_FLAG_ALLOW_RETRY |
 968                                        (write ? FAULT_FLAG_WRITE : 0);
 969
 970        tsk = current;
 971        mm = tsk->mm;
 972
 973        /* Get the faulting address: */
 974        address = read_cr2();
 975
 976        /*
 977         * Detect and handle instructions that would cause a page fault for
 978         * both a tracked kernel page and a userspace page.
 979         */
 980        if (kmemcheck_active(regs))
 981                kmemcheck_hide(regs);
 982        prefetchw(&mm->mmap_sem);
 983
 984        if (unlikely(kmmio_fault(regs, address)))
 985                return;
 986
 987        /*
 988         * We fault-in kernel-space virtual memory on-demand. The
 989         * 'reference' page table is init_mm.pgd.
 990         *
 991         * NOTE! We MUST NOT take any locks for this case. We may
 992         * be in an interrupt or a critical region, and should
 993         * only copy the information from the master page table,
 994         * nothing more.
 995         *
 996         * This verifies that the fault happens in kernel space
 997         * (error_code & 4) == 0, and that the fault was not a
 998         * protection error (error_code & 9) == 0.
 999         */
1000        if (unlikely(fault_in_kernel_space(address))) {
1001                if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1002                        if (vmalloc_fault(address) >= 0)
1003                                return;
1004
1005                        if (kmemcheck_fault(regs, address, error_code))
1006                                return;
1007                }
1008
1009                /* Can handle a stale RO->RW TLB: */
1010                if (spurious_fault(error_code, address))
1011                        return;
1012
1013                /* kprobes don't want to hook the spurious faults: */
1014                if (notify_page_fault(regs))
1015                        return;
1016                /*
1017                 * Don't take the mm semaphore here. If we fixup a prefetch
1018                 * fault we could otherwise deadlock:
1019                 */
1020                bad_area_nosemaphore(regs, error_code, address);
1021
1022                return;
1023        }
1024
1025        /* kprobes don't want to hook the spurious faults: */
1026        if (unlikely(notify_page_fault(regs)))
1027                return;
1028        /*
1029         * It's safe to allow irq's after cr2 has been saved and the
1030         * vmalloc fault has been handled.
1031         *
1032         * User-mode registers count as a user access even for any
1033         * potential system fault or CPU buglet:
1034         */
1035        if (user_mode_vm(regs)) {
1036                local_irq_enable();
1037                error_code |= PF_USER;
1038        } else {
1039                if (regs->flags & X86_EFLAGS_IF)
1040                        local_irq_enable();
1041        }
1042
1043        if (unlikely(error_code & PF_RSVD))
1044                pgtable_bad(regs, error_code, address);
1045
1046        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1047
1048        /*
1049         * If we're in an interrupt, have no user context or are running
1050         * in an atomic region then we must not take the fault:
1051         */
1052        if (unlikely(in_atomic() || !mm)) {
1053                bad_area_nosemaphore(regs, error_code, address);
1054                return;
1055        }
1056
1057        /*
1058         * When running in the kernel we expect faults to occur only to
1059         * addresses in user space.  All other faults represent errors in
1060         * the kernel and should generate an OOPS.  Unfortunately, in the
1061         * case of an erroneous fault occurring in a code path which already
1062         * holds mmap_sem we will deadlock attempting to validate the fault
1063         * against the address space.  Luckily the kernel only validly
1064         * references user space from well defined areas of code, which are
1065         * listed in the exceptions table.
1066         *
1067         * As the vast majority of faults will be valid we will only perform
1068         * the source reference check when there is a possibility of a
1069         * deadlock. Attempt to lock the address space, if we cannot we then
1070         * validate the source. If this is invalid we can skip the address
1071         * space check, thus avoiding the deadlock:
1072         */
1073        if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1074                if ((error_code & PF_USER) == 0 &&
1075                    !search_exception_tables(regs->ip)) {
1076                        bad_area_nosemaphore(regs, error_code, address);
1077                        return;
1078                }
1079retry:
1080                down_read(&mm->mmap_sem);
1081        } else {
1082                /*
1083                 * The above down_read_trylock() might have succeeded in
1084                 * which case we'll have missed the might_sleep() from
1085                 * down_read():
1086                 */
1087                might_sleep();
1088        }
1089
1090        vma = find_vma(mm, address);
1091        if (unlikely(!vma)) {
1092                bad_area(regs, error_code, address);
1093                return;
1094        }
1095        if (likely(vma->vm_start <= address))
1096                goto good_area;
1097        if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1098                bad_area(regs, error_code, address);
1099                return;
1100        }
1101        if (error_code & PF_USER) {
1102                /*
1103                 * Accessing the stack below %sp is always a bug.
1104                 * The large cushion allows instructions like enter
1105                 * and pusha to work. ("enter $65535, $31" pushes
1106                 * 32 pointers and then decrements %sp by 65535.)
1107                 */
1108                if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1109                        bad_area(regs, error_code, address);
1110                        return;
1111                }
1112        }
1113        if (unlikely(expand_stack(vma, address))) {
1114                bad_area(regs, error_code, address);
1115                return;
1116        }
1117
1118        /*
1119         * Ok, we have a good vm_area for this memory access, so
1120         * we can handle it..
1121         */
1122good_area:
1123        if (unlikely(access_error(error_code, vma))) {
1124                bad_area_access_error(regs, error_code, address);
1125                return;
1126        }
1127
1128        /*
1129         * If for any reason at all we couldn't handle the fault,
1130         * make sure we exit gracefully rather than endlessly redo
1131         * the fault:
1132         */
1133        fault = handle_mm_fault(mm, vma, address, flags);
1134
1135        if (unlikely(fault & VM_FAULT_ERROR)) {
1136                mm_fault_error(regs, error_code, address, fault);
1137                return;
1138        }
1139
1140        /*
1141         * Major/minor page fault accounting is only done on the
1142         * initial attempt. If we go through a retry, it is extremely
1143         * likely that the page will be found in page cache at that point.
1144         */
1145        if (flags & FAULT_FLAG_ALLOW_RETRY) {
1146                if (fault & VM_FAULT_MAJOR) {
1147                        tsk->maj_flt++;
1148                        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1149                                      regs, address);
1150                } else {
1151                        tsk->min_flt++;
1152                        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1153                                      regs, address);
1154                }
1155                if (fault & VM_FAULT_RETRY) {
1156                        /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1157                         * of starvation. */
1158                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
1159                        goto retry;
1160                }
1161        }
1162
1163        check_v8086_mode(regs, address, tsk);
1164
1165        up_read(&mm->mmap_sem);
1166}
1167