linux/arch/x86/mm/hugetlbpage.c
<<
>>
Prefs
   1/*
   2 * IA-32 Huge TLB Page Support for Kernel.
   3 *
   4 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
   5 */
   6
   7#include <linux/init.h>
   8#include <linux/fs.h>
   9#include <linux/mm.h>
  10#include <linux/hugetlb.h>
  11#include <linux/pagemap.h>
  12#include <linux/err.h>
  13#include <linux/sysctl.h>
  14#include <asm/mman.h>
  15#include <asm/tlb.h>
  16#include <asm/tlbflush.h>
  17#include <asm/pgalloc.h>
  18
  19static unsigned long page_table_shareable(struct vm_area_struct *svma,
  20                                struct vm_area_struct *vma,
  21                                unsigned long addr, pgoff_t idx)
  22{
  23        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
  24                                svma->vm_start;
  25        unsigned long sbase = saddr & PUD_MASK;
  26        unsigned long s_end = sbase + PUD_SIZE;
  27
  28        /* Allow segments to share if only one is marked locked */
  29        unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
  30        unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
  31
  32        /*
  33         * match the virtual addresses, permission and the alignment of the
  34         * page table page.
  35         */
  36        if (pmd_index(addr) != pmd_index(saddr) ||
  37            vm_flags != svm_flags ||
  38            sbase < svma->vm_start || svma->vm_end < s_end)
  39                return 0;
  40
  41        return saddr;
  42}
  43
  44static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
  45{
  46        unsigned long base = addr & PUD_MASK;
  47        unsigned long end = base + PUD_SIZE;
  48
  49        /*
  50         * check on proper vm_flags and page table alignment
  51         */
  52        if (vma->vm_flags & VM_MAYSHARE &&
  53            vma->vm_start <= base && end <= vma->vm_end)
  54                return 1;
  55        return 0;
  56}
  57
  58/*
  59 * search for a shareable pmd page for hugetlb.
  60 */
  61static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  62{
  63        struct vm_area_struct *vma = find_vma(mm, addr);
  64        struct address_space *mapping = vma->vm_file->f_mapping;
  65        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  66                        vma->vm_pgoff;
  67        struct prio_tree_iter iter;
  68        struct vm_area_struct *svma;
  69        unsigned long saddr;
  70        pte_t *spte = NULL;
  71
  72        if (!vma_shareable(vma, addr))
  73                return;
  74
  75        spin_lock(&mapping->i_mmap_lock);
  76        vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) {
  77                if (svma == vma)
  78                        continue;
  79
  80                saddr = page_table_shareable(svma, vma, addr, idx);
  81                if (saddr) {
  82                        spte = huge_pte_offset(svma->vm_mm, saddr);
  83                        if (spte) {
  84                                get_page(virt_to_page(spte));
  85                                break;
  86                        }
  87                }
  88        }
  89
  90        if (!spte)
  91                goto out;
  92
  93        spin_lock(&mm->page_table_lock);
  94        if (pud_none(*pud))
  95                pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK));
  96        else
  97                put_page(virt_to_page(spte));
  98        spin_unlock(&mm->page_table_lock);
  99out:
 100        spin_unlock(&mapping->i_mmap_lock);
 101}
 102
 103/*
 104 * unmap huge page backed by shared pte.
 105 *
 106 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 107 * indicated by page_count > 1, unmap is achieved by clearing pud and
 108 * decrementing the ref count. If count == 1, the pte page is not shared.
 109 *
 110 * called with vma->vm_mm->page_table_lock held.
 111 *
 112 * returns: 1 successfully unmapped a shared pte page
 113 *          0 the underlying pte page is not shared, or it is the last user
 114 */
 115int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 116{
 117        pgd_t *pgd = pgd_offset(mm, *addr);
 118        pud_t *pud = pud_offset(pgd, *addr);
 119
 120        BUG_ON(page_count(virt_to_page(ptep)) == 0);
 121        if (page_count(virt_to_page(ptep)) == 1)
 122                return 0;
 123
 124        pud_clear(pud);
 125        put_page(virt_to_page(ptep));
 126        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
 127        return 1;
 128}
 129
 130pte_t *huge_pte_alloc(struct mm_struct *mm,
 131                        unsigned long addr, unsigned long sz)
 132{
 133        pgd_t *pgd;
 134        pud_t *pud;
 135        pte_t *pte = NULL;
 136
 137        pgd = pgd_offset(mm, addr);
 138        pud = pud_alloc(mm, pgd, addr);
 139        if (pud) {
 140                if (sz == PUD_SIZE) {
 141                        pte = (pte_t *)pud;
 142                } else {
 143                        BUG_ON(sz != PMD_SIZE);
 144                        if (pud_none(*pud))
 145                                huge_pmd_share(mm, addr, pud);
 146                        pte = (pte_t *) pmd_alloc(mm, pud, addr);
 147                }
 148        }
 149        BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
 150
 151        return pte;
 152}
 153
 154pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 155{
 156        pgd_t *pgd;
 157        pud_t *pud;
 158        pmd_t *pmd = NULL;
 159
 160        pgd = pgd_offset(mm, addr);
 161        if (pgd_present(*pgd)) {
 162                pud = pud_offset(pgd, addr);
 163                if (pud_present(*pud)) {
 164                        if (pud_large(*pud))
 165                                return (pte_t *)pud;
 166                        pmd = pmd_offset(pud, addr);
 167                }
 168        }
 169        return (pte_t *) pmd;
 170}
 171
 172#if 0   /* This is just for testing */
 173struct page *
 174follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 175{
 176        unsigned long start = address;
 177        int length = 1;
 178        int nr;
 179        struct page *page;
 180        struct vm_area_struct *vma;
 181
 182        vma = find_vma(mm, addr);
 183        if (!vma || !is_vm_hugetlb_page(vma))
 184                return ERR_PTR(-EINVAL);
 185
 186        pte = huge_pte_offset(mm, address);
 187
 188        /* hugetlb should be locked, and hence, prefaulted */
 189        WARN_ON(!pte || pte_none(*pte));
 190
 191        page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
 192
 193        WARN_ON(!PageHead(page));
 194
 195        return page;
 196}
 197
 198int pmd_huge(pmd_t pmd)
 199{
 200        return 0;
 201}
 202
 203int pud_huge(pud_t pud)
 204{
 205        return 0;
 206}
 207
 208struct page *
 209follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 210                pmd_t *pmd, int write)
 211{
 212        return NULL;
 213}
 214
 215#else
 216
 217struct page *
 218follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 219{
 220        return ERR_PTR(-EINVAL);
 221}
 222
 223int pmd_huge(pmd_t pmd)
 224{
 225        return !!(pmd_val(pmd) & _PAGE_PSE);
 226}
 227
 228int pud_huge(pud_t pud)
 229{
 230        return !!(pud_val(pud) & _PAGE_PSE);
 231}
 232
 233struct page *
 234follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 235                pmd_t *pmd, int write)
 236{
 237        struct page *page;
 238
 239        page = pte_page(*(pte_t *)pmd);
 240        if (page)
 241                page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
 242        return page;
 243}
 244
 245struct page *
 246follow_huge_pud(struct mm_struct *mm, unsigned long address,
 247                pud_t *pud, int write)
 248{
 249        struct page *page;
 250
 251        page = pte_page(*(pte_t *)pud);
 252        if (page)
 253                page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
 254        return page;
 255}
 256
 257#endif
 258
 259/* x86_64 also uses this file */
 260
 261#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 262static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
 263                unsigned long addr, unsigned long len,
 264                unsigned long pgoff, unsigned long flags)
 265{
 266        struct hstate *h = hstate_file(file);
 267        struct mm_struct *mm = current->mm;
 268        struct vm_area_struct *vma;
 269        unsigned long start_addr;
 270
 271        if (len > mm->cached_hole_size) {
 272                start_addr = mm->free_area_cache;
 273        } else {
 274                start_addr = TASK_UNMAPPED_BASE;
 275                mm->cached_hole_size = 0;
 276        }
 277
 278full_search:
 279        addr = ALIGN(start_addr, huge_page_size(h));
 280
 281        for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
 282                /* At this point:  (!vma || addr < vma->vm_end). */
 283                if (TASK_SIZE - len < addr) {
 284                        /*
 285                         * Start a new search - just in case we missed
 286                         * some holes.
 287                         */
 288                        if (start_addr != TASK_UNMAPPED_BASE) {
 289                                start_addr = TASK_UNMAPPED_BASE;
 290                                mm->cached_hole_size = 0;
 291                                goto full_search;
 292                        }
 293                        return -ENOMEM;
 294                }
 295                if (!vma || addr + len <= vma->vm_start) {
 296                        mm->free_area_cache = addr + len;
 297                        return addr;
 298                }
 299                if (addr + mm->cached_hole_size < vma->vm_start)
 300                        mm->cached_hole_size = vma->vm_start - addr;
 301                addr = ALIGN(vma->vm_end, huge_page_size(h));
 302        }
 303}
 304
 305static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
 306                unsigned long addr0, unsigned long len,
 307                unsigned long pgoff, unsigned long flags)
 308{
 309        struct hstate *h = hstate_file(file);
 310        struct mm_struct *mm = current->mm;
 311        struct vm_area_struct *vma, *prev_vma;
 312        unsigned long base = mm->mmap_base, addr = addr0;
 313        unsigned long largest_hole = mm->cached_hole_size;
 314        int first_time = 1;
 315
 316        /* don't allow allocations above current base */
 317        if (mm->free_area_cache > base)
 318                mm->free_area_cache = base;
 319
 320        if (len <= largest_hole) {
 321                largest_hole = 0;
 322                mm->free_area_cache  = base;
 323        }
 324try_again:
 325        /* make sure it can fit in the remaining address space */
 326        if (mm->free_area_cache < len)
 327                goto fail;
 328
 329        /* either no address requested or cant fit in requested address hole */
 330        addr = (mm->free_area_cache - len) & huge_page_mask(h);
 331        do {
 332                /*
 333                 * Lookup failure means no vma is above this address,
 334                 * i.e. return with success:
 335                 */
 336                if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
 337                        return addr;
 338
 339                /*
 340                 * new region fits between prev_vma->vm_end and
 341                 * vma->vm_start, use it:
 342                 */
 343                if (addr + len <= vma->vm_start &&
 344                            (!prev_vma || (addr >= prev_vma->vm_end))) {
 345                        /* remember the address as a hint for next time */
 346                        mm->cached_hole_size = largest_hole;
 347                        return (mm->free_area_cache = addr);
 348                } else {
 349                        /* pull free_area_cache down to the first hole */
 350                        if (mm->free_area_cache == vma->vm_end) {
 351                                mm->free_area_cache = vma->vm_start;
 352                                mm->cached_hole_size = largest_hole;
 353                        }
 354                }
 355
 356                /* remember the largest hole we saw so far */
 357                if (addr + largest_hole < vma->vm_start)
 358                        largest_hole = vma->vm_start - addr;
 359
 360                /* try just below the current vma->vm_start */
 361                addr = (vma->vm_start - len) & huge_page_mask(h);
 362        } while (len <= vma->vm_start);
 363
 364fail:
 365        /*
 366         * if hint left us with no space for the requested
 367         * mapping then try again:
 368         */
 369        if (first_time) {
 370                mm->free_area_cache = base;
 371                largest_hole = 0;
 372                first_time = 0;
 373                goto try_again;
 374        }
 375        /*
 376         * A failed mmap() very likely causes application failure,
 377         * so fall back to the bottom-up function here. This scenario
 378         * can happen with large stack limits and large mmap()
 379         * allocations.
 380         */
 381        mm->free_area_cache = TASK_UNMAPPED_BASE;
 382        mm->cached_hole_size = ~0UL;
 383        addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
 384                        len, pgoff, flags);
 385
 386        /*
 387         * Restore the topdown base:
 388         */
 389        mm->free_area_cache = base;
 390        mm->cached_hole_size = ~0UL;
 391
 392        return addr;
 393}
 394
 395unsigned long
 396hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 397                unsigned long len, unsigned long pgoff, unsigned long flags)
 398{
 399        struct hstate *h = hstate_file(file);
 400        struct mm_struct *mm = current->mm;
 401        struct vm_area_struct *vma;
 402
 403        if (len & ~huge_page_mask(h))
 404                return -EINVAL;
 405        if (len > TASK_SIZE)
 406                return -ENOMEM;
 407
 408        if (flags & MAP_FIXED) {
 409                if (prepare_hugepage_range(file, addr, len))
 410                        return -EINVAL;
 411                return addr;
 412        }
 413
 414        if (addr) {
 415                addr = ALIGN(addr, huge_page_size(h));
 416                vma = find_vma(mm, addr);
 417                if (TASK_SIZE - len >= addr &&
 418                    (!vma || addr + len <= vma->vm_start))
 419                        return addr;
 420        }
 421        if (mm->get_unmapped_area == arch_get_unmapped_area)
 422                return hugetlb_get_unmapped_area_bottomup(file, addr, len,
 423                                pgoff, flags);
 424        else
 425                return hugetlb_get_unmapped_area_topdown(file, addr, len,
 426                                pgoff, flags);
 427}
 428
 429#endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
 430
 431#ifdef CONFIG_X86_64
 432static __init int setup_hugepagesz(char *opt)
 433{
 434        unsigned long ps = memparse(opt, &opt);
 435        if (ps == PMD_SIZE) {
 436                hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
 437        } else if (ps == PUD_SIZE && cpu_has_gbpages) {
 438                hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
 439        } else {
 440                printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
 441                        ps >> 20);
 442                return 0;
 443        }
 444        return 1;
 445}
 446__setup("hugepagesz=", setup_hugepagesz);
 447#endif
 448