linux/arch/x86/mm/numa_32.c
<<
>>
Prefs
   1/*
   2 * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
   3 * August 2002: added remote node KVA remap - Martin J. Bligh 
   4 *
   5 * Copyright (C) 2002, IBM Corp.
   6 *
   7 * All rights reserved.          
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17 * NON INFRINGEMENT.  See the GNU General Public License for more
  18 * details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/mm.h>
  26#include <linux/bootmem.h>
  27#include <linux/memblock.h>
  28#include <linux/mmzone.h>
  29#include <linux/highmem.h>
  30#include <linux/initrd.h>
  31#include <linux/nodemask.h>
  32#include <linux/module.h>
  33#include <linux/kexec.h>
  34#include <linux/pfn.h>
  35#include <linux/swap.h>
  36#include <linux/acpi.h>
  37
  38#include <asm/e820.h>
  39#include <asm/setup.h>
  40#include <asm/mmzone.h>
  41#include <asm/bios_ebda.h>
  42#include <asm/proto.h>
  43
  44struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  45EXPORT_SYMBOL(node_data);
  46
  47/*
  48 * numa interface - we expect the numa architecture specific code to have
  49 *                  populated the following initialisation.
  50 *
  51 * 1) node_online_map  - the map of all nodes configured (online) in the system
  52 * 2) node_start_pfn   - the starting page frame number for a node
  53 * 3) node_end_pfn     - the ending page fram number for a node
  54 */
  55unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
  56unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
  57
  58
  59#ifdef CONFIG_DISCONTIGMEM
  60/*
  61 * 4) physnode_map     - the mapping between a pfn and owning node
  62 * physnode_map keeps track of the physical memory layout of a generic
  63 * numa node on a 64Mb break (each element of the array will
  64 * represent 64Mb of memory and will be marked by the node id.  so,
  65 * if the first gig is on node 0, and the second gig is on node 1
  66 * physnode_map will contain:
  67 *
  68 *     physnode_map[0-15] = 0;
  69 *     physnode_map[16-31] = 1;
  70 *     physnode_map[32- ] = -1;
  71 */
  72s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
  73EXPORT_SYMBOL(physnode_map);
  74
  75void memory_present(int nid, unsigned long start, unsigned long end)
  76{
  77        unsigned long pfn;
  78
  79        printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
  80                        nid, start, end);
  81        printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid);
  82        printk(KERN_DEBUG "  ");
  83        for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
  84                physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
  85                printk(KERN_CONT "%lx ", pfn);
  86        }
  87        printk(KERN_CONT "\n");
  88}
  89
  90unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
  91                                              unsigned long end_pfn)
  92{
  93        unsigned long nr_pages = end_pfn - start_pfn;
  94
  95        if (!nr_pages)
  96                return 0;
  97
  98        return (nr_pages + 1) * sizeof(struct page);
  99}
 100#endif
 101
 102extern unsigned long find_max_low_pfn(void);
 103extern unsigned long highend_pfn, highstart_pfn;
 104
 105#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
 106
 107unsigned long node_remap_size[MAX_NUMNODES];
 108static void *node_remap_start_vaddr[MAX_NUMNODES];
 109void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
 110
 111static unsigned long kva_start_pfn;
 112static unsigned long kva_pages;
 113/*
 114 * FLAT - support for basic PC memory model with discontig enabled, essentially
 115 *        a single node with all available processors in it with a flat
 116 *        memory map.
 117 */
 118int __init get_memcfg_numa_flat(void)
 119{
 120        printk(KERN_DEBUG "NUMA - single node, flat memory mode\n");
 121
 122        node_start_pfn[0] = 0;
 123        node_end_pfn[0] = max_pfn;
 124        memblock_x86_register_active_regions(0, 0, max_pfn);
 125        memory_present(0, 0, max_pfn);
 126        node_remap_size[0] = node_memmap_size_bytes(0, 0, max_pfn);
 127
 128        /* Indicate there is one node available. */
 129        nodes_clear(node_online_map);
 130        node_set_online(0);
 131        return 1;
 132}
 133
 134/*
 135 * Find the highest page frame number we have available for the node
 136 */
 137static void __init propagate_e820_map_node(int nid)
 138{
 139        if (node_end_pfn[nid] > max_pfn)
 140                node_end_pfn[nid] = max_pfn;
 141        /*
 142         * if a user has given mem=XXXX, then we need to make sure 
 143         * that the node _starts_ before that, too, not just ends
 144         */
 145        if (node_start_pfn[nid] > max_pfn)
 146                node_start_pfn[nid] = max_pfn;
 147        BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
 148}
 149
 150/* 
 151 * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
 152 * method.  For node zero take this from the bottom of memory, for
 153 * subsequent nodes place them at node_remap_start_vaddr which contains
 154 * node local data in physically node local memory.  See setup_memory()
 155 * for details.
 156 */
 157static void __init allocate_pgdat(int nid)
 158{
 159        char buf[16];
 160
 161        if (node_has_online_mem(nid) && node_remap_start_vaddr[nid])
 162                NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
 163        else {
 164                unsigned long pgdat_phys;
 165                pgdat_phys = memblock_find_in_range(min_low_pfn<<PAGE_SHIFT,
 166                                 max_pfn_mapped<<PAGE_SHIFT,
 167                                 sizeof(pg_data_t),
 168                                 PAGE_SIZE);
 169                NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT));
 170                memset(buf, 0, sizeof(buf));
 171                sprintf(buf, "NODE_DATA %d",  nid);
 172                memblock_x86_reserve_range(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf);
 173        }
 174        printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n",
 175                nid, (unsigned long)NODE_DATA(nid));
 176}
 177
 178/*
 179 * In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel
 180 * virtual address space (KVA) is reserved and portions of nodes are mapped
 181 * using it. This is to allow node-local memory to be allocated for
 182 * structures that would normally require ZONE_NORMAL. The memory is
 183 * allocated with alloc_remap() and callers should be prepared to allocate
 184 * from the bootmem allocator instead.
 185 */
 186static unsigned long node_remap_start_pfn[MAX_NUMNODES];
 187static void *node_remap_end_vaddr[MAX_NUMNODES];
 188static void *node_remap_alloc_vaddr[MAX_NUMNODES];
 189static unsigned long node_remap_offset[MAX_NUMNODES];
 190
 191void *alloc_remap(int nid, unsigned long size)
 192{
 193        void *allocation = node_remap_alloc_vaddr[nid];
 194
 195        size = ALIGN(size, L1_CACHE_BYTES);
 196
 197        if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
 198                return NULL;
 199
 200        node_remap_alloc_vaddr[nid] += size;
 201        memset(allocation, 0, size);
 202
 203        return allocation;
 204}
 205
 206static void __init remap_numa_kva(void)
 207{
 208        void *vaddr;
 209        unsigned long pfn;
 210        int node;
 211
 212        for_each_online_node(node) {
 213                printk(KERN_DEBUG "remap_numa_kva: node %d\n", node);
 214                for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
 215                        vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
 216                        printk(KERN_DEBUG "remap_numa_kva: %08lx to pfn %08lx\n",
 217                                (unsigned long)vaddr,
 218                                node_remap_start_pfn[node] + pfn);
 219                        set_pmd_pfn((ulong) vaddr, 
 220                                node_remap_start_pfn[node] + pfn, 
 221                                PAGE_KERNEL_LARGE);
 222                }
 223        }
 224}
 225
 226#ifdef CONFIG_HIBERNATION
 227/**
 228 * resume_map_numa_kva - add KVA mapping to the temporary page tables created
 229 *                       during resume from hibernation
 230 * @pgd_base - temporary resume page directory
 231 */
 232void resume_map_numa_kva(pgd_t *pgd_base)
 233{
 234        int node;
 235
 236        for_each_online_node(node) {
 237                unsigned long start_va, start_pfn, size, pfn;
 238
 239                start_va = (unsigned long)node_remap_start_vaddr[node];
 240                start_pfn = node_remap_start_pfn[node];
 241                size = node_remap_size[node];
 242
 243                printk(KERN_DEBUG "%s: node %d\n", __func__, node);
 244
 245                for (pfn = 0; pfn < size; pfn += PTRS_PER_PTE) {
 246                        unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
 247                        pgd_t *pgd = pgd_base + pgd_index(vaddr);
 248                        pud_t *pud = pud_offset(pgd, vaddr);
 249                        pmd_t *pmd = pmd_offset(pud, vaddr);
 250
 251                        set_pmd(pmd, pfn_pmd(start_pfn + pfn,
 252                                                PAGE_KERNEL_LARGE_EXEC));
 253
 254                        printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
 255                                __func__, vaddr, start_pfn + pfn);
 256                }
 257        }
 258}
 259#endif
 260
 261static __init unsigned long calculate_numa_remap_pages(void)
 262{
 263        int nid;
 264        unsigned long size, reserve_pages = 0;
 265
 266        for_each_online_node(nid) {
 267                u64 node_kva_target;
 268                u64 node_kva_final;
 269
 270                /*
 271                 * The acpi/srat node info can show hot-add memroy zones
 272                 * where memory could be added but not currently present.
 273                 */
 274                printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
 275                        nid, node_start_pfn[nid], node_end_pfn[nid]);
 276                if (node_start_pfn[nid] > max_pfn)
 277                        continue;
 278                if (!node_end_pfn[nid])
 279                        continue;
 280                if (node_end_pfn[nid] > max_pfn)
 281                        node_end_pfn[nid] = max_pfn;
 282
 283                /* ensure the remap includes space for the pgdat. */
 284                size = node_remap_size[nid] + sizeof(pg_data_t);
 285
 286                /* convert size to large (pmd size) pages, rounding up */
 287                size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
 288                /* now the roundup is correct, convert to PAGE_SIZE pages */
 289                size = size * PTRS_PER_PTE;
 290
 291                node_kva_target = round_down(node_end_pfn[nid] - size,
 292                                                 PTRS_PER_PTE);
 293                node_kva_target <<= PAGE_SHIFT;
 294                do {
 295                        node_kva_final = memblock_find_in_range(node_kva_target,
 296                                        ((u64)node_end_pfn[nid])<<PAGE_SHIFT,
 297                                                ((u64)size)<<PAGE_SHIFT,
 298                                                LARGE_PAGE_BYTES);
 299                        node_kva_target -= LARGE_PAGE_BYTES;
 300                } while (node_kva_final == MEMBLOCK_ERROR &&
 301                         (node_kva_target>>PAGE_SHIFT) > (node_start_pfn[nid]));
 302
 303                if (node_kva_final == MEMBLOCK_ERROR)
 304                        panic("Can not get kva ram\n");
 305
 306                node_remap_size[nid] = size;
 307                node_remap_offset[nid] = reserve_pages;
 308                reserve_pages += size;
 309                printk(KERN_DEBUG "Reserving %ld pages of KVA for lmem_map of"
 310                                  " node %d at %llx\n",
 311                                size, nid, node_kva_final>>PAGE_SHIFT);
 312
 313                /*
 314                 *  prevent kva address below max_low_pfn want it on system
 315                 *  with less memory later.
 316                 *  layout will be: KVA address , KVA RAM
 317                 *
 318                 *  we are supposed to only record the one less then max_low_pfn
 319                 *  but we could have some hole in high memory, and it will only
 320                 *  check page_is_ram(pfn) && !page_is_reserved_early(pfn) to decide
 321                 *  to use it as free.
 322                 *  So memblock_x86_reserve_range here, hope we don't run out of that array
 323                 */
 324                memblock_x86_reserve_range(node_kva_final,
 325                              node_kva_final+(((u64)size)<<PAGE_SHIFT),
 326                              "KVA RAM");
 327
 328                node_remap_start_pfn[nid] = node_kva_final>>PAGE_SHIFT;
 329        }
 330        printk(KERN_INFO "Reserving total of %lx pages for numa KVA remap\n",
 331                        reserve_pages);
 332        return reserve_pages;
 333}
 334
 335static void init_remap_allocator(int nid)
 336{
 337        node_remap_start_vaddr[nid] = pfn_to_kaddr(
 338                        kva_start_pfn + node_remap_offset[nid]);
 339        node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
 340                (node_remap_size[nid] * PAGE_SIZE);
 341        node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
 342                ALIGN(sizeof(pg_data_t), PAGE_SIZE);
 343
 344        printk(KERN_DEBUG "node %d will remap to vaddr %08lx - %08lx\n", nid,
 345                (ulong) node_remap_start_vaddr[nid],
 346                (ulong) node_remap_end_vaddr[nid]);
 347}
 348
 349void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
 350                                int acpi, int k8)
 351{
 352        int nid;
 353        long kva_target_pfn;
 354
 355        /*
 356         * When mapping a NUMA machine we allocate the node_mem_map arrays
 357         * from node local memory.  They are then mapped directly into KVA
 358         * between zone normal and vmalloc space.  Calculate the size of
 359         * this space and use it to adjust the boundary between ZONE_NORMAL
 360         * and ZONE_HIGHMEM.
 361         */
 362
 363        get_memcfg_numa();
 364
 365        kva_pages = roundup(calculate_numa_remap_pages(), PTRS_PER_PTE);
 366
 367        kva_target_pfn = round_down(max_low_pfn - kva_pages, PTRS_PER_PTE);
 368        do {
 369                kva_start_pfn = memblock_find_in_range(kva_target_pfn<<PAGE_SHIFT,
 370                                        max_low_pfn<<PAGE_SHIFT,
 371                                        kva_pages<<PAGE_SHIFT,
 372                                        PTRS_PER_PTE<<PAGE_SHIFT) >> PAGE_SHIFT;
 373                kva_target_pfn -= PTRS_PER_PTE;
 374        } while (kva_start_pfn == MEMBLOCK_ERROR && kva_target_pfn > min_low_pfn);
 375
 376        if (kva_start_pfn == MEMBLOCK_ERROR)
 377                panic("Can not get kva space\n");
 378
 379        printk(KERN_INFO "kva_start_pfn ~ %lx max_low_pfn ~ %lx\n",
 380                kva_start_pfn, max_low_pfn);
 381        printk(KERN_INFO "max_pfn = %lx\n", max_pfn);
 382
 383        /* avoid clash with initrd */
 384        memblock_x86_reserve_range(kva_start_pfn<<PAGE_SHIFT,
 385                      (kva_start_pfn + kva_pages)<<PAGE_SHIFT,
 386                     "KVA PG");
 387#ifdef CONFIG_HIGHMEM
 388        highstart_pfn = highend_pfn = max_pfn;
 389        if (max_pfn > max_low_pfn)
 390                highstart_pfn = max_low_pfn;
 391        printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
 392               pages_to_mb(highend_pfn - highstart_pfn));
 393        num_physpages = highend_pfn;
 394        high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
 395#else
 396        num_physpages = max_low_pfn;
 397        high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
 398#endif
 399        printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
 400                        pages_to_mb(max_low_pfn));
 401        printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
 402                        max_low_pfn, highstart_pfn);
 403
 404        printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
 405                        (ulong) pfn_to_kaddr(max_low_pfn));
 406        for_each_online_node(nid) {
 407                init_remap_allocator(nid);
 408
 409                allocate_pgdat(nid);
 410        }
 411        remap_numa_kva();
 412
 413        printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
 414                        (ulong) pfn_to_kaddr(highstart_pfn));
 415        for_each_online_node(nid)
 416                propagate_e820_map_node(nid);
 417
 418        for_each_online_node(nid) {
 419                memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 420                NODE_DATA(nid)->node_id = nid;
 421        }
 422
 423        setup_bootmem_allocator();
 424}
 425
 426#ifdef CONFIG_MEMORY_HOTPLUG
 427static int paddr_to_nid(u64 addr)
 428{
 429        int nid;
 430        unsigned long pfn = PFN_DOWN(addr);
 431
 432        for_each_node(nid)
 433                if (node_start_pfn[nid] <= pfn &&
 434                    pfn < node_end_pfn[nid])
 435                        return nid;
 436
 437        return -1;
 438}
 439
 440/*
 441 * This function is used to ask node id BEFORE memmap and mem_section's
 442 * initialization (pfn_to_nid() can't be used yet).
 443 * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
 444 */
 445int memory_add_physaddr_to_nid(u64 addr)
 446{
 447        int nid = paddr_to_nid(addr);
 448        return (nid >= 0) ? nid : 0;
 449}
 450
 451EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
 452#endif
 453
 454