linux/arch/x86/xen/mmu.c
<<
>>
Prefs
   1/*
   2 * Xen mmu operations
   3 *
   4 * This file contains the various mmu fetch and update operations.
   5 * The most important job they must perform is the mapping between the
   6 * domain's pfn and the overall machine mfns.
   7 *
   8 * Xen allows guests to directly update the pagetable, in a controlled
   9 * fashion.  In other words, the guest modifies the same pagetable
  10 * that the CPU actually uses, which eliminates the overhead of having
  11 * a separate shadow pagetable.
  12 *
  13 * In order to allow this, it falls on the guest domain to map its
  14 * notion of a "physical" pfn - which is just a domain-local linear
  15 * address - into a real "machine address" which the CPU's MMU can
  16 * use.
  17 *
  18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  19 * inserted directly into the pagetable.  When creating a new
  20 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
  21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
  22 * the mfn back into a pfn.
  23 *
  24 * The other constraint is that all pages which make up a pagetable
  25 * must be mapped read-only in the guest.  This prevents uncontrolled
  26 * guest updates to the pagetable.  Xen strictly enforces this, and
  27 * will disallow any pagetable update which will end up mapping a
  28 * pagetable page RW, and will disallow using any writable page as a
  29 * pagetable.
  30 *
  31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
  32 * would need to validate the whole pagetable before going on.
  33 * Naturally, this is quite slow.  The solution is to "pin" a
  34 * pagetable, which enforces all the constraints on the pagetable even
  35 * when it is not actively in use.  This menas that Xen can be assured
  36 * that it is still valid when you do load it into %cr3, and doesn't
  37 * need to revalidate it.
  38 *
  39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  40 */
  41#include <linux/sched.h>
  42#include <linux/highmem.h>
  43#include <linux/debugfs.h>
  44#include <linux/bug.h>
  45#include <linux/vmalloc.h>
  46#include <linux/module.h>
  47#include <linux/gfp.h>
  48#include <linux/memblock.h>
  49
  50#include <asm/pgtable.h>
  51#include <asm/tlbflush.h>
  52#include <asm/fixmap.h>
  53#include <asm/mmu_context.h>
  54#include <asm/setup.h>
  55#include <asm/paravirt.h>
  56#include <asm/e820.h>
  57#include <asm/linkage.h>
  58#include <asm/page.h>
  59#include <asm/init.h>
  60#include <asm/pat.h>
  61
  62#include <asm/xen/hypercall.h>
  63#include <asm/xen/hypervisor.h>
  64
  65#include <xen/xen.h>
  66#include <xen/page.h>
  67#include <xen/interface/xen.h>
  68#include <xen/interface/hvm/hvm_op.h>
  69#include <xen/interface/version.h>
  70#include <xen/interface/memory.h>
  71#include <xen/hvc-console.h>
  72
  73#include "multicalls.h"
  74#include "mmu.h"
  75#include "debugfs.h"
  76
  77#define MMU_UPDATE_HISTO        30
  78
  79/*
  80 * Protects atomic reservation decrease/increase against concurrent increases.
  81 * Also protects non-atomic updates of current_pages and driver_pages, and
  82 * balloon lists.
  83 */
  84DEFINE_SPINLOCK(xen_reservation_lock);
  85
  86#ifdef CONFIG_XEN_DEBUG_FS
  87
  88static struct {
  89        u32 pgd_update;
  90        u32 pgd_update_pinned;
  91        u32 pgd_update_batched;
  92
  93        u32 pud_update;
  94        u32 pud_update_pinned;
  95        u32 pud_update_batched;
  96
  97        u32 pmd_update;
  98        u32 pmd_update_pinned;
  99        u32 pmd_update_batched;
 100
 101        u32 pte_update;
 102        u32 pte_update_pinned;
 103        u32 pte_update_batched;
 104
 105        u32 mmu_update;
 106        u32 mmu_update_extended;
 107        u32 mmu_update_histo[MMU_UPDATE_HISTO];
 108
 109        u32 prot_commit;
 110        u32 prot_commit_batched;
 111
 112        u32 set_pte_at;
 113        u32 set_pte_at_batched;
 114        u32 set_pte_at_pinned;
 115        u32 set_pte_at_current;
 116        u32 set_pte_at_kernel;
 117} mmu_stats;
 118
 119static u8 zero_stats;
 120
 121static inline void check_zero(void)
 122{
 123        if (unlikely(zero_stats)) {
 124                memset(&mmu_stats, 0, sizeof(mmu_stats));
 125                zero_stats = 0;
 126        }
 127}
 128
 129#define ADD_STATS(elem, val)                    \
 130        do { check_zero(); mmu_stats.elem += (val); } while(0)
 131
 132#else  /* !CONFIG_XEN_DEBUG_FS */
 133
 134#define ADD_STATS(elem, val)    do { (void)(val); } while(0)
 135
 136#endif /* CONFIG_XEN_DEBUG_FS */
 137
 138
 139/*
 140 * Identity map, in addition to plain kernel map.  This needs to be
 141 * large enough to allocate page table pages to allocate the rest.
 142 * Each page can map 2MB.
 143 */
 144#define LEVEL1_IDENT_ENTRIES    (PTRS_PER_PTE * 4)
 145static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
 146
 147#ifdef CONFIG_X86_64
 148/* l3 pud for userspace vsyscall mapping */
 149static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
 150#endif /* CONFIG_X86_64 */
 151
 152/*
 153 * Note about cr3 (pagetable base) values:
 154 *
 155 * xen_cr3 contains the current logical cr3 value; it contains the
 156 * last set cr3.  This may not be the current effective cr3, because
 157 * its update may be being lazily deferred.  However, a vcpu looking
 158 * at its own cr3 can use this value knowing that it everything will
 159 * be self-consistent.
 160 *
 161 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 162 * hypercall to set the vcpu cr3 is complete (so it may be a little
 163 * out of date, but it will never be set early).  If one vcpu is
 164 * looking at another vcpu's cr3 value, it should use this variable.
 165 */
 166DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
 167DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
 168
 169
 170/*
 171 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 172 * redzone above it, so round it up to a PGD boundary.
 173 */
 174#define USER_LIMIT      ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 175
 176unsigned long arbitrary_virt_to_mfn(void *vaddr)
 177{
 178        xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
 179
 180        return PFN_DOWN(maddr.maddr);
 181}
 182
 183xmaddr_t arbitrary_virt_to_machine(void *vaddr)
 184{
 185        unsigned long address = (unsigned long)vaddr;
 186        unsigned int level;
 187        pte_t *pte;
 188        unsigned offset;
 189
 190        /*
 191         * if the PFN is in the linear mapped vaddr range, we can just use
 192         * the (quick) virt_to_machine() p2m lookup
 193         */
 194        if (virt_addr_valid(vaddr))
 195                return virt_to_machine(vaddr);
 196
 197        /* otherwise we have to do a (slower) full page-table walk */
 198
 199        pte = lookup_address(address, &level);
 200        BUG_ON(pte == NULL);
 201        offset = address & ~PAGE_MASK;
 202        return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
 203}
 204EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
 205
 206void make_lowmem_page_readonly(void *vaddr)
 207{
 208        pte_t *pte, ptev;
 209        unsigned long address = (unsigned long)vaddr;
 210        unsigned int level;
 211
 212        pte = lookup_address(address, &level);
 213        if (pte == NULL)
 214                return;         /* vaddr missing */
 215
 216        ptev = pte_wrprotect(*pte);
 217
 218        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 219                BUG();
 220}
 221
 222void make_lowmem_page_readwrite(void *vaddr)
 223{
 224        pte_t *pte, ptev;
 225        unsigned long address = (unsigned long)vaddr;
 226        unsigned int level;
 227
 228        pte = lookup_address(address, &level);
 229        if (pte == NULL)
 230                return;         /* vaddr missing */
 231
 232        ptev = pte_mkwrite(*pte);
 233
 234        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 235                BUG();
 236}
 237
 238
 239static bool xen_page_pinned(void *ptr)
 240{
 241        struct page *page = virt_to_page(ptr);
 242
 243        return PagePinned(page);
 244}
 245
 246static bool xen_iomap_pte(pte_t pte)
 247{
 248        return pte_flags(pte) & _PAGE_IOMAP;
 249}
 250
 251void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
 252{
 253        struct multicall_space mcs;
 254        struct mmu_update *u;
 255
 256        mcs = xen_mc_entry(sizeof(*u));
 257        u = mcs.args;
 258
 259        /* ptep might be kmapped when using 32-bit HIGHPTE */
 260        u->ptr = arbitrary_virt_to_machine(ptep).maddr;
 261        u->val = pte_val_ma(pteval);
 262
 263        MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
 264
 265        xen_mc_issue(PARAVIRT_LAZY_MMU);
 266}
 267EXPORT_SYMBOL_GPL(xen_set_domain_pte);
 268
 269static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
 270{
 271        xen_set_domain_pte(ptep, pteval, DOMID_IO);
 272}
 273
 274static void xen_extend_mmu_update(const struct mmu_update *update)
 275{
 276        struct multicall_space mcs;
 277        struct mmu_update *u;
 278
 279        mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 280
 281        if (mcs.mc != NULL) {
 282                ADD_STATS(mmu_update_extended, 1);
 283                ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
 284
 285                mcs.mc->args[1]++;
 286
 287                if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
 288                        ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
 289                else
 290                        ADD_STATS(mmu_update_histo[0], 1);
 291        } else {
 292                ADD_STATS(mmu_update, 1);
 293                mcs = __xen_mc_entry(sizeof(*u));
 294                MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 295                ADD_STATS(mmu_update_histo[1], 1);
 296        }
 297
 298        u = mcs.args;
 299        *u = *update;
 300}
 301
 302void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 303{
 304        struct mmu_update u;
 305
 306        preempt_disable();
 307
 308        xen_mc_batch();
 309
 310        /* ptr may be ioremapped for 64-bit pagetable setup */
 311        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 312        u.val = pmd_val_ma(val);
 313        xen_extend_mmu_update(&u);
 314
 315        ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
 316
 317        xen_mc_issue(PARAVIRT_LAZY_MMU);
 318
 319        preempt_enable();
 320}
 321
 322void xen_set_pmd(pmd_t *ptr, pmd_t val)
 323{
 324        ADD_STATS(pmd_update, 1);
 325
 326        /* If page is not pinned, we can just update the entry
 327           directly */
 328        if (!xen_page_pinned(ptr)) {
 329                *ptr = val;
 330                return;
 331        }
 332
 333        ADD_STATS(pmd_update_pinned, 1);
 334
 335        xen_set_pmd_hyper(ptr, val);
 336}
 337
 338/*
 339 * Associate a virtual page frame with a given physical page frame
 340 * and protection flags for that frame.
 341 */
 342void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 343{
 344        set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
 345}
 346
 347void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
 348                    pte_t *ptep, pte_t pteval)
 349{
 350        if (xen_iomap_pte(pteval)) {
 351                xen_set_iomap_pte(ptep, pteval);
 352                goto out;
 353        }
 354
 355        ADD_STATS(set_pte_at, 1);
 356//      ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
 357        ADD_STATS(set_pte_at_current, mm == current->mm);
 358        ADD_STATS(set_pte_at_kernel, mm == &init_mm);
 359
 360        if (mm == current->mm || mm == &init_mm) {
 361                if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
 362                        struct multicall_space mcs;
 363                        mcs = xen_mc_entry(0);
 364
 365                        MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
 366                        ADD_STATS(set_pte_at_batched, 1);
 367                        xen_mc_issue(PARAVIRT_LAZY_MMU);
 368                        goto out;
 369                } else
 370                        if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
 371                                goto out;
 372        }
 373        xen_set_pte(ptep, pteval);
 374
 375out:    return;
 376}
 377
 378pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
 379                                 unsigned long addr, pte_t *ptep)
 380{
 381        /* Just return the pte as-is.  We preserve the bits on commit */
 382        return *ptep;
 383}
 384
 385void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
 386                                 pte_t *ptep, pte_t pte)
 387{
 388        struct mmu_update u;
 389
 390        xen_mc_batch();
 391
 392        u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 393        u.val = pte_val_ma(pte);
 394        xen_extend_mmu_update(&u);
 395
 396        ADD_STATS(prot_commit, 1);
 397        ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
 398
 399        xen_mc_issue(PARAVIRT_LAZY_MMU);
 400}
 401
 402/* Assume pteval_t is equivalent to all the other *val_t types. */
 403static pteval_t pte_mfn_to_pfn(pteval_t val)
 404{
 405        if (val & _PAGE_PRESENT) {
 406                unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 407                pteval_t flags = val & PTE_FLAGS_MASK;
 408                val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
 409        }
 410
 411        return val;
 412}
 413
 414static pteval_t pte_pfn_to_mfn(pteval_t val)
 415{
 416        if (val & _PAGE_PRESENT) {
 417                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 418                pteval_t flags = val & PTE_FLAGS_MASK;
 419                unsigned long mfn = pfn_to_mfn(pfn);
 420
 421                /*
 422                 * If there's no mfn for the pfn, then just create an
 423                 * empty non-present pte.  Unfortunately this loses
 424                 * information about the original pfn, so
 425                 * pte_mfn_to_pfn is asymmetric.
 426                 */
 427                if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 428                        mfn = 0;
 429                        flags = 0;
 430                }
 431
 432                val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 433        }
 434
 435        return val;
 436}
 437
 438static pteval_t iomap_pte(pteval_t val)
 439{
 440        if (val & _PAGE_PRESENT) {
 441                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 442                pteval_t flags = val & PTE_FLAGS_MASK;
 443
 444                /* We assume the pte frame number is a MFN, so
 445                   just use it as-is. */
 446                val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 447        }
 448
 449        return val;
 450}
 451
 452pteval_t xen_pte_val(pte_t pte)
 453{
 454        pteval_t pteval = pte.pte;
 455
 456        /* If this is a WC pte, convert back from Xen WC to Linux WC */
 457        if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
 458                WARN_ON(!pat_enabled);
 459                pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
 460        }
 461
 462        if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
 463                return pteval;
 464
 465        return pte_mfn_to_pfn(pteval);
 466}
 467PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 468
 469pgdval_t xen_pgd_val(pgd_t pgd)
 470{
 471        return pte_mfn_to_pfn(pgd.pgd);
 472}
 473PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 474
 475/*
 476 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
 477 * are reserved for now, to correspond to the Intel-reserved PAT
 478 * types.
 479 *
 480 * We expect Linux's PAT set as follows:
 481 *
 482 * Idx  PTE flags        Linux    Xen    Default
 483 * 0                     WB       WB     WB
 484 * 1            PWT      WC       WT     WT
 485 * 2        PCD          UC-      UC-    UC-
 486 * 3        PCD PWT      UC       UC     UC
 487 * 4    PAT              WB       WC     WB
 488 * 5    PAT     PWT      WC       WP     WT
 489 * 6    PAT PCD          UC-      UC     UC-
 490 * 7    PAT PCD PWT      UC       UC     UC
 491 */
 492
 493void xen_set_pat(u64 pat)
 494{
 495        /* We expect Linux to use a PAT setting of
 496         * UC UC- WC WB (ignoring the PAT flag) */
 497        WARN_ON(pat != 0x0007010600070106ull);
 498}
 499
 500pte_t xen_make_pte(pteval_t pte)
 501{
 502        phys_addr_t addr = (pte & PTE_PFN_MASK);
 503
 504        /* If Linux is trying to set a WC pte, then map to the Xen WC.
 505         * If _PAGE_PAT is set, then it probably means it is really
 506         * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
 507         * things work out OK...
 508         *
 509         * (We should never see kernel mappings with _PAGE_PSE set,
 510         * but we could see hugetlbfs mappings, I think.).
 511         */
 512        if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
 513                if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
 514                        pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
 515        }
 516
 517        /*
 518         * Unprivileged domains are allowed to do IOMAPpings for
 519         * PCI passthrough, but not map ISA space.  The ISA
 520         * mappings are just dummy local mappings to keep other
 521         * parts of the kernel happy.
 522         */
 523        if (unlikely(pte & _PAGE_IOMAP) &&
 524            (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
 525                pte = iomap_pte(pte);
 526        } else {
 527                pte &= ~_PAGE_IOMAP;
 528                pte = pte_pfn_to_mfn(pte);
 529        }
 530
 531        return native_make_pte(pte);
 532}
 533PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 534
 535pgd_t xen_make_pgd(pgdval_t pgd)
 536{
 537        pgd = pte_pfn_to_mfn(pgd);
 538        return native_make_pgd(pgd);
 539}
 540PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 541
 542pmdval_t xen_pmd_val(pmd_t pmd)
 543{
 544        return pte_mfn_to_pfn(pmd.pmd);
 545}
 546PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 547
 548void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 549{
 550        struct mmu_update u;
 551
 552        preempt_disable();
 553
 554        xen_mc_batch();
 555
 556        /* ptr may be ioremapped for 64-bit pagetable setup */
 557        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 558        u.val = pud_val_ma(val);
 559        xen_extend_mmu_update(&u);
 560
 561        ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
 562
 563        xen_mc_issue(PARAVIRT_LAZY_MMU);
 564
 565        preempt_enable();
 566}
 567
 568void xen_set_pud(pud_t *ptr, pud_t val)
 569{
 570        ADD_STATS(pud_update, 1);
 571
 572        /* If page is not pinned, we can just update the entry
 573           directly */
 574        if (!xen_page_pinned(ptr)) {
 575                *ptr = val;
 576                return;
 577        }
 578
 579        ADD_STATS(pud_update_pinned, 1);
 580
 581        xen_set_pud_hyper(ptr, val);
 582}
 583
 584void xen_set_pte(pte_t *ptep, pte_t pte)
 585{
 586        if (xen_iomap_pte(pte)) {
 587                xen_set_iomap_pte(ptep, pte);
 588                return;
 589        }
 590
 591        ADD_STATS(pte_update, 1);
 592//      ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
 593        ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
 594
 595#ifdef CONFIG_X86_PAE
 596        ptep->pte_high = pte.pte_high;
 597        smp_wmb();
 598        ptep->pte_low = pte.pte_low;
 599#else
 600        *ptep = pte;
 601#endif
 602}
 603
 604#ifdef CONFIG_X86_PAE
 605void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
 606{
 607        if (xen_iomap_pte(pte)) {
 608                xen_set_iomap_pte(ptep, pte);
 609                return;
 610        }
 611
 612        set_64bit((u64 *)ptep, native_pte_val(pte));
 613}
 614
 615void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 616{
 617        ptep->pte_low = 0;
 618        smp_wmb();              /* make sure low gets written first */
 619        ptep->pte_high = 0;
 620}
 621
 622void xen_pmd_clear(pmd_t *pmdp)
 623{
 624        set_pmd(pmdp, __pmd(0));
 625}
 626#endif  /* CONFIG_X86_PAE */
 627
 628pmd_t xen_make_pmd(pmdval_t pmd)
 629{
 630        pmd = pte_pfn_to_mfn(pmd);
 631        return native_make_pmd(pmd);
 632}
 633PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 634
 635#if PAGETABLE_LEVELS == 4
 636pudval_t xen_pud_val(pud_t pud)
 637{
 638        return pte_mfn_to_pfn(pud.pud);
 639}
 640PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 641
 642pud_t xen_make_pud(pudval_t pud)
 643{
 644        pud = pte_pfn_to_mfn(pud);
 645
 646        return native_make_pud(pud);
 647}
 648PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 649
 650pgd_t *xen_get_user_pgd(pgd_t *pgd)
 651{
 652        pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 653        unsigned offset = pgd - pgd_page;
 654        pgd_t *user_ptr = NULL;
 655
 656        if (offset < pgd_index(USER_LIMIT)) {
 657                struct page *page = virt_to_page(pgd_page);
 658                user_ptr = (pgd_t *)page->private;
 659                if (user_ptr)
 660                        user_ptr += offset;
 661        }
 662
 663        return user_ptr;
 664}
 665
 666static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 667{
 668        struct mmu_update u;
 669
 670        u.ptr = virt_to_machine(ptr).maddr;
 671        u.val = pgd_val_ma(val);
 672        xen_extend_mmu_update(&u);
 673}
 674
 675/*
 676 * Raw hypercall-based set_pgd, intended for in early boot before
 677 * there's a page structure.  This implies:
 678 *  1. The only existing pagetable is the kernel's
 679 *  2. It is always pinned
 680 *  3. It has no user pagetable attached to it
 681 */
 682void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 683{
 684        preempt_disable();
 685
 686        xen_mc_batch();
 687
 688        __xen_set_pgd_hyper(ptr, val);
 689
 690        xen_mc_issue(PARAVIRT_LAZY_MMU);
 691
 692        preempt_enable();
 693}
 694
 695void xen_set_pgd(pgd_t *ptr, pgd_t val)
 696{
 697        pgd_t *user_ptr = xen_get_user_pgd(ptr);
 698
 699        ADD_STATS(pgd_update, 1);
 700
 701        /* If page is not pinned, we can just update the entry
 702           directly */
 703        if (!xen_page_pinned(ptr)) {
 704                *ptr = val;
 705                if (user_ptr) {
 706                        WARN_ON(xen_page_pinned(user_ptr));
 707                        *user_ptr = val;
 708                }
 709                return;
 710        }
 711
 712        ADD_STATS(pgd_update_pinned, 1);
 713        ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
 714
 715        /* If it's pinned, then we can at least batch the kernel and
 716           user updates together. */
 717        xen_mc_batch();
 718
 719        __xen_set_pgd_hyper(ptr, val);
 720        if (user_ptr)
 721                __xen_set_pgd_hyper(user_ptr, val);
 722
 723        xen_mc_issue(PARAVIRT_LAZY_MMU);
 724}
 725#endif  /* PAGETABLE_LEVELS == 4 */
 726
 727/*
 728 * (Yet another) pagetable walker.  This one is intended for pinning a
 729 * pagetable.  This means that it walks a pagetable and calls the
 730 * callback function on each page it finds making up the page table,
 731 * at every level.  It walks the entire pagetable, but it only bothers
 732 * pinning pte pages which are below limit.  In the normal case this
 733 * will be STACK_TOP_MAX, but at boot we need to pin up to
 734 * FIXADDR_TOP.
 735 *
 736 * For 32-bit the important bit is that we don't pin beyond there,
 737 * because then we start getting into Xen's ptes.
 738 *
 739 * For 64-bit, we must skip the Xen hole in the middle of the address
 740 * space, just after the big x86-64 virtual hole.
 741 */
 742static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 743                          int (*func)(struct mm_struct *mm, struct page *,
 744                                      enum pt_level),
 745                          unsigned long limit)
 746{
 747        int flush = 0;
 748        unsigned hole_low, hole_high;
 749        unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
 750        unsigned pgdidx, pudidx, pmdidx;
 751
 752        /* The limit is the last byte to be touched */
 753        limit--;
 754        BUG_ON(limit >= FIXADDR_TOP);
 755
 756        if (xen_feature(XENFEAT_auto_translated_physmap))
 757                return 0;
 758
 759        /*
 760         * 64-bit has a great big hole in the middle of the address
 761         * space, which contains the Xen mappings.  On 32-bit these
 762         * will end up making a zero-sized hole and so is a no-op.
 763         */
 764        hole_low = pgd_index(USER_LIMIT);
 765        hole_high = pgd_index(PAGE_OFFSET);
 766
 767        pgdidx_limit = pgd_index(limit);
 768#if PTRS_PER_PUD > 1
 769        pudidx_limit = pud_index(limit);
 770#else
 771        pudidx_limit = 0;
 772#endif
 773#if PTRS_PER_PMD > 1
 774        pmdidx_limit = pmd_index(limit);
 775#else
 776        pmdidx_limit = 0;
 777#endif
 778
 779        for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
 780                pud_t *pud;
 781
 782                if (pgdidx >= hole_low && pgdidx < hole_high)
 783                        continue;
 784
 785                if (!pgd_val(pgd[pgdidx]))
 786                        continue;
 787
 788                pud = pud_offset(&pgd[pgdidx], 0);
 789
 790                if (PTRS_PER_PUD > 1) /* not folded */
 791                        flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
 792
 793                for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
 794                        pmd_t *pmd;
 795
 796                        if (pgdidx == pgdidx_limit &&
 797                            pudidx > pudidx_limit)
 798                                goto out;
 799
 800                        if (pud_none(pud[pudidx]))
 801                                continue;
 802
 803                        pmd = pmd_offset(&pud[pudidx], 0);
 804
 805                        if (PTRS_PER_PMD > 1) /* not folded */
 806                                flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
 807
 808                        for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
 809                                struct page *pte;
 810
 811                                if (pgdidx == pgdidx_limit &&
 812                                    pudidx == pudidx_limit &&
 813                                    pmdidx > pmdidx_limit)
 814                                        goto out;
 815
 816                                if (pmd_none(pmd[pmdidx]))
 817                                        continue;
 818
 819                                pte = pmd_page(pmd[pmdidx]);
 820                                flush |= (*func)(mm, pte, PT_PTE);
 821                        }
 822                }
 823        }
 824
 825out:
 826        /* Do the top level last, so that the callbacks can use it as
 827           a cue to do final things like tlb flushes. */
 828        flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
 829
 830        return flush;
 831}
 832
 833static int xen_pgd_walk(struct mm_struct *mm,
 834                        int (*func)(struct mm_struct *mm, struct page *,
 835                                    enum pt_level),
 836                        unsigned long limit)
 837{
 838        return __xen_pgd_walk(mm, mm->pgd, func, limit);
 839}
 840
 841/* If we're using split pte locks, then take the page's lock and
 842   return a pointer to it.  Otherwise return NULL. */
 843static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 844{
 845        spinlock_t *ptl = NULL;
 846
 847#if USE_SPLIT_PTLOCKS
 848        ptl = __pte_lockptr(page);
 849        spin_lock_nest_lock(ptl, &mm->page_table_lock);
 850#endif
 851
 852        return ptl;
 853}
 854
 855static void xen_pte_unlock(void *v)
 856{
 857        spinlock_t *ptl = v;
 858        spin_unlock(ptl);
 859}
 860
 861static void xen_do_pin(unsigned level, unsigned long pfn)
 862{
 863        struct mmuext_op *op;
 864        struct multicall_space mcs;
 865
 866        mcs = __xen_mc_entry(sizeof(*op));
 867        op = mcs.args;
 868        op->cmd = level;
 869        op->arg1.mfn = pfn_to_mfn(pfn);
 870        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 871}
 872
 873static int xen_pin_page(struct mm_struct *mm, struct page *page,
 874                        enum pt_level level)
 875{
 876        unsigned pgfl = TestSetPagePinned(page);
 877        int flush;
 878
 879        if (pgfl)
 880                flush = 0;              /* already pinned */
 881        else if (PageHighMem(page))
 882                /* kmaps need flushing if we found an unpinned
 883                   highpage */
 884                flush = 1;
 885        else {
 886                void *pt = lowmem_page_address(page);
 887                unsigned long pfn = page_to_pfn(page);
 888                struct multicall_space mcs = __xen_mc_entry(0);
 889                spinlock_t *ptl;
 890
 891                flush = 0;
 892
 893                /*
 894                 * We need to hold the pagetable lock between the time
 895                 * we make the pagetable RO and when we actually pin
 896                 * it.  If we don't, then other users may come in and
 897                 * attempt to update the pagetable by writing it,
 898                 * which will fail because the memory is RO but not
 899                 * pinned, so Xen won't do the trap'n'emulate.
 900                 *
 901                 * If we're using split pte locks, we can't hold the
 902                 * entire pagetable's worth of locks during the
 903                 * traverse, because we may wrap the preempt count (8
 904                 * bits).  The solution is to mark RO and pin each PTE
 905                 * page while holding the lock.  This means the number
 906                 * of locks we end up holding is never more than a
 907                 * batch size (~32 entries, at present).
 908                 *
 909                 * If we're not using split pte locks, we needn't pin
 910                 * the PTE pages independently, because we're
 911                 * protected by the overall pagetable lock.
 912                 */
 913                ptl = NULL;
 914                if (level == PT_PTE)
 915                        ptl = xen_pte_lock(page, mm);
 916
 917                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 918                                        pfn_pte(pfn, PAGE_KERNEL_RO),
 919                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 920
 921                if (ptl) {
 922                        xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 923
 924                        /* Queue a deferred unlock for when this batch
 925                           is completed. */
 926                        xen_mc_callback(xen_pte_unlock, ptl);
 927                }
 928        }
 929
 930        return flush;
 931}
 932
 933/* This is called just after a mm has been created, but it has not
 934   been used yet.  We need to make sure that its pagetable is all
 935   read-only, and can be pinned. */
 936static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 937{
 938        xen_mc_batch();
 939
 940        if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
 941                /* re-enable interrupts for flushing */
 942                xen_mc_issue(0);
 943
 944                kmap_flush_unused();
 945
 946                xen_mc_batch();
 947        }
 948
 949#ifdef CONFIG_X86_64
 950        {
 951                pgd_t *user_pgd = xen_get_user_pgd(pgd);
 952
 953                xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 954
 955                if (user_pgd) {
 956                        xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 957                        xen_do_pin(MMUEXT_PIN_L4_TABLE,
 958                                   PFN_DOWN(__pa(user_pgd)));
 959                }
 960        }
 961#else /* CONFIG_X86_32 */
 962#ifdef CONFIG_X86_PAE
 963        /* Need to make sure unshared kernel PMD is pinnable */
 964        xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 965                     PT_PMD);
 966#endif
 967        xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
 968#endif /* CONFIG_X86_64 */
 969        xen_mc_issue(0);
 970}
 971
 972static void xen_pgd_pin(struct mm_struct *mm)
 973{
 974        __xen_pgd_pin(mm, mm->pgd);
 975}
 976
 977/*
 978 * On save, we need to pin all pagetables to make sure they get their
 979 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 980 * them (unpinned pgds are not currently in use, probably because the
 981 * process is under construction or destruction).
 982 *
 983 * Expected to be called in stop_machine() ("equivalent to taking
 984 * every spinlock in the system"), so the locking doesn't really
 985 * matter all that much.
 986 */
 987void xen_mm_pin_all(void)
 988{
 989        struct page *page;
 990
 991        spin_lock(&pgd_lock);
 992
 993        list_for_each_entry(page, &pgd_list, lru) {
 994                if (!PagePinned(page)) {
 995                        __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 996                        SetPageSavePinned(page);
 997                }
 998        }
 999
1000        spin_unlock(&pgd_lock);
1001}
1002
1003/*
1004 * The init_mm pagetable is really pinned as soon as its created, but
1005 * that's before we have page structures to store the bits.  So do all
1006 * the book-keeping now.
1007 */
1008static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1009                                  enum pt_level level)
1010{
1011        SetPagePinned(page);
1012        return 0;
1013}
1014
1015static void __init xen_mark_init_mm_pinned(void)
1016{
1017        xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1018}
1019
1020static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1021                          enum pt_level level)
1022{
1023        unsigned pgfl = TestClearPagePinned(page);
1024
1025        if (pgfl && !PageHighMem(page)) {
1026                void *pt = lowmem_page_address(page);
1027                unsigned long pfn = page_to_pfn(page);
1028                spinlock_t *ptl = NULL;
1029                struct multicall_space mcs;
1030
1031                /*
1032                 * Do the converse to pin_page.  If we're using split
1033                 * pte locks, we must be holding the lock for while
1034                 * the pte page is unpinned but still RO to prevent
1035                 * concurrent updates from seeing it in this
1036                 * partially-pinned state.
1037                 */
1038                if (level == PT_PTE) {
1039                        ptl = xen_pte_lock(page, mm);
1040
1041                        if (ptl)
1042                                xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1043                }
1044
1045                mcs = __xen_mc_entry(0);
1046
1047                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1048                                        pfn_pte(pfn, PAGE_KERNEL),
1049                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1050
1051                if (ptl) {
1052                        /* unlock when batch completed */
1053                        xen_mc_callback(xen_pte_unlock, ptl);
1054                }
1055        }
1056
1057        return 0;               /* never need to flush on unpin */
1058}
1059
1060/* Release a pagetables pages back as normal RW */
1061static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1062{
1063        xen_mc_batch();
1064
1065        xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1066
1067#ifdef CONFIG_X86_64
1068        {
1069                pgd_t *user_pgd = xen_get_user_pgd(pgd);
1070
1071                if (user_pgd) {
1072                        xen_do_pin(MMUEXT_UNPIN_TABLE,
1073                                   PFN_DOWN(__pa(user_pgd)));
1074                        xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1075                }
1076        }
1077#endif
1078
1079#ifdef CONFIG_X86_PAE
1080        /* Need to make sure unshared kernel PMD is unpinned */
1081        xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1082                       PT_PMD);
1083#endif
1084
1085        __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1086
1087        xen_mc_issue(0);
1088}
1089
1090static void xen_pgd_unpin(struct mm_struct *mm)
1091{
1092        __xen_pgd_unpin(mm, mm->pgd);
1093}
1094
1095/*
1096 * On resume, undo any pinning done at save, so that the rest of the
1097 * kernel doesn't see any unexpected pinned pagetables.
1098 */
1099void xen_mm_unpin_all(void)
1100{
1101        struct page *page;
1102
1103        spin_lock(&pgd_lock);
1104
1105        list_for_each_entry(page, &pgd_list, lru) {
1106                if (PageSavePinned(page)) {
1107                        BUG_ON(!PagePinned(page));
1108                        __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1109                        ClearPageSavePinned(page);
1110                }
1111        }
1112
1113        spin_unlock(&pgd_lock);
1114}
1115
1116void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1117{
1118        spin_lock(&next->page_table_lock);
1119        xen_pgd_pin(next);
1120        spin_unlock(&next->page_table_lock);
1121}
1122
1123void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1124{
1125        spin_lock(&mm->page_table_lock);
1126        xen_pgd_pin(mm);
1127        spin_unlock(&mm->page_table_lock);
1128}
1129
1130
1131#ifdef CONFIG_SMP
1132/* Another cpu may still have their %cr3 pointing at the pagetable, so
1133   we need to repoint it somewhere else before we can unpin it. */
1134static void drop_other_mm_ref(void *info)
1135{
1136        struct mm_struct *mm = info;
1137        struct mm_struct *active_mm;
1138
1139        active_mm = percpu_read(cpu_tlbstate.active_mm);
1140
1141        if (active_mm == mm)
1142                leave_mm(smp_processor_id());
1143
1144        /* If this cpu still has a stale cr3 reference, then make sure
1145           it has been flushed. */
1146        if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1147                load_cr3(swapper_pg_dir);
1148}
1149
1150static void xen_drop_mm_ref(struct mm_struct *mm)
1151{
1152        cpumask_var_t mask;
1153        unsigned cpu;
1154
1155        if (current->active_mm == mm) {
1156                if (current->mm == mm)
1157                        load_cr3(swapper_pg_dir);
1158                else
1159                        leave_mm(smp_processor_id());
1160        }
1161
1162        /* Get the "official" set of cpus referring to our pagetable. */
1163        if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1164                for_each_online_cpu(cpu) {
1165                        if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1166                            && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1167                                continue;
1168                        smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1169                }
1170                return;
1171        }
1172        cpumask_copy(mask, mm_cpumask(mm));
1173
1174        /* It's possible that a vcpu may have a stale reference to our
1175           cr3, because its in lazy mode, and it hasn't yet flushed
1176           its set of pending hypercalls yet.  In this case, we can
1177           look at its actual current cr3 value, and force it to flush
1178           if needed. */
1179        for_each_online_cpu(cpu) {
1180                if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1181                        cpumask_set_cpu(cpu, mask);
1182        }
1183
1184        if (!cpumask_empty(mask))
1185                smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1186        free_cpumask_var(mask);
1187}
1188#else
1189static void xen_drop_mm_ref(struct mm_struct *mm)
1190{
1191        if (current->active_mm == mm)
1192                load_cr3(swapper_pg_dir);
1193}
1194#endif
1195
1196/*
1197 * While a process runs, Xen pins its pagetables, which means that the
1198 * hypervisor forces it to be read-only, and it controls all updates
1199 * to it.  This means that all pagetable updates have to go via the
1200 * hypervisor, which is moderately expensive.
1201 *
1202 * Since we're pulling the pagetable down, we switch to use init_mm,
1203 * unpin old process pagetable and mark it all read-write, which
1204 * allows further operations on it to be simple memory accesses.
1205 *
1206 * The only subtle point is that another CPU may be still using the
1207 * pagetable because of lazy tlb flushing.  This means we need need to
1208 * switch all CPUs off this pagetable before we can unpin it.
1209 */
1210void xen_exit_mmap(struct mm_struct *mm)
1211{
1212        get_cpu();              /* make sure we don't move around */
1213        xen_drop_mm_ref(mm);
1214        put_cpu();
1215
1216        spin_lock(&mm->page_table_lock);
1217
1218        /* pgd may not be pinned in the error exit path of execve */
1219        if (xen_page_pinned(mm->pgd))
1220                xen_pgd_unpin(mm);
1221
1222        spin_unlock(&mm->page_table_lock);
1223}
1224
1225static __init void xen_pagetable_setup_start(pgd_t *base)
1226{
1227}
1228
1229static void xen_post_allocator_init(void);
1230
1231static __init void xen_pagetable_setup_done(pgd_t *base)
1232{
1233        xen_setup_shared_info();
1234        xen_post_allocator_init();
1235}
1236
1237static void xen_write_cr2(unsigned long cr2)
1238{
1239        percpu_read(xen_vcpu)->arch.cr2 = cr2;
1240}
1241
1242static unsigned long xen_read_cr2(void)
1243{
1244        return percpu_read(xen_vcpu)->arch.cr2;
1245}
1246
1247unsigned long xen_read_cr2_direct(void)
1248{
1249        return percpu_read(xen_vcpu_info.arch.cr2);
1250}
1251
1252static void xen_flush_tlb(void)
1253{
1254        struct mmuext_op *op;
1255        struct multicall_space mcs;
1256
1257        preempt_disable();
1258
1259        mcs = xen_mc_entry(sizeof(*op));
1260
1261        op = mcs.args;
1262        op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1263        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1264
1265        xen_mc_issue(PARAVIRT_LAZY_MMU);
1266
1267        preempt_enable();
1268}
1269
1270static void xen_flush_tlb_single(unsigned long addr)
1271{
1272        struct mmuext_op *op;
1273        struct multicall_space mcs;
1274
1275        preempt_disable();
1276
1277        mcs = xen_mc_entry(sizeof(*op));
1278        op = mcs.args;
1279        op->cmd = MMUEXT_INVLPG_LOCAL;
1280        op->arg1.linear_addr = addr & PAGE_MASK;
1281        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1282
1283        xen_mc_issue(PARAVIRT_LAZY_MMU);
1284
1285        preempt_enable();
1286}
1287
1288static void xen_flush_tlb_others(const struct cpumask *cpus,
1289                                 struct mm_struct *mm, unsigned long va)
1290{
1291        struct {
1292                struct mmuext_op op;
1293                DECLARE_BITMAP(mask, NR_CPUS);
1294        } *args;
1295        struct multicall_space mcs;
1296
1297        if (cpumask_empty(cpus))
1298                return;         /* nothing to do */
1299
1300        mcs = xen_mc_entry(sizeof(*args));
1301        args = mcs.args;
1302        args->op.arg2.vcpumask = to_cpumask(args->mask);
1303
1304        /* Remove us, and any offline CPUS. */
1305        cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1306        cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1307
1308        if (va == TLB_FLUSH_ALL) {
1309                args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1310        } else {
1311                args->op.cmd = MMUEXT_INVLPG_MULTI;
1312                args->op.arg1.linear_addr = va;
1313        }
1314
1315        MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1316
1317        xen_mc_issue(PARAVIRT_LAZY_MMU);
1318}
1319
1320static unsigned long xen_read_cr3(void)
1321{
1322        return percpu_read(xen_cr3);
1323}
1324
1325static void set_current_cr3(void *v)
1326{
1327        percpu_write(xen_current_cr3, (unsigned long)v);
1328}
1329
1330static void __xen_write_cr3(bool kernel, unsigned long cr3)
1331{
1332        struct mmuext_op *op;
1333        struct multicall_space mcs;
1334        unsigned long mfn;
1335
1336        if (cr3)
1337                mfn = pfn_to_mfn(PFN_DOWN(cr3));
1338        else
1339                mfn = 0;
1340
1341        WARN_ON(mfn == 0 && kernel);
1342
1343        mcs = __xen_mc_entry(sizeof(*op));
1344
1345        op = mcs.args;
1346        op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1347        op->arg1.mfn = mfn;
1348
1349        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1350
1351        if (kernel) {
1352                percpu_write(xen_cr3, cr3);
1353
1354                /* Update xen_current_cr3 once the batch has actually
1355                   been submitted. */
1356                xen_mc_callback(set_current_cr3, (void *)cr3);
1357        }
1358}
1359
1360static void xen_write_cr3(unsigned long cr3)
1361{
1362        BUG_ON(preemptible());
1363
1364        xen_mc_batch();  /* disables interrupts */
1365
1366        /* Update while interrupts are disabled, so its atomic with
1367           respect to ipis */
1368        percpu_write(xen_cr3, cr3);
1369
1370        __xen_write_cr3(true, cr3);
1371
1372#ifdef CONFIG_X86_64
1373        {
1374                pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1375                if (user_pgd)
1376                        __xen_write_cr3(false, __pa(user_pgd));
1377                else
1378                        __xen_write_cr3(false, 0);
1379        }
1380#endif
1381
1382        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1383}
1384
1385static int xen_pgd_alloc(struct mm_struct *mm)
1386{
1387        pgd_t *pgd = mm->pgd;
1388        int ret = 0;
1389
1390        BUG_ON(PagePinned(virt_to_page(pgd)));
1391
1392#ifdef CONFIG_X86_64
1393        {
1394                struct page *page = virt_to_page(pgd);
1395                pgd_t *user_pgd;
1396
1397                BUG_ON(page->private != 0);
1398
1399                ret = -ENOMEM;
1400
1401                user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1402                page->private = (unsigned long)user_pgd;
1403
1404                if (user_pgd != NULL) {
1405                        user_pgd[pgd_index(VSYSCALL_START)] =
1406                                __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1407                        ret = 0;
1408                }
1409
1410                BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1411        }
1412#endif
1413
1414        return ret;
1415}
1416
1417static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1418{
1419#ifdef CONFIG_X86_64
1420        pgd_t *user_pgd = xen_get_user_pgd(pgd);
1421
1422        if (user_pgd)
1423                free_page((unsigned long)user_pgd);
1424#endif
1425}
1426
1427static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1428{
1429        unsigned long pfn = pte_pfn(pte);
1430
1431#ifdef CONFIG_X86_32
1432        /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1433        if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1434                pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1435                               pte_val_ma(pte));
1436#endif
1437
1438        /*
1439         * If the new pfn is within the range of the newly allocated
1440         * kernel pagetable, and it isn't being mapped into an
1441         * early_ioremap fixmap slot, make sure it is RO.
1442         */
1443        if (!is_early_ioremap_ptep(ptep) &&
1444            pfn >= e820_table_start && pfn < e820_table_end)
1445                pte = pte_wrprotect(pte);
1446
1447        return pte;
1448}
1449
1450/* Init-time set_pte while constructing initial pagetables, which
1451   doesn't allow RO pagetable pages to be remapped RW */
1452static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1453{
1454        pte = mask_rw_pte(ptep, pte);
1455
1456        xen_set_pte(ptep, pte);
1457}
1458
1459static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1460{
1461        struct mmuext_op op;
1462        op.cmd = cmd;
1463        op.arg1.mfn = pfn_to_mfn(pfn);
1464        if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1465                BUG();
1466}
1467
1468/* Early in boot, while setting up the initial pagetable, assume
1469   everything is pinned. */
1470static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1471{
1472#ifdef CONFIG_FLATMEM
1473        BUG_ON(mem_map);        /* should only be used early */
1474#endif
1475        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1476        pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1477}
1478
1479/* Used for pmd and pud */
1480static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1481{
1482#ifdef CONFIG_FLATMEM
1483        BUG_ON(mem_map);        /* should only be used early */
1484#endif
1485        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1486}
1487
1488/* Early release_pte assumes that all pts are pinned, since there's
1489   only init_mm and anything attached to that is pinned. */
1490static __init void xen_release_pte_init(unsigned long pfn)
1491{
1492        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1493        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1494}
1495
1496static __init void xen_release_pmd_init(unsigned long pfn)
1497{
1498        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1499}
1500
1501/* This needs to make sure the new pte page is pinned iff its being
1502   attached to a pinned pagetable. */
1503static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1504{
1505        struct page *page = pfn_to_page(pfn);
1506
1507        if (PagePinned(virt_to_page(mm->pgd))) {
1508                SetPagePinned(page);
1509
1510                if (!PageHighMem(page)) {
1511                        make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1512                        if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1513                                pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1514                } else {
1515                        /* make sure there are no stray mappings of
1516                           this page */
1517                        kmap_flush_unused();
1518                }
1519        }
1520}
1521
1522static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1523{
1524        xen_alloc_ptpage(mm, pfn, PT_PTE);
1525}
1526
1527static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1528{
1529        xen_alloc_ptpage(mm, pfn, PT_PMD);
1530}
1531
1532/* This should never happen until we're OK to use struct page */
1533static void xen_release_ptpage(unsigned long pfn, unsigned level)
1534{
1535        struct page *page = pfn_to_page(pfn);
1536
1537        if (PagePinned(page)) {
1538                if (!PageHighMem(page)) {
1539                        if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1540                                pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1541                        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1542                }
1543                ClearPagePinned(page);
1544        }
1545}
1546
1547static void xen_release_pte(unsigned long pfn)
1548{
1549        xen_release_ptpage(pfn, PT_PTE);
1550}
1551
1552static void xen_release_pmd(unsigned long pfn)
1553{
1554        xen_release_ptpage(pfn, PT_PMD);
1555}
1556
1557#if PAGETABLE_LEVELS == 4
1558static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1559{
1560        xen_alloc_ptpage(mm, pfn, PT_PUD);
1561}
1562
1563static void xen_release_pud(unsigned long pfn)
1564{
1565        xen_release_ptpage(pfn, PT_PUD);
1566}
1567#endif
1568
1569void __init xen_reserve_top(void)
1570{
1571#ifdef CONFIG_X86_32
1572        unsigned long top = HYPERVISOR_VIRT_START;
1573        struct xen_platform_parameters pp;
1574
1575        if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1576                top = pp.virt_start;
1577
1578        reserve_top_address(-top);
1579#endif  /* CONFIG_X86_32 */
1580}
1581
1582/*
1583 * Like __va(), but returns address in the kernel mapping (which is
1584 * all we have until the physical memory mapping has been set up.
1585 */
1586static void *__ka(phys_addr_t paddr)
1587{
1588#ifdef CONFIG_X86_64
1589        return (void *)(paddr + __START_KERNEL_map);
1590#else
1591        return __va(paddr);
1592#endif
1593}
1594
1595/* Convert a machine address to physical address */
1596static unsigned long m2p(phys_addr_t maddr)
1597{
1598        phys_addr_t paddr;
1599
1600        maddr &= PTE_PFN_MASK;
1601        paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1602
1603        return paddr;
1604}
1605
1606/* Convert a machine address to kernel virtual */
1607static void *m2v(phys_addr_t maddr)
1608{
1609        return __ka(m2p(maddr));
1610}
1611
1612/* Set the page permissions on an identity-mapped pages */
1613static void set_page_prot(void *addr, pgprot_t prot)
1614{
1615        unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1616        pte_t pte = pfn_pte(pfn, prot);
1617
1618        if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1619                BUG();
1620}
1621
1622static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1623{
1624        unsigned pmdidx, pteidx;
1625        unsigned ident_pte;
1626        unsigned long pfn;
1627
1628        level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1629                                      PAGE_SIZE);
1630
1631        ident_pte = 0;
1632        pfn = 0;
1633        for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1634                pte_t *pte_page;
1635
1636                /* Reuse or allocate a page of ptes */
1637                if (pmd_present(pmd[pmdidx]))
1638                        pte_page = m2v(pmd[pmdidx].pmd);
1639                else {
1640                        /* Check for free pte pages */
1641                        if (ident_pte == LEVEL1_IDENT_ENTRIES)
1642                                break;
1643
1644                        pte_page = &level1_ident_pgt[ident_pte];
1645                        ident_pte += PTRS_PER_PTE;
1646
1647                        pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1648                }
1649
1650                /* Install mappings */
1651                for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1652                        pte_t pte;
1653
1654                        if (pfn > max_pfn_mapped)
1655                                max_pfn_mapped = pfn;
1656
1657                        if (!pte_none(pte_page[pteidx]))
1658                                continue;
1659
1660                        pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1661                        pte_page[pteidx] = pte;
1662                }
1663        }
1664
1665        for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1666                set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1667
1668        set_page_prot(pmd, PAGE_KERNEL_RO);
1669}
1670
1671void __init xen_setup_machphys_mapping(void)
1672{
1673        struct xen_machphys_mapping mapping;
1674        unsigned long machine_to_phys_nr_ents;
1675
1676        if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1677                machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1678                machine_to_phys_nr_ents = mapping.max_mfn + 1;
1679        } else {
1680                machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
1681        }
1682        machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
1683}
1684
1685#ifdef CONFIG_X86_64
1686static void convert_pfn_mfn(void *v)
1687{
1688        pte_t *pte = v;
1689        int i;
1690
1691        /* All levels are converted the same way, so just treat them
1692           as ptes. */
1693        for (i = 0; i < PTRS_PER_PTE; i++)
1694                pte[i] = xen_make_pte(pte[i].pte);
1695}
1696
1697/*
1698 * Set up the inital kernel pagetable.
1699 *
1700 * We can construct this by grafting the Xen provided pagetable into
1701 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1702 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1703 * means that only the kernel has a physical mapping to start with -
1704 * but that's enough to get __va working.  We need to fill in the rest
1705 * of the physical mapping once some sort of allocator has been set
1706 * up.
1707 */
1708__init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1709                                         unsigned long max_pfn)
1710{
1711        pud_t *l3;
1712        pmd_t *l2;
1713
1714        /* Zap identity mapping */
1715        init_level4_pgt[0] = __pgd(0);
1716
1717        /* Pre-constructed entries are in pfn, so convert to mfn */
1718        convert_pfn_mfn(init_level4_pgt);
1719        convert_pfn_mfn(level3_ident_pgt);
1720        convert_pfn_mfn(level3_kernel_pgt);
1721
1722        l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1723        l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1724
1725        memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1726        memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1727
1728        l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1729        l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1730        memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1731
1732        /* Set up identity map */
1733        xen_map_identity_early(level2_ident_pgt, max_pfn);
1734
1735        /* Make pagetable pieces RO */
1736        set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1737        set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1738        set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1739        set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1740        set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1741        set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1742
1743        /* Pin down new L4 */
1744        pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1745                          PFN_DOWN(__pa_symbol(init_level4_pgt)));
1746
1747        /* Unpin Xen-provided one */
1748        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1749
1750        /* Switch over */
1751        pgd = init_level4_pgt;
1752
1753        /*
1754         * At this stage there can be no user pgd, and no page
1755         * structure to attach it to, so make sure we just set kernel
1756         * pgd.
1757         */
1758        xen_mc_batch();
1759        __xen_write_cr3(true, __pa(pgd));
1760        xen_mc_issue(PARAVIRT_LAZY_CPU);
1761
1762        memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1763                      __pa(xen_start_info->pt_base +
1764                           xen_start_info->nr_pt_frames * PAGE_SIZE),
1765                      "XEN PAGETABLES");
1766
1767        return pgd;
1768}
1769#else   /* !CONFIG_X86_64 */
1770static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1771static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1772
1773static __init void xen_write_cr3_init(unsigned long cr3)
1774{
1775        unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1776
1777        BUG_ON(read_cr3() != __pa(initial_page_table));
1778        BUG_ON(cr3 != __pa(swapper_pg_dir));
1779
1780        /*
1781         * We are switching to swapper_pg_dir for the first time (from
1782         * initial_page_table) and therefore need to mark that page
1783         * read-only and then pin it.
1784         *
1785         * Xen disallows sharing of kernel PMDs for PAE
1786         * guests. Therefore we must copy the kernel PMD from
1787         * initial_page_table into a new kernel PMD to be used in
1788         * swapper_pg_dir.
1789         */
1790        swapper_kernel_pmd =
1791                extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1792        memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1793               sizeof(pmd_t) * PTRS_PER_PMD);
1794        swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1795                __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1796        set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1797
1798        set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1799        xen_write_cr3(cr3);
1800        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1801
1802        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1803                          PFN_DOWN(__pa(initial_page_table)));
1804        set_page_prot(initial_page_table, PAGE_KERNEL);
1805        set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1806
1807        pv_mmu_ops.write_cr3 = &xen_write_cr3;
1808}
1809
1810__init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1811                                         unsigned long max_pfn)
1812{
1813        pmd_t *kernel_pmd;
1814
1815        initial_kernel_pmd =
1816                extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1817
1818        max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1819                                  xen_start_info->nr_pt_frames * PAGE_SIZE +
1820                                  512*1024);
1821
1822        kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1823        memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1824
1825        xen_map_identity_early(initial_kernel_pmd, max_pfn);
1826
1827        memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1828        initial_page_table[KERNEL_PGD_BOUNDARY] =
1829                __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1830
1831        set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1832        set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1833        set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1834
1835        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1836
1837        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1838                          PFN_DOWN(__pa(initial_page_table)));
1839        xen_write_cr3(__pa(initial_page_table));
1840
1841        memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1842                      __pa(xen_start_info->pt_base +
1843                           xen_start_info->nr_pt_frames * PAGE_SIZE),
1844                      "XEN PAGETABLES");
1845
1846        return initial_page_table;
1847}
1848#endif  /* CONFIG_X86_64 */
1849
1850static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1851
1852static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1853{
1854        pte_t pte;
1855
1856        phys >>= PAGE_SHIFT;
1857
1858        switch (idx) {
1859        case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1860#ifdef CONFIG_X86_F00F_BUG
1861        case FIX_F00F_IDT:
1862#endif
1863#ifdef CONFIG_X86_32
1864        case FIX_WP_TEST:
1865        case FIX_VDSO:
1866# ifdef CONFIG_HIGHMEM
1867        case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1868# endif
1869#else
1870        case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1871#endif
1872        case FIX_TEXT_POKE0:
1873        case FIX_TEXT_POKE1:
1874                /* All local page mappings */
1875                pte = pfn_pte(phys, prot);
1876                break;
1877
1878#ifdef CONFIG_X86_LOCAL_APIC
1879        case FIX_APIC_BASE:     /* maps dummy local APIC */
1880                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1881                break;
1882#endif
1883
1884#ifdef CONFIG_X86_IO_APIC
1885        case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1886                /*
1887                 * We just don't map the IO APIC - all access is via
1888                 * hypercalls.  Keep the address in the pte for reference.
1889                 */
1890                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1891                break;
1892#endif
1893
1894        case FIX_PARAVIRT_BOOTMAP:
1895                /* This is an MFN, but it isn't an IO mapping from the
1896                   IO domain */
1897                pte = mfn_pte(phys, prot);
1898                break;
1899
1900        default:
1901                /* By default, set_fixmap is used for hardware mappings */
1902                pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1903                break;
1904        }
1905
1906        __native_set_fixmap(idx, pte);
1907
1908#ifdef CONFIG_X86_64
1909        /* Replicate changes to map the vsyscall page into the user
1910           pagetable vsyscall mapping. */
1911        if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1912                unsigned long vaddr = __fix_to_virt(idx);
1913                set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1914        }
1915#endif
1916}
1917
1918__init void xen_ident_map_ISA(void)
1919{
1920        unsigned long pa;
1921
1922        /*
1923         * If we're dom0, then linear map the ISA machine addresses into
1924         * the kernel's address space.
1925         */
1926        if (!xen_initial_domain())
1927                return;
1928
1929        xen_raw_printk("Xen: setup ISA identity maps\n");
1930
1931        for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1932                pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1933
1934                if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1935                        BUG();
1936        }
1937
1938        xen_flush_tlb();
1939}
1940
1941static __init void xen_post_allocator_init(void)
1942{
1943        pv_mmu_ops.set_pte = xen_set_pte;
1944        pv_mmu_ops.set_pmd = xen_set_pmd;
1945        pv_mmu_ops.set_pud = xen_set_pud;
1946#if PAGETABLE_LEVELS == 4
1947        pv_mmu_ops.set_pgd = xen_set_pgd;
1948#endif
1949
1950        /* This will work as long as patching hasn't happened yet
1951           (which it hasn't) */
1952        pv_mmu_ops.alloc_pte = xen_alloc_pte;
1953        pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1954        pv_mmu_ops.release_pte = xen_release_pte;
1955        pv_mmu_ops.release_pmd = xen_release_pmd;
1956#if PAGETABLE_LEVELS == 4
1957        pv_mmu_ops.alloc_pud = xen_alloc_pud;
1958        pv_mmu_ops.release_pud = xen_release_pud;
1959#endif
1960
1961#ifdef CONFIG_X86_64
1962        SetPagePinned(virt_to_page(level3_user_vsyscall));
1963#endif
1964        xen_mark_init_mm_pinned();
1965}
1966
1967static void xen_leave_lazy_mmu(void)
1968{
1969        preempt_disable();
1970        xen_mc_flush();
1971        paravirt_leave_lazy_mmu();
1972        preempt_enable();
1973}
1974
1975static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1976        .read_cr2 = xen_read_cr2,
1977        .write_cr2 = xen_write_cr2,
1978
1979        .read_cr3 = xen_read_cr3,
1980#ifdef CONFIG_X86_32
1981        .write_cr3 = xen_write_cr3_init,
1982#else
1983        .write_cr3 = xen_write_cr3,
1984#endif
1985
1986        .flush_tlb_user = xen_flush_tlb,
1987        .flush_tlb_kernel = xen_flush_tlb,
1988        .flush_tlb_single = xen_flush_tlb_single,
1989        .flush_tlb_others = xen_flush_tlb_others,
1990
1991        .pte_update = paravirt_nop,
1992        .pte_update_defer = paravirt_nop,
1993
1994        .pgd_alloc = xen_pgd_alloc,
1995        .pgd_free = xen_pgd_free,
1996
1997        .alloc_pte = xen_alloc_pte_init,
1998        .release_pte = xen_release_pte_init,
1999        .alloc_pmd = xen_alloc_pmd_init,
2000        .release_pmd = xen_release_pmd_init,
2001
2002        .set_pte = xen_set_pte_init,
2003        .set_pte_at = xen_set_pte_at,
2004        .set_pmd = xen_set_pmd_hyper,
2005
2006        .ptep_modify_prot_start = __ptep_modify_prot_start,
2007        .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2008
2009        .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2010        .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2011
2012        .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2013        .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2014
2015#ifdef CONFIG_X86_PAE
2016        .set_pte_atomic = xen_set_pte_atomic,
2017        .pte_clear = xen_pte_clear,
2018        .pmd_clear = xen_pmd_clear,
2019#endif  /* CONFIG_X86_PAE */
2020        .set_pud = xen_set_pud_hyper,
2021
2022        .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2023        .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2024
2025#if PAGETABLE_LEVELS == 4
2026        .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2027        .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2028        .set_pgd = xen_set_pgd_hyper,
2029
2030        .alloc_pud = xen_alloc_pmd_init,
2031        .release_pud = xen_release_pmd_init,
2032#endif  /* PAGETABLE_LEVELS == 4 */
2033
2034        .activate_mm = xen_activate_mm,
2035        .dup_mmap = xen_dup_mmap,
2036        .exit_mmap = xen_exit_mmap,
2037
2038        .lazy_mode = {
2039                .enter = paravirt_enter_lazy_mmu,
2040                .leave = xen_leave_lazy_mmu,
2041        },
2042
2043        .set_fixmap = xen_set_fixmap,
2044};
2045
2046void __init xen_init_mmu_ops(void)
2047{
2048        x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2049        x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2050        pv_mmu_ops = xen_mmu_ops;
2051
2052        memset(dummy_mapping, 0xff, PAGE_SIZE);
2053}
2054
2055/* Protected by xen_reservation_lock. */
2056#define MAX_CONTIG_ORDER 9 /* 2MB */
2057static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2058
2059#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2060static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2061                                unsigned long *in_frames,
2062                                unsigned long *out_frames)
2063{
2064        int i;
2065        struct multicall_space mcs;
2066
2067        xen_mc_batch();
2068        for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2069                mcs = __xen_mc_entry(0);
2070
2071                if (in_frames)
2072                        in_frames[i] = virt_to_mfn(vaddr);
2073
2074                MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2075                set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2076
2077                if (out_frames)
2078                        out_frames[i] = virt_to_pfn(vaddr);
2079        }
2080        xen_mc_issue(0);
2081}
2082
2083/*
2084 * Update the pfn-to-mfn mappings for a virtual address range, either to
2085 * point to an array of mfns, or contiguously from a single starting
2086 * mfn.
2087 */
2088static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2089                                     unsigned long *mfns,
2090                                     unsigned long first_mfn)
2091{
2092        unsigned i, limit;
2093        unsigned long mfn;
2094
2095        xen_mc_batch();
2096
2097        limit = 1u << order;
2098        for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2099                struct multicall_space mcs;
2100                unsigned flags;
2101
2102                mcs = __xen_mc_entry(0);
2103                if (mfns)
2104                        mfn = mfns[i];
2105                else
2106                        mfn = first_mfn + i;
2107
2108                if (i < (limit - 1))
2109                        flags = 0;
2110                else {
2111                        if (order == 0)
2112                                flags = UVMF_INVLPG | UVMF_ALL;
2113                        else
2114                                flags = UVMF_TLB_FLUSH | UVMF_ALL;
2115                }
2116
2117                MULTI_update_va_mapping(mcs.mc, vaddr,
2118                                mfn_pte(mfn, PAGE_KERNEL), flags);
2119
2120                set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2121        }
2122
2123        xen_mc_issue(0);
2124}
2125
2126/*
2127 * Perform the hypercall to exchange a region of our pfns to point to
2128 * memory with the required contiguous alignment.  Takes the pfns as
2129 * input, and populates mfns as output.
2130 *
2131 * Returns a success code indicating whether the hypervisor was able to
2132 * satisfy the request or not.
2133 */
2134static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2135                               unsigned long *pfns_in,
2136                               unsigned long extents_out,
2137                               unsigned int order_out,
2138                               unsigned long *mfns_out,
2139                               unsigned int address_bits)
2140{
2141        long rc;
2142        int success;
2143
2144        struct xen_memory_exchange exchange = {
2145                .in = {
2146                        .nr_extents   = extents_in,
2147                        .extent_order = order_in,
2148                        .extent_start = pfns_in,
2149                        .domid        = DOMID_SELF
2150                },
2151                .out = {
2152                        .nr_extents   = extents_out,
2153                        .extent_order = order_out,
2154                        .extent_start = mfns_out,
2155                        .address_bits = address_bits,
2156                        .domid        = DOMID_SELF
2157                }
2158        };
2159
2160        BUG_ON(extents_in << order_in != extents_out << order_out);
2161
2162        rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2163        success = (exchange.nr_exchanged == extents_in);
2164
2165        BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2166        BUG_ON(success && (rc != 0));
2167
2168        return success;
2169}
2170
2171int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2172                                 unsigned int address_bits)
2173{
2174        unsigned long *in_frames = discontig_frames, out_frame;
2175        unsigned long  flags;
2176        int            success;
2177
2178        /*
2179         * Currently an auto-translated guest will not perform I/O, nor will
2180         * it require PAE page directories below 4GB. Therefore any calls to
2181         * this function are redundant and can be ignored.
2182         */
2183
2184        if (xen_feature(XENFEAT_auto_translated_physmap))
2185                return 0;
2186
2187        if (unlikely(order > MAX_CONTIG_ORDER))
2188                return -ENOMEM;
2189
2190        memset((void *) vstart, 0, PAGE_SIZE << order);
2191
2192        spin_lock_irqsave(&xen_reservation_lock, flags);
2193
2194        /* 1. Zap current PTEs, remembering MFNs. */
2195        xen_zap_pfn_range(vstart, order, in_frames, NULL);
2196
2197        /* 2. Get a new contiguous memory extent. */
2198        out_frame = virt_to_pfn(vstart);
2199        success = xen_exchange_memory(1UL << order, 0, in_frames,
2200                                      1, order, &out_frame,
2201                                      address_bits);
2202
2203        /* 3. Map the new extent in place of old pages. */
2204        if (success)
2205                xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2206        else
2207                xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2208
2209        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2210
2211        return success ? 0 : -ENOMEM;
2212}
2213EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2214
2215void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2216{
2217        unsigned long *out_frames = discontig_frames, in_frame;
2218        unsigned long  flags;
2219        int success;
2220
2221        if (xen_feature(XENFEAT_auto_translated_physmap))
2222                return;
2223
2224        if (unlikely(order > MAX_CONTIG_ORDER))
2225                return;
2226
2227        memset((void *) vstart, 0, PAGE_SIZE << order);
2228
2229        spin_lock_irqsave(&xen_reservation_lock, flags);
2230
2231        /* 1. Find start MFN of contiguous extent. */
2232        in_frame = virt_to_mfn(vstart);
2233
2234        /* 2. Zap current PTEs. */
2235        xen_zap_pfn_range(vstart, order, NULL, out_frames);
2236
2237        /* 3. Do the exchange for non-contiguous MFNs. */
2238        success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2239                                        0, out_frames, 0);
2240
2241        /* 4. Map new pages in place of old pages. */
2242        if (success)
2243                xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2244        else
2245                xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2246
2247        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2248}
2249EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2250
2251#ifdef CONFIG_XEN_PVHVM
2252static void xen_hvm_exit_mmap(struct mm_struct *mm)
2253{
2254        struct xen_hvm_pagetable_dying a;
2255        int rc;
2256
2257        a.domid = DOMID_SELF;
2258        a.gpa = __pa(mm->pgd);
2259        rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2260        WARN_ON_ONCE(rc < 0);
2261}
2262
2263static int is_pagetable_dying_supported(void)
2264{
2265        struct xen_hvm_pagetable_dying a;
2266        int rc = 0;
2267
2268        a.domid = DOMID_SELF;
2269        a.gpa = 0x00;
2270        rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2271        if (rc < 0) {
2272                printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2273                return 0;
2274        }
2275        return 1;
2276}
2277
2278void __init xen_hvm_init_mmu_ops(void)
2279{
2280        if (is_pagetable_dying_supported())
2281                pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2282}
2283#endif
2284
2285#define REMAP_BATCH_SIZE 16
2286
2287struct remap_data {
2288        unsigned long mfn;
2289        pgprot_t prot;
2290        struct mmu_update *mmu_update;
2291};
2292
2293static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2294                                 unsigned long addr, void *data)
2295{
2296        struct remap_data *rmd = data;
2297        pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2298
2299        rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr;
2300        rmd->mmu_update->val = pte_val_ma(pte);
2301        rmd->mmu_update++;
2302
2303        return 0;
2304}
2305
2306int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2307                               unsigned long addr,
2308                               unsigned long mfn, int nr,
2309                               pgprot_t prot, unsigned domid)
2310{
2311        struct remap_data rmd;
2312        struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2313        int batch;
2314        unsigned long range;
2315        int err = 0;
2316
2317        prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2318
2319        BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2320                                (VM_PFNMAP | VM_RESERVED | VM_IO)));
2321
2322        rmd.mfn = mfn;
2323        rmd.prot = prot;
2324
2325        while (nr) {
2326                batch = min(REMAP_BATCH_SIZE, nr);
2327                range = (unsigned long)batch << PAGE_SHIFT;
2328
2329                rmd.mmu_update = mmu_update;
2330                err = apply_to_page_range(vma->vm_mm, addr, range,
2331                                          remap_area_mfn_pte_fn, &rmd);
2332                if (err)
2333                        goto out;
2334
2335                err = -EFAULT;
2336                if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2337                        goto out;
2338
2339                nr -= batch;
2340                addr += range;
2341        }
2342
2343        err = 0;
2344out:
2345
2346        flush_tlb_all();
2347
2348        return err;
2349}
2350EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2351
2352#ifdef CONFIG_XEN_DEBUG_FS
2353
2354static struct dentry *d_mmu_debug;
2355
2356static int __init xen_mmu_debugfs(void)
2357{
2358        struct dentry *d_xen = xen_init_debugfs();
2359
2360        if (d_xen == NULL)
2361                return -ENOMEM;
2362
2363        d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2364
2365        debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2366
2367        debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2368        debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2369                           &mmu_stats.pgd_update_pinned);
2370        debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2371                           &mmu_stats.pgd_update_pinned);
2372
2373        debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2374        debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2375                           &mmu_stats.pud_update_pinned);
2376        debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2377                           &mmu_stats.pud_update_pinned);
2378
2379        debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2380        debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2381                           &mmu_stats.pmd_update_pinned);
2382        debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2383                           &mmu_stats.pmd_update_pinned);
2384
2385        debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2386//      debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2387//                         &mmu_stats.pte_update_pinned);
2388        debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2389                           &mmu_stats.pte_update_pinned);
2390
2391        debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2392        debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2393                           &mmu_stats.mmu_update_extended);
2394        xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2395                                     mmu_stats.mmu_update_histo, 20);
2396
2397        debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2398        debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2399                           &mmu_stats.set_pte_at_batched);
2400        debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2401                           &mmu_stats.set_pte_at_current);
2402        debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2403                           &mmu_stats.set_pte_at_kernel);
2404
2405        debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2406        debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2407                           &mmu_stats.prot_commit_batched);
2408
2409        return 0;
2410}
2411fs_initcall(xen_mmu_debugfs);
2412
2413#endif  /* CONFIG_XEN_DEBUG_FS */
2414