linux/arch/xtensa/include/asm/uaccess.h
<<
>>
Prefs
   1/*
   2 * include/asm-xtensa/uaccess.h
   3 *
   4 * User space memory access functions
   5 *
   6 * These routines provide basic accessing functions to the user memory
   7 * space for the kernel. This header file provides functions such as:
   8 *
   9 * This file is subject to the terms and conditions of the GNU General Public
  10 * License.  See the file "COPYING" in the main directory of this archive
  11 * for more details.
  12 *
  13 * Copyright (C) 2001 - 2005 Tensilica Inc.
  14 */
  15
  16#ifndef _XTENSA_UACCESS_H
  17#define _XTENSA_UACCESS_H
  18
  19#include <linux/errno.h>
  20
  21#define VERIFY_READ    0
  22#define VERIFY_WRITE   1
  23
  24#ifdef __ASSEMBLY__
  25
  26#include <asm/current.h>
  27#include <asm/asm-offsets.h>
  28#include <asm/processor.h>
  29#include <asm/types.h>
  30
  31/*
  32 * These assembly macros mirror the C macros that follow below.  They
  33 * should always have identical functionality.  See
  34 * arch/xtensa/kernel/sys.S for usage.
  35 */
  36
  37#define KERNEL_DS       0
  38#define USER_DS         1
  39
  40#define get_ds          (KERNEL_DS)
  41
  42/*
  43 * get_fs reads current->thread.current_ds into a register.
  44 * On Entry:
  45 *      <ad>    anything
  46 *      <sp>    stack
  47 * On Exit:
  48 *      <ad>    contains current->thread.current_ds
  49 */
  50        .macro  get_fs  ad, sp
  51        GET_CURRENT(\ad,\sp)
  52        l32i    \ad, \ad, THREAD_CURRENT_DS
  53        .endm
  54
  55/*
  56 * set_fs sets current->thread.current_ds to some value.
  57 * On Entry:
  58 *      <at>    anything (temp register)
  59 *      <av>    value to write
  60 *      <sp>    stack
  61 * On Exit:
  62 *      <at>    destroyed (actually, current)
  63 *      <av>    preserved, value to write
  64 */
  65        .macro  set_fs  at, av, sp
  66        GET_CURRENT(\at,\sp)
  67        s32i    \av, \at, THREAD_CURRENT_DS
  68        .endm
  69
  70/*
  71 * kernel_ok determines whether we should bypass addr/size checking.
  72 * See the equivalent C-macro version below for clarity.
  73 * On success, kernel_ok branches to a label indicated by parameter
  74 * <success>.  This implies that the macro falls through to the next
  75 * insruction on an error.
  76 *
  77 * Note that while this macro can be used independently, we designed
  78 * in for optimal use in the access_ok macro below (i.e., we fall
  79 * through on error).
  80 *
  81 * On Entry:
  82 *      <at>            anything (temp register)
  83 *      <success>       label to branch to on success; implies
  84 *                      fall-through macro on error
  85 *      <sp>            stack pointer
  86 * On Exit:
  87 *      <at>            destroyed (actually, current->thread.current_ds)
  88 */
  89
  90#if ((KERNEL_DS != 0) || (USER_DS == 0))
  91# error Assembly macro kernel_ok fails
  92#endif
  93        .macro  kernel_ok  at, sp, success
  94        get_fs  \at, \sp
  95        beqz    \at, \success
  96        .endm
  97
  98/*
  99 * user_ok determines whether the access to user-space memory is allowed.
 100 * See the equivalent C-macro version below for clarity.
 101 *
 102 * On error, user_ok branches to a label indicated by parameter
 103 * <error>.  This implies that the macro falls through to the next
 104 * instruction on success.
 105 *
 106 * Note that while this macro can be used independently, we designed
 107 * in for optimal use in the access_ok macro below (i.e., we fall
 108 * through on success).
 109 *
 110 * On Entry:
 111 *      <aa>    register containing memory address
 112 *      <as>    register containing memory size
 113 *      <at>    temp register
 114 *      <error> label to branch to on error; implies fall-through
 115 *              macro on success
 116 * On Exit:
 117 *      <aa>    preserved
 118 *      <as>    preserved
 119 *      <at>    destroyed (actually, (TASK_SIZE + 1 - size))
 120 */
 121        .macro  user_ok aa, as, at, error
 122        movi    \at, __XTENSA_UL_CONST(TASK_SIZE)
 123        bgeu    \as, \at, \error
 124        sub     \at, \at, \as
 125        bgeu    \aa, \at, \error
 126        .endm
 127
 128/*
 129 * access_ok determines whether a memory access is allowed.  See the
 130 * equivalent C-macro version below for clarity.
 131 *
 132 * On error, access_ok branches to a label indicated by parameter
 133 * <error>.  This implies that the macro falls through to the next
 134 * instruction on success.
 135 *
 136 * Note that we assume success is the common case, and we optimize the
 137 * branch fall-through case on success.
 138 *
 139 * On Entry:
 140 *      <aa>    register containing memory address
 141 *      <as>    register containing memory size
 142 *      <at>    temp register
 143 *      <sp>
 144 *      <error> label to branch to on error; implies fall-through
 145 *              macro on success
 146 * On Exit:
 147 *      <aa>    preserved
 148 *      <as>    preserved
 149 *      <at>    destroyed
 150 */
 151        .macro  access_ok  aa, as, at, sp, error
 152        kernel_ok  \at, \sp, .Laccess_ok_\@
 153        user_ok    \aa, \as, \at, \error
 154.Laccess_ok_\@:
 155        .endm
 156
 157#else /* __ASSEMBLY__ not defined */
 158
 159#include <linux/sched.h>
 160#include <asm/types.h>
 161
 162/*
 163 * The fs value determines whether argument validity checking should
 164 * be performed or not.  If get_fs() == USER_DS, checking is
 165 * performed, with get_fs() == KERNEL_DS, checking is bypassed.
 166 *
 167 * For historical reasons (Data Segment Register?), these macros are
 168 * grossly misnamed.
 169 */
 170
 171#define KERNEL_DS       ((mm_segment_t) { 0 })
 172#define USER_DS         ((mm_segment_t) { 1 })
 173
 174#define get_ds()        (KERNEL_DS)
 175#define get_fs()        (current->thread.current_ds)
 176#define set_fs(val)     (current->thread.current_ds = (val))
 177
 178#define segment_eq(a,b) ((a).seg == (b).seg)
 179
 180#define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
 181#define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))
 182#define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size)))
 183#define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size))
 184
 185/*
 186 * These are the main single-value transfer routines.  They
 187 * automatically use the right size if we just have the right pointer
 188 * type.
 189 *
 190 * This gets kind of ugly. We want to return _two_ values in
 191 * "get_user()" and yet we don't want to do any pointers, because that
 192 * is too much of a performance impact. Thus we have a few rather ugly
 193 * macros here, and hide all the uglyness from the user.
 194 *
 195 * Careful to not
 196 * (a) re-use the arguments for side effects (sizeof is ok)
 197 * (b) require any knowledge of processes at this stage
 198 */
 199#define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr)))
 200#define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)))
 201
 202/*
 203 * The "__xxx" versions of the user access functions are versions that
 204 * do not verify the address space, that must have been done previously
 205 * with a separate "access_ok()" call (this is used when we do multiple
 206 * accesses to the same area of user memory).
 207 */
 208#define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr)))
 209#define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
 210
 211
 212extern long __put_user_bad(void);
 213
 214#define __put_user_nocheck(x,ptr,size)                  \
 215({                                                      \
 216        long __pu_err;                                  \
 217        __put_user_size((x),(ptr),(size),__pu_err);     \
 218        __pu_err;                                       \
 219})
 220
 221#define __put_user_check(x,ptr,size)                            \
 222({                                                              \
 223        long __pu_err = -EFAULT;                                \
 224        __typeof__(*(ptr)) *__pu_addr = (ptr);                  \
 225        if (access_ok(VERIFY_WRITE,__pu_addr,size))             \
 226                __put_user_size((x),__pu_addr,(size),__pu_err); \
 227        __pu_err;                                               \
 228})
 229
 230#define __put_user_size(x,ptr,size,retval)                              \
 231do {                                                                    \
 232        int __cb;                                                       \
 233        retval = 0;                                                     \
 234        switch (size) {                                                 \
 235        case 1: __put_user_asm(x,ptr,retval,1,"s8i",__cb);  break;      \
 236        case 2: __put_user_asm(x,ptr,retval,2,"s16i",__cb); break;      \
 237        case 4: __put_user_asm(x,ptr,retval,4,"s32i",__cb); break;      \
 238        case 8: {                                                       \
 239                     __typeof__(*ptr) __v64 = x;                        \
 240                     retval = __copy_to_user(ptr,&__v64,8);             \
 241                     break;                                             \
 242                }                                                       \
 243        default: __put_user_bad();                                      \
 244        }                                                               \
 245} while (0)
 246
 247
 248/*
 249 * Consider a case of a user single load/store would cause both an
 250 * unaligned exception and an MMU-related exception (unaligned
 251 * exceptions happen first):
 252 *
 253 * User code passes a bad variable ptr to a system call.
 254 * Kernel tries to access the variable.
 255 * Unaligned exception occurs.
 256 * Unaligned exception handler tries to make aligned accesses.
 257 * Double exception occurs for MMU-related cause (e.g., page not mapped).
 258 * do_page_fault() thinks the fault address belongs to the kernel, not the
 259 * user, and panics.
 260 *
 261 * The kernel currently prohibits user unaligned accesses.  We use the
 262 * __check_align_* macros to check for unaligned addresses before
 263 * accessing user space so we don't crash the kernel.  Both
 264 * __put_user_asm and __get_user_asm use these alignment macros, so
 265 * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in
 266 * sync.
 267 */
 268
 269#define __check_align_1  ""
 270
 271#define __check_align_2                         \
 272        "   _bbci.l %3,  0, 1f          \n"     \
 273        "   movi    %0, %4              \n"     \
 274        "   _j      2f                  \n"
 275
 276#define __check_align_4                         \
 277        "   _bbsi.l %3,  0, 0f          \n"     \
 278        "   _bbci.l %3,  1, 1f          \n"     \
 279        "0: movi    %0, %4              \n"     \
 280        "   _j      2f                  \n"
 281
 282
 283/*
 284 * We don't tell gcc that we are accessing memory, but this is OK
 285 * because we do not write to any memory gcc knows about, so there
 286 * are no aliasing issues.
 287 *
 288 * WARNING: If you modify this macro at all, verify that the
 289 * __check_align_* macros still work.
 290 */
 291#define __put_user_asm(x, addr, err, align, insn, cb)   \
 292   __asm__ __volatile__(                                \
 293        __check_align_##align                           \
 294        "1: "insn"  %2, %3, 0           \n"             \
 295        "2:                             \n"             \
 296        "   .section  .fixup,\"ax\"     \n"             \
 297        "   .align 4                    \n"             \
 298        "4:                             \n"             \
 299        "   .long  2b                   \n"             \
 300        "5:                             \n"             \
 301        "   l32r   %1, 4b               \n"             \
 302        "   movi   %0, %4               \n"             \
 303        "   jx     %1                   \n"             \
 304        "   .previous                   \n"             \
 305        "   .section  __ex_table,\"a\"  \n"             \
 306        "   .long       1b, 5b          \n"             \
 307        "   .previous"                                  \
 308        :"=r" (err), "=r" (cb)                          \
 309        :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err))
 310
 311#define __get_user_nocheck(x,ptr,size)                          \
 312({                                                              \
 313        long __gu_err, __gu_val;                                \
 314        __get_user_size(__gu_val,(ptr),(size),__gu_err);        \
 315        (x) = (__typeof__(*(ptr)))__gu_val;                     \
 316        __gu_err;                                               \
 317})
 318
 319#define __get_user_check(x,ptr,size)                                    \
 320({                                                                      \
 321        long __gu_err = -EFAULT, __gu_val = 0;                          \
 322        const __typeof__(*(ptr)) *__gu_addr = (ptr);                    \
 323        if (access_ok(VERIFY_READ,__gu_addr,size))                      \
 324                __get_user_size(__gu_val,__gu_addr,(size),__gu_err);    \
 325        (x) = (__typeof__(*(ptr)))__gu_val;                             \
 326        __gu_err;                                                       \
 327})
 328
 329extern long __get_user_bad(void);
 330
 331#define __get_user_size(x,ptr,size,retval)                              \
 332do {                                                                    \
 333        int __cb;                                                       \
 334        retval = 0;                                                     \
 335        switch (size) {                                                 \
 336          case 1: __get_user_asm(x,ptr,retval,1,"l8ui",__cb);  break;   \
 337          case 2: __get_user_asm(x,ptr,retval,2,"l16ui",__cb); break;   \
 338          case 4: __get_user_asm(x,ptr,retval,4,"l32i",__cb);  break;   \
 339          case 8: retval = __copy_from_user(&x,ptr,8);    break;        \
 340          default: (x) = __get_user_bad();                              \
 341        }                                                               \
 342} while (0)
 343
 344
 345/*
 346 * WARNING: If you modify this macro at all, verify that the
 347 * __check_align_* macros still work.
 348 */
 349#define __get_user_asm(x, addr, err, align, insn, cb) \
 350   __asm__ __volatile__(                        \
 351        __check_align_##align                   \
 352        "1: "insn"  %2, %3, 0           \n"     \
 353        "2:                             \n"     \
 354        "   .section  .fixup,\"ax\"     \n"     \
 355        "   .align 4                    \n"     \
 356        "4:                             \n"     \
 357        "   .long  2b                   \n"     \
 358        "5:                             \n"     \
 359        "   l32r   %1, 4b               \n"     \
 360        "   movi   %2, 0                \n"     \
 361        "   movi   %0, %4               \n"     \
 362        "   jx     %1                   \n"     \
 363        "   .previous                   \n"     \
 364        "   .section  __ex_table,\"a\"  \n"     \
 365        "   .long       1b, 5b          \n"     \
 366        "   .previous"                          \
 367        :"=r" (err), "=r" (cb), "=r" (x)        \
 368        :"r" (addr), "i" (-EFAULT), "0" (err))
 369
 370
 371/*
 372 * Copy to/from user space
 373 */
 374
 375/*
 376 * We use a generic, arbitrary-sized copy subroutine.  The Xtensa
 377 * architecture would cause heavy code bloat if we tried to inline
 378 * these functions and provide __constant_copy_* equivalents like the
 379 * i386 versions.  __xtensa_copy_user is quite efficient.  See the
 380 * .fixup section of __xtensa_copy_user for a discussion on the
 381 * X_zeroing equivalents for Xtensa.
 382 */
 383
 384extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n);
 385#define __copy_user(to,from,size) __xtensa_copy_user(to,from,size)
 386
 387
 388static inline unsigned long
 389__generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
 390{
 391        return __copy_user(to,from,n);
 392}
 393
 394static inline unsigned long
 395__generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
 396{
 397        return __copy_user(to,from,n);
 398}
 399
 400static inline unsigned long
 401__generic_copy_to_user(void *to, const void *from, unsigned long n)
 402{
 403        prefetch(from);
 404        if (access_ok(VERIFY_WRITE, to, n))
 405                return __copy_user(to,from,n);
 406        return n;
 407}
 408
 409static inline unsigned long
 410__generic_copy_from_user(void *to, const void *from, unsigned long n)
 411{
 412        prefetchw(to);
 413        if (access_ok(VERIFY_READ, from, n))
 414                return __copy_user(to,from,n);
 415        else
 416                memset(to, 0, n);
 417        return n;
 418}
 419
 420#define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n))
 421#define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n))
 422#define __copy_to_user(to,from,n) __generic_copy_to_user_nocheck((to),(from),(n))
 423#define __copy_from_user(to,from,n) __generic_copy_from_user_nocheck((to),(from),(n))
 424#define __copy_to_user_inatomic __copy_to_user
 425#define __copy_from_user_inatomic __copy_from_user
 426
 427
 428/*
 429 * We need to return the number of bytes not cleared.  Our memset()
 430 * returns zero if a problem occurs while accessing user-space memory.
 431 * In that event, return no memory cleared.  Otherwise, zero for
 432 * success.
 433 */
 434
 435static inline unsigned long
 436__xtensa_clear_user(void *addr, unsigned long size)
 437{
 438        if ( ! memset(addr, 0, size) )
 439                return size;
 440        return 0;
 441}
 442
 443static inline unsigned long
 444clear_user(void *addr, unsigned long size)
 445{
 446        if (access_ok(VERIFY_WRITE, addr, size))
 447                return __xtensa_clear_user(addr, size);
 448        return size ? -EFAULT : 0;
 449}
 450
 451#define __clear_user  __xtensa_clear_user
 452
 453
 454extern long __strncpy_user(char *, const char *, long);
 455#define __strncpy_from_user __strncpy_user
 456
 457static inline long
 458strncpy_from_user(char *dst, const char *src, long count)
 459{
 460        if (access_ok(VERIFY_READ, src, 1))
 461                return __strncpy_from_user(dst, src, count);
 462        return -EFAULT;
 463}
 464
 465
 466#define strlen_user(str) strnlen_user((str), TASK_SIZE - 1)
 467
 468/*
 469 * Return the size of a string (including the ending 0!)
 470 */
 471extern long __strnlen_user(const char *, long);
 472
 473static inline long strnlen_user(const char *str, long len)
 474{
 475        unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1;
 476
 477        if ((unsigned long)str > top)
 478                return 0;
 479        return __strnlen_user(str, len);
 480}
 481
 482
 483struct exception_table_entry
 484{
 485        unsigned long insn, fixup;
 486};
 487
 488/* Returns 0 if exception not found and fixup.unit otherwise.  */
 489
 490extern unsigned long search_exception_table(unsigned long addr);
 491extern void sort_exception_table(void);
 492
 493/* Returns the new pc */
 494#define fixup_exception(map_reg, fixup_unit, pc)                \
 495({                                                              \
 496        fixup_unit;                                             \
 497})
 498
 499#endif  /* __ASSEMBLY__ */
 500#endif  /* _XTENSA_UACCESS_H */
 501