linux/block/blk-core.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *      -  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/highmem.h>
  20#include <linux/mm.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/string.h>
  23#include <linux/init.h>
  24#include <linux/completion.h>
  25#include <linux/slab.h>
  26#include <linux/swap.h>
  27#include <linux/writeback.h>
  28#include <linux/task_io_accounting_ops.h>
  29#include <linux/fault-inject.h>
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/block.h>
  33
  34#include "blk.h"
  35
  36EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  39
  40static int __make_request(struct request_queue *q, struct bio *bio);
  41
  42/*
  43 * For the allocated request tables
  44 */
  45static struct kmem_cache *request_cachep;
  46
  47/*
  48 * For queue allocation
  49 */
  50struct kmem_cache *blk_requestq_cachep;
  51
  52/*
  53 * Controlling structure to kblockd
  54 */
  55static struct workqueue_struct *kblockd_workqueue;
  56
  57static void drive_stat_acct(struct request *rq, int new_io)
  58{
  59        struct hd_struct *part;
  60        int rw = rq_data_dir(rq);
  61        int cpu;
  62
  63        if (!blk_do_io_stat(rq))
  64                return;
  65
  66        cpu = part_stat_lock();
  67
  68        if (!new_io) {
  69                part = rq->part;
  70                part_stat_inc(cpu, part, merges[rw]);
  71        } else {
  72                part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
  73                if (!hd_struct_try_get(part)) {
  74                        /*
  75                         * The partition is already being removed,
  76                         * the request will be accounted on the disk only
  77                         *
  78                         * We take a reference on disk->part0 although that
  79                         * partition will never be deleted, so we can treat
  80                         * it as any other partition.
  81                         */
  82                        part = &rq->rq_disk->part0;
  83                        hd_struct_get(part);
  84                }
  85                part_round_stats(cpu, part);
  86                part_inc_in_flight(part, rw);
  87                rq->part = part;
  88        }
  89
  90        part_stat_unlock();
  91}
  92
  93void blk_queue_congestion_threshold(struct request_queue *q)
  94{
  95        int nr;
  96
  97        nr = q->nr_requests - (q->nr_requests / 8) + 1;
  98        if (nr > q->nr_requests)
  99                nr = q->nr_requests;
 100        q->nr_congestion_on = nr;
 101
 102        nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
 103        if (nr < 1)
 104                nr = 1;
 105        q->nr_congestion_off = nr;
 106}
 107
 108/**
 109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
 110 * @bdev:       device
 111 *
 112 * Locates the passed device's request queue and returns the address of its
 113 * backing_dev_info
 114 *
 115 * Will return NULL if the request queue cannot be located.
 116 */
 117struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
 118{
 119        struct backing_dev_info *ret = NULL;
 120        struct request_queue *q = bdev_get_queue(bdev);
 121
 122        if (q)
 123                ret = &q->backing_dev_info;
 124        return ret;
 125}
 126EXPORT_SYMBOL(blk_get_backing_dev_info);
 127
 128void blk_rq_init(struct request_queue *q, struct request *rq)
 129{
 130        memset(rq, 0, sizeof(*rq));
 131
 132        INIT_LIST_HEAD(&rq->queuelist);
 133        INIT_LIST_HEAD(&rq->timeout_list);
 134        rq->cpu = -1;
 135        rq->q = q;
 136        rq->__sector = (sector_t) -1;
 137        INIT_HLIST_NODE(&rq->hash);
 138        RB_CLEAR_NODE(&rq->rb_node);
 139        rq->cmd = rq->__cmd;
 140        rq->cmd_len = BLK_MAX_CDB;
 141        rq->tag = -1;
 142        rq->ref_count = 1;
 143        rq->start_time = jiffies;
 144        set_start_time_ns(rq);
 145        rq->part = NULL;
 146}
 147EXPORT_SYMBOL(blk_rq_init);
 148
 149static void req_bio_endio(struct request *rq, struct bio *bio,
 150                          unsigned int nbytes, int error)
 151{
 152        struct request_queue *q = rq->q;
 153
 154        if (&q->flush_rq != rq) {
 155                if (error)
 156                        clear_bit(BIO_UPTODATE, &bio->bi_flags);
 157                else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
 158                        error = -EIO;
 159
 160                if (unlikely(nbytes > bio->bi_size)) {
 161                        printk(KERN_ERR "%s: want %u bytes done, %u left\n",
 162                               __func__, nbytes, bio->bi_size);
 163                        nbytes = bio->bi_size;
 164                }
 165
 166                if (unlikely(rq->cmd_flags & REQ_QUIET))
 167                        set_bit(BIO_QUIET, &bio->bi_flags);
 168
 169                bio->bi_size -= nbytes;
 170                bio->bi_sector += (nbytes >> 9);
 171
 172                if (bio_integrity(bio))
 173                        bio_integrity_advance(bio, nbytes);
 174
 175                if (bio->bi_size == 0)
 176                        bio_endio(bio, error);
 177        } else {
 178                /*
 179                 * Okay, this is the sequenced flush request in
 180                 * progress, just record the error;
 181                 */
 182                if (error && !q->flush_err)
 183                        q->flush_err = error;
 184        }
 185}
 186
 187void blk_dump_rq_flags(struct request *rq, char *msg)
 188{
 189        int bit;
 190
 191        printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
 192                rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
 193                rq->cmd_flags);
 194
 195        printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 196               (unsigned long long)blk_rq_pos(rq),
 197               blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 198        printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
 199               rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
 200
 201        if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 202                printk(KERN_INFO "  cdb: ");
 203                for (bit = 0; bit < BLK_MAX_CDB; bit++)
 204                        printk("%02x ", rq->cmd[bit]);
 205                printk("\n");
 206        }
 207}
 208EXPORT_SYMBOL(blk_dump_rq_flags);
 209
 210/*
 211 * "plug" the device if there are no outstanding requests: this will
 212 * force the transfer to start only after we have put all the requests
 213 * on the list.
 214 *
 215 * This is called with interrupts off and no requests on the queue and
 216 * with the queue lock held.
 217 */
 218void blk_plug_device(struct request_queue *q)
 219{
 220        WARN_ON(!irqs_disabled());
 221
 222        /*
 223         * don't plug a stopped queue, it must be paired with blk_start_queue()
 224         * which will restart the queueing
 225         */
 226        if (blk_queue_stopped(q))
 227                return;
 228
 229        if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
 230                mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
 231                trace_block_plug(q);
 232        }
 233}
 234EXPORT_SYMBOL(blk_plug_device);
 235
 236/**
 237 * blk_plug_device_unlocked - plug a device without queue lock held
 238 * @q:    The &struct request_queue to plug
 239 *
 240 * Description:
 241 *   Like @blk_plug_device(), but grabs the queue lock and disables
 242 *   interrupts.
 243 **/
 244void blk_plug_device_unlocked(struct request_queue *q)
 245{
 246        unsigned long flags;
 247
 248        spin_lock_irqsave(q->queue_lock, flags);
 249        blk_plug_device(q);
 250        spin_unlock_irqrestore(q->queue_lock, flags);
 251}
 252EXPORT_SYMBOL(blk_plug_device_unlocked);
 253
 254/*
 255 * remove the queue from the plugged list, if present. called with
 256 * queue lock held and interrupts disabled.
 257 */
 258int blk_remove_plug(struct request_queue *q)
 259{
 260        WARN_ON(!irqs_disabled());
 261
 262        if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
 263                return 0;
 264
 265        del_timer(&q->unplug_timer);
 266        return 1;
 267}
 268EXPORT_SYMBOL(blk_remove_plug);
 269
 270/*
 271 * remove the plug and let it rip..
 272 */
 273void __generic_unplug_device(struct request_queue *q)
 274{
 275        if (unlikely(blk_queue_stopped(q)))
 276                return;
 277        if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
 278                return;
 279
 280        q->request_fn(q);
 281}
 282
 283/**
 284 * generic_unplug_device - fire a request queue
 285 * @q:    The &struct request_queue in question
 286 *
 287 * Description:
 288 *   Linux uses plugging to build bigger requests queues before letting
 289 *   the device have at them. If a queue is plugged, the I/O scheduler
 290 *   is still adding and merging requests on the queue. Once the queue
 291 *   gets unplugged, the request_fn defined for the queue is invoked and
 292 *   transfers started.
 293 **/
 294void generic_unplug_device(struct request_queue *q)
 295{
 296        if (blk_queue_plugged(q)) {
 297                spin_lock_irq(q->queue_lock);
 298                __generic_unplug_device(q);
 299                spin_unlock_irq(q->queue_lock);
 300        }
 301}
 302EXPORT_SYMBOL(generic_unplug_device);
 303
 304static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
 305                                   struct page *page)
 306{
 307        struct request_queue *q = bdi->unplug_io_data;
 308
 309        blk_unplug(q);
 310}
 311
 312void blk_unplug_work(struct work_struct *work)
 313{
 314        struct request_queue *q =
 315                container_of(work, struct request_queue, unplug_work);
 316
 317        trace_block_unplug_io(q);
 318        q->unplug_fn(q);
 319}
 320
 321void blk_unplug_timeout(unsigned long data)
 322{
 323        struct request_queue *q = (struct request_queue *)data;
 324
 325        trace_block_unplug_timer(q);
 326        kblockd_schedule_work(q, &q->unplug_work);
 327}
 328
 329void blk_unplug(struct request_queue *q)
 330{
 331        /*
 332         * devices don't necessarily have an ->unplug_fn defined
 333         */
 334        if (q->unplug_fn) {
 335                trace_block_unplug_io(q);
 336                q->unplug_fn(q);
 337        }
 338}
 339EXPORT_SYMBOL(blk_unplug);
 340
 341/**
 342 * blk_start_queue - restart a previously stopped queue
 343 * @q:    The &struct request_queue in question
 344 *
 345 * Description:
 346 *   blk_start_queue() will clear the stop flag on the queue, and call
 347 *   the request_fn for the queue if it was in a stopped state when
 348 *   entered. Also see blk_stop_queue(). Queue lock must be held.
 349 **/
 350void blk_start_queue(struct request_queue *q)
 351{
 352        WARN_ON(!irqs_disabled());
 353
 354        queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 355        __blk_run_queue(q, false);
 356}
 357EXPORT_SYMBOL(blk_start_queue);
 358
 359/**
 360 * blk_stop_queue - stop a queue
 361 * @q:    The &struct request_queue in question
 362 *
 363 * Description:
 364 *   The Linux block layer assumes that a block driver will consume all
 365 *   entries on the request queue when the request_fn strategy is called.
 366 *   Often this will not happen, because of hardware limitations (queue
 367 *   depth settings). If a device driver gets a 'queue full' response,
 368 *   or if it simply chooses not to queue more I/O at one point, it can
 369 *   call this function to prevent the request_fn from being called until
 370 *   the driver has signalled it's ready to go again. This happens by calling
 371 *   blk_start_queue() to restart queue operations. Queue lock must be held.
 372 **/
 373void blk_stop_queue(struct request_queue *q)
 374{
 375        blk_remove_plug(q);
 376        queue_flag_set(QUEUE_FLAG_STOPPED, q);
 377}
 378EXPORT_SYMBOL(blk_stop_queue);
 379
 380/**
 381 * blk_sync_queue - cancel any pending callbacks on a queue
 382 * @q: the queue
 383 *
 384 * Description:
 385 *     The block layer may perform asynchronous callback activity
 386 *     on a queue, such as calling the unplug function after a timeout.
 387 *     A block device may call blk_sync_queue to ensure that any
 388 *     such activity is cancelled, thus allowing it to release resources
 389 *     that the callbacks might use. The caller must already have made sure
 390 *     that its ->make_request_fn will not re-add plugging prior to calling
 391 *     this function.
 392 *
 393 */
 394void blk_sync_queue(struct request_queue *q)
 395{
 396        del_timer_sync(&q->unplug_timer);
 397        del_timer_sync(&q->timeout);
 398        cancel_work_sync(&q->unplug_work);
 399        throtl_shutdown_timer_wq(q);
 400}
 401EXPORT_SYMBOL(blk_sync_queue);
 402
 403/**
 404 * __blk_run_queue - run a single device queue
 405 * @q:  The queue to run
 406 * @force_kblockd: Don't run @q->request_fn directly.  Use kblockd.
 407 *
 408 * Description:
 409 *    See @blk_run_queue. This variant must be called with the queue lock
 410 *    held and interrupts disabled.
 411 *
 412 */
 413void __blk_run_queue(struct request_queue *q, bool force_kblockd)
 414{
 415        blk_remove_plug(q);
 416
 417        if (unlikely(blk_queue_stopped(q)))
 418                return;
 419
 420        if (elv_queue_empty(q))
 421                return;
 422
 423        /*
 424         * Only recurse once to avoid overrunning the stack, let the unplug
 425         * handling reinvoke the handler shortly if we already got there.
 426         */
 427        if (!force_kblockd && !queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
 428                q->request_fn(q);
 429                queue_flag_clear(QUEUE_FLAG_REENTER, q);
 430        } else {
 431                queue_flag_set(QUEUE_FLAG_PLUGGED, q);
 432                kblockd_schedule_work(q, &q->unplug_work);
 433        }
 434}
 435EXPORT_SYMBOL(__blk_run_queue);
 436
 437/**
 438 * blk_run_queue - run a single device queue
 439 * @q: The queue to run
 440 *
 441 * Description:
 442 *    Invoke request handling on this queue, if it has pending work to do.
 443 *    May be used to restart queueing when a request has completed.
 444 */
 445void blk_run_queue(struct request_queue *q)
 446{
 447        unsigned long flags;
 448
 449        spin_lock_irqsave(q->queue_lock, flags);
 450        __blk_run_queue(q, false);
 451        spin_unlock_irqrestore(q->queue_lock, flags);
 452}
 453EXPORT_SYMBOL(blk_run_queue);
 454
 455void blk_put_queue(struct request_queue *q)
 456{
 457        kobject_put(&q->kobj);
 458}
 459
 460void blk_cleanup_queue(struct request_queue *q)
 461{
 462        /*
 463         * We know we have process context here, so we can be a little
 464         * cautious and ensure that pending block actions on this device
 465         * are done before moving on. Going into this function, we should
 466         * not have processes doing IO to this device.
 467         */
 468        blk_sync_queue(q);
 469
 470        del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
 471        mutex_lock(&q->sysfs_lock);
 472        queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
 473        mutex_unlock(&q->sysfs_lock);
 474
 475        if (q->elevator)
 476                elevator_exit(q->elevator);
 477
 478        blk_put_queue(q);
 479}
 480EXPORT_SYMBOL(blk_cleanup_queue);
 481
 482static int blk_init_free_list(struct request_queue *q)
 483{
 484        struct request_list *rl = &q->rq;
 485
 486        if (unlikely(rl->rq_pool))
 487                return 0;
 488
 489        rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 490        rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 491        rl->elvpriv = 0;
 492        init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 493        init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 494
 495        rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
 496                                mempool_free_slab, request_cachep, q->node);
 497
 498        if (!rl->rq_pool)
 499                return -ENOMEM;
 500
 501        return 0;
 502}
 503
 504struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 505{
 506        return blk_alloc_queue_node(gfp_mask, -1);
 507}
 508EXPORT_SYMBOL(blk_alloc_queue);
 509
 510struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
 511{
 512        struct request_queue *q;
 513        int err;
 514
 515        q = kmem_cache_alloc_node(blk_requestq_cachep,
 516                                gfp_mask | __GFP_ZERO, node_id);
 517        if (!q)
 518                return NULL;
 519
 520        q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
 521        q->backing_dev_info.unplug_io_data = q;
 522        q->backing_dev_info.ra_pages =
 523                        (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
 524        q->backing_dev_info.state = 0;
 525        q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
 526        q->backing_dev_info.name = "block";
 527
 528        err = bdi_init(&q->backing_dev_info);
 529        if (err) {
 530                kmem_cache_free(blk_requestq_cachep, q);
 531                return NULL;
 532        }
 533
 534        if (blk_throtl_init(q)) {
 535                kmem_cache_free(blk_requestq_cachep, q);
 536                return NULL;
 537        }
 538
 539        setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
 540                    laptop_mode_timer_fn, (unsigned long) q);
 541        init_timer(&q->unplug_timer);
 542        setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
 543        INIT_LIST_HEAD(&q->timeout_list);
 544        INIT_LIST_HEAD(&q->pending_flushes);
 545        INIT_WORK(&q->unplug_work, blk_unplug_work);
 546
 547        kobject_init(&q->kobj, &blk_queue_ktype);
 548
 549        mutex_init(&q->sysfs_lock);
 550        spin_lock_init(&q->__queue_lock);
 551
 552        return q;
 553}
 554EXPORT_SYMBOL(blk_alloc_queue_node);
 555
 556/**
 557 * blk_init_queue  - prepare a request queue for use with a block device
 558 * @rfn:  The function to be called to process requests that have been
 559 *        placed on the queue.
 560 * @lock: Request queue spin lock
 561 *
 562 * Description:
 563 *    If a block device wishes to use the standard request handling procedures,
 564 *    which sorts requests and coalesces adjacent requests, then it must
 565 *    call blk_init_queue().  The function @rfn will be called when there
 566 *    are requests on the queue that need to be processed.  If the device
 567 *    supports plugging, then @rfn may not be called immediately when requests
 568 *    are available on the queue, but may be called at some time later instead.
 569 *    Plugged queues are generally unplugged when a buffer belonging to one
 570 *    of the requests on the queue is needed, or due to memory pressure.
 571 *
 572 *    @rfn is not required, or even expected, to remove all requests off the
 573 *    queue, but only as many as it can handle at a time.  If it does leave
 574 *    requests on the queue, it is responsible for arranging that the requests
 575 *    get dealt with eventually.
 576 *
 577 *    The queue spin lock must be held while manipulating the requests on the
 578 *    request queue; this lock will be taken also from interrupt context, so irq
 579 *    disabling is needed for it.
 580 *
 581 *    Function returns a pointer to the initialized request queue, or %NULL if
 582 *    it didn't succeed.
 583 *
 584 * Note:
 585 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 586 *    when the block device is deactivated (such as at module unload).
 587 **/
 588
 589struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
 590{
 591        return blk_init_queue_node(rfn, lock, -1);
 592}
 593EXPORT_SYMBOL(blk_init_queue);
 594
 595struct request_queue *
 596blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
 597{
 598        struct request_queue *uninit_q, *q;
 599
 600        uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
 601        if (!uninit_q)
 602                return NULL;
 603
 604        q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
 605        if (!q)
 606                blk_cleanup_queue(uninit_q);
 607
 608        return q;
 609}
 610EXPORT_SYMBOL(blk_init_queue_node);
 611
 612struct request_queue *
 613blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
 614                         spinlock_t *lock)
 615{
 616        return blk_init_allocated_queue_node(q, rfn, lock, -1);
 617}
 618EXPORT_SYMBOL(blk_init_allocated_queue);
 619
 620struct request_queue *
 621blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
 622                              spinlock_t *lock, int node_id)
 623{
 624        if (!q)
 625                return NULL;
 626
 627        q->node = node_id;
 628        if (blk_init_free_list(q))
 629                return NULL;
 630
 631        q->request_fn           = rfn;
 632        q->prep_rq_fn           = NULL;
 633        q->unprep_rq_fn         = NULL;
 634        q->unplug_fn            = generic_unplug_device;
 635        q->queue_flags          = QUEUE_FLAG_DEFAULT;
 636        q->queue_lock           = lock;
 637
 638        /*
 639         * This also sets hw/phys segments, boundary and size
 640         */
 641        blk_queue_make_request(q, __make_request);
 642
 643        q->sg_reserved_size = INT_MAX;
 644
 645        /*
 646         * all done
 647         */
 648        if (!elevator_init(q, NULL)) {
 649                blk_queue_congestion_threshold(q);
 650                return q;
 651        }
 652
 653        return NULL;
 654}
 655EXPORT_SYMBOL(blk_init_allocated_queue_node);
 656
 657int blk_get_queue(struct request_queue *q)
 658{
 659        if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
 660                kobject_get(&q->kobj);
 661                return 0;
 662        }
 663
 664        return 1;
 665}
 666
 667static inline void blk_free_request(struct request_queue *q, struct request *rq)
 668{
 669        if (rq->cmd_flags & REQ_ELVPRIV)
 670                elv_put_request(q, rq);
 671        mempool_free(rq, q->rq.rq_pool);
 672}
 673
 674static struct request *
 675blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
 676{
 677        struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
 678
 679        if (!rq)
 680                return NULL;
 681
 682        blk_rq_init(q, rq);
 683
 684        rq->cmd_flags = flags | REQ_ALLOCED;
 685
 686        if (priv) {
 687                if (unlikely(elv_set_request(q, rq, gfp_mask))) {
 688                        mempool_free(rq, q->rq.rq_pool);
 689                        return NULL;
 690                }
 691                rq->cmd_flags |= REQ_ELVPRIV;
 692        }
 693
 694        return rq;
 695}
 696
 697/*
 698 * ioc_batching returns true if the ioc is a valid batching request and
 699 * should be given priority access to a request.
 700 */
 701static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
 702{
 703        if (!ioc)
 704                return 0;
 705
 706        /*
 707         * Make sure the process is able to allocate at least 1 request
 708         * even if the batch times out, otherwise we could theoretically
 709         * lose wakeups.
 710         */
 711        return ioc->nr_batch_requests == q->nr_batching ||
 712                (ioc->nr_batch_requests > 0
 713                && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
 714}
 715
 716/*
 717 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 718 * will cause the process to be a "batcher" on all queues in the system. This
 719 * is the behaviour we want though - once it gets a wakeup it should be given
 720 * a nice run.
 721 */
 722static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
 723{
 724        if (!ioc || ioc_batching(q, ioc))
 725                return;
 726
 727        ioc->nr_batch_requests = q->nr_batching;
 728        ioc->last_waited = jiffies;
 729}
 730
 731static void __freed_request(struct request_queue *q, int sync)
 732{
 733        struct request_list *rl = &q->rq;
 734
 735        if (rl->count[sync] < queue_congestion_off_threshold(q))
 736                blk_clear_queue_congested(q, sync);
 737
 738        if (rl->count[sync] + 1 <= q->nr_requests) {
 739                if (waitqueue_active(&rl->wait[sync]))
 740                        wake_up(&rl->wait[sync]);
 741
 742                blk_clear_queue_full(q, sync);
 743        }
 744}
 745
 746/*
 747 * A request has just been released.  Account for it, update the full and
 748 * congestion status, wake up any waiters.   Called under q->queue_lock.
 749 */
 750static void freed_request(struct request_queue *q, int sync, int priv)
 751{
 752        struct request_list *rl = &q->rq;
 753
 754        rl->count[sync]--;
 755        if (priv)
 756                rl->elvpriv--;
 757
 758        __freed_request(q, sync);
 759
 760        if (unlikely(rl->starved[sync ^ 1]))
 761                __freed_request(q, sync ^ 1);
 762}
 763
 764/*
 765 * Get a free request, queue_lock must be held.
 766 * Returns NULL on failure, with queue_lock held.
 767 * Returns !NULL on success, with queue_lock *not held*.
 768 */
 769static struct request *get_request(struct request_queue *q, int rw_flags,
 770                                   struct bio *bio, gfp_t gfp_mask)
 771{
 772        struct request *rq = NULL;
 773        struct request_list *rl = &q->rq;
 774        struct io_context *ioc = NULL;
 775        const bool is_sync = rw_is_sync(rw_flags) != 0;
 776        int may_queue, priv;
 777
 778        may_queue = elv_may_queue(q, rw_flags);
 779        if (may_queue == ELV_MQUEUE_NO)
 780                goto rq_starved;
 781
 782        if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
 783                if (rl->count[is_sync]+1 >= q->nr_requests) {
 784                        ioc = current_io_context(GFP_ATOMIC, q->node);
 785                        /*
 786                         * The queue will fill after this allocation, so set
 787                         * it as full, and mark this process as "batching".
 788                         * This process will be allowed to complete a batch of
 789                         * requests, others will be blocked.
 790                         */
 791                        if (!blk_queue_full(q, is_sync)) {
 792                                ioc_set_batching(q, ioc);
 793                                blk_set_queue_full(q, is_sync);
 794                        } else {
 795                                if (may_queue != ELV_MQUEUE_MUST
 796                                                && !ioc_batching(q, ioc)) {
 797                                        /*
 798                                         * The queue is full and the allocating
 799                                         * process is not a "batcher", and not
 800                                         * exempted by the IO scheduler
 801                                         */
 802                                        goto out;
 803                                }
 804                        }
 805                }
 806                blk_set_queue_congested(q, is_sync);
 807        }
 808
 809        /*
 810         * Only allow batching queuers to allocate up to 50% over the defined
 811         * limit of requests, otherwise we could have thousands of requests
 812         * allocated with any setting of ->nr_requests
 813         */
 814        if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
 815                goto out;
 816
 817        rl->count[is_sync]++;
 818        rl->starved[is_sync] = 0;
 819
 820        priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
 821        if (priv)
 822                rl->elvpriv++;
 823
 824        if (blk_queue_io_stat(q))
 825                rw_flags |= REQ_IO_STAT;
 826        spin_unlock_irq(q->queue_lock);
 827
 828        rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
 829        if (unlikely(!rq)) {
 830                /*
 831                 * Allocation failed presumably due to memory. Undo anything
 832                 * we might have messed up.
 833                 *
 834                 * Allocating task should really be put onto the front of the
 835                 * wait queue, but this is pretty rare.
 836                 */
 837                spin_lock_irq(q->queue_lock);
 838                freed_request(q, is_sync, priv);
 839
 840                /*
 841                 * in the very unlikely event that allocation failed and no
 842                 * requests for this direction was pending, mark us starved
 843                 * so that freeing of a request in the other direction will
 844                 * notice us. another possible fix would be to split the
 845                 * rq mempool into READ and WRITE
 846                 */
 847rq_starved:
 848                if (unlikely(rl->count[is_sync] == 0))
 849                        rl->starved[is_sync] = 1;
 850
 851                goto out;
 852        }
 853
 854        /*
 855         * ioc may be NULL here, and ioc_batching will be false. That's
 856         * OK, if the queue is under the request limit then requests need
 857         * not count toward the nr_batch_requests limit. There will always
 858         * be some limit enforced by BLK_BATCH_TIME.
 859         */
 860        if (ioc_batching(q, ioc))
 861                ioc->nr_batch_requests--;
 862
 863        trace_block_getrq(q, bio, rw_flags & 1);
 864out:
 865        return rq;
 866}
 867
 868/*
 869 * No available requests for this queue, unplug the device and wait for some
 870 * requests to become available.
 871 *
 872 * Called with q->queue_lock held, and returns with it unlocked.
 873 */
 874static struct request *get_request_wait(struct request_queue *q, int rw_flags,
 875                                        struct bio *bio)
 876{
 877        const bool is_sync = rw_is_sync(rw_flags) != 0;
 878        struct request *rq;
 879
 880        rq = get_request(q, rw_flags, bio, GFP_NOIO);
 881        while (!rq) {
 882                DEFINE_WAIT(wait);
 883                struct io_context *ioc;
 884                struct request_list *rl = &q->rq;
 885
 886                prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
 887                                TASK_UNINTERRUPTIBLE);
 888
 889                trace_block_sleeprq(q, bio, rw_flags & 1);
 890
 891                __generic_unplug_device(q);
 892                spin_unlock_irq(q->queue_lock);
 893                io_schedule();
 894
 895                /*
 896                 * After sleeping, we become a "batching" process and
 897                 * will be able to allocate at least one request, and
 898                 * up to a big batch of them for a small period time.
 899                 * See ioc_batching, ioc_set_batching
 900                 */
 901                ioc = current_io_context(GFP_NOIO, q->node);
 902                ioc_set_batching(q, ioc);
 903
 904                spin_lock_irq(q->queue_lock);
 905                finish_wait(&rl->wait[is_sync], &wait);
 906
 907                rq = get_request(q, rw_flags, bio, GFP_NOIO);
 908        };
 909
 910        return rq;
 911}
 912
 913struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
 914{
 915        struct request *rq;
 916
 917        BUG_ON(rw != READ && rw != WRITE);
 918
 919        spin_lock_irq(q->queue_lock);
 920        if (gfp_mask & __GFP_WAIT) {
 921                rq = get_request_wait(q, rw, NULL);
 922        } else {
 923                rq = get_request(q, rw, NULL, gfp_mask);
 924                if (!rq)
 925                        spin_unlock_irq(q->queue_lock);
 926        }
 927        /* q->queue_lock is unlocked at this point */
 928
 929        return rq;
 930}
 931EXPORT_SYMBOL(blk_get_request);
 932
 933/**
 934 * blk_make_request - given a bio, allocate a corresponding struct request.
 935 * @q: target request queue
 936 * @bio:  The bio describing the memory mappings that will be submitted for IO.
 937 *        It may be a chained-bio properly constructed by block/bio layer.
 938 * @gfp_mask: gfp flags to be used for memory allocation
 939 *
 940 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
 941 * type commands. Where the struct request needs to be farther initialized by
 942 * the caller. It is passed a &struct bio, which describes the memory info of
 943 * the I/O transfer.
 944 *
 945 * The caller of blk_make_request must make sure that bi_io_vec
 946 * are set to describe the memory buffers. That bio_data_dir() will return
 947 * the needed direction of the request. (And all bio's in the passed bio-chain
 948 * are properly set accordingly)
 949 *
 950 * If called under none-sleepable conditions, mapped bio buffers must not
 951 * need bouncing, by calling the appropriate masked or flagged allocator,
 952 * suitable for the target device. Otherwise the call to blk_queue_bounce will
 953 * BUG.
 954 *
 955 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
 956 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
 957 * anything but the first bio in the chain. Otherwise you risk waiting for IO
 958 * completion of a bio that hasn't been submitted yet, thus resulting in a
 959 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
 960 * of bio_alloc(), as that avoids the mempool deadlock.
 961 * If possible a big IO should be split into smaller parts when allocation
 962 * fails. Partial allocation should not be an error, or you risk a live-lock.
 963 */
 964struct request *blk_make_request(struct request_queue *q, struct bio *bio,
 965                                 gfp_t gfp_mask)
 966{
 967        struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
 968
 969        if (unlikely(!rq))
 970                return ERR_PTR(-ENOMEM);
 971
 972        for_each_bio(bio) {
 973                struct bio *bounce_bio = bio;
 974                int ret;
 975
 976                blk_queue_bounce(q, &bounce_bio);
 977                ret = blk_rq_append_bio(q, rq, bounce_bio);
 978                if (unlikely(ret)) {
 979                        blk_put_request(rq);
 980                        return ERR_PTR(ret);
 981                }
 982        }
 983
 984        return rq;
 985}
 986EXPORT_SYMBOL(blk_make_request);
 987
 988/**
 989 * blk_requeue_request - put a request back on queue
 990 * @q:          request queue where request should be inserted
 991 * @rq:         request to be inserted
 992 *
 993 * Description:
 994 *    Drivers often keep queueing requests until the hardware cannot accept
 995 *    more, when that condition happens we need to put the request back
 996 *    on the queue. Must be called with queue lock held.
 997 */
 998void blk_requeue_request(struct request_queue *q, struct request *rq)
 999{
1000        blk_delete_timer(rq);
1001        blk_clear_rq_complete(rq);
1002        trace_block_rq_requeue(q, rq);
1003
1004        if (blk_rq_tagged(rq))
1005                blk_queue_end_tag(q, rq);
1006
1007        BUG_ON(blk_queued_rq(rq));
1008
1009        elv_requeue_request(q, rq);
1010}
1011EXPORT_SYMBOL(blk_requeue_request);
1012
1013/**
1014 * blk_insert_request - insert a special request into a request queue
1015 * @q:          request queue where request should be inserted
1016 * @rq:         request to be inserted
1017 * @at_head:    insert request at head or tail of queue
1018 * @data:       private data
1019 *
1020 * Description:
1021 *    Many block devices need to execute commands asynchronously, so they don't
1022 *    block the whole kernel from preemption during request execution.  This is
1023 *    accomplished normally by inserting aritficial requests tagged as
1024 *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1025 *    be scheduled for actual execution by the request queue.
1026 *
1027 *    We have the option of inserting the head or the tail of the queue.
1028 *    Typically we use the tail for new ioctls and so forth.  We use the head
1029 *    of the queue for things like a QUEUE_FULL message from a device, or a
1030 *    host that is unable to accept a particular command.
1031 */
1032void blk_insert_request(struct request_queue *q, struct request *rq,
1033                        int at_head, void *data)
1034{
1035        int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1036        unsigned long flags;
1037
1038        /*
1039         * tell I/O scheduler that this isn't a regular read/write (ie it
1040         * must not attempt merges on this) and that it acts as a soft
1041         * barrier
1042         */
1043        rq->cmd_type = REQ_TYPE_SPECIAL;
1044
1045        rq->special = data;
1046
1047        spin_lock_irqsave(q->queue_lock, flags);
1048
1049        /*
1050         * If command is tagged, release the tag
1051         */
1052        if (blk_rq_tagged(rq))
1053                blk_queue_end_tag(q, rq);
1054
1055        drive_stat_acct(rq, 1);
1056        __elv_add_request(q, rq, where, 0);
1057        __blk_run_queue(q, false);
1058        spin_unlock_irqrestore(q->queue_lock, flags);
1059}
1060EXPORT_SYMBOL(blk_insert_request);
1061
1062static void part_round_stats_single(int cpu, struct hd_struct *part,
1063                                    unsigned long now)
1064{
1065        if (now == part->stamp)
1066                return;
1067
1068        if (part_in_flight(part)) {
1069                __part_stat_add(cpu, part, time_in_queue,
1070                                part_in_flight(part) * (now - part->stamp));
1071                __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1072        }
1073        part->stamp = now;
1074}
1075
1076/**
1077 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1078 * @cpu: cpu number for stats access
1079 * @part: target partition
1080 *
1081 * The average IO queue length and utilisation statistics are maintained
1082 * by observing the current state of the queue length and the amount of
1083 * time it has been in this state for.
1084 *
1085 * Normally, that accounting is done on IO completion, but that can result
1086 * in more than a second's worth of IO being accounted for within any one
1087 * second, leading to >100% utilisation.  To deal with that, we call this
1088 * function to do a round-off before returning the results when reading
1089 * /proc/diskstats.  This accounts immediately for all queue usage up to
1090 * the current jiffies and restarts the counters again.
1091 */
1092void part_round_stats(int cpu, struct hd_struct *part)
1093{
1094        unsigned long now = jiffies;
1095
1096        if (part->partno)
1097                part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1098        part_round_stats_single(cpu, part, now);
1099}
1100EXPORT_SYMBOL_GPL(part_round_stats);
1101
1102/*
1103 * queue lock must be held
1104 */
1105void __blk_put_request(struct request_queue *q, struct request *req)
1106{
1107        if (unlikely(!q))
1108                return;
1109        if (unlikely(--req->ref_count))
1110                return;
1111
1112        elv_completed_request(q, req);
1113
1114        /* this is a bio leak */
1115        WARN_ON(req->bio != NULL);
1116
1117        /*
1118         * Request may not have originated from ll_rw_blk. if not,
1119         * it didn't come out of our reserved rq pools
1120         */
1121        if (req->cmd_flags & REQ_ALLOCED) {
1122                int is_sync = rq_is_sync(req) != 0;
1123                int priv = req->cmd_flags & REQ_ELVPRIV;
1124
1125                BUG_ON(!list_empty(&req->queuelist));
1126                BUG_ON(!hlist_unhashed(&req->hash));
1127
1128                blk_free_request(q, req);
1129                freed_request(q, is_sync, priv);
1130        }
1131}
1132EXPORT_SYMBOL_GPL(__blk_put_request);
1133
1134void blk_put_request(struct request *req)
1135{
1136        unsigned long flags;
1137        struct request_queue *q = req->q;
1138
1139        spin_lock_irqsave(q->queue_lock, flags);
1140        __blk_put_request(q, req);
1141        spin_unlock_irqrestore(q->queue_lock, flags);
1142}
1143EXPORT_SYMBOL(blk_put_request);
1144
1145/**
1146 * blk_add_request_payload - add a payload to a request
1147 * @rq: request to update
1148 * @page: page backing the payload
1149 * @len: length of the payload.
1150 *
1151 * This allows to later add a payload to an already submitted request by
1152 * a block driver.  The driver needs to take care of freeing the payload
1153 * itself.
1154 *
1155 * Note that this is a quite horrible hack and nothing but handling of
1156 * discard requests should ever use it.
1157 */
1158void blk_add_request_payload(struct request *rq, struct page *page,
1159                unsigned int len)
1160{
1161        struct bio *bio = rq->bio;
1162
1163        bio->bi_io_vec->bv_page = page;
1164        bio->bi_io_vec->bv_offset = 0;
1165        bio->bi_io_vec->bv_len = len;
1166
1167        bio->bi_size = len;
1168        bio->bi_vcnt = 1;
1169        bio->bi_phys_segments = 1;
1170
1171        rq->__data_len = rq->resid_len = len;
1172        rq->nr_phys_segments = 1;
1173        rq->buffer = bio_data(bio);
1174}
1175EXPORT_SYMBOL_GPL(blk_add_request_payload);
1176
1177void init_request_from_bio(struct request *req, struct bio *bio)
1178{
1179        req->cpu = bio->bi_comp_cpu;
1180        req->cmd_type = REQ_TYPE_FS;
1181
1182        req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1183        if (bio->bi_rw & REQ_RAHEAD)
1184                req->cmd_flags |= REQ_FAILFAST_MASK;
1185
1186        req->errors = 0;
1187        req->__sector = bio->bi_sector;
1188        req->ioprio = bio_prio(bio);
1189        blk_rq_bio_prep(req->q, req, bio);
1190}
1191
1192/*
1193 * Only disabling plugging for non-rotational devices if it does tagging
1194 * as well, otherwise we do need the proper merging
1195 */
1196static inline bool queue_should_plug(struct request_queue *q)
1197{
1198        return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1199}
1200
1201static int __make_request(struct request_queue *q, struct bio *bio)
1202{
1203        struct request *req;
1204        int el_ret;
1205        unsigned int bytes = bio->bi_size;
1206        const unsigned short prio = bio_prio(bio);
1207        const bool sync = !!(bio->bi_rw & REQ_SYNC);
1208        const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1209        const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
1210        int where = ELEVATOR_INSERT_SORT;
1211        int rw_flags;
1212
1213        /*
1214         * low level driver can indicate that it wants pages above a
1215         * certain limit bounced to low memory (ie for highmem, or even
1216         * ISA dma in theory)
1217         */
1218        blk_queue_bounce(q, &bio);
1219
1220        spin_lock_irq(q->queue_lock);
1221
1222        if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1223                where = ELEVATOR_INSERT_FRONT;
1224                goto get_rq;
1225        }
1226
1227        if (elv_queue_empty(q))
1228                goto get_rq;
1229
1230        el_ret = elv_merge(q, &req, bio);
1231        switch (el_ret) {
1232        case ELEVATOR_BACK_MERGE:
1233                BUG_ON(!rq_mergeable(req));
1234
1235                if (!ll_back_merge_fn(q, req, bio))
1236                        break;
1237
1238                trace_block_bio_backmerge(q, bio);
1239
1240                if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1241                        blk_rq_set_mixed_merge(req);
1242
1243                req->biotail->bi_next = bio;
1244                req->biotail = bio;
1245                req->__data_len += bytes;
1246                req->ioprio = ioprio_best(req->ioprio, prio);
1247                if (!blk_rq_cpu_valid(req))
1248                        req->cpu = bio->bi_comp_cpu;
1249                drive_stat_acct(req, 0);
1250                elv_bio_merged(q, req, bio);
1251                if (!attempt_back_merge(q, req))
1252                        elv_merged_request(q, req, el_ret);
1253                goto out;
1254
1255        case ELEVATOR_FRONT_MERGE:
1256                BUG_ON(!rq_mergeable(req));
1257
1258                if (!ll_front_merge_fn(q, req, bio))
1259                        break;
1260
1261                trace_block_bio_frontmerge(q, bio);
1262
1263                if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1264                        blk_rq_set_mixed_merge(req);
1265                        req->cmd_flags &= ~REQ_FAILFAST_MASK;
1266                        req->cmd_flags |= ff;
1267                }
1268
1269                bio->bi_next = req->bio;
1270                req->bio = bio;
1271
1272                /*
1273                 * may not be valid. if the low level driver said
1274                 * it didn't need a bounce buffer then it better
1275                 * not touch req->buffer either...
1276                 */
1277                req->buffer = bio_data(bio);
1278                req->__sector = bio->bi_sector;
1279                req->__data_len += bytes;
1280                req->ioprio = ioprio_best(req->ioprio, prio);
1281                if (!blk_rq_cpu_valid(req))
1282                        req->cpu = bio->bi_comp_cpu;
1283                drive_stat_acct(req, 0);
1284                elv_bio_merged(q, req, bio);
1285                if (!attempt_front_merge(q, req))
1286                        elv_merged_request(q, req, el_ret);
1287                goto out;
1288
1289        /* ELV_NO_MERGE: elevator says don't/can't merge. */
1290        default:
1291                ;
1292        }
1293
1294get_rq:
1295        /*
1296         * This sync check and mask will be re-done in init_request_from_bio(),
1297         * but we need to set it earlier to expose the sync flag to the
1298         * rq allocator and io schedulers.
1299         */
1300        rw_flags = bio_data_dir(bio);
1301        if (sync)
1302                rw_flags |= REQ_SYNC;
1303
1304        /*
1305         * Grab a free request. This is might sleep but can not fail.
1306         * Returns with the queue unlocked.
1307         */
1308        req = get_request_wait(q, rw_flags, bio);
1309
1310        /*
1311         * After dropping the lock and possibly sleeping here, our request
1312         * may now be mergeable after it had proven unmergeable (above).
1313         * We don't worry about that case for efficiency. It won't happen
1314         * often, and the elevators are able to handle it.
1315         */
1316        init_request_from_bio(req, bio);
1317
1318        spin_lock_irq(q->queue_lock);
1319        if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1320            bio_flagged(bio, BIO_CPU_AFFINE))
1321                req->cpu = blk_cpu_to_group(smp_processor_id());
1322        if (queue_should_plug(q) && elv_queue_empty(q))
1323                blk_plug_device(q);
1324
1325        /* insert the request into the elevator */
1326        drive_stat_acct(req, 1);
1327        __elv_add_request(q, req, where, 0);
1328out:
1329        if (unplug || !queue_should_plug(q))
1330                __generic_unplug_device(q);
1331        spin_unlock_irq(q->queue_lock);
1332        return 0;
1333}
1334
1335/*
1336 * If bio->bi_dev is a partition, remap the location
1337 */
1338static inline void blk_partition_remap(struct bio *bio)
1339{
1340        struct block_device *bdev = bio->bi_bdev;
1341
1342        if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1343                struct hd_struct *p = bdev->bd_part;
1344
1345                bio->bi_sector += p->start_sect;
1346                bio->bi_bdev = bdev->bd_contains;
1347
1348                trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1349                                      bdev->bd_dev,
1350                                      bio->bi_sector - p->start_sect);
1351        }
1352}
1353
1354static void handle_bad_sector(struct bio *bio)
1355{
1356        char b[BDEVNAME_SIZE];
1357
1358        printk(KERN_INFO "attempt to access beyond end of device\n");
1359        printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1360                        bdevname(bio->bi_bdev, b),
1361                        bio->bi_rw,
1362                        (unsigned long long)bio->bi_sector + bio_sectors(bio),
1363                        (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1364
1365        set_bit(BIO_EOF, &bio->bi_flags);
1366}
1367
1368#ifdef CONFIG_FAIL_MAKE_REQUEST
1369
1370static DECLARE_FAULT_ATTR(fail_make_request);
1371
1372static int __init setup_fail_make_request(char *str)
1373{
1374        return setup_fault_attr(&fail_make_request, str);
1375}
1376__setup("fail_make_request=", setup_fail_make_request);
1377
1378static int should_fail_request(struct bio *bio)
1379{
1380        struct hd_struct *part = bio->bi_bdev->bd_part;
1381
1382        if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1383                return should_fail(&fail_make_request, bio->bi_size);
1384
1385        return 0;
1386}
1387
1388static int __init fail_make_request_debugfs(void)
1389{
1390        return init_fault_attr_dentries(&fail_make_request,
1391                                        "fail_make_request");
1392}
1393
1394late_initcall(fail_make_request_debugfs);
1395
1396#else /* CONFIG_FAIL_MAKE_REQUEST */
1397
1398static inline int should_fail_request(struct bio *bio)
1399{
1400        return 0;
1401}
1402
1403#endif /* CONFIG_FAIL_MAKE_REQUEST */
1404
1405/*
1406 * Check whether this bio extends beyond the end of the device.
1407 */
1408static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1409{
1410        sector_t maxsector;
1411
1412        if (!nr_sectors)
1413                return 0;
1414
1415        /* Test device or partition size, when known. */
1416        maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1417        if (maxsector) {
1418                sector_t sector = bio->bi_sector;
1419
1420                if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1421                        /*
1422                         * This may well happen - the kernel calls bread()
1423                         * without checking the size of the device, e.g., when
1424                         * mounting a device.
1425                         */
1426                        handle_bad_sector(bio);
1427                        return 1;
1428                }
1429        }
1430
1431        return 0;
1432}
1433
1434/**
1435 * generic_make_request - hand a buffer to its device driver for I/O
1436 * @bio:  The bio describing the location in memory and on the device.
1437 *
1438 * generic_make_request() is used to make I/O requests of block
1439 * devices. It is passed a &struct bio, which describes the I/O that needs
1440 * to be done.
1441 *
1442 * generic_make_request() does not return any status.  The
1443 * success/failure status of the request, along with notification of
1444 * completion, is delivered asynchronously through the bio->bi_end_io
1445 * function described (one day) else where.
1446 *
1447 * The caller of generic_make_request must make sure that bi_io_vec
1448 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1449 * set to describe the device address, and the
1450 * bi_end_io and optionally bi_private are set to describe how
1451 * completion notification should be signaled.
1452 *
1453 * generic_make_request and the drivers it calls may use bi_next if this
1454 * bio happens to be merged with someone else, and may change bi_dev and
1455 * bi_sector for remaps as it sees fit.  So the values of these fields
1456 * should NOT be depended on after the call to generic_make_request.
1457 */
1458static inline void __generic_make_request(struct bio *bio)
1459{
1460        struct request_queue *q;
1461        sector_t old_sector;
1462        int ret, nr_sectors = bio_sectors(bio);
1463        dev_t old_dev;
1464        int err = -EIO;
1465
1466        might_sleep();
1467
1468        if (bio_check_eod(bio, nr_sectors))
1469                goto end_io;
1470
1471        /*
1472         * Resolve the mapping until finished. (drivers are
1473         * still free to implement/resolve their own stacking
1474         * by explicitly returning 0)
1475         *
1476         * NOTE: we don't repeat the blk_size check for each new device.
1477         * Stacking drivers are expected to know what they are doing.
1478         */
1479        old_sector = -1;
1480        old_dev = 0;
1481        do {
1482                char b[BDEVNAME_SIZE];
1483
1484                q = bdev_get_queue(bio->bi_bdev);
1485                if (unlikely(!q)) {
1486                        printk(KERN_ERR
1487                               "generic_make_request: Trying to access "
1488                                "nonexistent block-device %s (%Lu)\n",
1489                                bdevname(bio->bi_bdev, b),
1490                                (long long) bio->bi_sector);
1491                        goto end_io;
1492                }
1493
1494                if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1495                             nr_sectors > queue_max_hw_sectors(q))) {
1496                        printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1497                               bdevname(bio->bi_bdev, b),
1498                               bio_sectors(bio),
1499                               queue_max_hw_sectors(q));
1500                        goto end_io;
1501                }
1502
1503                if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1504                        goto end_io;
1505
1506                if (should_fail_request(bio))
1507                        goto end_io;
1508
1509                /*
1510                 * If this device has partitions, remap block n
1511                 * of partition p to block n+start(p) of the disk.
1512                 */
1513                blk_partition_remap(bio);
1514
1515                if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1516                        goto end_io;
1517
1518                if (old_sector != -1)
1519                        trace_block_bio_remap(q, bio, old_dev, old_sector);
1520
1521                old_sector = bio->bi_sector;
1522                old_dev = bio->bi_bdev->bd_dev;
1523
1524                if (bio_check_eod(bio, nr_sectors))
1525                        goto end_io;
1526
1527                /*
1528                 * Filter flush bio's early so that make_request based
1529                 * drivers without flush support don't have to worry
1530                 * about them.
1531                 */
1532                if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1533                        bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1534                        if (!nr_sectors) {
1535                                err = 0;
1536                                goto end_io;
1537                        }
1538                }
1539
1540                if ((bio->bi_rw & REQ_DISCARD) &&
1541                    (!blk_queue_discard(q) ||
1542                     ((bio->bi_rw & REQ_SECURE) &&
1543                      !blk_queue_secdiscard(q)))) {
1544                        err = -EOPNOTSUPP;
1545                        goto end_io;
1546                }
1547
1548                blk_throtl_bio(q, &bio);
1549
1550                /*
1551                 * If bio = NULL, bio has been throttled and will be submitted
1552                 * later.
1553                 */
1554                if (!bio)
1555                        break;
1556
1557                trace_block_bio_queue(q, bio);
1558
1559                ret = q->make_request_fn(q, bio);
1560        } while (ret);
1561
1562        return;
1563
1564end_io:
1565        bio_endio(bio, err);
1566}
1567
1568/*
1569 * We only want one ->make_request_fn to be active at a time,
1570 * else stack usage with stacked devices could be a problem.
1571 * So use current->bio_list to keep a list of requests
1572 * submited by a make_request_fn function.
1573 * current->bio_list is also used as a flag to say if
1574 * generic_make_request is currently active in this task or not.
1575 * If it is NULL, then no make_request is active.  If it is non-NULL,
1576 * then a make_request is active, and new requests should be added
1577 * at the tail
1578 */
1579void generic_make_request(struct bio *bio)
1580{
1581        struct bio_list bio_list_on_stack;
1582
1583        if (current->bio_list) {
1584                /* make_request is active */
1585                bio_list_add(current->bio_list, bio);
1586                return;
1587        }
1588        /* following loop may be a bit non-obvious, and so deserves some
1589         * explanation.
1590         * Before entering the loop, bio->bi_next is NULL (as all callers
1591         * ensure that) so we have a list with a single bio.
1592         * We pretend that we have just taken it off a longer list, so
1593         * we assign bio_list to a pointer to the bio_list_on_stack,
1594         * thus initialising the bio_list of new bios to be
1595         * added.  __generic_make_request may indeed add some more bios
1596         * through a recursive call to generic_make_request.  If it
1597         * did, we find a non-NULL value in bio_list and re-enter the loop
1598         * from the top.  In this case we really did just take the bio
1599         * of the top of the list (no pretending) and so remove it from
1600         * bio_list, and call into __generic_make_request again.
1601         *
1602         * The loop was structured like this to make only one call to
1603         * __generic_make_request (which is important as it is large and
1604         * inlined) and to keep the structure simple.
1605         */
1606        BUG_ON(bio->bi_next);
1607        bio_list_init(&bio_list_on_stack);
1608        current->bio_list = &bio_list_on_stack;
1609        do {
1610                __generic_make_request(bio);
1611                bio = bio_list_pop(current->bio_list);
1612        } while (bio);
1613        current->bio_list = NULL; /* deactivate */
1614}
1615EXPORT_SYMBOL(generic_make_request);
1616
1617/**
1618 * submit_bio - submit a bio to the block device layer for I/O
1619 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1620 * @bio: The &struct bio which describes the I/O
1621 *
1622 * submit_bio() is very similar in purpose to generic_make_request(), and
1623 * uses that function to do most of the work. Both are fairly rough
1624 * interfaces; @bio must be presetup and ready for I/O.
1625 *
1626 */
1627void submit_bio(int rw, struct bio *bio)
1628{
1629        int count = bio_sectors(bio);
1630
1631        bio->bi_rw |= rw;
1632
1633        /*
1634         * If it's a regular read/write or a barrier with data attached,
1635         * go through the normal accounting stuff before submission.
1636         */
1637        if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1638                if (rw & WRITE) {
1639                        count_vm_events(PGPGOUT, count);
1640                } else {
1641                        task_io_account_read(bio->bi_size);
1642                        count_vm_events(PGPGIN, count);
1643                }
1644
1645                if (unlikely(block_dump)) {
1646                        char b[BDEVNAME_SIZE];
1647                        printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1648                        current->comm, task_pid_nr(current),
1649                                (rw & WRITE) ? "WRITE" : "READ",
1650                                (unsigned long long)bio->bi_sector,
1651                                bdevname(bio->bi_bdev, b),
1652                                count);
1653                }
1654        }
1655
1656        generic_make_request(bio);
1657}
1658EXPORT_SYMBOL(submit_bio);
1659
1660/**
1661 * blk_rq_check_limits - Helper function to check a request for the queue limit
1662 * @q:  the queue
1663 * @rq: the request being checked
1664 *
1665 * Description:
1666 *    @rq may have been made based on weaker limitations of upper-level queues
1667 *    in request stacking drivers, and it may violate the limitation of @q.
1668 *    Since the block layer and the underlying device driver trust @rq
1669 *    after it is inserted to @q, it should be checked against @q before
1670 *    the insertion using this generic function.
1671 *
1672 *    This function should also be useful for request stacking drivers
1673 *    in some cases below, so export this function.
1674 *    Request stacking drivers like request-based dm may change the queue
1675 *    limits while requests are in the queue (e.g. dm's table swapping).
1676 *    Such request stacking drivers should check those requests agaist
1677 *    the new queue limits again when they dispatch those requests,
1678 *    although such checkings are also done against the old queue limits
1679 *    when submitting requests.
1680 */
1681int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1682{
1683        if (rq->cmd_flags & REQ_DISCARD)
1684                return 0;
1685
1686        if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1687            blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1688                printk(KERN_ERR "%s: over max size limit.\n", __func__);
1689                return -EIO;
1690        }
1691
1692        /*
1693         * queue's settings related to segment counting like q->bounce_pfn
1694         * may differ from that of other stacking queues.
1695         * Recalculate it to check the request correctly on this queue's
1696         * limitation.
1697         */
1698        blk_recalc_rq_segments(rq);
1699        if (rq->nr_phys_segments > queue_max_segments(q)) {
1700                printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1701                return -EIO;
1702        }
1703
1704        return 0;
1705}
1706EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1707
1708/**
1709 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1710 * @q:  the queue to submit the request
1711 * @rq: the request being queued
1712 */
1713int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1714{
1715        unsigned long flags;
1716
1717        if (blk_rq_check_limits(q, rq))
1718                return -EIO;
1719
1720#ifdef CONFIG_FAIL_MAKE_REQUEST
1721        if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1722            should_fail(&fail_make_request, blk_rq_bytes(rq)))
1723                return -EIO;
1724#endif
1725
1726        spin_lock_irqsave(q->queue_lock, flags);
1727
1728        /*
1729         * Submitting request must be dequeued before calling this function
1730         * because it will be linked to another request_queue
1731         */
1732        BUG_ON(blk_queued_rq(rq));
1733
1734        drive_stat_acct(rq, 1);
1735        __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1736
1737        spin_unlock_irqrestore(q->queue_lock, flags);
1738
1739        return 0;
1740}
1741EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1742
1743/**
1744 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1745 * @rq: request to examine
1746 *
1747 * Description:
1748 *     A request could be merge of IOs which require different failure
1749 *     handling.  This function determines the number of bytes which
1750 *     can be failed from the beginning of the request without
1751 *     crossing into area which need to be retried further.
1752 *
1753 * Return:
1754 *     The number of bytes to fail.
1755 *
1756 * Context:
1757 *     queue_lock must be held.
1758 */
1759unsigned int blk_rq_err_bytes(const struct request *rq)
1760{
1761        unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1762        unsigned int bytes = 0;
1763        struct bio *bio;
1764
1765        if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1766                return blk_rq_bytes(rq);
1767
1768        /*
1769         * Currently the only 'mixing' which can happen is between
1770         * different fastfail types.  We can safely fail portions
1771         * which have all the failfast bits that the first one has -
1772         * the ones which are at least as eager to fail as the first
1773         * one.
1774         */
1775        for (bio = rq->bio; bio; bio = bio->bi_next) {
1776                if ((bio->bi_rw & ff) != ff)
1777                        break;
1778                bytes += bio->bi_size;
1779        }
1780
1781        /* this could lead to infinite loop */
1782        BUG_ON(blk_rq_bytes(rq) && !bytes);
1783        return bytes;
1784}
1785EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1786
1787static void blk_account_io_completion(struct request *req, unsigned int bytes)
1788{
1789        if (blk_do_io_stat(req)) {
1790                const int rw = rq_data_dir(req);
1791                struct hd_struct *part;
1792                int cpu;
1793
1794                cpu = part_stat_lock();
1795                part = req->part;
1796                part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1797                part_stat_unlock();
1798        }
1799}
1800
1801static void blk_account_io_done(struct request *req)
1802{
1803        /*
1804         * Account IO completion.  flush_rq isn't accounted as a
1805         * normal IO on queueing nor completion.  Accounting the
1806         * containing request is enough.
1807         */
1808        if (blk_do_io_stat(req) && req != &req->q->flush_rq) {
1809                unsigned long duration = jiffies - req->start_time;
1810                const int rw = rq_data_dir(req);
1811                struct hd_struct *part;
1812                int cpu;
1813
1814                cpu = part_stat_lock();
1815                part = req->part;
1816
1817                part_stat_inc(cpu, part, ios[rw]);
1818                part_stat_add(cpu, part, ticks[rw], duration);
1819                part_round_stats(cpu, part);
1820                part_dec_in_flight(part, rw);
1821
1822                hd_struct_put(part);
1823                part_stat_unlock();
1824        }
1825}
1826
1827/**
1828 * blk_peek_request - peek at the top of a request queue
1829 * @q: request queue to peek at
1830 *
1831 * Description:
1832 *     Return the request at the top of @q.  The returned request
1833 *     should be started using blk_start_request() before LLD starts
1834 *     processing it.
1835 *
1836 * Return:
1837 *     Pointer to the request at the top of @q if available.  Null
1838 *     otherwise.
1839 *
1840 * Context:
1841 *     queue_lock must be held.
1842 */
1843struct request *blk_peek_request(struct request_queue *q)
1844{
1845        struct request *rq;
1846        int ret;
1847
1848        while ((rq = __elv_next_request(q)) != NULL) {
1849                if (!(rq->cmd_flags & REQ_STARTED)) {
1850                        /*
1851                         * This is the first time the device driver
1852                         * sees this request (possibly after
1853                         * requeueing).  Notify IO scheduler.
1854                         */
1855                        if (rq->cmd_flags & REQ_SORTED)
1856                                elv_activate_rq(q, rq);
1857
1858                        /*
1859                         * just mark as started even if we don't start
1860                         * it, a request that has been delayed should
1861                         * not be passed by new incoming requests
1862                         */
1863                        rq->cmd_flags |= REQ_STARTED;
1864                        trace_block_rq_issue(q, rq);
1865                }
1866
1867                if (!q->boundary_rq || q->boundary_rq == rq) {
1868                        q->end_sector = rq_end_sector(rq);
1869                        q->boundary_rq = NULL;
1870                }
1871
1872                if (rq->cmd_flags & REQ_DONTPREP)
1873                        break;
1874
1875                if (q->dma_drain_size && blk_rq_bytes(rq)) {
1876                        /*
1877                         * make sure space for the drain appears we
1878                         * know we can do this because max_hw_segments
1879                         * has been adjusted to be one fewer than the
1880                         * device can handle
1881                         */
1882                        rq->nr_phys_segments++;
1883                }
1884
1885                if (!q->prep_rq_fn)
1886                        break;
1887
1888                ret = q->prep_rq_fn(q, rq);
1889                if (ret == BLKPREP_OK) {
1890                        break;
1891                } else if (ret == BLKPREP_DEFER) {
1892                        /*
1893                         * the request may have been (partially) prepped.
1894                         * we need to keep this request in the front to
1895                         * avoid resource deadlock.  REQ_STARTED will
1896                         * prevent other fs requests from passing this one.
1897                         */
1898                        if (q->dma_drain_size && blk_rq_bytes(rq) &&
1899                            !(rq->cmd_flags & REQ_DONTPREP)) {
1900                                /*
1901                                 * remove the space for the drain we added
1902                                 * so that we don't add it again
1903                                 */
1904                                --rq->nr_phys_segments;
1905                        }
1906
1907                        rq = NULL;
1908                        break;
1909                } else if (ret == BLKPREP_KILL) {
1910                        rq->cmd_flags |= REQ_QUIET;
1911                        /*
1912                         * Mark this request as started so we don't trigger
1913                         * any debug logic in the end I/O path.
1914                         */
1915                        blk_start_request(rq);
1916                        __blk_end_request_all(rq, -EIO);
1917                } else {
1918                        printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1919                        break;
1920                }
1921        }
1922
1923        return rq;
1924}
1925EXPORT_SYMBOL(blk_peek_request);
1926
1927void blk_dequeue_request(struct request *rq)
1928{
1929        struct request_queue *q = rq->q;
1930
1931        BUG_ON(list_empty(&rq->queuelist));
1932        BUG_ON(ELV_ON_HASH(rq));
1933
1934        list_del_init(&rq->queuelist);
1935
1936        /*
1937         * the time frame between a request being removed from the lists
1938         * and to it is freed is accounted as io that is in progress at
1939         * the driver side.
1940         */
1941        if (blk_account_rq(rq)) {
1942                q->in_flight[rq_is_sync(rq)]++;
1943                set_io_start_time_ns(rq);
1944        }
1945}
1946
1947/**
1948 * blk_start_request - start request processing on the driver
1949 * @req: request to dequeue
1950 *
1951 * Description:
1952 *     Dequeue @req and start timeout timer on it.  This hands off the
1953 *     request to the driver.
1954 *
1955 *     Block internal functions which don't want to start timer should
1956 *     call blk_dequeue_request().
1957 *
1958 * Context:
1959 *     queue_lock must be held.
1960 */
1961void blk_start_request(struct request *req)
1962{
1963        blk_dequeue_request(req);
1964
1965        /*
1966         * We are now handing the request to the hardware, initialize
1967         * resid_len to full count and add the timeout handler.
1968         */
1969        req->resid_len = blk_rq_bytes(req);
1970        if (unlikely(blk_bidi_rq(req)))
1971                req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1972
1973        blk_add_timer(req);
1974}
1975EXPORT_SYMBOL(blk_start_request);
1976
1977/**
1978 * blk_fetch_request - fetch a request from a request queue
1979 * @q: request queue to fetch a request from
1980 *
1981 * Description:
1982 *     Return the request at the top of @q.  The request is started on
1983 *     return and LLD can start processing it immediately.
1984 *
1985 * Return:
1986 *     Pointer to the request at the top of @q if available.  Null
1987 *     otherwise.
1988 *
1989 * Context:
1990 *     queue_lock must be held.
1991 */
1992struct request *blk_fetch_request(struct request_queue *q)
1993{
1994        struct request *rq;
1995
1996        rq = blk_peek_request(q);
1997        if (rq)
1998                blk_start_request(rq);
1999        return rq;
2000}
2001EXPORT_SYMBOL(blk_fetch_request);
2002
2003/**
2004 * blk_update_request - Special helper function for request stacking drivers
2005 * @req:      the request being processed
2006 * @error:    %0 for success, < %0 for error
2007 * @nr_bytes: number of bytes to complete @req
2008 *
2009 * Description:
2010 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2011 *     the request structure even if @req doesn't have leftover.
2012 *     If @req has leftover, sets it up for the next range of segments.
2013 *
2014 *     This special helper function is only for request stacking drivers
2015 *     (e.g. request-based dm) so that they can handle partial completion.
2016 *     Actual device drivers should use blk_end_request instead.
2017 *
2018 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2019 *     %false return from this function.
2020 *
2021 * Return:
2022 *     %false - this request doesn't have any more data
2023 *     %true  - this request has more data
2024 **/
2025bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2026{
2027        int total_bytes, bio_nbytes, next_idx = 0;
2028        struct bio *bio;
2029
2030        if (!req->bio)
2031                return false;
2032
2033        trace_block_rq_complete(req->q, req);
2034
2035        /*
2036         * For fs requests, rq is just carrier of independent bio's
2037         * and each partial completion should be handled separately.
2038         * Reset per-request error on each partial completion.
2039         *
2040         * TODO: tj: This is too subtle.  It would be better to let
2041         * low level drivers do what they see fit.
2042         */
2043        if (req->cmd_type == REQ_TYPE_FS)
2044                req->errors = 0;
2045
2046        if (error && req->cmd_type == REQ_TYPE_FS &&
2047            !(req->cmd_flags & REQ_QUIET)) {
2048                printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
2049                                req->rq_disk ? req->rq_disk->disk_name : "?",
2050                                (unsigned long long)blk_rq_pos(req));
2051        }
2052
2053        blk_account_io_completion(req, nr_bytes);
2054
2055        total_bytes = bio_nbytes = 0;
2056        while ((bio = req->bio) != NULL) {
2057                int nbytes;
2058
2059                if (nr_bytes >= bio->bi_size) {
2060                        req->bio = bio->bi_next;
2061                        nbytes = bio->bi_size;
2062                        req_bio_endio(req, bio, nbytes, error);
2063                        next_idx = 0;
2064                        bio_nbytes = 0;
2065                } else {
2066                        int idx = bio->bi_idx + next_idx;
2067
2068                        if (unlikely(idx >= bio->bi_vcnt)) {
2069                                blk_dump_rq_flags(req, "__end_that");
2070                                printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2071                                       __func__, idx, bio->bi_vcnt);
2072                                break;
2073                        }
2074
2075                        nbytes = bio_iovec_idx(bio, idx)->bv_len;
2076                        BIO_BUG_ON(nbytes > bio->bi_size);
2077
2078                        /*
2079                         * not a complete bvec done
2080                         */
2081                        if (unlikely(nbytes > nr_bytes)) {
2082                                bio_nbytes += nr_bytes;
2083                                total_bytes += nr_bytes;
2084                                break;
2085                        }
2086
2087                        /*
2088                         * advance to the next vector
2089                         */
2090                        next_idx++;
2091                        bio_nbytes += nbytes;
2092                }
2093
2094                total_bytes += nbytes;
2095                nr_bytes -= nbytes;
2096
2097                bio = req->bio;
2098                if (bio) {
2099                        /*
2100                         * end more in this run, or just return 'not-done'
2101                         */
2102                        if (unlikely(nr_bytes <= 0))
2103                                break;
2104                }
2105        }
2106
2107        /*
2108         * completely done
2109         */
2110        if (!req->bio) {
2111                /*
2112                 * Reset counters so that the request stacking driver
2113                 * can find how many bytes remain in the request
2114                 * later.
2115                 */
2116                req->__data_len = 0;
2117                return false;
2118        }
2119
2120        /*
2121         * if the request wasn't completed, update state
2122         */
2123        if (bio_nbytes) {
2124                req_bio_endio(req, bio, bio_nbytes, error);
2125                bio->bi_idx += next_idx;
2126                bio_iovec(bio)->bv_offset += nr_bytes;
2127                bio_iovec(bio)->bv_len -= nr_bytes;
2128        }
2129
2130        req->__data_len -= total_bytes;
2131        req->buffer = bio_data(req->bio);
2132
2133        /* update sector only for requests with clear definition of sector */
2134        if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2135                req->__sector += total_bytes >> 9;
2136
2137        /* mixed attributes always follow the first bio */
2138        if (req->cmd_flags & REQ_MIXED_MERGE) {
2139                req->cmd_flags &= ~REQ_FAILFAST_MASK;
2140                req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2141        }
2142
2143        /*
2144         * If total number of sectors is less than the first segment
2145         * size, something has gone terribly wrong.
2146         */
2147        if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2148                printk(KERN_ERR "blk: request botched\n");
2149                req->__data_len = blk_rq_cur_bytes(req);
2150        }
2151
2152        /* recalculate the number of segments */
2153        blk_recalc_rq_segments(req);
2154
2155        return true;
2156}
2157EXPORT_SYMBOL_GPL(blk_update_request);
2158
2159static bool blk_update_bidi_request(struct request *rq, int error,
2160                                    unsigned int nr_bytes,
2161                                    unsigned int bidi_bytes)
2162{
2163        if (blk_update_request(rq, error, nr_bytes))
2164                return true;
2165
2166        /* Bidi request must be completed as a whole */
2167        if (unlikely(blk_bidi_rq(rq)) &&
2168            blk_update_request(rq->next_rq, error, bidi_bytes))
2169                return true;
2170
2171        if (blk_queue_add_random(rq->q))
2172                add_disk_randomness(rq->rq_disk);
2173
2174        return false;
2175}
2176
2177/**
2178 * blk_unprep_request - unprepare a request
2179 * @req:        the request
2180 *
2181 * This function makes a request ready for complete resubmission (or
2182 * completion).  It happens only after all error handling is complete,
2183 * so represents the appropriate moment to deallocate any resources
2184 * that were allocated to the request in the prep_rq_fn.  The queue
2185 * lock is held when calling this.
2186 */
2187void blk_unprep_request(struct request *req)
2188{
2189        struct request_queue *q = req->q;
2190
2191        req->cmd_flags &= ~REQ_DONTPREP;
2192        if (q->unprep_rq_fn)
2193                q->unprep_rq_fn(q, req);
2194}
2195EXPORT_SYMBOL_GPL(blk_unprep_request);
2196
2197/*
2198 * queue lock must be held
2199 */
2200static void blk_finish_request(struct request *req, int error)
2201{
2202        if (blk_rq_tagged(req))
2203                blk_queue_end_tag(req->q, req);
2204
2205        BUG_ON(blk_queued_rq(req));
2206
2207        if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2208                laptop_io_completion(&req->q->backing_dev_info);
2209
2210        blk_delete_timer(req);
2211
2212        if (req->cmd_flags & REQ_DONTPREP)
2213                blk_unprep_request(req);
2214
2215
2216        blk_account_io_done(req);
2217
2218        if (req->end_io)
2219                req->end_io(req, error);
2220        else {
2221                if (blk_bidi_rq(req))
2222                        __blk_put_request(req->next_rq->q, req->next_rq);
2223
2224                __blk_put_request(req->q, req);
2225        }
2226}
2227
2228/**
2229 * blk_end_bidi_request - Complete a bidi request
2230 * @rq:         the request to complete
2231 * @error:      %0 for success, < %0 for error
2232 * @nr_bytes:   number of bytes to complete @rq
2233 * @bidi_bytes: number of bytes to complete @rq->next_rq
2234 *
2235 * Description:
2236 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2237 *     Drivers that supports bidi can safely call this member for any
2238 *     type of request, bidi or uni.  In the later case @bidi_bytes is
2239 *     just ignored.
2240 *
2241 * Return:
2242 *     %false - we are done with this request
2243 *     %true  - still buffers pending for this request
2244 **/
2245static bool blk_end_bidi_request(struct request *rq, int error,
2246                                 unsigned int nr_bytes, unsigned int bidi_bytes)
2247{
2248        struct request_queue *q = rq->q;
2249        unsigned long flags;
2250
2251        if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2252                return true;
2253
2254        spin_lock_irqsave(q->queue_lock, flags);
2255        blk_finish_request(rq, error);
2256        spin_unlock_irqrestore(q->queue_lock, flags);
2257
2258        return false;
2259}
2260
2261/**
2262 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2263 * @rq:         the request to complete
2264 * @error:      %0 for success, < %0 for error
2265 * @nr_bytes:   number of bytes to complete @rq
2266 * @bidi_bytes: number of bytes to complete @rq->next_rq
2267 *
2268 * Description:
2269 *     Identical to blk_end_bidi_request() except that queue lock is
2270 *     assumed to be locked on entry and remains so on return.
2271 *
2272 * Return:
2273 *     %false - we are done with this request
2274 *     %true  - still buffers pending for this request
2275 **/
2276static bool __blk_end_bidi_request(struct request *rq, int error,
2277                                   unsigned int nr_bytes, unsigned int bidi_bytes)
2278{
2279        if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2280                return true;
2281
2282        blk_finish_request(rq, error);
2283
2284        return false;
2285}
2286
2287/**
2288 * blk_end_request - Helper function for drivers to complete the request.
2289 * @rq:       the request being processed
2290 * @error:    %0 for success, < %0 for error
2291 * @nr_bytes: number of bytes to complete
2292 *
2293 * Description:
2294 *     Ends I/O on a number of bytes attached to @rq.
2295 *     If @rq has leftover, sets it up for the next range of segments.
2296 *
2297 * Return:
2298 *     %false - we are done with this request
2299 *     %true  - still buffers pending for this request
2300 **/
2301bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2302{
2303        return blk_end_bidi_request(rq, error, nr_bytes, 0);
2304}
2305EXPORT_SYMBOL(blk_end_request);
2306
2307/**
2308 * blk_end_request_all - Helper function for drives to finish the request.
2309 * @rq: the request to finish
2310 * @error: %0 for success, < %0 for error
2311 *
2312 * Description:
2313 *     Completely finish @rq.
2314 */
2315void blk_end_request_all(struct request *rq, int error)
2316{
2317        bool pending;
2318        unsigned int bidi_bytes = 0;
2319
2320        if (unlikely(blk_bidi_rq(rq)))
2321                bidi_bytes = blk_rq_bytes(rq->next_rq);
2322
2323        pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2324        BUG_ON(pending);
2325}
2326EXPORT_SYMBOL(blk_end_request_all);
2327
2328/**
2329 * blk_end_request_cur - Helper function to finish the current request chunk.
2330 * @rq: the request to finish the current chunk for
2331 * @error: %0 for success, < %0 for error
2332 *
2333 * Description:
2334 *     Complete the current consecutively mapped chunk from @rq.
2335 *
2336 * Return:
2337 *     %false - we are done with this request
2338 *     %true  - still buffers pending for this request
2339 */
2340bool blk_end_request_cur(struct request *rq, int error)
2341{
2342        return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2343}
2344EXPORT_SYMBOL(blk_end_request_cur);
2345
2346/**
2347 * blk_end_request_err - Finish a request till the next failure boundary.
2348 * @rq: the request to finish till the next failure boundary for
2349 * @error: must be negative errno
2350 *
2351 * Description:
2352 *     Complete @rq till the next failure boundary.
2353 *
2354 * Return:
2355 *     %false - we are done with this request
2356 *     %true  - still buffers pending for this request
2357 */
2358bool blk_end_request_err(struct request *rq, int error)
2359{
2360        WARN_ON(error >= 0);
2361        return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2362}
2363EXPORT_SYMBOL_GPL(blk_end_request_err);
2364
2365/**
2366 * __blk_end_request - Helper function for drivers to complete the request.
2367 * @rq:       the request being processed
2368 * @error:    %0 for success, < %0 for error
2369 * @nr_bytes: number of bytes to complete
2370 *
2371 * Description:
2372 *     Must be called with queue lock held unlike blk_end_request().
2373 *
2374 * Return:
2375 *     %false - we are done with this request
2376 *     %true  - still buffers pending for this request
2377 **/
2378bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2379{
2380        return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2381}
2382EXPORT_SYMBOL(__blk_end_request);
2383
2384/**
2385 * __blk_end_request_all - Helper function for drives to finish the request.
2386 * @rq: the request to finish
2387 * @error: %0 for success, < %0 for error
2388 *
2389 * Description:
2390 *     Completely finish @rq.  Must be called with queue lock held.
2391 */
2392void __blk_end_request_all(struct request *rq, int error)
2393{
2394        bool pending;
2395        unsigned int bidi_bytes = 0;
2396
2397        if (unlikely(blk_bidi_rq(rq)))
2398                bidi_bytes = blk_rq_bytes(rq->next_rq);
2399
2400        pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2401        BUG_ON(pending);
2402}
2403EXPORT_SYMBOL(__blk_end_request_all);
2404
2405/**
2406 * __blk_end_request_cur - Helper function to finish the current request chunk.
2407 * @rq: the request to finish the current chunk for
2408 * @error: %0 for success, < %0 for error
2409 *
2410 * Description:
2411 *     Complete the current consecutively mapped chunk from @rq.  Must
2412 *     be called with queue lock held.
2413 *
2414 * Return:
2415 *     %false - we are done with this request
2416 *     %true  - still buffers pending for this request
2417 */
2418bool __blk_end_request_cur(struct request *rq, int error)
2419{
2420        return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2421}
2422EXPORT_SYMBOL(__blk_end_request_cur);
2423
2424/**
2425 * __blk_end_request_err - Finish a request till the next failure boundary.
2426 * @rq: the request to finish till the next failure boundary for
2427 * @error: must be negative errno
2428 *
2429 * Description:
2430 *     Complete @rq till the next failure boundary.  Must be called
2431 *     with queue lock held.
2432 *
2433 * Return:
2434 *     %false - we are done with this request
2435 *     %true  - still buffers pending for this request
2436 */
2437bool __blk_end_request_err(struct request *rq, int error)
2438{
2439        WARN_ON(error >= 0);
2440        return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2441}
2442EXPORT_SYMBOL_GPL(__blk_end_request_err);
2443
2444void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2445                     struct bio *bio)
2446{
2447        /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2448        rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2449
2450        if (bio_has_data(bio)) {
2451                rq->nr_phys_segments = bio_phys_segments(q, bio);
2452                rq->buffer = bio_data(bio);
2453        }
2454        rq->__data_len = bio->bi_size;
2455        rq->bio = rq->biotail = bio;
2456
2457        if (bio->bi_bdev)
2458                rq->rq_disk = bio->bi_bdev->bd_disk;
2459}
2460
2461#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2462/**
2463 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2464 * @rq: the request to be flushed
2465 *
2466 * Description:
2467 *     Flush all pages in @rq.
2468 */
2469void rq_flush_dcache_pages(struct request *rq)
2470{
2471        struct req_iterator iter;
2472        struct bio_vec *bvec;
2473
2474        rq_for_each_segment(bvec, rq, iter)
2475                flush_dcache_page(bvec->bv_page);
2476}
2477EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2478#endif
2479
2480/**
2481 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2482 * @q : the queue of the device being checked
2483 *
2484 * Description:
2485 *    Check if underlying low-level drivers of a device are busy.
2486 *    If the drivers want to export their busy state, they must set own
2487 *    exporting function using blk_queue_lld_busy() first.
2488 *
2489 *    Basically, this function is used only by request stacking drivers
2490 *    to stop dispatching requests to underlying devices when underlying
2491 *    devices are busy.  This behavior helps more I/O merging on the queue
2492 *    of the request stacking driver and prevents I/O throughput regression
2493 *    on burst I/O load.
2494 *
2495 * Return:
2496 *    0 - Not busy (The request stacking driver should dispatch request)
2497 *    1 - Busy (The request stacking driver should stop dispatching request)
2498 */
2499int blk_lld_busy(struct request_queue *q)
2500{
2501        if (q->lld_busy_fn)
2502                return q->lld_busy_fn(q);
2503
2504        return 0;
2505}
2506EXPORT_SYMBOL_GPL(blk_lld_busy);
2507
2508/**
2509 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2510 * @rq: the clone request to be cleaned up
2511 *
2512 * Description:
2513 *     Free all bios in @rq for a cloned request.
2514 */
2515void blk_rq_unprep_clone(struct request *rq)
2516{
2517        struct bio *bio;
2518
2519        while ((bio = rq->bio) != NULL) {
2520                rq->bio = bio->bi_next;
2521
2522                bio_put(bio);
2523        }
2524}
2525EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2526
2527/*
2528 * Copy attributes of the original request to the clone request.
2529 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2530 */
2531static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2532{
2533        dst->cpu = src->cpu;
2534        dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2535        dst->cmd_type = src->cmd_type;
2536        dst->__sector = blk_rq_pos(src);
2537        dst->__data_len = blk_rq_bytes(src);
2538        dst->nr_phys_segments = src->nr_phys_segments;
2539        dst->ioprio = src->ioprio;
2540        dst->extra_len = src->extra_len;
2541}
2542
2543/**
2544 * blk_rq_prep_clone - Helper function to setup clone request
2545 * @rq: the request to be setup
2546 * @rq_src: original request to be cloned
2547 * @bs: bio_set that bios for clone are allocated from
2548 * @gfp_mask: memory allocation mask for bio
2549 * @bio_ctr: setup function to be called for each clone bio.
2550 *           Returns %0 for success, non %0 for failure.
2551 * @data: private data to be passed to @bio_ctr
2552 *
2553 * Description:
2554 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2555 *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2556 *     are not copied, and copying such parts is the caller's responsibility.
2557 *     Also, pages which the original bios are pointing to are not copied
2558 *     and the cloned bios just point same pages.
2559 *     So cloned bios must be completed before original bios, which means
2560 *     the caller must complete @rq before @rq_src.
2561 */
2562int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2563                      struct bio_set *bs, gfp_t gfp_mask,
2564                      int (*bio_ctr)(struct bio *, struct bio *, void *),
2565                      void *data)
2566{
2567        struct bio *bio, *bio_src;
2568
2569        if (!bs)
2570                bs = fs_bio_set;
2571
2572        blk_rq_init(NULL, rq);
2573
2574        __rq_for_each_bio(bio_src, rq_src) {
2575                bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2576                if (!bio)
2577                        goto free_and_out;
2578
2579                __bio_clone(bio, bio_src);
2580
2581                if (bio_integrity(bio_src) &&
2582                    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2583                        goto free_and_out;
2584
2585                if (bio_ctr && bio_ctr(bio, bio_src, data))
2586                        goto free_and_out;
2587
2588                if (rq->bio) {
2589                        rq->biotail->bi_next = bio;
2590                        rq->biotail = bio;
2591                } else
2592                        rq->bio = rq->biotail = bio;
2593        }
2594
2595        __blk_rq_prep_clone(rq, rq_src);
2596
2597        return 0;
2598
2599free_and_out:
2600        if (bio)
2601                bio_free(bio, bs);
2602        blk_rq_unprep_clone(rq);
2603
2604        return -ENOMEM;
2605}
2606EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2607
2608int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2609{
2610        return queue_work(kblockd_workqueue, work);
2611}
2612EXPORT_SYMBOL(kblockd_schedule_work);
2613
2614int __init blk_dev_init(void)
2615{
2616        BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2617                        sizeof(((struct request *)0)->cmd_flags));
2618
2619        /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2620        kblockd_workqueue = alloc_workqueue("kblockd",
2621                                            WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2622        if (!kblockd_workqueue)
2623                panic("Failed to create kblockd\n");
2624
2625        request_cachep = kmem_cache_create("blkdev_requests",
2626                        sizeof(struct request), 0, SLAB_PANIC, NULL);
2627
2628        blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2629                        sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2630
2631        return 0;
2632}
2633