linux/block/blk-settings.c
<<
>>
Prefs
   1/*
   2 * Functions related to setting various queue properties from drivers
   3 */
   4#include <linux/kernel.h>
   5#include <linux/module.h>
   6#include <linux/init.h>
   7#include <linux/bio.h>
   8#include <linux/blkdev.h>
   9#include <linux/bootmem.h>      /* for max_pfn/max_low_pfn */
  10#include <linux/gcd.h>
  11#include <linux/lcm.h>
  12#include <linux/jiffies.h>
  13#include <linux/gfp.h>
  14
  15#include "blk.h"
  16
  17unsigned long blk_max_low_pfn;
  18EXPORT_SYMBOL(blk_max_low_pfn);
  19
  20unsigned long blk_max_pfn;
  21
  22/**
  23 * blk_queue_prep_rq - set a prepare_request function for queue
  24 * @q:          queue
  25 * @pfn:        prepare_request function
  26 *
  27 * It's possible for a queue to register a prepare_request callback which
  28 * is invoked before the request is handed to the request_fn. The goal of
  29 * the function is to prepare a request for I/O, it can be used to build a
  30 * cdb from the request data for instance.
  31 *
  32 */
  33void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  34{
  35        q->prep_rq_fn = pfn;
  36}
  37EXPORT_SYMBOL(blk_queue_prep_rq);
  38
  39/**
  40 * blk_queue_unprep_rq - set an unprepare_request function for queue
  41 * @q:          queue
  42 * @ufn:        unprepare_request function
  43 *
  44 * It's possible for a queue to register an unprepare_request callback
  45 * which is invoked before the request is finally completed. The goal
  46 * of the function is to deallocate any data that was allocated in the
  47 * prepare_request callback.
  48 *
  49 */
  50void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
  51{
  52        q->unprep_rq_fn = ufn;
  53}
  54EXPORT_SYMBOL(blk_queue_unprep_rq);
  55
  56/**
  57 * blk_queue_merge_bvec - set a merge_bvec function for queue
  58 * @q:          queue
  59 * @mbfn:       merge_bvec_fn
  60 *
  61 * Usually queues have static limitations on the max sectors or segments that
  62 * we can put in a request. Stacking drivers may have some settings that
  63 * are dynamic, and thus we have to query the queue whether it is ok to
  64 * add a new bio_vec to a bio at a given offset or not. If the block device
  65 * has such limitations, it needs to register a merge_bvec_fn to control
  66 * the size of bio's sent to it. Note that a block device *must* allow a
  67 * single page to be added to an empty bio. The block device driver may want
  68 * to use the bio_split() function to deal with these bio's. By default
  69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  70 * honored.
  71 */
  72void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
  73{
  74        q->merge_bvec_fn = mbfn;
  75}
  76EXPORT_SYMBOL(blk_queue_merge_bvec);
  77
  78void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  79{
  80        q->softirq_done_fn = fn;
  81}
  82EXPORT_SYMBOL(blk_queue_softirq_done);
  83
  84void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
  85{
  86        q->rq_timeout = timeout;
  87}
  88EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
  89
  90void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
  91{
  92        q->rq_timed_out_fn = fn;
  93}
  94EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
  95
  96void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
  97{
  98        q->lld_busy_fn = fn;
  99}
 100EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
 101
 102/**
 103 * blk_set_default_limits - reset limits to default values
 104 * @lim:  the queue_limits structure to reset
 105 *
 106 * Description:
 107 *   Returns a queue_limit struct to its default state.  Can be used by
 108 *   stacking drivers like DM that stage table swaps and reuse an
 109 *   existing device queue.
 110 */
 111void blk_set_default_limits(struct queue_limits *lim)
 112{
 113        lim->max_segments = BLK_MAX_SEGMENTS;
 114        lim->max_integrity_segments = 0;
 115        lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 116        lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
 117        lim->max_sectors = BLK_DEF_MAX_SECTORS;
 118        lim->max_hw_sectors = INT_MAX;
 119        lim->max_discard_sectors = 0;
 120        lim->discard_granularity = 0;
 121        lim->discard_alignment = 0;
 122        lim->discard_misaligned = 0;
 123        lim->discard_zeroes_data = -1;
 124        lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
 125        lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
 126        lim->alignment_offset = 0;
 127        lim->io_opt = 0;
 128        lim->misaligned = 0;
 129        lim->cluster = 1;
 130}
 131EXPORT_SYMBOL(blk_set_default_limits);
 132
 133/**
 134 * blk_queue_make_request - define an alternate make_request function for a device
 135 * @q:  the request queue for the device to be affected
 136 * @mfn: the alternate make_request function
 137 *
 138 * Description:
 139 *    The normal way for &struct bios to be passed to a device
 140 *    driver is for them to be collected into requests on a request
 141 *    queue, and then to allow the device driver to select requests
 142 *    off that queue when it is ready.  This works well for many block
 143 *    devices. However some block devices (typically virtual devices
 144 *    such as md or lvm) do not benefit from the processing on the
 145 *    request queue, and are served best by having the requests passed
 146 *    directly to them.  This can be achieved by providing a function
 147 *    to blk_queue_make_request().
 148 *
 149 * Caveat:
 150 *    The driver that does this *must* be able to deal appropriately
 151 *    with buffers in "highmemory". This can be accomplished by either calling
 152 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
 153 *    blk_queue_bounce() to create a buffer in normal memory.
 154 **/
 155void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
 156{
 157        /*
 158         * set defaults
 159         */
 160        q->nr_requests = BLKDEV_MAX_RQ;
 161
 162        q->make_request_fn = mfn;
 163        blk_queue_dma_alignment(q, 511);
 164        blk_queue_congestion_threshold(q);
 165        q->nr_batching = BLK_BATCH_REQ;
 166
 167        q->unplug_thresh = 4;           /* hmm */
 168        q->unplug_delay = msecs_to_jiffies(3);  /* 3 milliseconds */
 169        if (q->unplug_delay == 0)
 170                q->unplug_delay = 1;
 171
 172        q->unplug_timer.function = blk_unplug_timeout;
 173        q->unplug_timer.data = (unsigned long)q;
 174
 175        blk_set_default_limits(&q->limits);
 176        blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
 177
 178        /*
 179         * If the caller didn't supply a lock, fall back to our embedded
 180         * per-queue locks
 181         */
 182        if (!q->queue_lock)
 183                q->queue_lock = &q->__queue_lock;
 184
 185        /*
 186         * by default assume old behaviour and bounce for any highmem page
 187         */
 188        blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
 189}
 190EXPORT_SYMBOL(blk_queue_make_request);
 191
 192/**
 193 * blk_queue_bounce_limit - set bounce buffer limit for queue
 194 * @q: the request queue for the device
 195 * @dma_mask: the maximum address the device can handle
 196 *
 197 * Description:
 198 *    Different hardware can have different requirements as to what pages
 199 *    it can do I/O directly to. A low level driver can call
 200 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
 201 *    buffers for doing I/O to pages residing above @dma_mask.
 202 **/
 203void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
 204{
 205        unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
 206        int dma = 0;
 207
 208        q->bounce_gfp = GFP_NOIO;
 209#if BITS_PER_LONG == 64
 210        /*
 211         * Assume anything <= 4GB can be handled by IOMMU.  Actually
 212         * some IOMMUs can handle everything, but I don't know of a
 213         * way to test this here.
 214         */
 215        if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
 216                dma = 1;
 217        q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
 218#else
 219        if (b_pfn < blk_max_low_pfn)
 220                dma = 1;
 221        q->limits.bounce_pfn = b_pfn;
 222#endif
 223        if (dma) {
 224                init_emergency_isa_pool();
 225                q->bounce_gfp = GFP_NOIO | GFP_DMA;
 226                q->limits.bounce_pfn = b_pfn;
 227        }
 228}
 229EXPORT_SYMBOL(blk_queue_bounce_limit);
 230
 231/**
 232 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
 233 * @limits: the queue limits
 234 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
 235 *
 236 * Description:
 237 *    Enables a low level driver to set a hard upper limit,
 238 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
 239 *    the device driver based upon the combined capabilities of I/O
 240 *    controller and storage device.
 241 *
 242 *    max_sectors is a soft limit imposed by the block layer for
 243 *    filesystem type requests.  This value can be overridden on a
 244 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 245 *    The soft limit can not exceed max_hw_sectors.
 246 **/
 247void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
 248{
 249        if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
 250                max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
 251                printk(KERN_INFO "%s: set to minimum %d\n",
 252                       __func__, max_hw_sectors);
 253        }
 254
 255        limits->max_hw_sectors = max_hw_sectors;
 256        limits->max_sectors = min_t(unsigned int, max_hw_sectors,
 257                                    BLK_DEF_MAX_SECTORS);
 258}
 259EXPORT_SYMBOL(blk_limits_max_hw_sectors);
 260
 261/**
 262 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 263 * @q:  the request queue for the device
 264 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
 265 *
 266 * Description:
 267 *    See description for blk_limits_max_hw_sectors().
 268 **/
 269void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
 270{
 271        blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
 272}
 273EXPORT_SYMBOL(blk_queue_max_hw_sectors);
 274
 275/**
 276 * blk_queue_max_discard_sectors - set max sectors for a single discard
 277 * @q:  the request queue for the device
 278 * @max_discard_sectors: maximum number of sectors to discard
 279 **/
 280void blk_queue_max_discard_sectors(struct request_queue *q,
 281                unsigned int max_discard_sectors)
 282{
 283        q->limits.max_discard_sectors = max_discard_sectors;
 284}
 285EXPORT_SYMBOL(blk_queue_max_discard_sectors);
 286
 287/**
 288 * blk_queue_max_segments - set max hw segments for a request for this queue
 289 * @q:  the request queue for the device
 290 * @max_segments:  max number of segments
 291 *
 292 * Description:
 293 *    Enables a low level driver to set an upper limit on the number of
 294 *    hw data segments in a request.
 295 **/
 296void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
 297{
 298        if (!max_segments) {
 299                max_segments = 1;
 300                printk(KERN_INFO "%s: set to minimum %d\n",
 301                       __func__, max_segments);
 302        }
 303
 304        q->limits.max_segments = max_segments;
 305}
 306EXPORT_SYMBOL(blk_queue_max_segments);
 307
 308/**
 309 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 310 * @q:  the request queue for the device
 311 * @max_size:  max size of segment in bytes
 312 *
 313 * Description:
 314 *    Enables a low level driver to set an upper limit on the size of a
 315 *    coalesced segment
 316 **/
 317void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
 318{
 319        if (max_size < PAGE_CACHE_SIZE) {
 320                max_size = PAGE_CACHE_SIZE;
 321                printk(KERN_INFO "%s: set to minimum %d\n",
 322                       __func__, max_size);
 323        }
 324
 325        q->limits.max_segment_size = max_size;
 326}
 327EXPORT_SYMBOL(blk_queue_max_segment_size);
 328
 329/**
 330 * blk_queue_logical_block_size - set logical block size for the queue
 331 * @q:  the request queue for the device
 332 * @size:  the logical block size, in bytes
 333 *
 334 * Description:
 335 *   This should be set to the lowest possible block size that the
 336 *   storage device can address.  The default of 512 covers most
 337 *   hardware.
 338 **/
 339void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
 340{
 341        q->limits.logical_block_size = size;
 342
 343        if (q->limits.physical_block_size < size)
 344                q->limits.physical_block_size = size;
 345
 346        if (q->limits.io_min < q->limits.physical_block_size)
 347                q->limits.io_min = q->limits.physical_block_size;
 348}
 349EXPORT_SYMBOL(blk_queue_logical_block_size);
 350
 351/**
 352 * blk_queue_physical_block_size - set physical block size for the queue
 353 * @q:  the request queue for the device
 354 * @size:  the physical block size, in bytes
 355 *
 356 * Description:
 357 *   This should be set to the lowest possible sector size that the
 358 *   hardware can operate on without reverting to read-modify-write
 359 *   operations.
 360 */
 361void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
 362{
 363        q->limits.physical_block_size = size;
 364
 365        if (q->limits.physical_block_size < q->limits.logical_block_size)
 366                q->limits.physical_block_size = q->limits.logical_block_size;
 367
 368        if (q->limits.io_min < q->limits.physical_block_size)
 369                q->limits.io_min = q->limits.physical_block_size;
 370}
 371EXPORT_SYMBOL(blk_queue_physical_block_size);
 372
 373/**
 374 * blk_queue_alignment_offset - set physical block alignment offset
 375 * @q:  the request queue for the device
 376 * @offset: alignment offset in bytes
 377 *
 378 * Description:
 379 *   Some devices are naturally misaligned to compensate for things like
 380 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 381 *   should call this function for devices whose first sector is not
 382 *   naturally aligned.
 383 */
 384void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
 385{
 386        q->limits.alignment_offset =
 387                offset & (q->limits.physical_block_size - 1);
 388        q->limits.misaligned = 0;
 389}
 390EXPORT_SYMBOL(blk_queue_alignment_offset);
 391
 392/**
 393 * blk_limits_io_min - set minimum request size for a device
 394 * @limits: the queue limits
 395 * @min:  smallest I/O size in bytes
 396 *
 397 * Description:
 398 *   Some devices have an internal block size bigger than the reported
 399 *   hardware sector size.  This function can be used to signal the
 400 *   smallest I/O the device can perform without incurring a performance
 401 *   penalty.
 402 */
 403void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
 404{
 405        limits->io_min = min;
 406
 407        if (limits->io_min < limits->logical_block_size)
 408                limits->io_min = limits->logical_block_size;
 409
 410        if (limits->io_min < limits->physical_block_size)
 411                limits->io_min = limits->physical_block_size;
 412}
 413EXPORT_SYMBOL(blk_limits_io_min);
 414
 415/**
 416 * blk_queue_io_min - set minimum request size for the queue
 417 * @q:  the request queue for the device
 418 * @min:  smallest I/O size in bytes
 419 *
 420 * Description:
 421 *   Storage devices may report a granularity or preferred minimum I/O
 422 *   size which is the smallest request the device can perform without
 423 *   incurring a performance penalty.  For disk drives this is often the
 424 *   physical block size.  For RAID arrays it is often the stripe chunk
 425 *   size.  A properly aligned multiple of minimum_io_size is the
 426 *   preferred request size for workloads where a high number of I/O
 427 *   operations is desired.
 428 */
 429void blk_queue_io_min(struct request_queue *q, unsigned int min)
 430{
 431        blk_limits_io_min(&q->limits, min);
 432}
 433EXPORT_SYMBOL(blk_queue_io_min);
 434
 435/**
 436 * blk_limits_io_opt - set optimal request size for a device
 437 * @limits: the queue limits
 438 * @opt:  smallest I/O size in bytes
 439 *
 440 * Description:
 441 *   Storage devices may report an optimal I/O size, which is the
 442 *   device's preferred unit for sustained I/O.  This is rarely reported
 443 *   for disk drives.  For RAID arrays it is usually the stripe width or
 444 *   the internal track size.  A properly aligned multiple of
 445 *   optimal_io_size is the preferred request size for workloads where
 446 *   sustained throughput is desired.
 447 */
 448void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
 449{
 450        limits->io_opt = opt;
 451}
 452EXPORT_SYMBOL(blk_limits_io_opt);
 453
 454/**
 455 * blk_queue_io_opt - set optimal request size for the queue
 456 * @q:  the request queue for the device
 457 * @opt:  optimal request size in bytes
 458 *
 459 * Description:
 460 *   Storage devices may report an optimal I/O size, which is the
 461 *   device's preferred unit for sustained I/O.  This is rarely reported
 462 *   for disk drives.  For RAID arrays it is usually the stripe width or
 463 *   the internal track size.  A properly aligned multiple of
 464 *   optimal_io_size is the preferred request size for workloads where
 465 *   sustained throughput is desired.
 466 */
 467void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
 468{
 469        blk_limits_io_opt(&q->limits, opt);
 470}
 471EXPORT_SYMBOL(blk_queue_io_opt);
 472
 473/**
 474 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
 475 * @t:  the stacking driver (top)
 476 * @b:  the underlying device (bottom)
 477 **/
 478void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
 479{
 480        blk_stack_limits(&t->limits, &b->limits, 0);
 481}
 482EXPORT_SYMBOL(blk_queue_stack_limits);
 483
 484/**
 485 * blk_stack_limits - adjust queue_limits for stacked devices
 486 * @t:  the stacking driver limits (top device)
 487 * @b:  the underlying queue limits (bottom, component device)
 488 * @start:  first data sector within component device
 489 *
 490 * Description:
 491 *    This function is used by stacking drivers like MD and DM to ensure
 492 *    that all component devices have compatible block sizes and
 493 *    alignments.  The stacking driver must provide a queue_limits
 494 *    struct (top) and then iteratively call the stacking function for
 495 *    all component (bottom) devices.  The stacking function will
 496 *    attempt to combine the values and ensure proper alignment.
 497 *
 498 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 499 *    top device's block sizes and alignment offsets may be adjusted to
 500 *    ensure alignment with the bottom device. If no compatible sizes
 501 *    and alignments exist, -1 is returned and the resulting top
 502 *    queue_limits will have the misaligned flag set to indicate that
 503 *    the alignment_offset is undefined.
 504 */
 505int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
 506                     sector_t start)
 507{
 508        unsigned int top, bottom, alignment, ret = 0;
 509
 510        t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
 511        t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
 512        t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
 513
 514        t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
 515                                            b->seg_boundary_mask);
 516
 517        t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 518        t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
 519                                                 b->max_integrity_segments);
 520
 521        t->max_segment_size = min_not_zero(t->max_segment_size,
 522                                           b->max_segment_size);
 523
 524        t->misaligned |= b->misaligned;
 525
 526        alignment = queue_limit_alignment_offset(b, start);
 527
 528        /* Bottom device has different alignment.  Check that it is
 529         * compatible with the current top alignment.
 530         */
 531        if (t->alignment_offset != alignment) {
 532
 533                top = max(t->physical_block_size, t->io_min)
 534                        + t->alignment_offset;
 535                bottom = max(b->physical_block_size, b->io_min) + alignment;
 536
 537                /* Verify that top and bottom intervals line up */
 538                if (max(top, bottom) & (min(top, bottom) - 1)) {
 539                        t->misaligned = 1;
 540                        ret = -1;
 541                }
 542        }
 543
 544        t->logical_block_size = max(t->logical_block_size,
 545                                    b->logical_block_size);
 546
 547        t->physical_block_size = max(t->physical_block_size,
 548                                     b->physical_block_size);
 549
 550        t->io_min = max(t->io_min, b->io_min);
 551        t->io_opt = lcm(t->io_opt, b->io_opt);
 552
 553        t->cluster &= b->cluster;
 554        t->discard_zeroes_data &= b->discard_zeroes_data;
 555
 556        /* Physical block size a multiple of the logical block size? */
 557        if (t->physical_block_size & (t->logical_block_size - 1)) {
 558                t->physical_block_size = t->logical_block_size;
 559                t->misaligned = 1;
 560                ret = -1;
 561        }
 562
 563        /* Minimum I/O a multiple of the physical block size? */
 564        if (t->io_min & (t->physical_block_size - 1)) {
 565                t->io_min = t->physical_block_size;
 566                t->misaligned = 1;
 567                ret = -1;
 568        }
 569
 570        /* Optimal I/O a multiple of the physical block size? */
 571        if (t->io_opt & (t->physical_block_size - 1)) {
 572                t->io_opt = 0;
 573                t->misaligned = 1;
 574                ret = -1;
 575        }
 576
 577        /* Find lowest common alignment_offset */
 578        t->alignment_offset = lcm(t->alignment_offset, alignment)
 579                & (max(t->physical_block_size, t->io_min) - 1);
 580
 581        /* Verify that new alignment_offset is on a logical block boundary */
 582        if (t->alignment_offset & (t->logical_block_size - 1)) {
 583                t->misaligned = 1;
 584                ret = -1;
 585        }
 586
 587        /* Discard alignment and granularity */
 588        if (b->discard_granularity) {
 589                alignment = queue_limit_discard_alignment(b, start);
 590
 591                if (t->discard_granularity != 0 &&
 592                    t->discard_alignment != alignment) {
 593                        top = t->discard_granularity + t->discard_alignment;
 594                        bottom = b->discard_granularity + alignment;
 595
 596                        /* Verify that top and bottom intervals line up */
 597                        if (max(top, bottom) & (min(top, bottom) - 1))
 598                                t->discard_misaligned = 1;
 599                }
 600
 601                t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
 602                                                      b->max_discard_sectors);
 603                t->discard_granularity = max(t->discard_granularity,
 604                                             b->discard_granularity);
 605                t->discard_alignment = lcm(t->discard_alignment, alignment) &
 606                        (t->discard_granularity - 1);
 607        }
 608
 609        return ret;
 610}
 611EXPORT_SYMBOL(blk_stack_limits);
 612
 613/**
 614 * bdev_stack_limits - adjust queue limits for stacked drivers
 615 * @t:  the stacking driver limits (top device)
 616 * @bdev:  the component block_device (bottom)
 617 * @start:  first data sector within component device
 618 *
 619 * Description:
 620 *    Merges queue limits for a top device and a block_device.  Returns
 621 *    0 if alignment didn't change.  Returns -1 if adding the bottom
 622 *    device caused misalignment.
 623 */
 624int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
 625                      sector_t start)
 626{
 627        struct request_queue *bq = bdev_get_queue(bdev);
 628
 629        start += get_start_sect(bdev);
 630
 631        return blk_stack_limits(t, &bq->limits, start);
 632}
 633EXPORT_SYMBOL(bdev_stack_limits);
 634
 635/**
 636 * disk_stack_limits - adjust queue limits for stacked drivers
 637 * @disk:  MD/DM gendisk (top)
 638 * @bdev:  the underlying block device (bottom)
 639 * @offset:  offset to beginning of data within component device
 640 *
 641 * Description:
 642 *    Merges the limits for a top level gendisk and a bottom level
 643 *    block_device.
 644 */
 645void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
 646                       sector_t offset)
 647{
 648        struct request_queue *t = disk->queue;
 649
 650        if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
 651                char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
 652
 653                disk_name(disk, 0, top);
 654                bdevname(bdev, bottom);
 655
 656                printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
 657                       top, bottom);
 658        }
 659}
 660EXPORT_SYMBOL(disk_stack_limits);
 661
 662/**
 663 * blk_queue_dma_pad - set pad mask
 664 * @q:     the request queue for the device
 665 * @mask:  pad mask
 666 *
 667 * Set dma pad mask.
 668 *
 669 * Appending pad buffer to a request modifies the last entry of a
 670 * scatter list such that it includes the pad buffer.
 671 **/
 672void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
 673{
 674        q->dma_pad_mask = mask;
 675}
 676EXPORT_SYMBOL(blk_queue_dma_pad);
 677
 678/**
 679 * blk_queue_update_dma_pad - update pad mask
 680 * @q:     the request queue for the device
 681 * @mask:  pad mask
 682 *
 683 * Update dma pad mask.
 684 *
 685 * Appending pad buffer to a request modifies the last entry of a
 686 * scatter list such that it includes the pad buffer.
 687 **/
 688void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
 689{
 690        if (mask > q->dma_pad_mask)
 691                q->dma_pad_mask = mask;
 692}
 693EXPORT_SYMBOL(blk_queue_update_dma_pad);
 694
 695/**
 696 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
 697 * @q:  the request queue for the device
 698 * @dma_drain_needed: fn which returns non-zero if drain is necessary
 699 * @buf:        physically contiguous buffer
 700 * @size:       size of the buffer in bytes
 701 *
 702 * Some devices have excess DMA problems and can't simply discard (or
 703 * zero fill) the unwanted piece of the transfer.  They have to have a
 704 * real area of memory to transfer it into.  The use case for this is
 705 * ATAPI devices in DMA mode.  If the packet command causes a transfer
 706 * bigger than the transfer size some HBAs will lock up if there
 707 * aren't DMA elements to contain the excess transfer.  What this API
 708 * does is adjust the queue so that the buf is always appended
 709 * silently to the scatterlist.
 710 *
 711 * Note: This routine adjusts max_hw_segments to make room for appending
 712 * the drain buffer.  If you call blk_queue_max_segments() after calling
 713 * this routine, you must set the limit to one fewer than your device
 714 * can support otherwise there won't be room for the drain buffer.
 715 */
 716int blk_queue_dma_drain(struct request_queue *q,
 717                               dma_drain_needed_fn *dma_drain_needed,
 718                               void *buf, unsigned int size)
 719{
 720        if (queue_max_segments(q) < 2)
 721                return -EINVAL;
 722        /* make room for appending the drain */
 723        blk_queue_max_segments(q, queue_max_segments(q) - 1);
 724        q->dma_drain_needed = dma_drain_needed;
 725        q->dma_drain_buffer = buf;
 726        q->dma_drain_size = size;
 727
 728        return 0;
 729}
 730EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
 731
 732/**
 733 * blk_queue_segment_boundary - set boundary rules for segment merging
 734 * @q:  the request queue for the device
 735 * @mask:  the memory boundary mask
 736 **/
 737void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
 738{
 739        if (mask < PAGE_CACHE_SIZE - 1) {
 740                mask = PAGE_CACHE_SIZE - 1;
 741                printk(KERN_INFO "%s: set to minimum %lx\n",
 742                       __func__, mask);
 743        }
 744
 745        q->limits.seg_boundary_mask = mask;
 746}
 747EXPORT_SYMBOL(blk_queue_segment_boundary);
 748
 749/**
 750 * blk_queue_dma_alignment - set dma length and memory alignment
 751 * @q:     the request queue for the device
 752 * @mask:  alignment mask
 753 *
 754 * description:
 755 *    set required memory and length alignment for direct dma transactions.
 756 *    this is used when building direct io requests for the queue.
 757 *
 758 **/
 759void blk_queue_dma_alignment(struct request_queue *q, int mask)
 760{
 761        q->dma_alignment = mask;
 762}
 763EXPORT_SYMBOL(blk_queue_dma_alignment);
 764
 765/**
 766 * blk_queue_update_dma_alignment - update dma length and memory alignment
 767 * @q:     the request queue for the device
 768 * @mask:  alignment mask
 769 *
 770 * description:
 771 *    update required memory and length alignment for direct dma transactions.
 772 *    If the requested alignment is larger than the current alignment, then
 773 *    the current queue alignment is updated to the new value, otherwise it
 774 *    is left alone.  The design of this is to allow multiple objects
 775 *    (driver, device, transport etc) to set their respective
 776 *    alignments without having them interfere.
 777 *
 778 **/
 779void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
 780{
 781        BUG_ON(mask > PAGE_SIZE);
 782
 783        if (mask > q->dma_alignment)
 784                q->dma_alignment = mask;
 785}
 786EXPORT_SYMBOL(blk_queue_update_dma_alignment);
 787
 788/**
 789 * blk_queue_flush - configure queue's cache flush capability
 790 * @q:          the request queue for the device
 791 * @flush:      0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
 792 *
 793 * Tell block layer cache flush capability of @q.  If it supports
 794 * flushing, REQ_FLUSH should be set.  If it supports bypassing
 795 * write cache for individual writes, REQ_FUA should be set.
 796 */
 797void blk_queue_flush(struct request_queue *q, unsigned int flush)
 798{
 799        WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
 800
 801        if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
 802                flush &= ~REQ_FUA;
 803
 804        q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
 805}
 806EXPORT_SYMBOL_GPL(blk_queue_flush);
 807
 808static int __init blk_settings_init(void)
 809{
 810        blk_max_low_pfn = max_low_pfn - 1;
 811        blk_max_pfn = max_pfn - 1;
 812        return 0;
 813}
 814subsys_initcall(blk_settings_init);
 815