linux/block/cfq-iosched.c
<<
>>
Prefs
   1/*
   2 *  CFQ, or complete fairness queueing, disk scheduler.
   3 *
   4 *  Based on ideas from a previously unfinished io
   5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
   6 *
   7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
   8 */
   9#include <linux/module.h>
  10#include <linux/slab.h>
  11#include <linux/blkdev.h>
  12#include <linux/elevator.h>
  13#include <linux/jiffies.h>
  14#include <linux/rbtree.h>
  15#include <linux/ioprio.h>
  16#include <linux/blktrace_api.h>
  17#include "cfq.h"
  18
  19/*
  20 * tunables
  21 */
  22/* max queue in one round of service */
  23static const int cfq_quantum = 8;
  24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  25/* maximum backwards seek, in KiB */
  26static const int cfq_back_max = 16 * 1024;
  27/* penalty of a backwards seek */
  28static const int cfq_back_penalty = 2;
  29static const int cfq_slice_sync = HZ / 10;
  30static int cfq_slice_async = HZ / 25;
  31static const int cfq_slice_async_rq = 2;
  32static int cfq_slice_idle = HZ / 125;
  33static int cfq_group_idle = HZ / 125;
  34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  35static const int cfq_hist_divisor = 4;
  36
  37/*
  38 * offset from end of service tree
  39 */
  40#define CFQ_IDLE_DELAY          (HZ / 5)
  41
  42/*
  43 * below this threshold, we consider thinktime immediate
  44 */
  45#define CFQ_MIN_TT              (2)
  46
  47#define CFQ_SLICE_SCALE         (5)
  48#define CFQ_HW_QUEUE_MIN        (5)
  49#define CFQ_SERVICE_SHIFT       12
  50
  51#define CFQQ_SEEK_THR           (sector_t)(8 * 100)
  52#define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
  53#define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
  54#define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
  55
  56#define RQ_CIC(rq)              \
  57        ((struct cfq_io_context *) (rq)->elevator_private)
  58#define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
  59#define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elevator_private3)
  60
  61static struct kmem_cache *cfq_pool;
  62static struct kmem_cache *cfq_ioc_pool;
  63
  64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  65static struct completion *ioc_gone;
  66static DEFINE_SPINLOCK(ioc_gone_lock);
  67
  68static DEFINE_SPINLOCK(cic_index_lock);
  69static DEFINE_IDA(cic_index_ida);
  70
  71#define CFQ_PRIO_LISTS          IOPRIO_BE_NR
  72#define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  73#define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  74
  75#define sample_valid(samples)   ((samples) > 80)
  76#define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
  77
  78/*
  79 * Most of our rbtree usage is for sorting with min extraction, so
  80 * if we cache the leftmost node we don't have to walk down the tree
  81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  82 * move this into the elevator for the rq sorting as well.
  83 */
  84struct cfq_rb_root {
  85        struct rb_root rb;
  86        struct rb_node *left;
  87        unsigned count;
  88        unsigned total_weight;
  89        u64 min_vdisktime;
  90};
  91#define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  92                        .count = 0, .min_vdisktime = 0, }
  93
  94/*
  95 * Per process-grouping structure
  96 */
  97struct cfq_queue {
  98        /* reference count */
  99        int ref;
 100        /* various state flags, see below */
 101        unsigned int flags;
 102        /* parent cfq_data */
 103        struct cfq_data *cfqd;
 104        /* service_tree member */
 105        struct rb_node rb_node;
 106        /* service_tree key */
 107        unsigned long rb_key;
 108        /* prio tree member */
 109        struct rb_node p_node;
 110        /* prio tree root we belong to, if any */
 111        struct rb_root *p_root;
 112        /* sorted list of pending requests */
 113        struct rb_root sort_list;
 114        /* if fifo isn't expired, next request to serve */
 115        struct request *next_rq;
 116        /* requests queued in sort_list */
 117        int queued[2];
 118        /* currently allocated requests */
 119        int allocated[2];
 120        /* fifo list of requests in sort_list */
 121        struct list_head fifo;
 122
 123        /* time when queue got scheduled in to dispatch first request. */
 124        unsigned long dispatch_start;
 125        unsigned int allocated_slice;
 126        unsigned int slice_dispatch;
 127        /* time when first request from queue completed and slice started. */
 128        unsigned long slice_start;
 129        unsigned long slice_end;
 130        long slice_resid;
 131
 132        /* pending metadata requests */
 133        int meta_pending;
 134        /* number of requests that are on the dispatch list or inside driver */
 135        int dispatched;
 136
 137        /* io prio of this group */
 138        unsigned short ioprio, org_ioprio;
 139        unsigned short ioprio_class, org_ioprio_class;
 140
 141        pid_t pid;
 142
 143        u32 seek_history;
 144        sector_t last_request_pos;
 145
 146        struct cfq_rb_root *service_tree;
 147        struct cfq_queue *new_cfqq;
 148        struct cfq_group *cfqg;
 149        struct cfq_group *orig_cfqg;
 150        /* Number of sectors dispatched from queue in single dispatch round */
 151        unsigned long nr_sectors;
 152};
 153
 154/*
 155 * First index in the service_trees.
 156 * IDLE is handled separately, so it has negative index
 157 */
 158enum wl_prio_t {
 159        BE_WORKLOAD = 0,
 160        RT_WORKLOAD = 1,
 161        IDLE_WORKLOAD = 2,
 162        CFQ_PRIO_NR,
 163};
 164
 165/*
 166 * Second index in the service_trees.
 167 */
 168enum wl_type_t {
 169        ASYNC_WORKLOAD = 0,
 170        SYNC_NOIDLE_WORKLOAD = 1,
 171        SYNC_WORKLOAD = 2
 172};
 173
 174/* This is per cgroup per device grouping structure */
 175struct cfq_group {
 176        /* group service_tree member */
 177        struct rb_node rb_node;
 178
 179        /* group service_tree key */
 180        u64 vdisktime;
 181        unsigned int weight;
 182
 183        /* number of cfqq currently on this group */
 184        int nr_cfqq;
 185
 186        /*
 187         * Per group busy queus average. Useful for workload slice calc. We
 188         * create the array for each prio class but at run time it is used
 189         * only for RT and BE class and slot for IDLE class remains unused.
 190         * This is primarily done to avoid confusion and a gcc warning.
 191         */
 192        unsigned int busy_queues_avg[CFQ_PRIO_NR];
 193        /*
 194         * rr lists of queues with requests. We maintain service trees for
 195         * RT and BE classes. These trees are subdivided in subclasses
 196         * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
 197         * class there is no subclassification and all the cfq queues go on
 198         * a single tree service_tree_idle.
 199         * Counts are embedded in the cfq_rb_root
 200         */
 201        struct cfq_rb_root service_trees[2][3];
 202        struct cfq_rb_root service_tree_idle;
 203
 204        unsigned long saved_workload_slice;
 205        enum wl_type_t saved_workload;
 206        enum wl_prio_t saved_serving_prio;
 207        struct blkio_group blkg;
 208#ifdef CONFIG_CFQ_GROUP_IOSCHED
 209        struct hlist_node cfqd_node;
 210        int ref;
 211#endif
 212        /* number of requests that are on the dispatch list or inside driver */
 213        int dispatched;
 214};
 215
 216/*
 217 * Per block device queue structure
 218 */
 219struct cfq_data {
 220        struct request_queue *queue;
 221        /* Root service tree for cfq_groups */
 222        struct cfq_rb_root grp_service_tree;
 223        struct cfq_group root_group;
 224
 225        /*
 226         * The priority currently being served
 227         */
 228        enum wl_prio_t serving_prio;
 229        enum wl_type_t serving_type;
 230        unsigned long workload_expires;
 231        struct cfq_group *serving_group;
 232
 233        /*
 234         * Each priority tree is sorted by next_request position.  These
 235         * trees are used when determining if two or more queues are
 236         * interleaving requests (see cfq_close_cooperator).
 237         */
 238        struct rb_root prio_trees[CFQ_PRIO_LISTS];
 239
 240        unsigned int busy_queues;
 241
 242        int rq_in_driver;
 243        int rq_in_flight[2];
 244
 245        /*
 246         * queue-depth detection
 247         */
 248        int rq_queued;
 249        int hw_tag;
 250        /*
 251         * hw_tag can be
 252         * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
 253         *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
 254         *  0 => no NCQ
 255         */
 256        int hw_tag_est_depth;
 257        unsigned int hw_tag_samples;
 258
 259        /*
 260         * idle window management
 261         */
 262        struct timer_list idle_slice_timer;
 263        struct work_struct unplug_work;
 264
 265        struct cfq_queue *active_queue;
 266        struct cfq_io_context *active_cic;
 267
 268        /*
 269         * async queue for each priority case
 270         */
 271        struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
 272        struct cfq_queue *async_idle_cfqq;
 273
 274        sector_t last_position;
 275
 276        /*
 277         * tunables, see top of file
 278         */
 279        unsigned int cfq_quantum;
 280        unsigned int cfq_fifo_expire[2];
 281        unsigned int cfq_back_penalty;
 282        unsigned int cfq_back_max;
 283        unsigned int cfq_slice[2];
 284        unsigned int cfq_slice_async_rq;
 285        unsigned int cfq_slice_idle;
 286        unsigned int cfq_group_idle;
 287        unsigned int cfq_latency;
 288        unsigned int cfq_group_isolation;
 289
 290        unsigned int cic_index;
 291        struct list_head cic_list;
 292
 293        /*
 294         * Fallback dummy cfqq for extreme OOM conditions
 295         */
 296        struct cfq_queue oom_cfqq;
 297
 298        unsigned long last_delayed_sync;
 299
 300        /* List of cfq groups being managed on this device*/
 301        struct hlist_head cfqg_list;
 302        struct rcu_head rcu;
 303};
 304
 305static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
 306
 307static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
 308                                            enum wl_prio_t prio,
 309                                            enum wl_type_t type)
 310{
 311        if (!cfqg)
 312                return NULL;
 313
 314        if (prio == IDLE_WORKLOAD)
 315                return &cfqg->service_tree_idle;
 316
 317        return &cfqg->service_trees[prio][type];
 318}
 319
 320enum cfqq_state_flags {
 321        CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
 322        CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
 323        CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
 324        CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
 325        CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
 326        CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
 327        CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
 328        CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
 329        CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
 330        CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
 331        CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
 332        CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
 333        CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
 334};
 335
 336#define CFQ_CFQQ_FNS(name)                                              \
 337static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
 338{                                                                       \
 339        (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
 340}                                                                       \
 341static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
 342{                                                                       \
 343        (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
 344}                                                                       \
 345static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
 346{                                                                       \
 347        return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
 348}
 349
 350CFQ_CFQQ_FNS(on_rr);
 351CFQ_CFQQ_FNS(wait_request);
 352CFQ_CFQQ_FNS(must_dispatch);
 353CFQ_CFQQ_FNS(must_alloc_slice);
 354CFQ_CFQQ_FNS(fifo_expire);
 355CFQ_CFQQ_FNS(idle_window);
 356CFQ_CFQQ_FNS(prio_changed);
 357CFQ_CFQQ_FNS(slice_new);
 358CFQ_CFQQ_FNS(sync);
 359CFQ_CFQQ_FNS(coop);
 360CFQ_CFQQ_FNS(split_coop);
 361CFQ_CFQQ_FNS(deep);
 362CFQ_CFQQ_FNS(wait_busy);
 363#undef CFQ_CFQQ_FNS
 364
 365#ifdef CONFIG_CFQ_GROUP_IOSCHED
 366#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
 367        blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
 368                        cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
 369                        blkg_path(&(cfqq)->cfqg->blkg), ##args);
 370
 371#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
 372        blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
 373                                blkg_path(&(cfqg)->blkg), ##args);      \
 374
 375#else
 376#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
 377        blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
 378#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
 379#endif
 380#define cfq_log(cfqd, fmt, args...)     \
 381        blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
 382
 383/* Traverses through cfq group service trees */
 384#define for_each_cfqg_st(cfqg, i, j, st) \
 385        for (i = 0; i <= IDLE_WORKLOAD; i++) \
 386                for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
 387                        : &cfqg->service_tree_idle; \
 388                        (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
 389                        (i == IDLE_WORKLOAD && j == 0); \
 390                        j++, st = i < IDLE_WORKLOAD ? \
 391                        &cfqg->service_trees[i][j]: NULL) \
 392
 393
 394static inline bool iops_mode(struct cfq_data *cfqd)
 395{
 396        /*
 397         * If we are not idling on queues and it is a NCQ drive, parallel
 398         * execution of requests is on and measuring time is not possible
 399         * in most of the cases until and unless we drive shallower queue
 400         * depths and that becomes a performance bottleneck. In such cases
 401         * switch to start providing fairness in terms of number of IOs.
 402         */
 403        if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
 404                return true;
 405        else
 406                return false;
 407}
 408
 409static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
 410{
 411        if (cfq_class_idle(cfqq))
 412                return IDLE_WORKLOAD;
 413        if (cfq_class_rt(cfqq))
 414                return RT_WORKLOAD;
 415        return BE_WORKLOAD;
 416}
 417
 418
 419static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
 420{
 421        if (!cfq_cfqq_sync(cfqq))
 422                return ASYNC_WORKLOAD;
 423        if (!cfq_cfqq_idle_window(cfqq))
 424                return SYNC_NOIDLE_WORKLOAD;
 425        return SYNC_WORKLOAD;
 426}
 427
 428static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
 429                                        struct cfq_data *cfqd,
 430                                        struct cfq_group *cfqg)
 431{
 432        if (wl == IDLE_WORKLOAD)
 433                return cfqg->service_tree_idle.count;
 434
 435        return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
 436                + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
 437                + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
 438}
 439
 440static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
 441                                        struct cfq_group *cfqg)
 442{
 443        return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
 444                + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
 445}
 446
 447static void cfq_dispatch_insert(struct request_queue *, struct request *);
 448static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
 449                                       struct io_context *, gfp_t);
 450static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
 451                                                struct io_context *);
 452
 453static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
 454                                            bool is_sync)
 455{
 456        return cic->cfqq[is_sync];
 457}
 458
 459static inline void cic_set_cfqq(struct cfq_io_context *cic,
 460                                struct cfq_queue *cfqq, bool is_sync)
 461{
 462        cic->cfqq[is_sync] = cfqq;
 463}
 464
 465#define CIC_DEAD_KEY    1ul
 466#define CIC_DEAD_INDEX_SHIFT    1
 467
 468static inline void *cfqd_dead_key(struct cfq_data *cfqd)
 469{
 470        return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
 471}
 472
 473static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
 474{
 475        struct cfq_data *cfqd = cic->key;
 476
 477        if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
 478                return NULL;
 479
 480        return cfqd;
 481}
 482
 483/*
 484 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 485 * set (in which case it could also be direct WRITE).
 486 */
 487static inline bool cfq_bio_sync(struct bio *bio)
 488{
 489        return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
 490}
 491
 492/*
 493 * scheduler run of queue, if there are requests pending and no one in the
 494 * driver that will restart queueing
 495 */
 496static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
 497{
 498        if (cfqd->busy_queues) {
 499                cfq_log(cfqd, "schedule dispatch");
 500                kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
 501        }
 502}
 503
 504static int cfq_queue_empty(struct request_queue *q)
 505{
 506        struct cfq_data *cfqd = q->elevator->elevator_data;
 507
 508        return !cfqd->rq_queued;
 509}
 510
 511/*
 512 * Scale schedule slice based on io priority. Use the sync time slice only
 513 * if a queue is marked sync and has sync io queued. A sync queue with async
 514 * io only, should not get full sync slice length.
 515 */
 516static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
 517                                 unsigned short prio)
 518{
 519        const int base_slice = cfqd->cfq_slice[sync];
 520
 521        WARN_ON(prio >= IOPRIO_BE_NR);
 522
 523        return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
 524}
 525
 526static inline int
 527cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 528{
 529        return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
 530}
 531
 532static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
 533{
 534        u64 d = delta << CFQ_SERVICE_SHIFT;
 535
 536        d = d * BLKIO_WEIGHT_DEFAULT;
 537        do_div(d, cfqg->weight);
 538        return d;
 539}
 540
 541static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
 542{
 543        s64 delta = (s64)(vdisktime - min_vdisktime);
 544        if (delta > 0)
 545                min_vdisktime = vdisktime;
 546
 547        return min_vdisktime;
 548}
 549
 550static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
 551{
 552        s64 delta = (s64)(vdisktime - min_vdisktime);
 553        if (delta < 0)
 554                min_vdisktime = vdisktime;
 555
 556        return min_vdisktime;
 557}
 558
 559static void update_min_vdisktime(struct cfq_rb_root *st)
 560{
 561        u64 vdisktime = st->min_vdisktime;
 562        struct cfq_group *cfqg;
 563
 564        if (st->left) {
 565                cfqg = rb_entry_cfqg(st->left);
 566                vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
 567        }
 568
 569        st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
 570}
 571
 572/*
 573 * get averaged number of queues of RT/BE priority.
 574 * average is updated, with a formula that gives more weight to higher numbers,
 575 * to quickly follows sudden increases and decrease slowly
 576 */
 577
 578static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
 579                                        struct cfq_group *cfqg, bool rt)
 580{
 581        unsigned min_q, max_q;
 582        unsigned mult  = cfq_hist_divisor - 1;
 583        unsigned round = cfq_hist_divisor / 2;
 584        unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
 585
 586        min_q = min(cfqg->busy_queues_avg[rt], busy);
 587        max_q = max(cfqg->busy_queues_avg[rt], busy);
 588        cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
 589                cfq_hist_divisor;
 590        return cfqg->busy_queues_avg[rt];
 591}
 592
 593static inline unsigned
 594cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
 595{
 596        struct cfq_rb_root *st = &cfqd->grp_service_tree;
 597
 598        return cfq_target_latency * cfqg->weight / st->total_weight;
 599}
 600
 601static inline unsigned
 602cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 603{
 604        unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
 605        if (cfqd->cfq_latency) {
 606                /*
 607                 * interested queues (we consider only the ones with the same
 608                 * priority class in the cfq group)
 609                 */
 610                unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
 611                                                cfq_class_rt(cfqq));
 612                unsigned sync_slice = cfqd->cfq_slice[1];
 613                unsigned expect_latency = sync_slice * iq;
 614                unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
 615
 616                if (expect_latency > group_slice) {
 617                        unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
 618                        /* scale low_slice according to IO priority
 619                         * and sync vs async */
 620                        unsigned low_slice =
 621                                min(slice, base_low_slice * slice / sync_slice);
 622                        /* the adapted slice value is scaled to fit all iqs
 623                         * into the target latency */
 624                        slice = max(slice * group_slice / expect_latency,
 625                                    low_slice);
 626                }
 627        }
 628        return slice;
 629}
 630
 631static inline void
 632cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 633{
 634        unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
 635
 636        cfqq->slice_start = jiffies;
 637        cfqq->slice_end = jiffies + slice;
 638        cfqq->allocated_slice = slice;
 639        cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
 640}
 641
 642/*
 643 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 644 * isn't valid until the first request from the dispatch is activated
 645 * and the slice time set.
 646 */
 647static inline bool cfq_slice_used(struct cfq_queue *cfqq)
 648{
 649        if (cfq_cfqq_slice_new(cfqq))
 650                return false;
 651        if (time_before(jiffies, cfqq->slice_end))
 652                return false;
 653
 654        return true;
 655}
 656
 657/*
 658 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
 659 * We choose the request that is closest to the head right now. Distance
 660 * behind the head is penalized and only allowed to a certain extent.
 661 */
 662static struct request *
 663cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
 664{
 665        sector_t s1, s2, d1 = 0, d2 = 0;
 666        unsigned long back_max;
 667#define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
 668#define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
 669        unsigned wrap = 0; /* bit mask: requests behind the disk head? */
 670
 671        if (rq1 == NULL || rq1 == rq2)
 672                return rq2;
 673        if (rq2 == NULL)
 674                return rq1;
 675
 676        if (rq_is_sync(rq1) && !rq_is_sync(rq2))
 677                return rq1;
 678        else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
 679                return rq2;
 680        if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
 681                return rq1;
 682        else if ((rq2->cmd_flags & REQ_META) &&
 683                 !(rq1->cmd_flags & REQ_META))
 684                return rq2;
 685
 686        s1 = blk_rq_pos(rq1);
 687        s2 = blk_rq_pos(rq2);
 688
 689        /*
 690         * by definition, 1KiB is 2 sectors
 691         */
 692        back_max = cfqd->cfq_back_max * 2;
 693
 694        /*
 695         * Strict one way elevator _except_ in the case where we allow
 696         * short backward seeks which are biased as twice the cost of a
 697         * similar forward seek.
 698         */
 699        if (s1 >= last)
 700                d1 = s1 - last;
 701        else if (s1 + back_max >= last)
 702                d1 = (last - s1) * cfqd->cfq_back_penalty;
 703        else
 704                wrap |= CFQ_RQ1_WRAP;
 705
 706        if (s2 >= last)
 707                d2 = s2 - last;
 708        else if (s2 + back_max >= last)
 709                d2 = (last - s2) * cfqd->cfq_back_penalty;
 710        else
 711                wrap |= CFQ_RQ2_WRAP;
 712
 713        /* Found required data */
 714
 715        /*
 716         * By doing switch() on the bit mask "wrap" we avoid having to
 717         * check two variables for all permutations: --> faster!
 718         */
 719        switch (wrap) {
 720        case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
 721                if (d1 < d2)
 722                        return rq1;
 723                else if (d2 < d1)
 724                        return rq2;
 725                else {
 726                        if (s1 >= s2)
 727                                return rq1;
 728                        else
 729                                return rq2;
 730                }
 731
 732        case CFQ_RQ2_WRAP:
 733                return rq1;
 734        case CFQ_RQ1_WRAP:
 735                return rq2;
 736        case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
 737        default:
 738                /*
 739                 * Since both rqs are wrapped,
 740                 * start with the one that's further behind head
 741                 * (--> only *one* back seek required),
 742                 * since back seek takes more time than forward.
 743                 */
 744                if (s1 <= s2)
 745                        return rq1;
 746                else
 747                        return rq2;
 748        }
 749}
 750
 751/*
 752 * The below is leftmost cache rbtree addon
 753 */
 754static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
 755{
 756        /* Service tree is empty */
 757        if (!root->count)
 758                return NULL;
 759
 760        if (!root->left)
 761                root->left = rb_first(&root->rb);
 762
 763        if (root->left)
 764                return rb_entry(root->left, struct cfq_queue, rb_node);
 765
 766        return NULL;
 767}
 768
 769static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
 770{
 771        if (!root->left)
 772                root->left = rb_first(&root->rb);
 773
 774        if (root->left)
 775                return rb_entry_cfqg(root->left);
 776
 777        return NULL;
 778}
 779
 780static void rb_erase_init(struct rb_node *n, struct rb_root *root)
 781{
 782        rb_erase(n, root);
 783        RB_CLEAR_NODE(n);
 784}
 785
 786static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
 787{
 788        if (root->left == n)
 789                root->left = NULL;
 790        rb_erase_init(n, &root->rb);
 791        --root->count;
 792}
 793
 794/*
 795 * would be nice to take fifo expire time into account as well
 796 */
 797static struct request *
 798cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 799                  struct request *last)
 800{
 801        struct rb_node *rbnext = rb_next(&last->rb_node);
 802        struct rb_node *rbprev = rb_prev(&last->rb_node);
 803        struct request *next = NULL, *prev = NULL;
 804
 805        BUG_ON(RB_EMPTY_NODE(&last->rb_node));
 806
 807        if (rbprev)
 808                prev = rb_entry_rq(rbprev);
 809
 810        if (rbnext)
 811                next = rb_entry_rq(rbnext);
 812        else {
 813                rbnext = rb_first(&cfqq->sort_list);
 814                if (rbnext && rbnext != &last->rb_node)
 815                        next = rb_entry_rq(rbnext);
 816        }
 817
 818        return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
 819}
 820
 821static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
 822                                      struct cfq_queue *cfqq)
 823{
 824        /*
 825         * just an approximation, should be ok.
 826         */
 827        return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
 828                       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
 829}
 830
 831static inline s64
 832cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
 833{
 834        return cfqg->vdisktime - st->min_vdisktime;
 835}
 836
 837static void
 838__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
 839{
 840        struct rb_node **node = &st->rb.rb_node;
 841        struct rb_node *parent = NULL;
 842        struct cfq_group *__cfqg;
 843        s64 key = cfqg_key(st, cfqg);
 844        int left = 1;
 845
 846        while (*node != NULL) {
 847                parent = *node;
 848                __cfqg = rb_entry_cfqg(parent);
 849
 850                if (key < cfqg_key(st, __cfqg))
 851                        node = &parent->rb_left;
 852                else {
 853                        node = &parent->rb_right;
 854                        left = 0;
 855                }
 856        }
 857
 858        if (left)
 859                st->left = &cfqg->rb_node;
 860
 861        rb_link_node(&cfqg->rb_node, parent, node);
 862        rb_insert_color(&cfqg->rb_node, &st->rb);
 863}
 864
 865static void
 866cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
 867{
 868        struct cfq_rb_root *st = &cfqd->grp_service_tree;
 869        struct cfq_group *__cfqg;
 870        struct rb_node *n;
 871
 872        cfqg->nr_cfqq++;
 873        if (!RB_EMPTY_NODE(&cfqg->rb_node))
 874                return;
 875
 876        /*
 877         * Currently put the group at the end. Later implement something
 878         * so that groups get lesser vtime based on their weights, so that
 879         * if group does not loose all if it was not continously backlogged.
 880         */
 881        n = rb_last(&st->rb);
 882        if (n) {
 883                __cfqg = rb_entry_cfqg(n);
 884                cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
 885        } else
 886                cfqg->vdisktime = st->min_vdisktime;
 887
 888        __cfq_group_service_tree_add(st, cfqg);
 889        st->total_weight += cfqg->weight;
 890}
 891
 892static void
 893cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
 894{
 895        struct cfq_rb_root *st = &cfqd->grp_service_tree;
 896
 897        BUG_ON(cfqg->nr_cfqq < 1);
 898        cfqg->nr_cfqq--;
 899
 900        /* If there are other cfq queues under this group, don't delete it */
 901        if (cfqg->nr_cfqq)
 902                return;
 903
 904        cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
 905        st->total_weight -= cfqg->weight;
 906        if (!RB_EMPTY_NODE(&cfqg->rb_node))
 907                cfq_rb_erase(&cfqg->rb_node, st);
 908        cfqg->saved_workload_slice = 0;
 909        cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
 910}
 911
 912static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
 913{
 914        unsigned int slice_used;
 915
 916        /*
 917         * Queue got expired before even a single request completed or
 918         * got expired immediately after first request completion.
 919         */
 920        if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
 921                /*
 922                 * Also charge the seek time incurred to the group, otherwise
 923                 * if there are mutiple queues in the group, each can dispatch
 924                 * a single request on seeky media and cause lots of seek time
 925                 * and group will never know it.
 926                 */
 927                slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
 928                                        1);
 929        } else {
 930                slice_used = jiffies - cfqq->slice_start;
 931                if (slice_used > cfqq->allocated_slice)
 932                        slice_used = cfqq->allocated_slice;
 933        }
 934
 935        return slice_used;
 936}
 937
 938static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
 939                                struct cfq_queue *cfqq)
 940{
 941        struct cfq_rb_root *st = &cfqd->grp_service_tree;
 942        unsigned int used_sl, charge;
 943        int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
 944                        - cfqg->service_tree_idle.count;
 945
 946        BUG_ON(nr_sync < 0);
 947        used_sl = charge = cfq_cfqq_slice_usage(cfqq);
 948
 949        if (iops_mode(cfqd))
 950                charge = cfqq->slice_dispatch;
 951        else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
 952                charge = cfqq->allocated_slice;
 953
 954        /* Can't update vdisktime while group is on service tree */
 955        cfq_rb_erase(&cfqg->rb_node, st);
 956        cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
 957        __cfq_group_service_tree_add(st, cfqg);
 958
 959        /* This group is being expired. Save the context */
 960        if (time_after(cfqd->workload_expires, jiffies)) {
 961                cfqg->saved_workload_slice = cfqd->workload_expires
 962                                                - jiffies;
 963                cfqg->saved_workload = cfqd->serving_type;
 964                cfqg->saved_serving_prio = cfqd->serving_prio;
 965        } else
 966                cfqg->saved_workload_slice = 0;
 967
 968        cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
 969                                        st->min_vdisktime);
 970        cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
 971                        " sect=%u", used_sl, cfqq->slice_dispatch, charge,
 972                        iops_mode(cfqd), cfqq->nr_sectors);
 973        cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
 974        cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
 975}
 976
 977#ifdef CONFIG_CFQ_GROUP_IOSCHED
 978static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
 979{
 980        if (blkg)
 981                return container_of(blkg, struct cfq_group, blkg);
 982        return NULL;
 983}
 984
 985void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
 986                                        unsigned int weight)
 987{
 988        cfqg_of_blkg(blkg)->weight = weight;
 989}
 990
 991static struct cfq_group *
 992cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
 993{
 994        struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
 995        struct cfq_group *cfqg = NULL;
 996        void *key = cfqd;
 997        int i, j;
 998        struct cfq_rb_root *st;
 999        struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1000        unsigned int major, minor;
1001
1002        cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1003        if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1004                sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1005                cfqg->blkg.dev = MKDEV(major, minor);
1006                goto done;
1007        }
1008        if (cfqg || !create)
1009                goto done;
1010
1011        cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1012        if (!cfqg)
1013                goto done;
1014
1015        for_each_cfqg_st(cfqg, i, j, st)
1016                *st = CFQ_RB_ROOT;
1017        RB_CLEAR_NODE(&cfqg->rb_node);
1018
1019        /*
1020         * Take the initial reference that will be released on destroy
1021         * This can be thought of a joint reference by cgroup and
1022         * elevator which will be dropped by either elevator exit
1023         * or cgroup deletion path depending on who is exiting first.
1024         */
1025        cfqg->ref = 1;
1026
1027        /*
1028         * Add group onto cgroup list. It might happen that bdi->dev is
1029         * not initialized yet. Initialize this new group without major
1030         * and minor info and this info will be filled in once a new thread
1031         * comes for IO. See code above.
1032         */
1033        if (bdi->dev) {
1034                sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1035                cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1036                                        MKDEV(major, minor));
1037        } else
1038                cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1039                                        0);
1040
1041        cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1042
1043        /* Add group on cfqd list */
1044        hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1045
1046done:
1047        return cfqg;
1048}
1049
1050/*
1051 * Search for the cfq group current task belongs to. If create = 1, then also
1052 * create the cfq group if it does not exist. request_queue lock must be held.
1053 */
1054static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1055{
1056        struct cgroup *cgroup;
1057        struct cfq_group *cfqg = NULL;
1058
1059        rcu_read_lock();
1060        cgroup = task_cgroup(current, blkio_subsys_id);
1061        cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1062        if (!cfqg && create)
1063                cfqg = &cfqd->root_group;
1064        rcu_read_unlock();
1065        return cfqg;
1066}
1067
1068static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1069{
1070        cfqg->ref++;
1071        return cfqg;
1072}
1073
1074static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1075{
1076        /* Currently, all async queues are mapped to root group */
1077        if (!cfq_cfqq_sync(cfqq))
1078                cfqg = &cfqq->cfqd->root_group;
1079
1080        cfqq->cfqg = cfqg;
1081        /* cfqq reference on cfqg */
1082        cfqq->cfqg->ref++;
1083}
1084
1085static void cfq_put_cfqg(struct cfq_group *cfqg)
1086{
1087        struct cfq_rb_root *st;
1088        int i, j;
1089
1090        BUG_ON(cfqg->ref <= 0);
1091        cfqg->ref--;
1092        if (cfqg->ref)
1093                return;
1094        for_each_cfqg_st(cfqg, i, j, st)
1095                BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1096        kfree(cfqg);
1097}
1098
1099static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1100{
1101        /* Something wrong if we are trying to remove same group twice */
1102        BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1103
1104        hlist_del_init(&cfqg->cfqd_node);
1105
1106        /*
1107         * Put the reference taken at the time of creation so that when all
1108         * queues are gone, group can be destroyed.
1109         */
1110        cfq_put_cfqg(cfqg);
1111}
1112
1113static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1114{
1115        struct hlist_node *pos, *n;
1116        struct cfq_group *cfqg;
1117
1118        hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1119                /*
1120                 * If cgroup removal path got to blk_group first and removed
1121                 * it from cgroup list, then it will take care of destroying
1122                 * cfqg also.
1123                 */
1124                if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1125                        cfq_destroy_cfqg(cfqd, cfqg);
1126        }
1127}
1128
1129/*
1130 * Blk cgroup controller notification saying that blkio_group object is being
1131 * delinked as associated cgroup object is going away. That also means that
1132 * no new IO will come in this group. So get rid of this group as soon as
1133 * any pending IO in the group is finished.
1134 *
1135 * This function is called under rcu_read_lock(). key is the rcu protected
1136 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1137 * read lock.
1138 *
1139 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1140 * it should not be NULL as even if elevator was exiting, cgroup deltion
1141 * path got to it first.
1142 */
1143void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1144{
1145        unsigned long  flags;
1146        struct cfq_data *cfqd = key;
1147
1148        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1149        cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1150        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1151}
1152
1153#else /* GROUP_IOSCHED */
1154static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1155{
1156        return &cfqd->root_group;
1157}
1158
1159static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1160{
1161        return cfqg;
1162}
1163
1164static inline void
1165cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1166        cfqq->cfqg = cfqg;
1167}
1168
1169static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1170static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1171
1172#endif /* GROUP_IOSCHED */
1173
1174/*
1175 * The cfqd->service_trees holds all pending cfq_queue's that have
1176 * requests waiting to be processed. It is sorted in the order that
1177 * we will service the queues.
1178 */
1179static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1180                                 bool add_front)
1181{
1182        struct rb_node **p, *parent;
1183        struct cfq_queue *__cfqq;
1184        unsigned long rb_key;
1185        struct cfq_rb_root *service_tree;
1186        int left;
1187        int new_cfqq = 1;
1188        int group_changed = 0;
1189
1190#ifdef CONFIG_CFQ_GROUP_IOSCHED
1191        if (!cfqd->cfq_group_isolation
1192            && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1193            && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1194                /* Move this cfq to root group */
1195                cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1196                if (!RB_EMPTY_NODE(&cfqq->rb_node))
1197                        cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1198                cfqq->orig_cfqg = cfqq->cfqg;
1199                cfqq->cfqg = &cfqd->root_group;
1200                cfqd->root_group.ref++;
1201                group_changed = 1;
1202        } else if (!cfqd->cfq_group_isolation
1203                   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1204                /* cfqq is sequential now needs to go to its original group */
1205                BUG_ON(cfqq->cfqg != &cfqd->root_group);
1206                if (!RB_EMPTY_NODE(&cfqq->rb_node))
1207                        cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1208                cfq_put_cfqg(cfqq->cfqg);
1209                cfqq->cfqg = cfqq->orig_cfqg;
1210                cfqq->orig_cfqg = NULL;
1211                group_changed = 1;
1212                cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1213        }
1214#endif
1215
1216        service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1217                                                cfqq_type(cfqq));
1218        if (cfq_class_idle(cfqq)) {
1219                rb_key = CFQ_IDLE_DELAY;
1220                parent = rb_last(&service_tree->rb);
1221                if (parent && parent != &cfqq->rb_node) {
1222                        __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1223                        rb_key += __cfqq->rb_key;
1224                } else
1225                        rb_key += jiffies;
1226        } else if (!add_front) {
1227                /*
1228                 * Get our rb key offset. Subtract any residual slice
1229                 * value carried from last service. A negative resid
1230                 * count indicates slice overrun, and this should position
1231                 * the next service time further away in the tree.
1232                 */
1233                rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1234                rb_key -= cfqq->slice_resid;
1235                cfqq->slice_resid = 0;
1236        } else {
1237                rb_key = -HZ;
1238                __cfqq = cfq_rb_first(service_tree);
1239                rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1240        }
1241
1242        if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1243                new_cfqq = 0;
1244                /*
1245                 * same position, nothing more to do
1246                 */
1247                if (rb_key == cfqq->rb_key &&
1248                    cfqq->service_tree == service_tree)
1249                        return;
1250
1251                cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1252                cfqq->service_tree = NULL;
1253        }
1254
1255        left = 1;
1256        parent = NULL;
1257        cfqq->service_tree = service_tree;
1258        p = &service_tree->rb.rb_node;
1259        while (*p) {
1260                struct rb_node **n;
1261
1262                parent = *p;
1263                __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1264
1265                /*
1266                 * sort by key, that represents service time.
1267                 */
1268                if (time_before(rb_key, __cfqq->rb_key))
1269                        n = &(*p)->rb_left;
1270                else {
1271                        n = &(*p)->rb_right;
1272                        left = 0;
1273                }
1274
1275                p = n;
1276        }
1277
1278        if (left)
1279                service_tree->left = &cfqq->rb_node;
1280
1281        cfqq->rb_key = rb_key;
1282        rb_link_node(&cfqq->rb_node, parent, p);
1283        rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1284        service_tree->count++;
1285        if ((add_front || !new_cfqq) && !group_changed)
1286                return;
1287        cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1288}
1289
1290static struct cfq_queue *
1291cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1292                     sector_t sector, struct rb_node **ret_parent,
1293                     struct rb_node ***rb_link)
1294{
1295        struct rb_node **p, *parent;
1296        struct cfq_queue *cfqq = NULL;
1297
1298        parent = NULL;
1299        p = &root->rb_node;
1300        while (*p) {
1301                struct rb_node **n;
1302
1303                parent = *p;
1304                cfqq = rb_entry(parent, struct cfq_queue, p_node);
1305
1306                /*
1307                 * Sort strictly based on sector.  Smallest to the left,
1308                 * largest to the right.
1309                 */
1310                if (sector > blk_rq_pos(cfqq->next_rq))
1311                        n = &(*p)->rb_right;
1312                else if (sector < blk_rq_pos(cfqq->next_rq))
1313                        n = &(*p)->rb_left;
1314                else
1315                        break;
1316                p = n;
1317                cfqq = NULL;
1318        }
1319
1320        *ret_parent = parent;
1321        if (rb_link)
1322                *rb_link = p;
1323        return cfqq;
1324}
1325
1326static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1327{
1328        struct rb_node **p, *parent;
1329        struct cfq_queue *__cfqq;
1330
1331        if (cfqq->p_root) {
1332                rb_erase(&cfqq->p_node, cfqq->p_root);
1333                cfqq->p_root = NULL;
1334        }
1335
1336        if (cfq_class_idle(cfqq))
1337                return;
1338        if (!cfqq->next_rq)
1339                return;
1340
1341        cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1342        __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1343                                      blk_rq_pos(cfqq->next_rq), &parent, &p);
1344        if (!__cfqq) {
1345                rb_link_node(&cfqq->p_node, parent, p);
1346                rb_insert_color(&cfqq->p_node, cfqq->p_root);
1347        } else
1348                cfqq->p_root = NULL;
1349}
1350
1351/*
1352 * Update cfqq's position in the service tree.
1353 */
1354static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1355{
1356        /*
1357         * Resorting requires the cfqq to be on the RR list already.
1358         */
1359        if (cfq_cfqq_on_rr(cfqq)) {
1360                cfq_service_tree_add(cfqd, cfqq, 0);
1361                cfq_prio_tree_add(cfqd, cfqq);
1362        }
1363}
1364
1365/*
1366 * add to busy list of queues for service, trying to be fair in ordering
1367 * the pending list according to last request service
1368 */
1369static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1370{
1371        cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1372        BUG_ON(cfq_cfqq_on_rr(cfqq));
1373        cfq_mark_cfqq_on_rr(cfqq);
1374        cfqd->busy_queues++;
1375
1376        cfq_resort_rr_list(cfqd, cfqq);
1377}
1378
1379/*
1380 * Called when the cfqq no longer has requests pending, remove it from
1381 * the service tree.
1382 */
1383static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1384{
1385        cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1386        BUG_ON(!cfq_cfqq_on_rr(cfqq));
1387        cfq_clear_cfqq_on_rr(cfqq);
1388
1389        if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1390                cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1391                cfqq->service_tree = NULL;
1392        }
1393        if (cfqq->p_root) {
1394                rb_erase(&cfqq->p_node, cfqq->p_root);
1395                cfqq->p_root = NULL;
1396        }
1397
1398        cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1399        BUG_ON(!cfqd->busy_queues);
1400        cfqd->busy_queues--;
1401}
1402
1403/*
1404 * rb tree support functions
1405 */
1406static void cfq_del_rq_rb(struct request *rq)
1407{
1408        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1409        const int sync = rq_is_sync(rq);
1410
1411        BUG_ON(!cfqq->queued[sync]);
1412        cfqq->queued[sync]--;
1413
1414        elv_rb_del(&cfqq->sort_list, rq);
1415
1416        if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1417                /*
1418                 * Queue will be deleted from service tree when we actually
1419                 * expire it later. Right now just remove it from prio tree
1420                 * as it is empty.
1421                 */
1422                if (cfqq->p_root) {
1423                        rb_erase(&cfqq->p_node, cfqq->p_root);
1424                        cfqq->p_root = NULL;
1425                }
1426        }
1427}
1428
1429static void cfq_add_rq_rb(struct request *rq)
1430{
1431        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1432        struct cfq_data *cfqd = cfqq->cfqd;
1433        struct request *__alias, *prev;
1434
1435        cfqq->queued[rq_is_sync(rq)]++;
1436
1437        /*
1438         * looks a little odd, but the first insert might return an alias.
1439         * if that happens, put the alias on the dispatch list
1440         */
1441        while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1442                cfq_dispatch_insert(cfqd->queue, __alias);
1443
1444        if (!cfq_cfqq_on_rr(cfqq))
1445                cfq_add_cfqq_rr(cfqd, cfqq);
1446
1447        /*
1448         * check if this request is a better next-serve candidate
1449         */
1450        prev = cfqq->next_rq;
1451        cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1452
1453        /*
1454         * adjust priority tree position, if ->next_rq changes
1455         */
1456        if (prev != cfqq->next_rq)
1457                cfq_prio_tree_add(cfqd, cfqq);
1458
1459        BUG_ON(!cfqq->next_rq);
1460}
1461
1462static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1463{
1464        elv_rb_del(&cfqq->sort_list, rq);
1465        cfqq->queued[rq_is_sync(rq)]--;
1466        cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1467                                        rq_data_dir(rq), rq_is_sync(rq));
1468        cfq_add_rq_rb(rq);
1469        cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1470                        &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1471                        rq_is_sync(rq));
1472}
1473
1474static struct request *
1475cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1476{
1477        struct task_struct *tsk = current;
1478        struct cfq_io_context *cic;
1479        struct cfq_queue *cfqq;
1480
1481        cic = cfq_cic_lookup(cfqd, tsk->io_context);
1482        if (!cic)
1483                return NULL;
1484
1485        cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1486        if (cfqq) {
1487                sector_t sector = bio->bi_sector + bio_sectors(bio);
1488
1489                return elv_rb_find(&cfqq->sort_list, sector);
1490        }
1491
1492        return NULL;
1493}
1494
1495static void cfq_activate_request(struct request_queue *q, struct request *rq)
1496{
1497        struct cfq_data *cfqd = q->elevator->elevator_data;
1498
1499        cfqd->rq_in_driver++;
1500        cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1501                                                cfqd->rq_in_driver);
1502
1503        cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1504}
1505
1506static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1507{
1508        struct cfq_data *cfqd = q->elevator->elevator_data;
1509
1510        WARN_ON(!cfqd->rq_in_driver);
1511        cfqd->rq_in_driver--;
1512        cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1513                                                cfqd->rq_in_driver);
1514}
1515
1516static void cfq_remove_request(struct request *rq)
1517{
1518        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1519
1520        if (cfqq->next_rq == rq)
1521                cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1522
1523        list_del_init(&rq->queuelist);
1524        cfq_del_rq_rb(rq);
1525
1526        cfqq->cfqd->rq_queued--;
1527        cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1528                                        rq_data_dir(rq), rq_is_sync(rq));
1529        if (rq->cmd_flags & REQ_META) {
1530                WARN_ON(!cfqq->meta_pending);
1531                cfqq->meta_pending--;
1532        }
1533}
1534
1535static int cfq_merge(struct request_queue *q, struct request **req,
1536                     struct bio *bio)
1537{
1538        struct cfq_data *cfqd = q->elevator->elevator_data;
1539        struct request *__rq;
1540
1541        __rq = cfq_find_rq_fmerge(cfqd, bio);
1542        if (__rq && elv_rq_merge_ok(__rq, bio)) {
1543                *req = __rq;
1544                return ELEVATOR_FRONT_MERGE;
1545        }
1546
1547        return ELEVATOR_NO_MERGE;
1548}
1549
1550static void cfq_merged_request(struct request_queue *q, struct request *req,
1551                               int type)
1552{
1553        if (type == ELEVATOR_FRONT_MERGE) {
1554                struct cfq_queue *cfqq = RQ_CFQQ(req);
1555
1556                cfq_reposition_rq_rb(cfqq, req);
1557        }
1558}
1559
1560static void cfq_bio_merged(struct request_queue *q, struct request *req,
1561                                struct bio *bio)
1562{
1563        cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1564                                        bio_data_dir(bio), cfq_bio_sync(bio));
1565}
1566
1567static void
1568cfq_merged_requests(struct request_queue *q, struct request *rq,
1569                    struct request *next)
1570{
1571        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1572        /*
1573         * reposition in fifo if next is older than rq
1574         */
1575        if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1576            time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1577                list_move(&rq->queuelist, &next->queuelist);
1578                rq_set_fifo_time(rq, rq_fifo_time(next));
1579        }
1580
1581        if (cfqq->next_rq == next)
1582                cfqq->next_rq = rq;
1583        cfq_remove_request(next);
1584        cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1585                                        rq_data_dir(next), rq_is_sync(next));
1586}
1587
1588static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1589                           struct bio *bio)
1590{
1591        struct cfq_data *cfqd = q->elevator->elevator_data;
1592        struct cfq_io_context *cic;
1593        struct cfq_queue *cfqq;
1594
1595        /*
1596         * Disallow merge of a sync bio into an async request.
1597         */
1598        if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1599                return false;
1600
1601        /*
1602         * Lookup the cfqq that this bio will be queued with. Allow
1603         * merge only if rq is queued there.
1604         */
1605        cic = cfq_cic_lookup(cfqd, current->io_context);
1606        if (!cic)
1607                return false;
1608
1609        cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1610        return cfqq == RQ_CFQQ(rq);
1611}
1612
1613static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1614{
1615        del_timer(&cfqd->idle_slice_timer);
1616        cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1617}
1618
1619static void __cfq_set_active_queue(struct cfq_data *cfqd,
1620                                   struct cfq_queue *cfqq)
1621{
1622        if (cfqq) {
1623                cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1624                                cfqd->serving_prio, cfqd->serving_type);
1625                cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1626                cfqq->slice_start = 0;
1627                cfqq->dispatch_start = jiffies;
1628                cfqq->allocated_slice = 0;
1629                cfqq->slice_end = 0;
1630                cfqq->slice_dispatch = 0;
1631                cfqq->nr_sectors = 0;
1632
1633                cfq_clear_cfqq_wait_request(cfqq);
1634                cfq_clear_cfqq_must_dispatch(cfqq);
1635                cfq_clear_cfqq_must_alloc_slice(cfqq);
1636                cfq_clear_cfqq_fifo_expire(cfqq);
1637                cfq_mark_cfqq_slice_new(cfqq);
1638
1639                cfq_del_timer(cfqd, cfqq);
1640        }
1641
1642        cfqd->active_queue = cfqq;
1643}
1644
1645/*
1646 * current cfqq expired its slice (or was too idle), select new one
1647 */
1648static void
1649__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1650                    bool timed_out)
1651{
1652        cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1653
1654        if (cfq_cfqq_wait_request(cfqq))
1655                cfq_del_timer(cfqd, cfqq);
1656
1657        cfq_clear_cfqq_wait_request(cfqq);
1658        cfq_clear_cfqq_wait_busy(cfqq);
1659
1660        /*
1661         * If this cfqq is shared between multiple processes, check to
1662         * make sure that those processes are still issuing I/Os within
1663         * the mean seek distance.  If not, it may be time to break the
1664         * queues apart again.
1665         */
1666        if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1667                cfq_mark_cfqq_split_coop(cfqq);
1668
1669        /*
1670         * store what was left of this slice, if the queue idled/timed out
1671         */
1672        if (timed_out) {
1673                if (cfq_cfqq_slice_new(cfqq))
1674                        cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1675                else
1676                        cfqq->slice_resid = cfqq->slice_end - jiffies;
1677                cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1678        }
1679
1680        cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1681
1682        if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1683                cfq_del_cfqq_rr(cfqd, cfqq);
1684
1685        cfq_resort_rr_list(cfqd, cfqq);
1686
1687        if (cfqq == cfqd->active_queue)
1688                cfqd->active_queue = NULL;
1689
1690        if (cfqd->active_cic) {
1691                put_io_context(cfqd->active_cic->ioc);
1692                cfqd->active_cic = NULL;
1693        }
1694}
1695
1696static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1697{
1698        struct cfq_queue *cfqq = cfqd->active_queue;
1699
1700        if (cfqq)
1701                __cfq_slice_expired(cfqd, cfqq, timed_out);
1702}
1703
1704/*
1705 * Get next queue for service. Unless we have a queue preemption,
1706 * we'll simply select the first cfqq in the service tree.
1707 */
1708static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1709{
1710        struct cfq_rb_root *service_tree =
1711                service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1712                                        cfqd->serving_type);
1713
1714        if (!cfqd->rq_queued)
1715                return NULL;
1716
1717        /* There is nothing to dispatch */
1718        if (!service_tree)
1719                return NULL;
1720        if (RB_EMPTY_ROOT(&service_tree->rb))
1721                return NULL;
1722        return cfq_rb_first(service_tree);
1723}
1724
1725static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1726{
1727        struct cfq_group *cfqg;
1728        struct cfq_queue *cfqq;
1729        int i, j;
1730        struct cfq_rb_root *st;
1731
1732        if (!cfqd->rq_queued)
1733                return NULL;
1734
1735        cfqg = cfq_get_next_cfqg(cfqd);
1736        if (!cfqg)
1737                return NULL;
1738
1739        for_each_cfqg_st(cfqg, i, j, st)
1740                if ((cfqq = cfq_rb_first(st)) != NULL)
1741                        return cfqq;
1742        return NULL;
1743}
1744
1745/*
1746 * Get and set a new active queue for service.
1747 */
1748static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1749                                              struct cfq_queue *cfqq)
1750{
1751        if (!cfqq)
1752                cfqq = cfq_get_next_queue(cfqd);
1753
1754        __cfq_set_active_queue(cfqd, cfqq);
1755        return cfqq;
1756}
1757
1758static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1759                                          struct request *rq)
1760{
1761        if (blk_rq_pos(rq) >= cfqd->last_position)
1762                return blk_rq_pos(rq) - cfqd->last_position;
1763        else
1764                return cfqd->last_position - blk_rq_pos(rq);
1765}
1766
1767static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1768                               struct request *rq)
1769{
1770        return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1771}
1772
1773static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1774                                    struct cfq_queue *cur_cfqq)
1775{
1776        struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1777        struct rb_node *parent, *node;
1778        struct cfq_queue *__cfqq;
1779        sector_t sector = cfqd->last_position;
1780
1781        if (RB_EMPTY_ROOT(root))
1782                return NULL;
1783
1784        /*
1785         * First, if we find a request starting at the end of the last
1786         * request, choose it.
1787         */
1788        __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1789        if (__cfqq)
1790                return __cfqq;
1791
1792        /*
1793         * If the exact sector wasn't found, the parent of the NULL leaf
1794         * will contain the closest sector.
1795         */
1796        __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1797        if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1798                return __cfqq;
1799
1800        if (blk_rq_pos(__cfqq->next_rq) < sector)
1801                node = rb_next(&__cfqq->p_node);
1802        else
1803                node = rb_prev(&__cfqq->p_node);
1804        if (!node)
1805                return NULL;
1806
1807        __cfqq = rb_entry(node, struct cfq_queue, p_node);
1808        if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1809                return __cfqq;
1810
1811        return NULL;
1812}
1813
1814/*
1815 * cfqd - obvious
1816 * cur_cfqq - passed in so that we don't decide that the current queue is
1817 *            closely cooperating with itself.
1818 *
1819 * So, basically we're assuming that that cur_cfqq has dispatched at least
1820 * one request, and that cfqd->last_position reflects a position on the disk
1821 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1822 * assumption.
1823 */
1824static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1825                                              struct cfq_queue *cur_cfqq)
1826{
1827        struct cfq_queue *cfqq;
1828
1829        if (cfq_class_idle(cur_cfqq))
1830                return NULL;
1831        if (!cfq_cfqq_sync(cur_cfqq))
1832                return NULL;
1833        if (CFQQ_SEEKY(cur_cfqq))
1834                return NULL;
1835
1836        /*
1837         * Don't search priority tree if it's the only queue in the group.
1838         */
1839        if (cur_cfqq->cfqg->nr_cfqq == 1)
1840                return NULL;
1841
1842        /*
1843         * We should notice if some of the queues are cooperating, eg
1844         * working closely on the same area of the disk. In that case,
1845         * we can group them together and don't waste time idling.
1846         */
1847        cfqq = cfqq_close(cfqd, cur_cfqq);
1848        if (!cfqq)
1849                return NULL;
1850
1851        /* If new queue belongs to different cfq_group, don't choose it */
1852        if (cur_cfqq->cfqg != cfqq->cfqg)
1853                return NULL;
1854
1855        /*
1856         * It only makes sense to merge sync queues.
1857         */
1858        if (!cfq_cfqq_sync(cfqq))
1859                return NULL;
1860        if (CFQQ_SEEKY(cfqq))
1861                return NULL;
1862
1863        /*
1864         * Do not merge queues of different priority classes
1865         */
1866        if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1867                return NULL;
1868
1869        return cfqq;
1870}
1871
1872/*
1873 * Determine whether we should enforce idle window for this queue.
1874 */
1875
1876static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1877{
1878        enum wl_prio_t prio = cfqq_prio(cfqq);
1879        struct cfq_rb_root *service_tree = cfqq->service_tree;
1880
1881        BUG_ON(!service_tree);
1882        BUG_ON(!service_tree->count);
1883
1884        if (!cfqd->cfq_slice_idle)
1885                return false;
1886
1887        /* We never do for idle class queues. */
1888        if (prio == IDLE_WORKLOAD)
1889                return false;
1890
1891        /* We do for queues that were marked with idle window flag. */
1892        if (cfq_cfqq_idle_window(cfqq) &&
1893           !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1894                return true;
1895
1896        /*
1897         * Otherwise, we do only if they are the last ones
1898         * in their service tree.
1899         */
1900        if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1901                return true;
1902        cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1903                        service_tree->count);
1904        return false;
1905}
1906
1907static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1908{
1909        struct cfq_queue *cfqq = cfqd->active_queue;
1910        struct cfq_io_context *cic;
1911        unsigned long sl, group_idle = 0;
1912
1913        /*
1914         * SSD device without seek penalty, disable idling. But only do so
1915         * for devices that support queuing, otherwise we still have a problem
1916         * with sync vs async workloads.
1917         */
1918        if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1919                return;
1920
1921        WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1922        WARN_ON(cfq_cfqq_slice_new(cfqq));
1923
1924        /*
1925         * idle is disabled, either manually or by past process history
1926         */
1927        if (!cfq_should_idle(cfqd, cfqq)) {
1928                /* no queue idling. Check for group idling */
1929                if (cfqd->cfq_group_idle)
1930                        group_idle = cfqd->cfq_group_idle;
1931                else
1932                        return;
1933        }
1934
1935        /*
1936         * still active requests from this queue, don't idle
1937         */
1938        if (cfqq->dispatched)
1939                return;
1940
1941        /*
1942         * task has exited, don't wait
1943         */
1944        cic = cfqd->active_cic;
1945        if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1946                return;
1947
1948        /*
1949         * If our average think time is larger than the remaining time
1950         * slice, then don't idle. This avoids overrunning the allotted
1951         * time slice.
1952         */
1953        if (sample_valid(cic->ttime_samples) &&
1954            (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1955                cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1956                                cic->ttime_mean);
1957                return;
1958        }
1959
1960        /* There are other queues in the group, don't do group idle */
1961        if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1962                return;
1963
1964        cfq_mark_cfqq_wait_request(cfqq);
1965
1966        if (group_idle)
1967                sl = cfqd->cfq_group_idle;
1968        else
1969                sl = cfqd->cfq_slice_idle;
1970
1971        mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1972        cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1973        cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1974                        group_idle ? 1 : 0);
1975}
1976
1977/*
1978 * Move request from internal lists to the request queue dispatch list.
1979 */
1980static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1981{
1982        struct cfq_data *cfqd = q->elevator->elevator_data;
1983        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1984
1985        cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1986
1987        cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1988        cfq_remove_request(rq);
1989        cfqq->dispatched++;
1990        (RQ_CFQG(rq))->dispatched++;
1991        elv_dispatch_sort(q, rq);
1992
1993        cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1994        cfqq->nr_sectors += blk_rq_sectors(rq);
1995        cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1996                                        rq_data_dir(rq), rq_is_sync(rq));
1997}
1998
1999/*
2000 * return expired entry, or NULL to just start from scratch in rbtree
2001 */
2002static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2003{
2004        struct request *rq = NULL;
2005
2006        if (cfq_cfqq_fifo_expire(cfqq))
2007                return NULL;
2008
2009        cfq_mark_cfqq_fifo_expire(cfqq);
2010
2011        if (list_empty(&cfqq->fifo))
2012                return NULL;
2013
2014        rq = rq_entry_fifo(cfqq->fifo.next);
2015        if (time_before(jiffies, rq_fifo_time(rq)))
2016                rq = NULL;
2017
2018        cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2019        return rq;
2020}
2021
2022static inline int
2023cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2024{
2025        const int base_rq = cfqd->cfq_slice_async_rq;
2026
2027        WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2028
2029        return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2030}
2031
2032/*
2033 * Must be called with the queue_lock held.
2034 */
2035static int cfqq_process_refs(struct cfq_queue *cfqq)
2036{
2037        int process_refs, io_refs;
2038
2039        io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2040        process_refs = cfqq->ref - io_refs;
2041        BUG_ON(process_refs < 0);
2042        return process_refs;
2043}
2044
2045static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2046{
2047        int process_refs, new_process_refs;
2048        struct cfq_queue *__cfqq;
2049
2050        /*
2051         * If there are no process references on the new_cfqq, then it is
2052         * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2053         * chain may have dropped their last reference (not just their
2054         * last process reference).
2055         */
2056        if (!cfqq_process_refs(new_cfqq))
2057                return;
2058
2059        /* Avoid a circular list and skip interim queue merges */
2060        while ((__cfqq = new_cfqq->new_cfqq)) {
2061                if (__cfqq == cfqq)
2062                        return;
2063                new_cfqq = __cfqq;
2064        }
2065
2066        process_refs = cfqq_process_refs(cfqq);
2067        new_process_refs = cfqq_process_refs(new_cfqq);
2068        /*
2069         * If the process for the cfqq has gone away, there is no
2070         * sense in merging the queues.
2071         */
2072        if (process_refs == 0 || new_process_refs == 0)
2073                return;
2074
2075        /*
2076         * Merge in the direction of the lesser amount of work.
2077         */
2078        if (new_process_refs >= process_refs) {
2079                cfqq->new_cfqq = new_cfqq;
2080                new_cfqq->ref += process_refs;
2081        } else {
2082                new_cfqq->new_cfqq = cfqq;
2083                cfqq->ref += new_process_refs;
2084        }
2085}
2086
2087static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2088                                struct cfq_group *cfqg, enum wl_prio_t prio)
2089{
2090        struct cfq_queue *queue;
2091        int i;
2092        bool key_valid = false;
2093        unsigned long lowest_key = 0;
2094        enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2095
2096        for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2097                /* select the one with lowest rb_key */
2098                queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2099                if (queue &&
2100                    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2101                        lowest_key = queue->rb_key;
2102                        cur_best = i;
2103                        key_valid = true;
2104                }
2105        }
2106
2107        return cur_best;
2108}
2109
2110static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2111{
2112        unsigned slice;
2113        unsigned count;
2114        struct cfq_rb_root *st;
2115        unsigned group_slice;
2116        enum wl_prio_t original_prio = cfqd->serving_prio;
2117
2118        /* Choose next priority. RT > BE > IDLE */
2119        if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2120                cfqd->serving_prio = RT_WORKLOAD;
2121        else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2122                cfqd->serving_prio = BE_WORKLOAD;
2123        else {
2124                cfqd->serving_prio = IDLE_WORKLOAD;
2125                cfqd->workload_expires = jiffies + 1;
2126                return;
2127        }
2128
2129        if (original_prio != cfqd->serving_prio)
2130                goto new_workload;
2131
2132        /*
2133         * For RT and BE, we have to choose also the type
2134         * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2135         * expiration time
2136         */
2137        st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2138        count = st->count;
2139
2140        /*
2141         * check workload expiration, and that we still have other queues ready
2142         */
2143        if (count && !time_after(jiffies, cfqd->workload_expires))
2144                return;
2145
2146new_workload:
2147        /* otherwise select new workload type */
2148        cfqd->serving_type =
2149                cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2150        st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2151        count = st->count;
2152
2153        /*
2154         * the workload slice is computed as a fraction of target latency
2155         * proportional to the number of queues in that workload, over
2156         * all the queues in the same priority class
2157         */
2158        group_slice = cfq_group_slice(cfqd, cfqg);
2159
2160        slice = group_slice * count /
2161                max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2162                      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2163
2164        if (cfqd->serving_type == ASYNC_WORKLOAD) {
2165                unsigned int tmp;
2166
2167                /*
2168                 * Async queues are currently system wide. Just taking
2169                 * proportion of queues with-in same group will lead to higher
2170                 * async ratio system wide as generally root group is going
2171                 * to have higher weight. A more accurate thing would be to
2172                 * calculate system wide asnc/sync ratio.
2173                 */
2174                tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2175                tmp = tmp/cfqd->busy_queues;
2176                slice = min_t(unsigned, slice, tmp);
2177
2178                /* async workload slice is scaled down according to
2179                 * the sync/async slice ratio. */
2180                slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2181        } else
2182                /* sync workload slice is at least 2 * cfq_slice_idle */
2183                slice = max(slice, 2 * cfqd->cfq_slice_idle);
2184
2185        slice = max_t(unsigned, slice, CFQ_MIN_TT);
2186        cfq_log(cfqd, "workload slice:%d", slice);
2187        cfqd->workload_expires = jiffies + slice;
2188}
2189
2190static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2191{
2192        struct cfq_rb_root *st = &cfqd->grp_service_tree;
2193        struct cfq_group *cfqg;
2194
2195        if (RB_EMPTY_ROOT(&st->rb))
2196                return NULL;
2197        cfqg = cfq_rb_first_group(st);
2198        update_min_vdisktime(st);
2199        return cfqg;
2200}
2201
2202static void cfq_choose_cfqg(struct cfq_data *cfqd)
2203{
2204        struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2205
2206        cfqd->serving_group = cfqg;
2207
2208        /* Restore the workload type data */
2209        if (cfqg->saved_workload_slice) {
2210                cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2211                cfqd->serving_type = cfqg->saved_workload;
2212                cfqd->serving_prio = cfqg->saved_serving_prio;
2213        } else
2214                cfqd->workload_expires = jiffies - 1;
2215
2216        choose_service_tree(cfqd, cfqg);
2217}
2218
2219/*
2220 * Select a queue for service. If we have a current active queue,
2221 * check whether to continue servicing it, or retrieve and set a new one.
2222 */
2223static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2224{
2225        struct cfq_queue *cfqq, *new_cfqq = NULL;
2226
2227        cfqq = cfqd->active_queue;
2228        if (!cfqq)
2229                goto new_queue;
2230
2231        if (!cfqd->rq_queued)
2232                return NULL;
2233
2234        /*
2235         * We were waiting for group to get backlogged. Expire the queue
2236         */
2237        if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2238                goto expire;
2239
2240        /*
2241         * The active queue has run out of time, expire it and select new.
2242         */
2243        if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2244                /*
2245                 * If slice had not expired at the completion of last request
2246                 * we might not have turned on wait_busy flag. Don't expire
2247                 * the queue yet. Allow the group to get backlogged.
2248                 *
2249                 * The very fact that we have used the slice, that means we
2250                 * have been idling all along on this queue and it should be
2251                 * ok to wait for this request to complete.
2252                 */
2253                if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2254                    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2255                        cfqq = NULL;
2256                        goto keep_queue;
2257                } else
2258                        goto check_group_idle;
2259        }
2260
2261        /*
2262         * The active queue has requests and isn't expired, allow it to
2263         * dispatch.
2264         */
2265        if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2266                goto keep_queue;
2267
2268        /*
2269         * If another queue has a request waiting within our mean seek
2270         * distance, let it run.  The expire code will check for close
2271         * cooperators and put the close queue at the front of the service
2272         * tree.  If possible, merge the expiring queue with the new cfqq.
2273         */
2274        new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2275        if (new_cfqq) {
2276                if (!cfqq->new_cfqq)
2277                        cfq_setup_merge(cfqq, new_cfqq);
2278                goto expire;
2279        }
2280
2281        /*
2282         * No requests pending. If the active queue still has requests in
2283         * flight or is idling for a new request, allow either of these
2284         * conditions to happen (or time out) before selecting a new queue.
2285         */
2286        if (timer_pending(&cfqd->idle_slice_timer)) {
2287                cfqq = NULL;
2288                goto keep_queue;
2289        }
2290
2291        /*
2292         * This is a deep seek queue, but the device is much faster than
2293         * the queue can deliver, don't idle
2294         **/
2295        if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2296            (cfq_cfqq_slice_new(cfqq) ||
2297            (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2298                cfq_clear_cfqq_deep(cfqq);
2299                cfq_clear_cfqq_idle_window(cfqq);
2300        }
2301
2302        if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2303                cfqq = NULL;
2304                goto keep_queue;
2305        }
2306
2307        /*
2308         * If group idle is enabled and there are requests dispatched from
2309         * this group, wait for requests to complete.
2310         */
2311check_group_idle:
2312        if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2313            && cfqq->cfqg->dispatched) {
2314                cfqq = NULL;
2315                goto keep_queue;
2316        }
2317
2318expire:
2319        cfq_slice_expired(cfqd, 0);
2320new_queue:
2321        /*
2322         * Current queue expired. Check if we have to switch to a new
2323         * service tree
2324         */
2325        if (!new_cfqq)
2326                cfq_choose_cfqg(cfqd);
2327
2328        cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2329keep_queue:
2330        return cfqq;
2331}
2332
2333static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2334{
2335        int dispatched = 0;
2336
2337        while (cfqq->next_rq) {
2338                cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2339                dispatched++;
2340        }
2341
2342        BUG_ON(!list_empty(&cfqq->fifo));
2343
2344        /* By default cfqq is not expired if it is empty. Do it explicitly */
2345        __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2346        return dispatched;
2347}
2348
2349/*
2350 * Drain our current requests. Used for barriers and when switching
2351 * io schedulers on-the-fly.
2352 */
2353static int cfq_forced_dispatch(struct cfq_data *cfqd)
2354{
2355        struct cfq_queue *cfqq;
2356        int dispatched = 0;
2357
2358        /* Expire the timeslice of the current active queue first */
2359        cfq_slice_expired(cfqd, 0);
2360        while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2361                __cfq_set_active_queue(cfqd, cfqq);
2362                dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2363        }
2364
2365        BUG_ON(cfqd->busy_queues);
2366
2367        cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2368        return dispatched;
2369}
2370
2371static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2372        struct cfq_queue *cfqq)
2373{
2374        /* the queue hasn't finished any request, can't estimate */
2375        if (cfq_cfqq_slice_new(cfqq))
2376                return true;
2377        if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2378                cfqq->slice_end))
2379                return true;
2380
2381        return false;
2382}
2383
2384static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2385{
2386        unsigned int max_dispatch;
2387
2388        /*
2389         * Drain async requests before we start sync IO
2390         */
2391        if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2392                return false;
2393
2394        /*
2395         * If this is an async queue and we have sync IO in flight, let it wait
2396         */
2397        if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2398                return false;
2399
2400        max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2401        if (cfq_class_idle(cfqq))
2402                max_dispatch = 1;
2403
2404        /*
2405         * Does this cfqq already have too much IO in flight?
2406         */
2407        if (cfqq->dispatched >= max_dispatch) {
2408                /*
2409                 * idle queue must always only have a single IO in flight
2410                 */
2411                if (cfq_class_idle(cfqq))
2412                        return false;
2413
2414                /*
2415                 * We have other queues, don't allow more IO from this one
2416                 */
2417                if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2418                        return false;
2419
2420                /*
2421                 * Sole queue user, no limit
2422                 */
2423                if (cfqd->busy_queues == 1)
2424                        max_dispatch = -1;
2425                else
2426                        /*
2427                         * Normally we start throttling cfqq when cfq_quantum/2
2428                         * requests have been dispatched. But we can drive
2429                         * deeper queue depths at the beginning of slice
2430                         * subjected to upper limit of cfq_quantum.
2431                         * */
2432                        max_dispatch = cfqd->cfq_quantum;
2433        }
2434
2435        /*
2436         * Async queues must wait a bit before being allowed dispatch.
2437         * We also ramp up the dispatch depth gradually for async IO,
2438         * based on the last sync IO we serviced
2439         */
2440        if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2441                unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2442                unsigned int depth;
2443
2444                depth = last_sync / cfqd->cfq_slice[1];
2445                if (!depth && !cfqq->dispatched)
2446                        depth = 1;
2447                if (depth < max_dispatch)
2448                        max_dispatch = depth;
2449        }
2450
2451        /*
2452         * If we're below the current max, allow a dispatch
2453         */
2454        return cfqq->dispatched < max_dispatch;
2455}
2456
2457/*
2458 * Dispatch a request from cfqq, moving them to the request queue
2459 * dispatch list.
2460 */
2461static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2462{
2463        struct request *rq;
2464
2465        BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2466
2467        if (!cfq_may_dispatch(cfqd, cfqq))
2468                return false;
2469
2470        /*
2471         * follow expired path, else get first next available
2472         */
2473        rq = cfq_check_fifo(cfqq);
2474        if (!rq)
2475                rq = cfqq->next_rq;
2476
2477        /*
2478         * insert request into driver dispatch list
2479         */
2480        cfq_dispatch_insert(cfqd->queue, rq);
2481
2482        if (!cfqd->active_cic) {
2483                struct cfq_io_context *cic = RQ_CIC(rq);
2484
2485                atomic_long_inc(&cic->ioc->refcount);
2486                cfqd->active_cic = cic;
2487        }
2488
2489        return true;
2490}
2491
2492/*
2493 * Find the cfqq that we need to service and move a request from that to the
2494 * dispatch list
2495 */
2496static int cfq_dispatch_requests(struct request_queue *q, int force)
2497{
2498        struct cfq_data *cfqd = q->elevator->elevator_data;
2499        struct cfq_queue *cfqq;
2500
2501        if (!cfqd->busy_queues)
2502                return 0;
2503
2504        if (unlikely(force))
2505                return cfq_forced_dispatch(cfqd);
2506
2507        cfqq = cfq_select_queue(cfqd);
2508        if (!cfqq)
2509                return 0;
2510
2511        /*
2512         * Dispatch a request from this cfqq, if it is allowed
2513         */
2514        if (!cfq_dispatch_request(cfqd, cfqq))
2515                return 0;
2516
2517        cfqq->slice_dispatch++;
2518        cfq_clear_cfqq_must_dispatch(cfqq);
2519
2520        /*
2521         * expire an async queue immediately if it has used up its slice. idle
2522         * queue always expire after 1 dispatch round.
2523         */
2524        if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2525            cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2526            cfq_class_idle(cfqq))) {
2527                cfqq->slice_end = jiffies + 1;
2528                cfq_slice_expired(cfqd, 0);
2529        }
2530
2531        cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2532        return 1;
2533}
2534
2535/*
2536 * task holds one reference to the queue, dropped when task exits. each rq
2537 * in-flight on this queue also holds a reference, dropped when rq is freed.
2538 *
2539 * Each cfq queue took a reference on the parent group. Drop it now.
2540 * queue lock must be held here.
2541 */
2542static void cfq_put_queue(struct cfq_queue *cfqq)
2543{
2544        struct cfq_data *cfqd = cfqq->cfqd;
2545        struct cfq_group *cfqg, *orig_cfqg;
2546
2547        BUG_ON(cfqq->ref <= 0);
2548
2549        cfqq->ref--;
2550        if (cfqq->ref)
2551                return;
2552
2553        cfq_log_cfqq(cfqd, cfqq, "put_queue");
2554        BUG_ON(rb_first(&cfqq->sort_list));
2555        BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2556        cfqg = cfqq->cfqg;
2557        orig_cfqg = cfqq->orig_cfqg;
2558
2559        if (unlikely(cfqd->active_queue == cfqq)) {
2560                __cfq_slice_expired(cfqd, cfqq, 0);
2561                cfq_schedule_dispatch(cfqd);
2562        }
2563
2564        BUG_ON(cfq_cfqq_on_rr(cfqq));
2565        kmem_cache_free(cfq_pool, cfqq);
2566        cfq_put_cfqg(cfqg);
2567        if (orig_cfqg)
2568                cfq_put_cfqg(orig_cfqg);
2569}
2570
2571/*
2572 * Must always be called with the rcu_read_lock() held
2573 */
2574static void
2575__call_for_each_cic(struct io_context *ioc,
2576                    void (*func)(struct io_context *, struct cfq_io_context *))
2577{
2578        struct cfq_io_context *cic;
2579        struct hlist_node *n;
2580
2581        hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2582                func(ioc, cic);
2583}
2584
2585/*
2586 * Call func for each cic attached to this ioc.
2587 */
2588static void
2589call_for_each_cic(struct io_context *ioc,
2590                  void (*func)(struct io_context *, struct cfq_io_context *))
2591{
2592        rcu_read_lock();
2593        __call_for_each_cic(ioc, func);
2594        rcu_read_unlock();
2595}
2596
2597static void cfq_cic_free_rcu(struct rcu_head *head)
2598{
2599        struct cfq_io_context *cic;
2600
2601        cic = container_of(head, struct cfq_io_context, rcu_head);
2602
2603        kmem_cache_free(cfq_ioc_pool, cic);
2604        elv_ioc_count_dec(cfq_ioc_count);
2605
2606        if (ioc_gone) {
2607                /*
2608                 * CFQ scheduler is exiting, grab exit lock and check
2609                 * the pending io context count. If it hits zero,
2610                 * complete ioc_gone and set it back to NULL
2611                 */
2612                spin_lock(&ioc_gone_lock);
2613                if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2614                        complete(ioc_gone);
2615                        ioc_gone = NULL;
2616                }
2617                spin_unlock(&ioc_gone_lock);
2618        }
2619}
2620
2621static void cfq_cic_free(struct cfq_io_context *cic)
2622{
2623        call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2624}
2625
2626static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2627{
2628        unsigned long flags;
2629        unsigned long dead_key = (unsigned long) cic->key;
2630
2631        BUG_ON(!(dead_key & CIC_DEAD_KEY));
2632
2633        spin_lock_irqsave(&ioc->lock, flags);
2634        radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2635        hlist_del_rcu(&cic->cic_list);
2636        spin_unlock_irqrestore(&ioc->lock, flags);
2637
2638        cfq_cic_free(cic);
2639}
2640
2641/*
2642 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2643 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2644 * and ->trim() which is called with the task lock held
2645 */
2646static void cfq_free_io_context(struct io_context *ioc)
2647{
2648        /*
2649         * ioc->refcount is zero here, or we are called from elv_unregister(),
2650         * so no more cic's are allowed to be linked into this ioc.  So it
2651         * should be ok to iterate over the known list, we will see all cic's
2652         * since no new ones are added.
2653         */
2654        __call_for_each_cic(ioc, cic_free_func);
2655}
2656
2657static void cfq_put_cooperator(struct cfq_queue *cfqq)
2658{
2659        struct cfq_queue *__cfqq, *next;
2660
2661        /*
2662         * If this queue was scheduled to merge with another queue, be
2663         * sure to drop the reference taken on that queue (and others in
2664         * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2665         */
2666        __cfqq = cfqq->new_cfqq;
2667        while (__cfqq) {
2668                if (__cfqq == cfqq) {
2669                        WARN(1, "cfqq->new_cfqq loop detected\n");
2670                        break;
2671                }
2672                next = __cfqq->new_cfqq;
2673                cfq_put_queue(__cfqq);
2674                __cfqq = next;
2675        }
2676}
2677
2678static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2679{
2680        if (unlikely(cfqq == cfqd->active_queue)) {
2681                __cfq_slice_expired(cfqd, cfqq, 0);
2682                cfq_schedule_dispatch(cfqd);
2683        }
2684
2685        cfq_put_cooperator(cfqq);
2686
2687        cfq_put_queue(cfqq);
2688}
2689
2690static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2691                                         struct cfq_io_context *cic)
2692{
2693        struct io_context *ioc = cic->ioc;
2694
2695        list_del_init(&cic->queue_list);
2696
2697        /*
2698         * Make sure dead mark is seen for dead queues
2699         */
2700        smp_wmb();
2701        cic->key = cfqd_dead_key(cfqd);
2702
2703        if (ioc->ioc_data == cic)
2704                rcu_assign_pointer(ioc->ioc_data, NULL);
2705
2706        if (cic->cfqq[BLK_RW_ASYNC]) {
2707                cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2708                cic->cfqq[BLK_RW_ASYNC] = NULL;
2709        }
2710
2711        if (cic->cfqq[BLK_RW_SYNC]) {
2712                cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2713                cic->cfqq[BLK_RW_SYNC] = NULL;
2714        }
2715}
2716
2717static void cfq_exit_single_io_context(struct io_context *ioc,
2718                                       struct cfq_io_context *cic)
2719{
2720        struct cfq_data *cfqd = cic_to_cfqd(cic);
2721
2722        if (cfqd) {
2723                struct request_queue *q = cfqd->queue;
2724                unsigned long flags;
2725
2726                spin_lock_irqsave(q->queue_lock, flags);
2727
2728                /*
2729                 * Ensure we get a fresh copy of the ->key to prevent
2730                 * race between exiting task and queue
2731                 */
2732                smp_read_barrier_depends();
2733                if (cic->key == cfqd)
2734                        __cfq_exit_single_io_context(cfqd, cic);
2735
2736                spin_unlock_irqrestore(q->queue_lock, flags);
2737        }
2738}
2739
2740/*
2741 * The process that ioc belongs to has exited, we need to clean up
2742 * and put the internal structures we have that belongs to that process.
2743 */
2744static void cfq_exit_io_context(struct io_context *ioc)
2745{
2746        call_for_each_cic(ioc, cfq_exit_single_io_context);
2747}
2748
2749static struct cfq_io_context *
2750cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2751{
2752        struct cfq_io_context *cic;
2753
2754        cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2755                                                        cfqd->queue->node);
2756        if (cic) {
2757                cic->last_end_request = jiffies;
2758                INIT_LIST_HEAD(&cic->queue_list);
2759                INIT_HLIST_NODE(&cic->cic_list);
2760                cic->dtor = cfq_free_io_context;
2761                cic->exit = cfq_exit_io_context;
2762                elv_ioc_count_inc(cfq_ioc_count);
2763        }
2764
2765        return cic;
2766}
2767
2768static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2769{
2770        struct task_struct *tsk = current;
2771        int ioprio_class;
2772
2773        if (!cfq_cfqq_prio_changed(cfqq))
2774                return;
2775
2776        ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2777        switch (ioprio_class) {
2778        default:
2779                printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2780        case IOPRIO_CLASS_NONE:
2781                /*
2782                 * no prio set, inherit CPU scheduling settings
2783                 */
2784                cfqq->ioprio = task_nice_ioprio(tsk);
2785                cfqq->ioprio_class = task_nice_ioclass(tsk);
2786                break;
2787        case IOPRIO_CLASS_RT:
2788                cfqq->ioprio = task_ioprio(ioc);
2789                cfqq->ioprio_class = IOPRIO_CLASS_RT;
2790                break;
2791        case IOPRIO_CLASS_BE:
2792                cfqq->ioprio = task_ioprio(ioc);
2793                cfqq->ioprio_class = IOPRIO_CLASS_BE;
2794                break;
2795        case IOPRIO_CLASS_IDLE:
2796                cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2797                cfqq->ioprio = 7;
2798                cfq_clear_cfqq_idle_window(cfqq);
2799                break;
2800        }
2801
2802        /*
2803         * keep track of original prio settings in case we have to temporarily
2804         * elevate the priority of this queue
2805         */
2806        cfqq->org_ioprio = cfqq->ioprio;
2807        cfqq->org_ioprio_class = cfqq->ioprio_class;
2808        cfq_clear_cfqq_prio_changed(cfqq);
2809}
2810
2811static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2812{
2813        struct cfq_data *cfqd = cic_to_cfqd(cic);
2814        struct cfq_queue *cfqq;
2815        unsigned long flags;
2816
2817        if (unlikely(!cfqd))
2818                return;
2819
2820        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2821
2822        cfqq = cic->cfqq[BLK_RW_ASYNC];
2823        if (cfqq) {
2824                struct cfq_queue *new_cfqq;
2825                new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2826                                                GFP_ATOMIC);
2827                if (new_cfqq) {
2828                        cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2829                        cfq_put_queue(cfqq);
2830                }
2831        }
2832
2833        cfqq = cic->cfqq[BLK_RW_SYNC];
2834        if (cfqq)
2835                cfq_mark_cfqq_prio_changed(cfqq);
2836
2837        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2838}
2839
2840static void cfq_ioc_set_ioprio(struct io_context *ioc)
2841{
2842        call_for_each_cic(ioc, changed_ioprio);
2843        ioc->ioprio_changed = 0;
2844}
2845
2846static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2847                          pid_t pid, bool is_sync)
2848{
2849        RB_CLEAR_NODE(&cfqq->rb_node);
2850        RB_CLEAR_NODE(&cfqq->p_node);
2851        INIT_LIST_HEAD(&cfqq->fifo);
2852
2853        cfqq->ref = 0;
2854        cfqq->cfqd = cfqd;
2855
2856        cfq_mark_cfqq_prio_changed(cfqq);
2857
2858        if (is_sync) {
2859                if (!cfq_class_idle(cfqq))
2860                        cfq_mark_cfqq_idle_window(cfqq);
2861                cfq_mark_cfqq_sync(cfqq);
2862        }
2863        cfqq->pid = pid;
2864}
2865
2866#ifdef CONFIG_CFQ_GROUP_IOSCHED
2867static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2868{
2869        struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2870        struct cfq_data *cfqd = cic_to_cfqd(cic);
2871        unsigned long flags;
2872        struct request_queue *q;
2873
2874        if (unlikely(!cfqd))
2875                return;
2876
2877        q = cfqd->queue;
2878
2879        spin_lock_irqsave(q->queue_lock, flags);
2880
2881        if (sync_cfqq) {
2882                /*
2883                 * Drop reference to sync queue. A new sync queue will be
2884                 * assigned in new group upon arrival of a fresh request.
2885                 */
2886                cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2887                cic_set_cfqq(cic, NULL, 1);
2888                cfq_put_queue(sync_cfqq);
2889        }
2890
2891        spin_unlock_irqrestore(q->queue_lock, flags);
2892}
2893
2894static void cfq_ioc_set_cgroup(struct io_context *ioc)
2895{
2896        call_for_each_cic(ioc, changed_cgroup);
2897        ioc->cgroup_changed = 0;
2898}
2899#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2900
2901static struct cfq_queue *
2902cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2903                     struct io_context *ioc, gfp_t gfp_mask)
2904{
2905        struct cfq_queue *cfqq, *new_cfqq = NULL;
2906        struct cfq_io_context *cic;
2907        struct cfq_group *cfqg;
2908
2909retry:
2910        cfqg = cfq_get_cfqg(cfqd, 1);
2911        cic = cfq_cic_lookup(cfqd, ioc);
2912        /* cic always exists here */
2913        cfqq = cic_to_cfqq(cic, is_sync);
2914
2915        /*
2916         * Always try a new alloc if we fell back to the OOM cfqq
2917         * originally, since it should just be a temporary situation.
2918         */
2919        if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2920                cfqq = NULL;
2921                if (new_cfqq) {
2922                        cfqq = new_cfqq;
2923                        new_cfqq = NULL;
2924                } else if (gfp_mask & __GFP_WAIT) {
2925                        spin_unlock_irq(cfqd->queue->queue_lock);
2926                        new_cfqq = kmem_cache_alloc_node(cfq_pool,
2927                                        gfp_mask | __GFP_ZERO,
2928                                        cfqd->queue->node);
2929                        spin_lock_irq(cfqd->queue->queue_lock);
2930                        if (new_cfqq)
2931                                goto retry;
2932                } else {
2933                        cfqq = kmem_cache_alloc_node(cfq_pool,
2934                                        gfp_mask | __GFP_ZERO,
2935                                        cfqd->queue->node);
2936                }
2937
2938                if (cfqq) {
2939                        cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2940                        cfq_init_prio_data(cfqq, ioc);
2941                        cfq_link_cfqq_cfqg(cfqq, cfqg);
2942                        cfq_log_cfqq(cfqd, cfqq, "alloced");
2943                } else
2944                        cfqq = &cfqd->oom_cfqq;
2945        }
2946
2947        if (new_cfqq)
2948                kmem_cache_free(cfq_pool, new_cfqq);
2949
2950        return cfqq;
2951}
2952
2953static struct cfq_queue **
2954cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2955{
2956        switch (ioprio_class) {
2957        case IOPRIO_CLASS_RT:
2958                return &cfqd->async_cfqq[0][ioprio];
2959        case IOPRIO_CLASS_BE:
2960                return &cfqd->async_cfqq[1][ioprio];
2961        case IOPRIO_CLASS_IDLE:
2962                return &cfqd->async_idle_cfqq;
2963        default:
2964                BUG();
2965        }
2966}
2967
2968static struct cfq_queue *
2969cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2970              gfp_t gfp_mask)
2971{
2972        const int ioprio = task_ioprio(ioc);
2973        const int ioprio_class = task_ioprio_class(ioc);
2974        struct cfq_queue **async_cfqq = NULL;
2975        struct cfq_queue *cfqq = NULL;
2976
2977        if (!is_sync) {
2978                async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2979                cfqq = *async_cfqq;
2980        }
2981
2982        if (!cfqq)
2983                cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2984
2985        /*
2986         * pin the queue now that it's allocated, scheduler exit will prune it
2987         */
2988        if (!is_sync && !(*async_cfqq)) {
2989                cfqq->ref++;
2990                *async_cfqq = cfqq;
2991        }
2992
2993        cfqq->ref++;
2994        return cfqq;
2995}
2996
2997/*
2998 * We drop cfq io contexts lazily, so we may find a dead one.
2999 */
3000static void
3001cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3002                  struct cfq_io_context *cic)
3003{
3004        unsigned long flags;
3005
3006        WARN_ON(!list_empty(&cic->queue_list));
3007        BUG_ON(cic->key != cfqd_dead_key(cfqd));
3008
3009        spin_lock_irqsave(&ioc->lock, flags);
3010
3011        BUG_ON(ioc->ioc_data == cic);
3012
3013        radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3014        hlist_del_rcu(&cic->cic_list);
3015        spin_unlock_irqrestore(&ioc->lock, flags);
3016
3017        cfq_cic_free(cic);
3018}
3019
3020static struct cfq_io_context *
3021cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3022{
3023        struct cfq_io_context *cic;
3024        unsigned long flags;
3025
3026        if (unlikely(!ioc))
3027                return NULL;
3028
3029        rcu_read_lock();
3030
3031        /*
3032         * we maintain a last-hit cache, to avoid browsing over the tree
3033         */
3034        cic = rcu_dereference(ioc->ioc_data);
3035        if (cic && cic->key == cfqd) {
3036                rcu_read_unlock();
3037                return cic;
3038        }
3039
3040        do {
3041                cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3042                rcu_read_unlock();
3043                if (!cic)
3044                        break;
3045                if (unlikely(cic->key != cfqd)) {
3046                        cfq_drop_dead_cic(cfqd, ioc, cic);
3047                        rcu_read_lock();
3048                        continue;
3049                }
3050
3051                spin_lock_irqsave(&ioc->lock, flags);
3052                rcu_assign_pointer(ioc->ioc_data, cic);
3053                spin_unlock_irqrestore(&ioc->lock, flags);
3054                break;
3055        } while (1);
3056
3057        return cic;
3058}
3059
3060/*
3061 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3062 * the process specific cfq io context when entered from the block layer.
3063 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3064 */
3065static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3066                        struct cfq_io_context *cic, gfp_t gfp_mask)
3067{
3068        unsigned long flags;
3069        int ret;
3070
3071        ret = radix_tree_preload(gfp_mask);
3072        if (!ret) {
3073                cic->ioc = ioc;
3074                cic->key = cfqd;
3075
3076                spin_lock_irqsave(&ioc->lock, flags);
3077                ret = radix_tree_insert(&ioc->radix_root,
3078                                                cfqd->cic_index, cic);
3079                if (!ret)
3080                        hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3081                spin_unlock_irqrestore(&ioc->lock, flags);
3082
3083                radix_tree_preload_end();
3084
3085                if (!ret) {
3086                        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3087                        list_add(&cic->queue_list, &cfqd->cic_list);
3088                        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3089                }
3090        }
3091
3092        if (ret)
3093                printk(KERN_ERR "cfq: cic link failed!\n");
3094
3095        return ret;
3096}
3097
3098/*
3099 * Setup general io context and cfq io context. There can be several cfq
3100 * io contexts per general io context, if this process is doing io to more
3101 * than one device managed by cfq.
3102 */
3103static struct cfq_io_context *
3104cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3105{
3106        struct io_context *ioc = NULL;
3107        struct cfq_io_context *cic;
3108
3109        might_sleep_if(gfp_mask & __GFP_WAIT);
3110
3111        ioc = get_io_context(gfp_mask, cfqd->queue->node);
3112        if (!ioc)
3113                return NULL;
3114
3115        cic = cfq_cic_lookup(cfqd, ioc);
3116        if (cic)
3117                goto out;
3118
3119        cic = cfq_alloc_io_context(cfqd, gfp_mask);
3120        if (cic == NULL)
3121                goto err;
3122
3123        if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3124                goto err_free;
3125
3126out:
3127        smp_read_barrier_depends();
3128        if (unlikely(ioc->ioprio_changed))
3129                cfq_ioc_set_ioprio(ioc);
3130
3131#ifdef CONFIG_CFQ_GROUP_IOSCHED
3132        if (unlikely(ioc->cgroup_changed))
3133                cfq_ioc_set_cgroup(ioc);
3134#endif
3135        return cic;
3136err_free:
3137        cfq_cic_free(cic);
3138err:
3139        put_io_context(ioc);
3140        return NULL;
3141}
3142
3143static void
3144cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3145{
3146        unsigned long elapsed = jiffies - cic->last_end_request;
3147        unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3148
3149        cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3150        cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3151        cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3152}
3153
3154static void
3155cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3156                       struct request *rq)
3157{
3158        sector_t sdist = 0;
3159        sector_t n_sec = blk_rq_sectors(rq);
3160        if (cfqq->last_request_pos) {
3161                if (cfqq->last_request_pos < blk_rq_pos(rq))
3162                        sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3163                else
3164                        sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3165        }
3166
3167        cfqq->seek_history <<= 1;
3168        if (blk_queue_nonrot(cfqd->queue))
3169                cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3170        else
3171                cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3172}
3173
3174/*
3175 * Disable idle window if the process thinks too long or seeks so much that
3176 * it doesn't matter
3177 */
3178static void
3179cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3180                       struct cfq_io_context *cic)
3181{
3182        int old_idle, enable_idle;
3183
3184        /*
3185         * Don't idle for async or idle io prio class
3186         */
3187        if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3188                return;
3189
3190        enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3191
3192        if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3193                cfq_mark_cfqq_deep(cfqq);
3194
3195        if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3196                enable_idle = 0;
3197        else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3198            (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3199                enable_idle = 0;
3200        else if (sample_valid(cic->ttime_samples)) {
3201                if (cic->ttime_mean > cfqd->cfq_slice_idle)
3202                        enable_idle = 0;
3203                else
3204                        enable_idle = 1;
3205        }
3206
3207        if (old_idle != enable_idle) {
3208                cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3209                if (enable_idle)
3210                        cfq_mark_cfqq_idle_window(cfqq);
3211                else
3212                        cfq_clear_cfqq_idle_window(cfqq);
3213        }
3214}
3215
3216/*
3217 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3218 * no or if we aren't sure, a 1 will cause a preempt.
3219 */
3220static bool
3221cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3222                   struct request *rq)
3223{
3224        struct cfq_queue *cfqq;
3225
3226        cfqq = cfqd->active_queue;
3227        if (!cfqq)
3228                return false;
3229
3230        if (cfq_class_idle(new_cfqq))
3231                return false;
3232
3233        if (cfq_class_idle(cfqq))
3234                return true;
3235
3236        /*
3237         * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3238         */
3239        if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3240                return false;
3241
3242        /*
3243         * if the new request is sync, but the currently running queue is
3244         * not, let the sync request have priority.
3245         */
3246        if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3247                return true;
3248
3249        if (new_cfqq->cfqg != cfqq->cfqg)
3250                return false;
3251
3252        if (cfq_slice_used(cfqq))
3253                return true;
3254
3255        /* Allow preemption only if we are idling on sync-noidle tree */
3256        if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3257            cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3258            new_cfqq->service_tree->count == 2 &&
3259            RB_EMPTY_ROOT(&cfqq->sort_list))
3260                return true;
3261
3262        /*
3263         * So both queues are sync. Let the new request get disk time if
3264         * it's a metadata request and the current queue is doing regular IO.
3265         */
3266        if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3267                return true;
3268
3269        /*
3270         * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3271         */
3272        if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3273                return true;
3274
3275        /* An idle queue should not be idle now for some reason */
3276        if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3277                return true;
3278
3279        if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3280                return false;
3281
3282        /*
3283         * if this request is as-good as one we would expect from the
3284         * current cfqq, let it preempt
3285         */
3286        if (cfq_rq_close(cfqd, cfqq, rq))
3287                return true;
3288
3289        return false;
3290}
3291
3292/*
3293 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3294 * let it have half of its nominal slice.
3295 */
3296static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3297{
3298        struct cfq_queue *old_cfqq = cfqd->active_queue;
3299
3300        cfq_log_cfqq(cfqd, cfqq, "preempt");
3301        cfq_slice_expired(cfqd, 1);
3302
3303        /*
3304         * workload type is changed, don't save slice, otherwise preempt
3305         * doesn't happen
3306         */
3307        if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3308                cfqq->cfqg->saved_workload_slice = 0;
3309
3310        /*
3311         * Put the new queue at the front of the of the current list,
3312         * so we know that it will be selected next.
3313         */
3314        BUG_ON(!cfq_cfqq_on_rr(cfqq));
3315
3316        cfq_service_tree_add(cfqd, cfqq, 1);
3317
3318        cfqq->slice_end = 0;
3319        cfq_mark_cfqq_slice_new(cfqq);
3320}
3321
3322/*
3323 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3324 * something we should do about it
3325 */
3326static void
3327cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3328                struct request *rq)
3329{
3330        struct cfq_io_context *cic = RQ_CIC(rq);
3331
3332        cfqd->rq_queued++;
3333        if (rq->cmd_flags & REQ_META)
3334                cfqq->meta_pending++;
3335
3336        cfq_update_io_thinktime(cfqd, cic);
3337        cfq_update_io_seektime(cfqd, cfqq, rq);
3338        cfq_update_idle_window(cfqd, cfqq, cic);
3339
3340        cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3341
3342        if (cfqq == cfqd->active_queue) {
3343                /*
3344                 * Remember that we saw a request from this process, but
3345                 * don't start queuing just yet. Otherwise we risk seeing lots
3346                 * of tiny requests, because we disrupt the normal plugging
3347                 * and merging. If the request is already larger than a single
3348                 * page, let it rip immediately. For that case we assume that
3349                 * merging is already done. Ditto for a busy system that
3350                 * has other work pending, don't risk delaying until the
3351                 * idle timer unplug to continue working.
3352                 */
3353                if (cfq_cfqq_wait_request(cfqq)) {
3354                        if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3355                            cfqd->busy_queues > 1) {
3356                                cfq_del_timer(cfqd, cfqq);
3357                                cfq_clear_cfqq_wait_request(cfqq);
3358                                __blk_run_queue(cfqd->queue, false);
3359                        } else {
3360                                cfq_blkiocg_update_idle_time_stats(
3361                                                &cfqq->cfqg->blkg);
3362                                cfq_mark_cfqq_must_dispatch(cfqq);
3363                        }
3364                }
3365        } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3366                /*
3367                 * not the active queue - expire current slice if it is
3368                 * idle and has expired it's mean thinktime or this new queue
3369                 * has some old slice time left and is of higher priority or
3370                 * this new queue is RT and the current one is BE
3371                 */
3372                cfq_preempt_queue(cfqd, cfqq);
3373                __blk_run_queue(cfqd->queue, false);
3374        }
3375}
3376
3377static void cfq_insert_request(struct request_queue *q, struct request *rq)
3378{
3379        struct cfq_data *cfqd = q->elevator->elevator_data;
3380        struct cfq_queue *cfqq = RQ_CFQQ(rq);
3381
3382        cfq_log_cfqq(cfqd, cfqq, "insert_request");
3383        cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3384
3385        rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3386        list_add_tail(&rq->queuelist, &cfqq->fifo);
3387        cfq_add_rq_rb(rq);
3388        cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3389                        &cfqd->serving_group->blkg, rq_data_dir(rq),
3390                        rq_is_sync(rq));
3391        cfq_rq_enqueued(cfqd, cfqq, rq);
3392}
3393
3394/*
3395 * Update hw_tag based on peak queue depth over 50 samples under
3396 * sufficient load.
3397 */
3398static void cfq_update_hw_tag(struct cfq_data *cfqd)
3399{
3400        struct cfq_queue *cfqq = cfqd->active_queue;
3401
3402        if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3403                cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3404
3405        if (cfqd->hw_tag == 1)
3406                return;
3407
3408        if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3409            cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3410                return;
3411
3412        /*
3413         * If active queue hasn't enough requests and can idle, cfq might not
3414         * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3415         * case
3416         */
3417        if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3418            cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3419            CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3420                return;
3421
3422        if (cfqd->hw_tag_samples++ < 50)
3423                return;
3424
3425        if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3426                cfqd->hw_tag = 1;
3427        else
3428                cfqd->hw_tag = 0;
3429}
3430
3431static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3432{
3433        struct cfq_io_context *cic = cfqd->active_cic;
3434
3435        /* If the queue already has requests, don't wait */
3436        if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3437                return false;
3438
3439        /* If there are other queues in the group, don't wait */
3440        if (cfqq->cfqg->nr_cfqq > 1)
3441                return false;
3442
3443        if (cfq_slice_used(cfqq))
3444                return true;
3445
3446        /* if slice left is less than think time, wait busy */
3447        if (cic && sample_valid(cic->ttime_samples)
3448            && (cfqq->slice_end - jiffies < cic->ttime_mean))
3449                return true;
3450
3451        /*
3452         * If think times is less than a jiffy than ttime_mean=0 and above
3453         * will not be true. It might happen that slice has not expired yet
3454         * but will expire soon (4-5 ns) during select_queue(). To cover the
3455         * case where think time is less than a jiffy, mark the queue wait
3456         * busy if only 1 jiffy is left in the slice.
3457         */
3458        if (cfqq->slice_end - jiffies == 1)
3459                return true;
3460
3461        return false;
3462}
3463
3464static void cfq_completed_request(struct request_queue *q, struct request *rq)
3465{
3466        struct cfq_queue *cfqq = RQ_CFQQ(rq);
3467        struct cfq_data *cfqd = cfqq->cfqd;
3468        const int sync = rq_is_sync(rq);
3469        unsigned long now;
3470
3471        now = jiffies;
3472        cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3473                     !!(rq->cmd_flags & REQ_NOIDLE));
3474
3475        cfq_update_hw_tag(cfqd);
3476
3477        WARN_ON(!cfqd->rq_in_driver);
3478        WARN_ON(!cfqq->dispatched);
3479        cfqd->rq_in_driver--;
3480        cfqq->dispatched--;
3481        (RQ_CFQG(rq))->dispatched--;
3482        cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3483                        rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3484                        rq_data_dir(rq), rq_is_sync(rq));
3485
3486        cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3487
3488        if (sync) {
3489                RQ_CIC(rq)->last_end_request = now;
3490                if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3491                        cfqd->last_delayed_sync = now;
3492        }
3493
3494        /*
3495         * If this is the active queue, check if it needs to be expired,
3496         * or if we want to idle in case it has no pending requests.
3497         */
3498        if (cfqd->active_queue == cfqq) {
3499                const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3500
3501                if (cfq_cfqq_slice_new(cfqq)) {
3502                        cfq_set_prio_slice(cfqd, cfqq);
3503                        cfq_clear_cfqq_slice_new(cfqq);
3504                }
3505
3506                /*
3507                 * Should we wait for next request to come in before we expire
3508                 * the queue.
3509                 */
3510                if (cfq_should_wait_busy(cfqd, cfqq)) {
3511                        unsigned long extend_sl = cfqd->cfq_slice_idle;
3512                        if (!cfqd->cfq_slice_idle)
3513                                extend_sl = cfqd->cfq_group_idle;
3514                        cfqq->slice_end = jiffies + extend_sl;
3515                        cfq_mark_cfqq_wait_busy(cfqq);
3516                        cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3517                }
3518
3519                /*
3520                 * Idling is not enabled on:
3521                 * - expired queues
3522                 * - idle-priority queues
3523                 * - async queues
3524                 * - queues with still some requests queued
3525                 * - when there is a close cooperator
3526                 */
3527                if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3528                        cfq_slice_expired(cfqd, 1);
3529                else if (sync && cfqq_empty &&
3530                         !cfq_close_cooperator(cfqd, cfqq)) {
3531                        cfq_arm_slice_timer(cfqd);
3532                }
3533        }
3534
3535        if (!cfqd->rq_in_driver)
3536                cfq_schedule_dispatch(cfqd);
3537}
3538
3539/*
3540 * we temporarily boost lower priority queues if they are holding fs exclusive
3541 * resources. they are boosted to normal prio (CLASS_BE/4)
3542 */
3543static void cfq_prio_boost(struct cfq_queue *cfqq)
3544{
3545        if (has_fs_excl()) {
3546                /*
3547                 * boost idle prio on transactions that would lock out other
3548                 * users of the filesystem
3549                 */
3550                if (cfq_class_idle(cfqq))
3551                        cfqq->ioprio_class = IOPRIO_CLASS_BE;
3552                if (cfqq->ioprio > IOPRIO_NORM)
3553                        cfqq->ioprio = IOPRIO_NORM;
3554        } else {
3555                /*
3556                 * unboost the queue (if needed)
3557                 */
3558                cfqq->ioprio_class = cfqq->org_ioprio_class;
3559                cfqq->ioprio = cfqq->org_ioprio;
3560        }
3561}
3562
3563static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3564{
3565        if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3566                cfq_mark_cfqq_must_alloc_slice(cfqq);
3567                return ELV_MQUEUE_MUST;
3568        }
3569
3570        return ELV_MQUEUE_MAY;
3571}
3572
3573static int cfq_may_queue(struct request_queue *q, int rw)
3574{
3575        struct cfq_data *cfqd = q->elevator->elevator_data;
3576        struct task_struct *tsk = current;
3577        struct cfq_io_context *cic;
3578        struct cfq_queue *cfqq;
3579
3580        /*
3581         * don't force setup of a queue from here, as a call to may_queue
3582         * does not necessarily imply that a request actually will be queued.
3583         * so just lookup a possibly existing queue, or return 'may queue'
3584         * if that fails
3585         */
3586        cic = cfq_cic_lookup(cfqd, tsk->io_context);
3587        if (!cic)
3588                return ELV_MQUEUE_MAY;
3589
3590        cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3591        if (cfqq) {
3592                cfq_init_prio_data(cfqq, cic->ioc);
3593                cfq_prio_boost(cfqq);
3594
3595                return __cfq_may_queue(cfqq);
3596        }
3597
3598        return ELV_MQUEUE_MAY;
3599}
3600
3601/*
3602 * queue lock held here
3603 */
3604static void cfq_put_request(struct request *rq)
3605{
3606        struct cfq_queue *cfqq = RQ_CFQQ(rq);
3607
3608        if (cfqq) {
3609                const int rw = rq_data_dir(rq);
3610
3611                BUG_ON(!cfqq->allocated[rw]);
3612                cfqq->allocated[rw]--;
3613
3614                put_io_context(RQ_CIC(rq)->ioc);
3615
3616                rq->elevator_private = NULL;
3617                rq->elevator_private2 = NULL;
3618
3619                /* Put down rq reference on cfqg */
3620                cfq_put_cfqg(RQ_CFQG(rq));
3621                rq->elevator_private3 = NULL;
3622
3623                cfq_put_queue(cfqq);
3624        }
3625}
3626
3627static struct cfq_queue *
3628cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3629                struct cfq_queue *cfqq)
3630{
3631        cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3632        cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3633        cfq_mark_cfqq_coop(cfqq->new_cfqq);
3634        cfq_put_queue(cfqq);
3635        return cic_to_cfqq(cic, 1);
3636}
3637
3638/*
3639 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3640 * was the last process referring to said cfqq.
3641 */
3642static struct cfq_queue *
3643split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3644{
3645        if (cfqq_process_refs(cfqq) == 1) {
3646                cfqq->pid = current->pid;
3647                cfq_clear_cfqq_coop(cfqq);
3648                cfq_clear_cfqq_split_coop(cfqq);
3649                return cfqq;
3650        }
3651
3652        cic_set_cfqq(cic, NULL, 1);
3653
3654        cfq_put_cooperator(cfqq);
3655
3656        cfq_put_queue(cfqq);
3657        return NULL;
3658}
3659/*
3660 * Allocate cfq data structures associated with this request.
3661 */
3662static int
3663cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3664{
3665        struct cfq_data *cfqd = q->elevator->elevator_data;
3666        struct cfq_io_context *cic;
3667        const int rw = rq_data_dir(rq);
3668        const bool is_sync = rq_is_sync(rq);
3669        struct cfq_queue *cfqq;
3670        unsigned long flags;
3671
3672        might_sleep_if(gfp_mask & __GFP_WAIT);
3673
3674        cic = cfq_get_io_context(cfqd, gfp_mask);
3675
3676        spin_lock_irqsave(q->queue_lock, flags);
3677
3678        if (!cic)
3679                goto queue_fail;
3680
3681new_queue:
3682        cfqq = cic_to_cfqq(cic, is_sync);
3683        if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3684                cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3685                cic_set_cfqq(cic, cfqq, is_sync);
3686        } else {
3687                /*
3688                 * If the queue was seeky for too long, break it apart.
3689                 */
3690                if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3691                        cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3692                        cfqq = split_cfqq(cic, cfqq);
3693                        if (!cfqq)
3694                                goto new_queue;
3695                }
3696
3697                /*
3698                 * Check to see if this queue is scheduled to merge with
3699                 * another, closely cooperating queue.  The merging of
3700                 * queues happens here as it must be done in process context.
3701                 * The reference on new_cfqq was taken in merge_cfqqs.
3702                 */
3703                if (cfqq->new_cfqq)
3704                        cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3705        }
3706
3707        cfqq->allocated[rw]++;
3708        cfqq->ref++;
3709        rq->elevator_private = cic;
3710        rq->elevator_private2 = cfqq;
3711        rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3712
3713        spin_unlock_irqrestore(q->queue_lock, flags);
3714
3715        return 0;
3716
3717queue_fail:
3718        if (cic)
3719                put_io_context(cic->ioc);
3720
3721        cfq_schedule_dispatch(cfqd);
3722        spin_unlock_irqrestore(q->queue_lock, flags);
3723        cfq_log(cfqd, "set_request fail");
3724        return 1;
3725}
3726
3727static void cfq_kick_queue(struct work_struct *work)
3728{
3729        struct cfq_data *cfqd =
3730                container_of(work, struct cfq_data, unplug_work);
3731        struct request_queue *q = cfqd->queue;
3732
3733        spin_lock_irq(q->queue_lock);
3734        __blk_run_queue(cfqd->queue, false);
3735        spin_unlock_irq(q->queue_lock);
3736}
3737
3738/*
3739 * Timer running if the active_queue is currently idling inside its time slice
3740 */
3741static void cfq_idle_slice_timer(unsigned long data)
3742{
3743        struct cfq_data *cfqd = (struct cfq_data *) data;
3744        struct cfq_queue *cfqq;
3745        unsigned long flags;
3746        int timed_out = 1;
3747
3748        cfq_log(cfqd, "idle timer fired");
3749
3750        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3751
3752        cfqq = cfqd->active_queue;
3753        if (cfqq) {
3754                timed_out = 0;
3755
3756                /*
3757                 * We saw a request before the queue expired, let it through
3758                 */
3759                if (cfq_cfqq_must_dispatch(cfqq))
3760                        goto out_kick;
3761
3762                /*
3763                 * expired
3764                 */
3765                if (cfq_slice_used(cfqq))
3766                        goto expire;
3767
3768                /*
3769                 * only expire and reinvoke request handler, if there are
3770                 * other queues with pending requests
3771                 */
3772                if (!cfqd->busy_queues)
3773                        goto out_cont;
3774
3775                /*
3776                 * not expired and it has a request pending, let it dispatch
3777                 */
3778                if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3779                        goto out_kick;
3780
3781                /*
3782                 * Queue depth flag is reset only when the idle didn't succeed
3783                 */
3784                cfq_clear_cfqq_deep(cfqq);
3785        }
3786expire:
3787        cfq_slice_expired(cfqd, timed_out);
3788out_kick:
3789        cfq_schedule_dispatch(cfqd);
3790out_cont:
3791        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3792}
3793
3794static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3795{
3796        del_timer_sync(&cfqd->idle_slice_timer);
3797        cancel_work_sync(&cfqd->unplug_work);
3798}
3799
3800static void cfq_put_async_queues(struct cfq_data *cfqd)
3801{
3802        int i;
3803
3804        for (i = 0; i < IOPRIO_BE_NR; i++) {
3805                if (cfqd->async_cfqq[0][i])
3806                        cfq_put_queue(cfqd->async_cfqq[0][i]);
3807                if (cfqd->async_cfqq[1][i])
3808                        cfq_put_queue(cfqd->async_cfqq[1][i]);
3809        }
3810
3811        if (cfqd->async_idle_cfqq)
3812                cfq_put_queue(cfqd->async_idle_cfqq);
3813}
3814
3815static void cfq_cfqd_free(struct rcu_head *head)
3816{
3817        kfree(container_of(head, struct cfq_data, rcu));
3818}
3819
3820static void cfq_exit_queue(struct elevator_queue *e)
3821{
3822        struct cfq_data *cfqd = e->elevator_data;
3823        struct request_queue *q = cfqd->queue;
3824
3825        cfq_shutdown_timer_wq(cfqd);
3826
3827        spin_lock_irq(q->queue_lock);
3828
3829        if (cfqd->active_queue)
3830                __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3831
3832        while (!list_empty(&cfqd->cic_list)) {
3833                struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3834                                                        struct cfq_io_context,
3835                                                        queue_list);
3836
3837                __cfq_exit_single_io_context(cfqd, cic);
3838        }
3839
3840        cfq_put_async_queues(cfqd);
3841        cfq_release_cfq_groups(cfqd);
3842        cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3843
3844        spin_unlock_irq(q->queue_lock);
3845
3846        cfq_shutdown_timer_wq(cfqd);
3847
3848        spin_lock(&cic_index_lock);
3849        ida_remove(&cic_index_ida, cfqd->cic_index);
3850        spin_unlock(&cic_index_lock);
3851
3852        /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3853        call_rcu(&cfqd->rcu, cfq_cfqd_free);
3854}
3855
3856static int cfq_alloc_cic_index(void)
3857{
3858        int index, error;
3859
3860        do {
3861                if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3862                        return -ENOMEM;
3863
3864                spin_lock(&cic_index_lock);
3865                error = ida_get_new(&cic_index_ida, &index);
3866                spin_unlock(&cic_index_lock);
3867                if (error && error != -EAGAIN)
3868                        return error;
3869        } while (error);
3870
3871        return index;
3872}
3873
3874static void *cfq_init_queue(struct request_queue *q)
3875{
3876        struct cfq_data *cfqd;
3877        int i, j;
3878        struct cfq_group *cfqg;
3879        struct cfq_rb_root *st;
3880
3881        i = cfq_alloc_cic_index();
3882        if (i < 0)
3883                return NULL;
3884
3885        cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3886        if (!cfqd)
3887                return NULL;
3888
3889        /*
3890         * Don't need take queue_lock in the routine, since we are
3891         * initializing the ioscheduler, and nobody is using cfqd
3892         */
3893        cfqd->cic_index = i;
3894
3895        /* Init root service tree */
3896        cfqd->grp_service_tree = CFQ_RB_ROOT;
3897
3898        /* Init root group */
3899        cfqg = &cfqd->root_group;
3900        for_each_cfqg_st(cfqg, i, j, st)
3901                *st = CFQ_RB_ROOT;
3902        RB_CLEAR_NODE(&cfqg->rb_node);
3903
3904        /* Give preference to root group over other groups */
3905        cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3906
3907#ifdef CONFIG_CFQ_GROUP_IOSCHED
3908        /*
3909         * Take a reference to root group which we never drop. This is just
3910         * to make sure that cfq_put_cfqg() does not try to kfree root group
3911         */
3912        cfqg->ref = 1;
3913        rcu_read_lock();
3914        cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3915                                        (void *)cfqd, 0);
3916        rcu_read_unlock();
3917#endif
3918        /*
3919         * Not strictly needed (since RB_ROOT just clears the node and we
3920         * zeroed cfqd on alloc), but better be safe in case someone decides
3921         * to add magic to the rb code
3922         */
3923        for (i = 0; i < CFQ_PRIO_LISTS; i++)
3924                cfqd->prio_trees[i] = RB_ROOT;
3925
3926        /*
3927         * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3928         * Grab a permanent reference to it, so that the normal code flow
3929         * will not attempt to free it.
3930         */
3931        cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3932        cfqd->oom_cfqq.ref++;
3933        cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3934
3935        INIT_LIST_HEAD(&cfqd->cic_list);
3936
3937        cfqd->queue = q;
3938
3939        init_timer(&cfqd->idle_slice_timer);
3940        cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3941        cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3942
3943        INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3944
3945        cfqd->cfq_quantum = cfq_quantum;
3946        cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3947        cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3948        cfqd->cfq_back_max = cfq_back_max;
3949        cfqd->cfq_back_penalty = cfq_back_penalty;
3950        cfqd->cfq_slice[0] = cfq_slice_async;
3951        cfqd->cfq_slice[1] = cfq_slice_sync;
3952        cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3953        cfqd->cfq_slice_idle = cfq_slice_idle;
3954        cfqd->cfq_group_idle = cfq_group_idle;
3955        cfqd->cfq_latency = 1;
3956        cfqd->cfq_group_isolation = 0;
3957        cfqd->hw_tag = -1;
3958        /*
3959         * we optimistically start assuming sync ops weren't delayed in last
3960         * second, in order to have larger depth for async operations.
3961         */
3962        cfqd->last_delayed_sync = jiffies - HZ;
3963        return cfqd;
3964}
3965
3966static void cfq_slab_kill(void)
3967{
3968        /*
3969         * Caller already ensured that pending RCU callbacks are completed,
3970         * so we should have no busy allocations at this point.
3971         */
3972        if (cfq_pool)
3973                kmem_cache_destroy(cfq_pool);
3974        if (cfq_ioc_pool)
3975                kmem_cache_destroy(cfq_ioc_pool);
3976}
3977
3978static int __init cfq_slab_setup(void)
3979{
3980        cfq_pool = KMEM_CACHE(cfq_queue, 0);
3981        if (!cfq_pool)
3982                goto fail;
3983
3984        cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3985        if (!cfq_ioc_pool)
3986                goto fail;
3987
3988        return 0;
3989fail:
3990        cfq_slab_kill();
3991        return -ENOMEM;
3992}
3993
3994/*
3995 * sysfs parts below -->
3996 */
3997static ssize_t
3998cfq_var_show(unsigned int var, char *page)
3999{
4000        return sprintf(page, "%d\n", var);
4001}
4002
4003static ssize_t
4004cfq_var_store(unsigned int *var, const char *page, size_t count)
4005{
4006        char *p = (char *) page;
4007
4008        *var = simple_strtoul(p, &p, 10);
4009        return count;
4010}
4011
4012#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
4013static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
4014{                                                                       \
4015        struct cfq_data *cfqd = e->elevator_data;                       \
4016        unsigned int __data = __VAR;                                    \
4017        if (__CONV)                                                     \
4018                __data = jiffies_to_msecs(__data);                      \
4019        return cfq_var_show(__data, (page));                            \
4020}
4021SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4022SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4023SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4024SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4025SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4026SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4027SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4028SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4029SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4030SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4031SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4032SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
4033#undef SHOW_FUNCTION
4034
4035#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
4036static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4037{                                                                       \
4038        struct cfq_data *cfqd = e->elevator_data;                       \
4039        unsigned int __data;                                            \
4040        int ret = cfq_var_store(&__data, (page), count);                \
4041        if (__data < (MIN))                                             \
4042                __data = (MIN);                                         \
4043        else if (__data > (MAX))                                        \
4044                __data = (MAX);                                         \
4045        if (__CONV)                                                     \
4046                *(__PTR) = msecs_to_jiffies(__data);                    \
4047        else                                                            \
4048                *(__PTR) = __data;                                      \
4049        return ret;                                                     \
4050}
4051STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4052STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4053                UINT_MAX, 1);
4054STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4055                UINT_MAX, 1);
4056STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4057STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4058                UINT_MAX, 0);
4059STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4060STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4061STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4062STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4063STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4064                UINT_MAX, 0);
4065STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4066STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
4067#undef STORE_FUNCTION
4068
4069#define CFQ_ATTR(name) \
4070        __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4071
4072static struct elv_fs_entry cfq_attrs[] = {
4073        CFQ_ATTR(quantum),
4074        CFQ_ATTR(fifo_expire_sync),
4075        CFQ_ATTR(fifo_expire_async),
4076        CFQ_ATTR(back_seek_max),
4077        CFQ_ATTR(back_seek_penalty),
4078        CFQ_ATTR(slice_sync),
4079        CFQ_ATTR(slice_async),
4080        CFQ_ATTR(slice_async_rq),
4081        CFQ_ATTR(slice_idle),
4082        CFQ_ATTR(group_idle),
4083        CFQ_ATTR(low_latency),
4084        CFQ_ATTR(group_isolation),
4085        __ATTR_NULL
4086};
4087
4088static struct elevator_type iosched_cfq = {
4089        .ops = {
4090                .elevator_merge_fn =            cfq_merge,
4091                .elevator_merged_fn =           cfq_merged_request,
4092                .elevator_merge_req_fn =        cfq_merged_requests,
4093                .elevator_allow_merge_fn =      cfq_allow_merge,
4094                .elevator_bio_merged_fn =       cfq_bio_merged,
4095                .elevator_dispatch_fn =         cfq_dispatch_requests,
4096                .elevator_add_req_fn =          cfq_insert_request,
4097                .elevator_activate_req_fn =     cfq_activate_request,
4098                .elevator_deactivate_req_fn =   cfq_deactivate_request,
4099                .elevator_queue_empty_fn =      cfq_queue_empty,
4100                .elevator_completed_req_fn =    cfq_completed_request,
4101                .elevator_former_req_fn =       elv_rb_former_request,
4102                .elevator_latter_req_fn =       elv_rb_latter_request,
4103                .elevator_set_req_fn =          cfq_set_request,
4104                .elevator_put_req_fn =          cfq_put_request,
4105                .elevator_may_queue_fn =        cfq_may_queue,
4106                .elevator_init_fn =             cfq_init_queue,
4107                .elevator_exit_fn =             cfq_exit_queue,
4108                .trim =                         cfq_free_io_context,
4109        },
4110        .elevator_attrs =       cfq_attrs,
4111        .elevator_name =        "cfq",
4112        .elevator_owner =       THIS_MODULE,
4113};
4114
4115#ifdef CONFIG_CFQ_GROUP_IOSCHED
4116static struct blkio_policy_type blkio_policy_cfq = {
4117        .ops = {
4118                .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
4119                .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4120        },
4121        .plid = BLKIO_POLICY_PROP,
4122};
4123#else
4124static struct blkio_policy_type blkio_policy_cfq;
4125#endif
4126
4127static int __init cfq_init(void)
4128{
4129        /*
4130         * could be 0 on HZ < 1000 setups
4131         */
4132        if (!cfq_slice_async)
4133                cfq_slice_async = 1;
4134        if (!cfq_slice_idle)
4135                cfq_slice_idle = 1;
4136
4137#ifdef CONFIG_CFQ_GROUP_IOSCHED
4138        if (!cfq_group_idle)
4139                cfq_group_idle = 1;
4140#else
4141                cfq_group_idle = 0;
4142#endif
4143        if (cfq_slab_setup())
4144                return -ENOMEM;
4145
4146        elv_register(&iosched_cfq);
4147        blkio_policy_register(&blkio_policy_cfq);
4148
4149        return 0;
4150}
4151
4152static void __exit cfq_exit(void)
4153{
4154        DECLARE_COMPLETION_ONSTACK(all_gone);
4155        blkio_policy_unregister(&blkio_policy_cfq);
4156        elv_unregister(&iosched_cfq);
4157        ioc_gone = &all_gone;
4158        /* ioc_gone's update must be visible before reading ioc_count */
4159        smp_wmb();
4160
4161        /*
4162         * this also protects us from entering cfq_slab_kill() with
4163         * pending RCU callbacks
4164         */
4165        if (elv_ioc_count_read(cfq_ioc_count))
4166                wait_for_completion(&all_gone);
4167        ida_destroy(&cic_index_ida);
4168        cfq_slab_kill();
4169}
4170
4171module_init(cfq_init);
4172module_exit(cfq_exit);
4173
4174MODULE_AUTHOR("Jens Axboe");
4175MODULE_LICENSE("GPL");
4176MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4177