linux/crypto/twofish_common.c
<<
>>
Prefs
   1/*
   2 * Common Twofish algorithm parts shared between the c and assembler
   3 * implementations
   4 *
   5 * Originally Twofish for GPG
   6 * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
   7 * 256-bit key length added March 20, 1999
   8 * Some modifications to reduce the text size by Werner Koch, April, 1998
   9 * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com>
  10 * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net>
  11 *
  12 * The original author has disclaimed all copyright interest in this
  13 * code and thus put it in the public domain. The subsequent authors
  14 * have put this under the GNU General Public License.
  15 *
  16 * This program is free software; you can redistribute it and/or modify
  17 * it under the terms of the GNU General Public License as published by
  18 * the Free Software Foundation; either version 2 of the License, or
  19 * (at your option) any later version.
  20 *
  21 * This program is distributed in the hope that it will be useful,
  22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  24 * GNU General Public License for more details.
  25 *
  26 * You should have received a copy of the GNU General Public License
  27 * along with this program; if not, write to the Free Software
  28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
  29 * USA
  30 *
  31 * This code is a "clean room" implementation, written from the paper
  32 * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
  33 * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
  34 * through http://www.counterpane.com/twofish.html
  35 *
  36 * For background information on multiplication in finite fields, used for
  37 * the matrix operations in the key schedule, see the book _Contemporary
  38 * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
  39 * Third Edition.
  40 */
  41
  42#include <crypto/twofish.h>
  43#include <linux/bitops.h>
  44#include <linux/crypto.h>
  45#include <linux/errno.h>
  46#include <linux/init.h>
  47#include <linux/kernel.h>
  48#include <linux/module.h>
  49#include <linux/types.h>
  50
  51
  52/* The large precomputed tables for the Twofish cipher (twofish.c)
  53 * Taken from the same source as twofish.c
  54 * Marc Mutz <Marc@Mutz.com>
  55 */
  56
  57/* These two tables are the q0 and q1 permutations, exactly as described in
  58 * the Twofish paper. */
  59
  60static const u8 q0[256] = {
  61        0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78,
  62        0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
  63        0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30,
  64        0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
  65        0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE,
  66        0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
  67        0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45,
  68        0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
  69        0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF,
  70        0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
  71        0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED,
  72        0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
  73        0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B,
  74        0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
  75        0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F,
  76        0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
  77        0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17,
  78        0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
  79        0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68,
  80        0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
  81        0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42,
  82        0x4A, 0x5E, 0xC1, 0xE0
  83};
  84
  85static const u8 q1[256] = {
  86        0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B,
  87        0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
  88        0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B,
  89        0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
  90        0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54,
  91        0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
  92        0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7,
  93        0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
  94        0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF,
  95        0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
  96        0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D,
  97        0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
  98        0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21,
  99        0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
 100        0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E,
 101        0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
 102        0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44,
 103        0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
 104        0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B,
 105        0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
 106        0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56,
 107        0x55, 0x09, 0xBE, 0x91
 108};
 109
 110/* These MDS tables are actually tables of MDS composed with q0 and q1,
 111 * because it is only ever used that way and we can save some time by
 112 * precomputing.  Of course the main saving comes from precomputing the
 113 * GF(2^8) multiplication involved in the MDS matrix multiply; by looking
 114 * things up in these tables we reduce the matrix multiply to four lookups
 115 * and three XORs.  Semi-formally, the definition of these tables is:
 116 * mds[0][i] = MDS (q1[i] 0 0 0)^T  mds[1][i] = MDS (0 q0[i] 0 0)^T
 117 * mds[2][i] = MDS (0 0 q1[i] 0)^T  mds[3][i] = MDS (0 0 0 q0[i])^T
 118 * where ^T means "transpose", the matrix multiply is performed in GF(2^8)
 119 * represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described
 120 * by Schneier et al, and I'm casually glossing over the byte/word
 121 * conversion issues. */
 122
 123static const u32 mds[4][256] = {
 124        {
 125        0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B,
 126        0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B,
 127        0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32,
 128        0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1,
 129        0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA,
 130        0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B,
 131        0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1,
 132        0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5,
 133        0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490,
 134        0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154,
 135        0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0,
 136        0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796,
 137        0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228,
 138        0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7,
 139        0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3,
 140        0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8,
 141        0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477,
 142        0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF,
 143        0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C,
 144        0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9,
 145        0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA,
 146        0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D,
 147        0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72,
 148        0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E,
 149        0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76,
 150        0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321,
 151        0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39,
 152        0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01,
 153        0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D,
 154        0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E,
 155        0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5,
 156        0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64,
 157        0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7,
 158        0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544,
 159        0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E,
 160        0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E,
 161        0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A,
 162        0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B,
 163        0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2,
 164        0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9,
 165        0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504,
 166        0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756,
 167        0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91},
 168
 169        {
 170        0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252,
 171        0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A,
 172        0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020,
 173        0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141,
 174        0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444,
 175        0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424,
 176        0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A,
 177        0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757,
 178        0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383,
 179        0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A,
 180        0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9,
 181        0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656,
 182        0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1,
 183        0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898,
 184        0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414,
 185        0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3,
 186        0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1,
 187        0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989,
 188        0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5,
 189        0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282,
 190        0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E,
 191        0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E,
 192        0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202,
 193        0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC,
 194        0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565,
 195        0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A,
 196        0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808,
 197        0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272,
 198        0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A,
 199        0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969,
 200        0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505,
 201        0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5,
 202        0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D,
 203        0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343,
 204        0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF,
 205        0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3,
 206        0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F,
 207        0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646,
 208        0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6,
 209        0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF,
 210        0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A,
 211        0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7,
 212        0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8},
 213
 214        {
 215        0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B,
 216        0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F,
 217        0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A,
 218        0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783,
 219        0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70,
 220        0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3,
 221        0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB,
 222        0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA,
 223        0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4,
 224        0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41,
 225        0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C,
 226        0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07,
 227        0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622,
 228        0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18,
 229        0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035,
 230        0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96,
 231        0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84,
 232        0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E,
 233        0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F,
 234        0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD,
 235        0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558,
 236        0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40,
 237        0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA,
 238        0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85,
 239        0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF,
 240        0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773,
 241        0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D,
 242        0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B,
 243        0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C,
 244        0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19,
 245        0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086,
 246        0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D,
 247        0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74,
 248        0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755,
 249        0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691,
 250        0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D,
 251        0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4,
 252        0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53,
 253        0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E,
 254        0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9,
 255        0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705,
 256        0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7,
 257        0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF},
 258
 259        {
 260        0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98,
 261        0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866,
 262        0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643,
 263        0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77,
 264        0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9,
 265        0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C,
 266        0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3,
 267        0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216,
 268        0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F,
 269        0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25,
 270        0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF,
 271        0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7,
 272        0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4,
 273        0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E,
 274        0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA,
 275        0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C,
 276        0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12,
 277        0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A,
 278        0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D,
 279        0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE,
 280        0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A,
 281        0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C,
 282        0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B,
 283        0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4,
 284        0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B,
 285        0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3,
 286        0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE,
 287        0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB,
 288        0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85,
 289        0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA,
 290        0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E,
 291        0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8,
 292        0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33,
 293        0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC,
 294        0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718,
 295        0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA,
 296        0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8,
 297        0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872,
 298        0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882,
 299        0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D,
 300        0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10,
 301        0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6,
 302        0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8}
 303};
 304
 305/* The exp_to_poly and poly_to_exp tables are used to perform efficient
 306 * operations in GF(2^8) represented as GF(2)[x]/w(x) where
 307 * w(x)=x^8+x^6+x^3+x^2+1.  We care about doing that because it's part of the
 308 * definition of the RS matrix in the key schedule.  Elements of that field
 309 * are polynomials of degree not greater than 7 and all coefficients 0 or 1,
 310 * which can be represented naturally by bytes (just substitute x=2).  In that
 311 * form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8)
 312 * multiplication is inefficient without hardware support.  To multiply
 313 * faster, I make use of the fact x is a generator for the nonzero elements,
 314 * so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for
 315 * some n in 0..254.  Note that that caret is exponentiation in GF(2^8),
 316 * *not* polynomial notation.  So if I want to compute pq where p and q are
 317 * in GF(2^8), I can just say:
 318 *    1. if p=0 or q=0 then pq=0
 319 *    2. otherwise, find m and n such that p=x^m and q=x^n
 320 *    3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq
 321 * The translations in steps 2 and 3 are looked up in the tables
 322 * poly_to_exp (for step 2) and exp_to_poly (for step 3).  To see this
 323 * in action, look at the CALC_S macro.  As additional wrinkles, note that
 324 * one of my operands is always a constant, so the poly_to_exp lookup on it
 325 * is done in advance; I included the original values in the comments so
 326 * readers can have some chance of recognizing that this *is* the RS matrix
 327 * from the Twofish paper.  I've only included the table entries I actually
 328 * need; I never do a lookup on a variable input of zero and the biggest
 329 * exponents I'll ever see are 254 (variable) and 237 (constant), so they'll
 330 * never sum to more than 491.  I'm repeating part of the exp_to_poly table
 331 * so that I don't have to do mod-255 reduction in the exponent arithmetic.
 332 * Since I know my constant operands are never zero, I only have to worry
 333 * about zero values in the variable operand, and I do it with a simple
 334 * conditional branch.  I know conditionals are expensive, but I couldn't
 335 * see a non-horrible way of avoiding them, and I did manage to group the
 336 * statements so that each if covers four group multiplications. */
 337
 338static const u8 poly_to_exp[255] = {
 339        0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19,
 340        0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A,
 341        0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C,
 342        0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B,
 343        0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47,
 344        0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D,
 345        0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8,
 346        0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C,
 347        0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83,
 348        0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48,
 349        0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26,
 350        0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E,
 351        0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3,
 352        0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9,
 353        0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A,
 354        0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D,
 355        0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75,
 356        0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84,
 357        0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64,
 358        0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49,
 359        0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF,
 360        0x85, 0xC8, 0xA1
 361};
 362
 363static const u8 exp_to_poly[492] = {
 364        0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2,
 365        0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03,
 366        0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6,
 367        0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A,
 368        0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63,
 369        0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C,
 370        0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07,
 371        0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88,
 372        0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12,
 373        0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7,
 374        0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C,
 375        0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8,
 376        0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25,
 377        0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A,
 378        0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE,
 379        0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC,
 380        0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E,
 381        0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92,
 382        0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89,
 383        0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB,
 384        0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1,
 385        0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D,
 386        0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC,
 387        0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3,
 388        0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52,
 389        0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0,
 390        0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1,
 391        0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A,
 392        0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11,
 393        0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51,
 394        0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66,
 395        0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB,
 396        0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19,
 397        0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D,
 398        0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56,
 399        0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE,
 400        0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9,
 401        0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE,
 402        0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41,
 403        0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E,
 404        0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB
 405};
 406
 407
 408/* The table constants are indices of
 409 * S-box entries, preprocessed through q0 and q1. */
 410static const u8 calc_sb_tbl[512] = {
 411        0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4,
 412        0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8,
 413        0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B,
 414        0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B,
 415        0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD,
 416        0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1,
 417        0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B,
 418        0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F,
 419        0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B,
 420        0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D,
 421        0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E,
 422        0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5,
 423        0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14,
 424        0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3,
 425        0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54,
 426        0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51,
 427        0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A,
 428        0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96,
 429        0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10,
 430        0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C,
 431        0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7,
 432        0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70,
 433        0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB,
 434        0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8,
 435        0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF,
 436        0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC,
 437        0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF,
 438        0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2,
 439        0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82,
 440        0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9,
 441        0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97,
 442        0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17,
 443        0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D,
 444        0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3,
 445        0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C,
 446        0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E,
 447        0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F,
 448        0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49,
 449        0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21,
 450        0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9,
 451        0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD,
 452        0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01,
 453        0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F,
 454        0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48,
 455        0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E,
 456        0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19,
 457        0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57,
 458        0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64,
 459        0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE,
 460        0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5,
 461        0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44,
 462        0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69,
 463        0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15,
 464        0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E,
 465        0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34,
 466        0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC,
 467        0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B,
 468        0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB,
 469        0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52,
 470        0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9,
 471        0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4,
 472        0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2,
 473        0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56,
 474        0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91
 475};
 476
 477/* Macro to perform one column of the RS matrix multiplication.  The
 478 * parameters a, b, c, and d are the four bytes of output; i is the index
 479 * of the key bytes, and w, x, y, and z, are the column of constants from
 480 * the RS matrix, preprocessed through the poly_to_exp table. */
 481
 482#define CALC_S(a, b, c, d, i, w, x, y, z) \
 483   if (key[i]) { \
 484      tmp = poly_to_exp[key[i] - 1]; \
 485      (a) ^= exp_to_poly[tmp + (w)]; \
 486      (b) ^= exp_to_poly[tmp + (x)]; \
 487      (c) ^= exp_to_poly[tmp + (y)]; \
 488      (d) ^= exp_to_poly[tmp + (z)]; \
 489   }
 490
 491/* Macros to calculate the key-dependent S-boxes for a 128-bit key using
 492 * the S vector from CALC_S.  CALC_SB_2 computes a single entry in all
 493 * four S-boxes, where i is the index of the entry to compute, and a and b
 494 * are the index numbers preprocessed through the q0 and q1 tables
 495 * respectively. */
 496
 497#define CALC_SB_2(i, a, b) \
 498   ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \
 499   ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \
 500   ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \
 501   ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh]
 502
 503/* Macro exactly like CALC_SB_2, but for 192-bit keys. */
 504
 505#define CALC_SB192_2(i, a, b) \
 506   ctx->s[0][i] = mds[0][q0[q0[(b) ^ sa] ^ se] ^ si]; \
 507   ctx->s[1][i] = mds[1][q0[q1[(b) ^ sb] ^ sf] ^ sj]; \
 508   ctx->s[2][i] = mds[2][q1[q0[(a) ^ sc] ^ sg] ^ sk]; \
 509   ctx->s[3][i] = mds[3][q1[q1[(a) ^ sd] ^ sh] ^ sl];
 510
 511/* Macro exactly like CALC_SB_2, but for 256-bit keys. */
 512
 513#define CALC_SB256_2(i, a, b) \
 514   ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \
 515   ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \
 516   ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \
 517   ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp];
 518
 519/* Macros to calculate the whitening and round subkeys.  CALC_K_2 computes the
 520 * last two stages of the h() function for a given index (either 2i or 2i+1).
 521 * a, b, c, and d are the four bytes going into the last two stages.  For
 522 * 128-bit keys, this is the entire h() function and a and c are the index
 523 * preprocessed through q0 and q1 respectively; for longer keys they are the
 524 * output of previous stages.  j is the index of the first key byte to use.
 525 * CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2
 526 * twice, doing the Pseudo-Hadamard Transform, and doing the necessary
 527 * rotations.  Its parameters are: a, the array to write the results into,
 528 * j, the index of the first output entry, k and l, the preprocessed indices
 529 * for index 2i, and m and n, the preprocessed indices for index 2i+1.
 530 * CALC_K192_2 expands CALC_K_2 to handle 192-bit keys, by doing an
 531 * additional lookup-and-XOR stage.  The parameters a, b, c and d are the
 532 * four bytes going into the last three stages.  For 192-bit keys, c = d
 533 * are the index preprocessed through q0, and a = b are the index
 534 * preprocessed through q1; j is the index of the first key byte to use.
 535 * CALC_K192 is identical to CALC_K but for using the CALC_K192_2 macro
 536 * instead of CALC_K_2.
 537 * CALC_K256_2 expands CALC_K192_2 to handle 256-bit keys, by doing an
 538 * additional lookup-and-XOR stage.  The parameters a and b are the index
 539 * preprocessed through q0 and q1 respectively; j is the index of the first
 540 * key byte to use.  CALC_K256 is identical to CALC_K but for using the
 541 * CALC_K256_2 macro instead of CALC_K_2. */
 542
 543#define CALC_K_2(a, b, c, d, j) \
 544     mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \
 545   ^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \
 546   ^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \
 547   ^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]]
 548
 549#define CALC_K(a, j, k, l, m, n) \
 550   x = CALC_K_2 (k, l, k, l, 0); \
 551   y = CALC_K_2 (m, n, m, n, 4); \
 552   y = rol32(y, 8); \
 553   x += y; y += x; ctx->a[j] = x; \
 554   ctx->a[(j) + 1] = rol32(y, 9)
 555
 556#define CALC_K192_2(a, b, c, d, j) \
 557   CALC_K_2 (q0[a ^ key[(j) + 16]], \
 558             q1[b ^ key[(j) + 17]], \
 559             q0[c ^ key[(j) + 18]], \
 560             q1[d ^ key[(j) + 19]], j)
 561
 562#define CALC_K192(a, j, k, l, m, n) \
 563   x = CALC_K192_2 (l, l, k, k, 0); \
 564   y = CALC_K192_2 (n, n, m, m, 4); \
 565   y = rol32(y, 8); \
 566   x += y; y += x; ctx->a[j] = x; \
 567   ctx->a[(j) + 1] = rol32(y, 9)
 568
 569#define CALC_K256_2(a, b, j) \
 570   CALC_K192_2 (q1[b ^ key[(j) + 24]], \
 571                q1[a ^ key[(j) + 25]], \
 572                q0[a ^ key[(j) + 26]], \
 573                q0[b ^ key[(j) + 27]], j)
 574
 575#define CALC_K256(a, j, k, l, m, n) \
 576   x = CALC_K256_2 (k, l, 0); \
 577   y = CALC_K256_2 (m, n, 4); \
 578   y = rol32(y, 8); \
 579   x += y; y += x; ctx->a[j] = x; \
 580   ctx->a[(j) + 1] = rol32(y, 9)
 581
 582/* Perform the key setup. */
 583int twofish_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int key_len)
 584{
 585
 586        struct twofish_ctx *ctx = crypto_tfm_ctx(tfm);
 587        u32 *flags = &tfm->crt_flags;
 588
 589        int i, j, k;
 590
 591        /* Temporaries for CALC_K. */
 592        u32 x, y;
 593
 594        /* The S vector used to key the S-boxes, split up into individual bytes.
 595         * 128-bit keys use only sa through sh; 256-bit use all of them. */
 596        u8 sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0;
 597        u8 si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0;
 598
 599        /* Temporary for CALC_S. */
 600        u8 tmp;
 601
 602        /* Check key length. */
 603        if (key_len % 8)
 604        {
 605                *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
 606                return -EINVAL; /* unsupported key length */
 607        }
 608
 609        /* Compute the first two words of the S vector.  The magic numbers are
 610         * the entries of the RS matrix, preprocessed through poly_to_exp. The
 611         * numbers in the comments are the original (polynomial form) matrix
 612         * entries. */
 613        CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
 614        CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
 615        CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
 616        CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
 617        CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
 618        CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
 619        CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
 620        CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
 621        CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
 622        CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
 623        CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
 624        CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
 625        CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
 626        CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
 627        CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
 628        CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
 629
 630        if (key_len == 24 || key_len == 32) { /* 192- or 256-bit key */
 631                /* Calculate the third word of the S vector */
 632                CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
 633                CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
 634                CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
 635                CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
 636                CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
 637                CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
 638                CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
 639                CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
 640        }
 641
 642        if (key_len == 32) { /* 256-bit key */
 643                /* Calculate the fourth word of the S vector */
 644                CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
 645                CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
 646                CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
 647                CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
 648                CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
 649                CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
 650                CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
 651                CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
 652
 653                /* Compute the S-boxes. */
 654                for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
 655                        CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
 656                }
 657
 658                /* CALC_K256/CALC_K192/CALC_K loops were unrolled.
 659                 * Unrolling produced x2.5 more code (+18k on i386),
 660                 * and speeded up key setup by 7%:
 661                 * unrolled: twofish_setkey/sec: 41128
 662                 *     loop: twofish_setkey/sec: 38148
 663                 * CALC_K256: ~100 insns each
 664                 * CALC_K192: ~90 insns
 665                 *    CALC_K: ~70 insns
 666                 */
 667                /* Calculate whitening and round subkeys */
 668                for ( i = 0; i < 8; i += 2 ) {
 669                        CALC_K256 (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
 670                }
 671                for ( i = 0; i < 32; i += 2 ) {
 672                        CALC_K256 (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
 673                }
 674        } else if (key_len == 24) { /* 192-bit key */
 675                /* Compute the S-boxes. */
 676                for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
 677                        CALC_SB192_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
 678                }
 679
 680                /* Calculate whitening and round subkeys */
 681                for ( i = 0; i < 8; i += 2 ) {
 682                        CALC_K192 (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
 683                }
 684                for ( i = 0; i < 32; i += 2 ) {
 685                        CALC_K192 (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
 686                }
 687        } else { /* 128-bit key */
 688                /* Compute the S-boxes. */
 689                for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
 690                        CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
 691                }
 692
 693                /* Calculate whitening and round subkeys */
 694                for ( i = 0; i < 8; i += 2 ) {
 695                        CALC_K (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
 696                }
 697                for ( i = 0; i < 32; i += 2 ) {
 698                        CALC_K (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
 699                }
 700        }
 701
 702        return 0;
 703}
 704
 705EXPORT_SYMBOL_GPL(twofish_setkey);
 706
 707MODULE_LICENSE("GPL");
 708MODULE_DESCRIPTION("Twofish cipher common functions");
 709