linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *      http://www.sata-io.org (SATA)
  37 *      http://www.compactflash.org (CF)
  38 *      http://www.qic.org (QIC157 - Tape and DSC)
  39 *      http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <linux/slab.h>
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_host.h>
  65#include <linux/libata.h>
  66#include <asm/byteorder.h>
  67#include <linux/cdrom.h>
  68#include <linux/ratelimit.h>
  69
  70#include "libata.h"
  71#include "libata-transport.h"
  72
  73/* debounce timing parameters in msecs { interval, duration, timeout } */
  74const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  75const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  76const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  77
  78const struct ata_port_operations ata_base_port_ops = {
  79        .prereset               = ata_std_prereset,
  80        .postreset              = ata_std_postreset,
  81        .error_handler          = ata_std_error_handler,
  82};
  83
  84const struct ata_port_operations sata_port_ops = {
  85        .inherits               = &ata_base_port_ops,
  86
  87        .qc_defer               = ata_std_qc_defer,
  88        .hardreset              = sata_std_hardreset,
  89};
  90
  91static unsigned int ata_dev_init_params(struct ata_device *dev,
  92                                        u16 heads, u16 sectors);
  93static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  94static void ata_dev_xfermask(struct ata_device *dev);
  95static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  96
  97unsigned int ata_print_id = 1;
  98
  99struct ata_force_param {
 100        const char      *name;
 101        unsigned int    cbl;
 102        int             spd_limit;
 103        unsigned long   xfer_mask;
 104        unsigned int    horkage_on;
 105        unsigned int    horkage_off;
 106        unsigned int    lflags;
 107};
 108
 109struct ata_force_ent {
 110        int                     port;
 111        int                     device;
 112        struct ata_force_param  param;
 113};
 114
 115static struct ata_force_ent *ata_force_tbl;
 116static int ata_force_tbl_size;
 117
 118static char ata_force_param_buf[PAGE_SIZE] __initdata;
 119/* param_buf is thrown away after initialization, disallow read */
 120module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 121MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 122
 123static int atapi_enabled = 1;
 124module_param(atapi_enabled, int, 0444);
 125MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 126
 127static int atapi_dmadir = 0;
 128module_param(atapi_dmadir, int, 0444);
 129MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 130
 131int atapi_passthru16 = 1;
 132module_param(atapi_passthru16, int, 0444);
 133MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 134
 135int libata_fua = 0;
 136module_param_named(fua, libata_fua, int, 0444);
 137MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 138
 139static int ata_ignore_hpa;
 140module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 141MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 142
 143static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 144module_param_named(dma, libata_dma_mask, int, 0444);
 145MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 146
 147static int ata_probe_timeout;
 148module_param(ata_probe_timeout, int, 0444);
 149MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 150
 151int libata_noacpi = 0;
 152module_param_named(noacpi, libata_noacpi, int, 0444);
 153MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 154
 155int libata_allow_tpm = 0;
 156module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 157MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 158
 159static int atapi_an;
 160module_param(atapi_an, int, 0444);
 161MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 162
 163MODULE_AUTHOR("Jeff Garzik");
 164MODULE_DESCRIPTION("Library module for ATA devices");
 165MODULE_LICENSE("GPL");
 166MODULE_VERSION(DRV_VERSION);
 167
 168
 169static bool ata_sstatus_online(u32 sstatus)
 170{
 171        return (sstatus & 0xf) == 0x3;
 172}
 173
 174/**
 175 *      ata_link_next - link iteration helper
 176 *      @link: the previous link, NULL to start
 177 *      @ap: ATA port containing links to iterate
 178 *      @mode: iteration mode, one of ATA_LITER_*
 179 *
 180 *      LOCKING:
 181 *      Host lock or EH context.
 182 *
 183 *      RETURNS:
 184 *      Pointer to the next link.
 185 */
 186struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 187                               enum ata_link_iter_mode mode)
 188{
 189        BUG_ON(mode != ATA_LITER_EDGE &&
 190               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 191
 192        /* NULL link indicates start of iteration */
 193        if (!link)
 194                switch (mode) {
 195                case ATA_LITER_EDGE:
 196                case ATA_LITER_PMP_FIRST:
 197                        if (sata_pmp_attached(ap))
 198                                return ap->pmp_link;
 199                        /* fall through */
 200                case ATA_LITER_HOST_FIRST:
 201                        return &ap->link;
 202                }
 203
 204        /* we just iterated over the host link, what's next? */
 205        if (link == &ap->link)
 206                switch (mode) {
 207                case ATA_LITER_HOST_FIRST:
 208                        if (sata_pmp_attached(ap))
 209                                return ap->pmp_link;
 210                        /* fall through */
 211                case ATA_LITER_PMP_FIRST:
 212                        if (unlikely(ap->slave_link))
 213                                return ap->slave_link;
 214                        /* fall through */
 215                case ATA_LITER_EDGE:
 216                        return NULL;
 217                }
 218
 219        /* slave_link excludes PMP */
 220        if (unlikely(link == ap->slave_link))
 221                return NULL;
 222
 223        /* we were over a PMP link */
 224        if (++link < ap->pmp_link + ap->nr_pmp_links)
 225                return link;
 226
 227        if (mode == ATA_LITER_PMP_FIRST)
 228                return &ap->link;
 229
 230        return NULL;
 231}
 232
 233/**
 234 *      ata_dev_next - device iteration helper
 235 *      @dev: the previous device, NULL to start
 236 *      @link: ATA link containing devices to iterate
 237 *      @mode: iteration mode, one of ATA_DITER_*
 238 *
 239 *      LOCKING:
 240 *      Host lock or EH context.
 241 *
 242 *      RETURNS:
 243 *      Pointer to the next device.
 244 */
 245struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 246                                enum ata_dev_iter_mode mode)
 247{
 248        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 249               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 250
 251        /* NULL dev indicates start of iteration */
 252        if (!dev)
 253                switch (mode) {
 254                case ATA_DITER_ENABLED:
 255                case ATA_DITER_ALL:
 256                        dev = link->device;
 257                        goto check;
 258                case ATA_DITER_ENABLED_REVERSE:
 259                case ATA_DITER_ALL_REVERSE:
 260                        dev = link->device + ata_link_max_devices(link) - 1;
 261                        goto check;
 262                }
 263
 264 next:
 265        /* move to the next one */
 266        switch (mode) {
 267        case ATA_DITER_ENABLED:
 268        case ATA_DITER_ALL:
 269                if (++dev < link->device + ata_link_max_devices(link))
 270                        goto check;
 271                return NULL;
 272        case ATA_DITER_ENABLED_REVERSE:
 273        case ATA_DITER_ALL_REVERSE:
 274                if (--dev >= link->device)
 275                        goto check;
 276                return NULL;
 277        }
 278
 279 check:
 280        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 281            !ata_dev_enabled(dev))
 282                goto next;
 283        return dev;
 284}
 285
 286/**
 287 *      ata_dev_phys_link - find physical link for a device
 288 *      @dev: ATA device to look up physical link for
 289 *
 290 *      Look up physical link which @dev is attached to.  Note that
 291 *      this is different from @dev->link only when @dev is on slave
 292 *      link.  For all other cases, it's the same as @dev->link.
 293 *
 294 *      LOCKING:
 295 *      Don't care.
 296 *
 297 *      RETURNS:
 298 *      Pointer to the found physical link.
 299 */
 300struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 301{
 302        struct ata_port *ap = dev->link->ap;
 303
 304        if (!ap->slave_link)
 305                return dev->link;
 306        if (!dev->devno)
 307                return &ap->link;
 308        return ap->slave_link;
 309}
 310
 311/**
 312 *      ata_force_cbl - force cable type according to libata.force
 313 *      @ap: ATA port of interest
 314 *
 315 *      Force cable type according to libata.force and whine about it.
 316 *      The last entry which has matching port number is used, so it
 317 *      can be specified as part of device force parameters.  For
 318 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 319 *      same effect.
 320 *
 321 *      LOCKING:
 322 *      EH context.
 323 */
 324void ata_force_cbl(struct ata_port *ap)
 325{
 326        int i;
 327
 328        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 329                const struct ata_force_ent *fe = &ata_force_tbl[i];
 330
 331                if (fe->port != -1 && fe->port != ap->print_id)
 332                        continue;
 333
 334                if (fe->param.cbl == ATA_CBL_NONE)
 335                        continue;
 336
 337                ap->cbl = fe->param.cbl;
 338                ata_port_printk(ap, KERN_NOTICE,
 339                                "FORCE: cable set to %s\n", fe->param.name);
 340                return;
 341        }
 342}
 343
 344/**
 345 *      ata_force_link_limits - force link limits according to libata.force
 346 *      @link: ATA link of interest
 347 *
 348 *      Force link flags and SATA spd limit according to libata.force
 349 *      and whine about it.  When only the port part is specified
 350 *      (e.g. 1:), the limit applies to all links connected to both
 351 *      the host link and all fan-out ports connected via PMP.  If the
 352 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 353 *      first fan-out link not the host link.  Device number 15 always
 354 *      points to the host link whether PMP is attached or not.  If the
 355 *      controller has slave link, device number 16 points to it.
 356 *
 357 *      LOCKING:
 358 *      EH context.
 359 */
 360static void ata_force_link_limits(struct ata_link *link)
 361{
 362        bool did_spd = false;
 363        int linkno = link->pmp;
 364        int i;
 365
 366        if (ata_is_host_link(link))
 367                linkno += 15;
 368
 369        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 370                const struct ata_force_ent *fe = &ata_force_tbl[i];
 371
 372                if (fe->port != -1 && fe->port != link->ap->print_id)
 373                        continue;
 374
 375                if (fe->device != -1 && fe->device != linkno)
 376                        continue;
 377
 378                /* only honor the first spd limit */
 379                if (!did_spd && fe->param.spd_limit) {
 380                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 381                        ata_link_printk(link, KERN_NOTICE,
 382                                        "FORCE: PHY spd limit set to %s\n",
 383                                        fe->param.name);
 384                        did_spd = true;
 385                }
 386
 387                /* let lflags stack */
 388                if (fe->param.lflags) {
 389                        link->flags |= fe->param.lflags;
 390                        ata_link_printk(link, KERN_NOTICE,
 391                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 392                                        fe->param.lflags, link->flags);
 393                }
 394        }
 395}
 396
 397/**
 398 *      ata_force_xfermask - force xfermask according to libata.force
 399 *      @dev: ATA device of interest
 400 *
 401 *      Force xfer_mask according to libata.force and whine about it.
 402 *      For consistency with link selection, device number 15 selects
 403 *      the first device connected to the host link.
 404 *
 405 *      LOCKING:
 406 *      EH context.
 407 */
 408static void ata_force_xfermask(struct ata_device *dev)
 409{
 410        int devno = dev->link->pmp + dev->devno;
 411        int alt_devno = devno;
 412        int i;
 413
 414        /* allow n.15/16 for devices attached to host port */
 415        if (ata_is_host_link(dev->link))
 416                alt_devno += 15;
 417
 418        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 419                const struct ata_force_ent *fe = &ata_force_tbl[i];
 420                unsigned long pio_mask, mwdma_mask, udma_mask;
 421
 422                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 423                        continue;
 424
 425                if (fe->device != -1 && fe->device != devno &&
 426                    fe->device != alt_devno)
 427                        continue;
 428
 429                if (!fe->param.xfer_mask)
 430                        continue;
 431
 432                ata_unpack_xfermask(fe->param.xfer_mask,
 433                                    &pio_mask, &mwdma_mask, &udma_mask);
 434                if (udma_mask)
 435                        dev->udma_mask = udma_mask;
 436                else if (mwdma_mask) {
 437                        dev->udma_mask = 0;
 438                        dev->mwdma_mask = mwdma_mask;
 439                } else {
 440                        dev->udma_mask = 0;
 441                        dev->mwdma_mask = 0;
 442                        dev->pio_mask = pio_mask;
 443                }
 444
 445                ata_dev_printk(dev, KERN_NOTICE,
 446                        "FORCE: xfer_mask set to %s\n", fe->param.name);
 447                return;
 448        }
 449}
 450
 451/**
 452 *      ata_force_horkage - force horkage according to libata.force
 453 *      @dev: ATA device of interest
 454 *
 455 *      Force horkage according to libata.force and whine about it.
 456 *      For consistency with link selection, device number 15 selects
 457 *      the first device connected to the host link.
 458 *
 459 *      LOCKING:
 460 *      EH context.
 461 */
 462static void ata_force_horkage(struct ata_device *dev)
 463{
 464        int devno = dev->link->pmp + dev->devno;
 465        int alt_devno = devno;
 466        int i;
 467
 468        /* allow n.15/16 for devices attached to host port */
 469        if (ata_is_host_link(dev->link))
 470                alt_devno += 15;
 471
 472        for (i = 0; i < ata_force_tbl_size; i++) {
 473                const struct ata_force_ent *fe = &ata_force_tbl[i];
 474
 475                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 476                        continue;
 477
 478                if (fe->device != -1 && fe->device != devno &&
 479                    fe->device != alt_devno)
 480                        continue;
 481
 482                if (!(~dev->horkage & fe->param.horkage_on) &&
 483                    !(dev->horkage & fe->param.horkage_off))
 484                        continue;
 485
 486                dev->horkage |= fe->param.horkage_on;
 487                dev->horkage &= ~fe->param.horkage_off;
 488
 489                ata_dev_printk(dev, KERN_NOTICE,
 490                        "FORCE: horkage modified (%s)\n", fe->param.name);
 491        }
 492}
 493
 494/**
 495 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 496 *      @opcode: SCSI opcode
 497 *
 498 *      Determine ATAPI command type from @opcode.
 499 *
 500 *      LOCKING:
 501 *      None.
 502 *
 503 *      RETURNS:
 504 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 505 */
 506int atapi_cmd_type(u8 opcode)
 507{
 508        switch (opcode) {
 509        case GPCMD_READ_10:
 510        case GPCMD_READ_12:
 511                return ATAPI_READ;
 512
 513        case GPCMD_WRITE_10:
 514        case GPCMD_WRITE_12:
 515        case GPCMD_WRITE_AND_VERIFY_10:
 516                return ATAPI_WRITE;
 517
 518        case GPCMD_READ_CD:
 519        case GPCMD_READ_CD_MSF:
 520                return ATAPI_READ_CD;
 521
 522        case ATA_16:
 523        case ATA_12:
 524                if (atapi_passthru16)
 525                        return ATAPI_PASS_THRU;
 526                /* fall thru */
 527        default:
 528                return ATAPI_MISC;
 529        }
 530}
 531
 532/**
 533 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 534 *      @tf: Taskfile to convert
 535 *      @pmp: Port multiplier port
 536 *      @is_cmd: This FIS is for command
 537 *      @fis: Buffer into which data will output
 538 *
 539 *      Converts a standard ATA taskfile to a Serial ATA
 540 *      FIS structure (Register - Host to Device).
 541 *
 542 *      LOCKING:
 543 *      Inherited from caller.
 544 */
 545void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 546{
 547        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 548        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 549        if (is_cmd)
 550                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 551
 552        fis[2] = tf->command;
 553        fis[3] = tf->feature;
 554
 555        fis[4] = tf->lbal;
 556        fis[5] = tf->lbam;
 557        fis[6] = tf->lbah;
 558        fis[7] = tf->device;
 559
 560        fis[8] = tf->hob_lbal;
 561        fis[9] = tf->hob_lbam;
 562        fis[10] = tf->hob_lbah;
 563        fis[11] = tf->hob_feature;
 564
 565        fis[12] = tf->nsect;
 566        fis[13] = tf->hob_nsect;
 567        fis[14] = 0;
 568        fis[15] = tf->ctl;
 569
 570        fis[16] = 0;
 571        fis[17] = 0;
 572        fis[18] = 0;
 573        fis[19] = 0;
 574}
 575
 576/**
 577 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 578 *      @fis: Buffer from which data will be input
 579 *      @tf: Taskfile to output
 580 *
 581 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 582 *
 583 *      LOCKING:
 584 *      Inherited from caller.
 585 */
 586
 587void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 588{
 589        tf->command     = fis[2];       /* status */
 590        tf->feature     = fis[3];       /* error */
 591
 592        tf->lbal        = fis[4];
 593        tf->lbam        = fis[5];
 594        tf->lbah        = fis[6];
 595        tf->device      = fis[7];
 596
 597        tf->hob_lbal    = fis[8];
 598        tf->hob_lbam    = fis[9];
 599        tf->hob_lbah    = fis[10];
 600
 601        tf->nsect       = fis[12];
 602        tf->hob_nsect   = fis[13];
 603}
 604
 605static const u8 ata_rw_cmds[] = {
 606        /* pio multi */
 607        ATA_CMD_READ_MULTI,
 608        ATA_CMD_WRITE_MULTI,
 609        ATA_CMD_READ_MULTI_EXT,
 610        ATA_CMD_WRITE_MULTI_EXT,
 611        0,
 612        0,
 613        0,
 614        ATA_CMD_WRITE_MULTI_FUA_EXT,
 615        /* pio */
 616        ATA_CMD_PIO_READ,
 617        ATA_CMD_PIO_WRITE,
 618        ATA_CMD_PIO_READ_EXT,
 619        ATA_CMD_PIO_WRITE_EXT,
 620        0,
 621        0,
 622        0,
 623        0,
 624        /* dma */
 625        ATA_CMD_READ,
 626        ATA_CMD_WRITE,
 627        ATA_CMD_READ_EXT,
 628        ATA_CMD_WRITE_EXT,
 629        0,
 630        0,
 631        0,
 632        ATA_CMD_WRITE_FUA_EXT
 633};
 634
 635/**
 636 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 637 *      @tf: command to examine and configure
 638 *      @dev: device tf belongs to
 639 *
 640 *      Examine the device configuration and tf->flags to calculate
 641 *      the proper read/write commands and protocol to use.
 642 *
 643 *      LOCKING:
 644 *      caller.
 645 */
 646static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 647{
 648        u8 cmd;
 649
 650        int index, fua, lba48, write;
 651
 652        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 653        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 654        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 655
 656        if (dev->flags & ATA_DFLAG_PIO) {
 657                tf->protocol = ATA_PROT_PIO;
 658                index = dev->multi_count ? 0 : 8;
 659        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 660                /* Unable to use DMA due to host limitation */
 661                tf->protocol = ATA_PROT_PIO;
 662                index = dev->multi_count ? 0 : 8;
 663        } else {
 664                tf->protocol = ATA_PROT_DMA;
 665                index = 16;
 666        }
 667
 668        cmd = ata_rw_cmds[index + fua + lba48 + write];
 669        if (cmd) {
 670                tf->command = cmd;
 671                return 0;
 672        }
 673        return -1;
 674}
 675
 676/**
 677 *      ata_tf_read_block - Read block address from ATA taskfile
 678 *      @tf: ATA taskfile of interest
 679 *      @dev: ATA device @tf belongs to
 680 *
 681 *      LOCKING:
 682 *      None.
 683 *
 684 *      Read block address from @tf.  This function can handle all
 685 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 686 *      flags select the address format to use.
 687 *
 688 *      RETURNS:
 689 *      Block address read from @tf.
 690 */
 691u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 692{
 693        u64 block = 0;
 694
 695        if (tf->flags & ATA_TFLAG_LBA) {
 696                if (tf->flags & ATA_TFLAG_LBA48) {
 697                        block |= (u64)tf->hob_lbah << 40;
 698                        block |= (u64)tf->hob_lbam << 32;
 699                        block |= (u64)tf->hob_lbal << 24;
 700                } else
 701                        block |= (tf->device & 0xf) << 24;
 702
 703                block |= tf->lbah << 16;
 704                block |= tf->lbam << 8;
 705                block |= tf->lbal;
 706        } else {
 707                u32 cyl, head, sect;
 708
 709                cyl = tf->lbam | (tf->lbah << 8);
 710                head = tf->device & 0xf;
 711                sect = tf->lbal;
 712
 713                if (!sect) {
 714                        ata_dev_printk(dev, KERN_WARNING, "device reported "
 715                                       "invalid CHS sector 0\n");
 716                        sect = 1; /* oh well */
 717                }
 718
 719                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 720        }
 721
 722        return block;
 723}
 724
 725/**
 726 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 727 *      @tf: Target ATA taskfile
 728 *      @dev: ATA device @tf belongs to
 729 *      @block: Block address
 730 *      @n_block: Number of blocks
 731 *      @tf_flags: RW/FUA etc...
 732 *      @tag: tag
 733 *
 734 *      LOCKING:
 735 *      None.
 736 *
 737 *      Build ATA taskfile @tf for read/write request described by
 738 *      @block, @n_block, @tf_flags and @tag on @dev.
 739 *
 740 *      RETURNS:
 741 *
 742 *      0 on success, -ERANGE if the request is too large for @dev,
 743 *      -EINVAL if the request is invalid.
 744 */
 745int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 746                    u64 block, u32 n_block, unsigned int tf_flags,
 747                    unsigned int tag)
 748{
 749        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 750        tf->flags |= tf_flags;
 751
 752        if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 753                /* yay, NCQ */
 754                if (!lba_48_ok(block, n_block))
 755                        return -ERANGE;
 756
 757                tf->protocol = ATA_PROT_NCQ;
 758                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 759
 760                if (tf->flags & ATA_TFLAG_WRITE)
 761                        tf->command = ATA_CMD_FPDMA_WRITE;
 762                else
 763                        tf->command = ATA_CMD_FPDMA_READ;
 764
 765                tf->nsect = tag << 3;
 766                tf->hob_feature = (n_block >> 8) & 0xff;
 767                tf->feature = n_block & 0xff;
 768
 769                tf->hob_lbah = (block >> 40) & 0xff;
 770                tf->hob_lbam = (block >> 32) & 0xff;
 771                tf->hob_lbal = (block >> 24) & 0xff;
 772                tf->lbah = (block >> 16) & 0xff;
 773                tf->lbam = (block >> 8) & 0xff;
 774                tf->lbal = block & 0xff;
 775
 776                tf->device = 1 << 6;
 777                if (tf->flags & ATA_TFLAG_FUA)
 778                        tf->device |= 1 << 7;
 779        } else if (dev->flags & ATA_DFLAG_LBA) {
 780                tf->flags |= ATA_TFLAG_LBA;
 781
 782                if (lba_28_ok(block, n_block)) {
 783                        /* use LBA28 */
 784                        tf->device |= (block >> 24) & 0xf;
 785                } else if (lba_48_ok(block, n_block)) {
 786                        if (!(dev->flags & ATA_DFLAG_LBA48))
 787                                return -ERANGE;
 788
 789                        /* use LBA48 */
 790                        tf->flags |= ATA_TFLAG_LBA48;
 791
 792                        tf->hob_nsect = (n_block >> 8) & 0xff;
 793
 794                        tf->hob_lbah = (block >> 40) & 0xff;
 795                        tf->hob_lbam = (block >> 32) & 0xff;
 796                        tf->hob_lbal = (block >> 24) & 0xff;
 797                } else
 798                        /* request too large even for LBA48 */
 799                        return -ERANGE;
 800
 801                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 802                        return -EINVAL;
 803
 804                tf->nsect = n_block & 0xff;
 805
 806                tf->lbah = (block >> 16) & 0xff;
 807                tf->lbam = (block >> 8) & 0xff;
 808                tf->lbal = block & 0xff;
 809
 810                tf->device |= ATA_LBA;
 811        } else {
 812                /* CHS */
 813                u32 sect, head, cyl, track;
 814
 815                /* The request -may- be too large for CHS addressing. */
 816                if (!lba_28_ok(block, n_block))
 817                        return -ERANGE;
 818
 819                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 820                        return -EINVAL;
 821
 822                /* Convert LBA to CHS */
 823                track = (u32)block / dev->sectors;
 824                cyl   = track / dev->heads;
 825                head  = track % dev->heads;
 826                sect  = (u32)block % dev->sectors + 1;
 827
 828                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 829                        (u32)block, track, cyl, head, sect);
 830
 831                /* Check whether the converted CHS can fit.
 832                   Cylinder: 0-65535
 833                   Head: 0-15
 834                   Sector: 1-255*/
 835                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 836                        return -ERANGE;
 837
 838                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 839                tf->lbal = sect;
 840                tf->lbam = cyl;
 841                tf->lbah = cyl >> 8;
 842                tf->device |= head;
 843        }
 844
 845        return 0;
 846}
 847
 848/**
 849 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 850 *      @pio_mask: pio_mask
 851 *      @mwdma_mask: mwdma_mask
 852 *      @udma_mask: udma_mask
 853 *
 854 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 855 *      unsigned int xfer_mask.
 856 *
 857 *      LOCKING:
 858 *      None.
 859 *
 860 *      RETURNS:
 861 *      Packed xfer_mask.
 862 */
 863unsigned long ata_pack_xfermask(unsigned long pio_mask,
 864                                unsigned long mwdma_mask,
 865                                unsigned long udma_mask)
 866{
 867        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 868                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 869                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 870}
 871
 872/**
 873 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 874 *      @xfer_mask: xfer_mask to unpack
 875 *      @pio_mask: resulting pio_mask
 876 *      @mwdma_mask: resulting mwdma_mask
 877 *      @udma_mask: resulting udma_mask
 878 *
 879 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 880 *      Any NULL distination masks will be ignored.
 881 */
 882void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 883                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 884{
 885        if (pio_mask)
 886                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 887        if (mwdma_mask)
 888                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 889        if (udma_mask)
 890                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 891}
 892
 893static const struct ata_xfer_ent {
 894        int shift, bits;
 895        u8 base;
 896} ata_xfer_tbl[] = {
 897        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 898        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 899        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 900        { -1, },
 901};
 902
 903/**
 904 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 905 *      @xfer_mask: xfer_mask of interest
 906 *
 907 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 908 *      bit of @xfer_mask is considered.
 909 *
 910 *      LOCKING:
 911 *      None.
 912 *
 913 *      RETURNS:
 914 *      Matching XFER_* value, 0xff if no match found.
 915 */
 916u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 917{
 918        int highbit = fls(xfer_mask) - 1;
 919        const struct ata_xfer_ent *ent;
 920
 921        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 922                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 923                        return ent->base + highbit - ent->shift;
 924        return 0xff;
 925}
 926
 927/**
 928 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 929 *      @xfer_mode: XFER_* of interest
 930 *
 931 *      Return matching xfer_mask for @xfer_mode.
 932 *
 933 *      LOCKING:
 934 *      None.
 935 *
 936 *      RETURNS:
 937 *      Matching xfer_mask, 0 if no match found.
 938 */
 939unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 940{
 941        const struct ata_xfer_ent *ent;
 942
 943        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 944                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 945                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 946                                & ~((1 << ent->shift) - 1);
 947        return 0;
 948}
 949
 950/**
 951 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 952 *      @xfer_mode: XFER_* of interest
 953 *
 954 *      Return matching xfer_shift for @xfer_mode.
 955 *
 956 *      LOCKING:
 957 *      None.
 958 *
 959 *      RETURNS:
 960 *      Matching xfer_shift, -1 if no match found.
 961 */
 962int ata_xfer_mode2shift(unsigned long xfer_mode)
 963{
 964        const struct ata_xfer_ent *ent;
 965
 966        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 967                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 968                        return ent->shift;
 969        return -1;
 970}
 971
 972/**
 973 *      ata_mode_string - convert xfer_mask to string
 974 *      @xfer_mask: mask of bits supported; only highest bit counts.
 975 *
 976 *      Determine string which represents the highest speed
 977 *      (highest bit in @modemask).
 978 *
 979 *      LOCKING:
 980 *      None.
 981 *
 982 *      RETURNS:
 983 *      Constant C string representing highest speed listed in
 984 *      @mode_mask, or the constant C string "<n/a>".
 985 */
 986const char *ata_mode_string(unsigned long xfer_mask)
 987{
 988        static const char * const xfer_mode_str[] = {
 989                "PIO0",
 990                "PIO1",
 991                "PIO2",
 992                "PIO3",
 993                "PIO4",
 994                "PIO5",
 995                "PIO6",
 996                "MWDMA0",
 997                "MWDMA1",
 998                "MWDMA2",
 999                "MWDMA3",
1000                "MWDMA4",
1001                "UDMA/16",
1002                "UDMA/25",
1003                "UDMA/33",
1004                "UDMA/44",
1005                "UDMA/66",
1006                "UDMA/100",
1007                "UDMA/133",
1008                "UDMA7",
1009        };
1010        int highbit;
1011
1012        highbit = fls(xfer_mask) - 1;
1013        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014                return xfer_mode_str[highbit];
1015        return "<n/a>";
1016}
1017
1018const char *sata_spd_string(unsigned int spd)
1019{
1020        static const char * const spd_str[] = {
1021                "1.5 Gbps",
1022                "3.0 Gbps",
1023                "6.0 Gbps",
1024        };
1025
1026        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027                return "<unknown>";
1028        return spd_str[spd - 1];
1029}
1030
1031/**
1032 *      ata_dev_classify - determine device type based on ATA-spec signature
1033 *      @tf: ATA taskfile register set for device to be identified
1034 *
1035 *      Determine from taskfile register contents whether a device is
1036 *      ATA or ATAPI, as per "Signature and persistence" section
1037 *      of ATA/PI spec (volume 1, sect 5.14).
1038 *
1039 *      LOCKING:
1040 *      None.
1041 *
1042 *      RETURNS:
1043 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1044 *      %ATA_DEV_UNKNOWN the event of failure.
1045 */
1046unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047{
1048        /* Apple's open source Darwin code hints that some devices only
1049         * put a proper signature into the LBA mid/high registers,
1050         * So, we only check those.  It's sufficient for uniqueness.
1051         *
1052         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053         * signatures for ATA and ATAPI devices attached on SerialATA,
1054         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1055         * spec has never mentioned about using different signatures
1056         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1057         * Multiplier specification began to use 0x69/0x96 to identify
1058         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060         * 0x69/0x96 shortly and described them as reserved for
1061         * SerialATA.
1062         *
1063         * We follow the current spec and consider that 0x69/0x96
1064         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066         * SEMB signature.  This is worked around in
1067         * ata_dev_read_id().
1068         */
1069        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1070                DPRINTK("found ATA device by sig\n");
1071                return ATA_DEV_ATA;
1072        }
1073
1074        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1075                DPRINTK("found ATAPI device by sig\n");
1076                return ATA_DEV_ATAPI;
1077        }
1078
1079        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1080                DPRINTK("found PMP device by sig\n");
1081                return ATA_DEV_PMP;
1082        }
1083
1084        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1085                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1086                return ATA_DEV_SEMB;
1087        }
1088
1089        DPRINTK("unknown device\n");
1090        return ATA_DEV_UNKNOWN;
1091}
1092
1093/**
1094 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1095 *      @id: IDENTIFY DEVICE results we will examine
1096 *      @s: string into which data is output
1097 *      @ofs: offset into identify device page
1098 *      @len: length of string to return. must be an even number.
1099 *
1100 *      The strings in the IDENTIFY DEVICE page are broken up into
1101 *      16-bit chunks.  Run through the string, and output each
1102 *      8-bit chunk linearly, regardless of platform.
1103 *
1104 *      LOCKING:
1105 *      caller.
1106 */
1107
1108void ata_id_string(const u16 *id, unsigned char *s,
1109                   unsigned int ofs, unsigned int len)
1110{
1111        unsigned int c;
1112
1113        BUG_ON(len & 1);
1114
1115        while (len > 0) {
1116                c = id[ofs] >> 8;
1117                *s = c;
1118                s++;
1119
1120                c = id[ofs] & 0xff;
1121                *s = c;
1122                s++;
1123
1124                ofs++;
1125                len -= 2;
1126        }
1127}
1128
1129/**
1130 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1131 *      @id: IDENTIFY DEVICE results we will examine
1132 *      @s: string into which data is output
1133 *      @ofs: offset into identify device page
1134 *      @len: length of string to return. must be an odd number.
1135 *
1136 *      This function is identical to ata_id_string except that it
1137 *      trims trailing spaces and terminates the resulting string with
1138 *      null.  @len must be actual maximum length (even number) + 1.
1139 *
1140 *      LOCKING:
1141 *      caller.
1142 */
1143void ata_id_c_string(const u16 *id, unsigned char *s,
1144                     unsigned int ofs, unsigned int len)
1145{
1146        unsigned char *p;
1147
1148        ata_id_string(id, s, ofs, len - 1);
1149
1150        p = s + strnlen(s, len - 1);
1151        while (p > s && p[-1] == ' ')
1152                p--;
1153        *p = '\0';
1154}
1155
1156static u64 ata_id_n_sectors(const u16 *id)
1157{
1158        if (ata_id_has_lba(id)) {
1159                if (ata_id_has_lba48(id))
1160                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1161                else
1162                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1163        } else {
1164                if (ata_id_current_chs_valid(id))
1165                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1166                               id[ATA_ID_CUR_SECTORS];
1167                else
1168                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1169                               id[ATA_ID_SECTORS];
1170        }
1171}
1172
1173u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1174{
1175        u64 sectors = 0;
1176
1177        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1178        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1179        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1180        sectors |= (tf->lbah & 0xff) << 16;
1181        sectors |= (tf->lbam & 0xff) << 8;
1182        sectors |= (tf->lbal & 0xff);
1183
1184        return sectors;
1185}
1186
1187u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1188{
1189        u64 sectors = 0;
1190
1191        sectors |= (tf->device & 0x0f) << 24;
1192        sectors |= (tf->lbah & 0xff) << 16;
1193        sectors |= (tf->lbam & 0xff) << 8;
1194        sectors |= (tf->lbal & 0xff);
1195
1196        return sectors;
1197}
1198
1199/**
1200 *      ata_read_native_max_address - Read native max address
1201 *      @dev: target device
1202 *      @max_sectors: out parameter for the result native max address
1203 *
1204 *      Perform an LBA48 or LBA28 native size query upon the device in
1205 *      question.
1206 *
1207 *      RETURNS:
1208 *      0 on success, -EACCES if command is aborted by the drive.
1209 *      -EIO on other errors.
1210 */
1211static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1212{
1213        unsigned int err_mask;
1214        struct ata_taskfile tf;
1215        int lba48 = ata_id_has_lba48(dev->id);
1216
1217        ata_tf_init(dev, &tf);
1218
1219        /* always clear all address registers */
1220        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1221
1222        if (lba48) {
1223                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1224                tf.flags |= ATA_TFLAG_LBA48;
1225        } else
1226                tf.command = ATA_CMD_READ_NATIVE_MAX;
1227
1228        tf.protocol |= ATA_PROT_NODATA;
1229        tf.device |= ATA_LBA;
1230
1231        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1232        if (err_mask) {
1233                ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1234                               "max address (err_mask=0x%x)\n", err_mask);
1235                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1236                        return -EACCES;
1237                return -EIO;
1238        }
1239
1240        if (lba48)
1241                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1242        else
1243                *max_sectors = ata_tf_to_lba(&tf) + 1;
1244        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1245                (*max_sectors)--;
1246        return 0;
1247}
1248
1249/**
1250 *      ata_set_max_sectors - Set max sectors
1251 *      @dev: target device
1252 *      @new_sectors: new max sectors value to set for the device
1253 *
1254 *      Set max sectors of @dev to @new_sectors.
1255 *
1256 *      RETURNS:
1257 *      0 on success, -EACCES if command is aborted or denied (due to
1258 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1259 *      errors.
1260 */
1261static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1262{
1263        unsigned int err_mask;
1264        struct ata_taskfile tf;
1265        int lba48 = ata_id_has_lba48(dev->id);
1266
1267        new_sectors--;
1268
1269        ata_tf_init(dev, &tf);
1270
1271        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1272
1273        if (lba48) {
1274                tf.command = ATA_CMD_SET_MAX_EXT;
1275                tf.flags |= ATA_TFLAG_LBA48;
1276
1277                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1278                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1279                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1280        } else {
1281                tf.command = ATA_CMD_SET_MAX;
1282
1283                tf.device |= (new_sectors >> 24) & 0xf;
1284        }
1285
1286        tf.protocol |= ATA_PROT_NODATA;
1287        tf.device |= ATA_LBA;
1288
1289        tf.lbal = (new_sectors >> 0) & 0xff;
1290        tf.lbam = (new_sectors >> 8) & 0xff;
1291        tf.lbah = (new_sectors >> 16) & 0xff;
1292
1293        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1294        if (err_mask) {
1295                ata_dev_printk(dev, KERN_WARNING, "failed to set "
1296                               "max address (err_mask=0x%x)\n", err_mask);
1297                if (err_mask == AC_ERR_DEV &&
1298                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1299                        return -EACCES;
1300                return -EIO;
1301        }
1302
1303        return 0;
1304}
1305
1306/**
1307 *      ata_hpa_resize          -       Resize a device with an HPA set
1308 *      @dev: Device to resize
1309 *
1310 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1311 *      it if required to the full size of the media. The caller must check
1312 *      the drive has the HPA feature set enabled.
1313 *
1314 *      RETURNS:
1315 *      0 on success, -errno on failure.
1316 */
1317static int ata_hpa_resize(struct ata_device *dev)
1318{
1319        struct ata_eh_context *ehc = &dev->link->eh_context;
1320        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1321        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1322        u64 sectors = ata_id_n_sectors(dev->id);
1323        u64 native_sectors;
1324        int rc;
1325
1326        /* do we need to do it? */
1327        if (dev->class != ATA_DEV_ATA ||
1328            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1329            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1330                return 0;
1331
1332        /* read native max address */
1333        rc = ata_read_native_max_address(dev, &native_sectors);
1334        if (rc) {
1335                /* If device aborted the command or HPA isn't going to
1336                 * be unlocked, skip HPA resizing.
1337                 */
1338                if (rc == -EACCES || !unlock_hpa) {
1339                        ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1340                                       "broken, skipping HPA handling\n");
1341                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1342
1343                        /* we can continue if device aborted the command */
1344                        if (rc == -EACCES)
1345                                rc = 0;
1346                }
1347
1348                return rc;
1349        }
1350        dev->n_native_sectors = native_sectors;
1351
1352        /* nothing to do? */
1353        if (native_sectors <= sectors || !unlock_hpa) {
1354                if (!print_info || native_sectors == sectors)
1355                        return 0;
1356
1357                if (native_sectors > sectors)
1358                        ata_dev_printk(dev, KERN_INFO,
1359                                "HPA detected: current %llu, native %llu\n",
1360                                (unsigned long long)sectors,
1361                                (unsigned long long)native_sectors);
1362                else if (native_sectors < sectors)
1363                        ata_dev_printk(dev, KERN_WARNING,
1364                                "native sectors (%llu) is smaller than "
1365                                "sectors (%llu)\n",
1366                                (unsigned long long)native_sectors,
1367                                (unsigned long long)sectors);
1368                return 0;
1369        }
1370
1371        /* let's unlock HPA */
1372        rc = ata_set_max_sectors(dev, native_sectors);
1373        if (rc == -EACCES) {
1374                /* if device aborted the command, skip HPA resizing */
1375                ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1376                               "(%llu -> %llu), skipping HPA handling\n",
1377                               (unsigned long long)sectors,
1378                               (unsigned long long)native_sectors);
1379                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1380                return 0;
1381        } else if (rc)
1382                return rc;
1383
1384        /* re-read IDENTIFY data */
1385        rc = ata_dev_reread_id(dev, 0);
1386        if (rc) {
1387                ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1388                               "data after HPA resizing\n");
1389                return rc;
1390        }
1391
1392        if (print_info) {
1393                u64 new_sectors = ata_id_n_sectors(dev->id);
1394                ata_dev_printk(dev, KERN_INFO,
1395                        "HPA unlocked: %llu -> %llu, native %llu\n",
1396                        (unsigned long long)sectors,
1397                        (unsigned long long)new_sectors,
1398                        (unsigned long long)native_sectors);
1399        }
1400
1401        return 0;
1402}
1403
1404/**
1405 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1406 *      @id: IDENTIFY DEVICE page to dump
1407 *
1408 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1409 *      page.
1410 *
1411 *      LOCKING:
1412 *      caller.
1413 */
1414
1415static inline void ata_dump_id(const u16 *id)
1416{
1417        DPRINTK("49==0x%04x  "
1418                "53==0x%04x  "
1419                "63==0x%04x  "
1420                "64==0x%04x  "
1421                "75==0x%04x  \n",
1422                id[49],
1423                id[53],
1424                id[63],
1425                id[64],
1426                id[75]);
1427        DPRINTK("80==0x%04x  "
1428                "81==0x%04x  "
1429                "82==0x%04x  "
1430                "83==0x%04x  "
1431                "84==0x%04x  \n",
1432                id[80],
1433                id[81],
1434                id[82],
1435                id[83],
1436                id[84]);
1437        DPRINTK("88==0x%04x  "
1438                "93==0x%04x\n",
1439                id[88],
1440                id[93]);
1441}
1442
1443/**
1444 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445 *      @id: IDENTIFY data to compute xfer mask from
1446 *
1447 *      Compute the xfermask for this device. This is not as trivial
1448 *      as it seems if we must consider early devices correctly.
1449 *
1450 *      FIXME: pre IDE drive timing (do we care ?).
1451 *
1452 *      LOCKING:
1453 *      None.
1454 *
1455 *      RETURNS:
1456 *      Computed xfermask
1457 */
1458unsigned long ata_id_xfermask(const u16 *id)
1459{
1460        unsigned long pio_mask, mwdma_mask, udma_mask;
1461
1462        /* Usual case. Word 53 indicates word 64 is valid */
1463        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1464                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465                pio_mask <<= 3;
1466                pio_mask |= 0x7;
1467        } else {
1468                /* If word 64 isn't valid then Word 51 high byte holds
1469                 * the PIO timing number for the maximum. Turn it into
1470                 * a mask.
1471                 */
1472                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1473                if (mode < 5)   /* Valid PIO range */
1474                        pio_mask = (2 << mode) - 1;
1475                else
1476                        pio_mask = 1;
1477
1478                /* But wait.. there's more. Design your standards by
1479                 * committee and you too can get a free iordy field to
1480                 * process. However its the speeds not the modes that
1481                 * are supported... Note drivers using the timing API
1482                 * will get this right anyway
1483                 */
1484        }
1485
1486        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1487
1488        if (ata_id_is_cfa(id)) {
1489                /*
1490                 *      Process compact flash extended modes
1491                 */
1492                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1493                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1494
1495                if (pio)
1496                        pio_mask |= (1 << 5);
1497                if (pio > 1)
1498                        pio_mask |= (1 << 6);
1499                if (dma)
1500                        mwdma_mask |= (1 << 3);
1501                if (dma > 1)
1502                        mwdma_mask |= (1 << 4);
1503        }
1504
1505        udma_mask = 0;
1506        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1507                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1508
1509        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1510}
1511
1512static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1513{
1514        struct completion *waiting = qc->private_data;
1515
1516        complete(waiting);
1517}
1518
1519/**
1520 *      ata_exec_internal_sg - execute libata internal command
1521 *      @dev: Device to which the command is sent
1522 *      @tf: Taskfile registers for the command and the result
1523 *      @cdb: CDB for packet command
1524 *      @dma_dir: Data tranfer direction of the command
1525 *      @sgl: sg list for the data buffer of the command
1526 *      @n_elem: Number of sg entries
1527 *      @timeout: Timeout in msecs (0 for default)
1528 *
1529 *      Executes libata internal command with timeout.  @tf contains
1530 *      command on entry and result on return.  Timeout and error
1531 *      conditions are reported via return value.  No recovery action
1532 *      is taken after a command times out.  It's caller's duty to
1533 *      clean up after timeout.
1534 *
1535 *      LOCKING:
1536 *      None.  Should be called with kernel context, might sleep.
1537 *
1538 *      RETURNS:
1539 *      Zero on success, AC_ERR_* mask on failure
1540 */
1541unsigned ata_exec_internal_sg(struct ata_device *dev,
1542                              struct ata_taskfile *tf, const u8 *cdb,
1543                              int dma_dir, struct scatterlist *sgl,
1544                              unsigned int n_elem, unsigned long timeout)
1545{
1546        struct ata_link *link = dev->link;
1547        struct ata_port *ap = link->ap;
1548        u8 command = tf->command;
1549        int auto_timeout = 0;
1550        struct ata_queued_cmd *qc;
1551        unsigned int tag, preempted_tag;
1552        u32 preempted_sactive, preempted_qc_active;
1553        int preempted_nr_active_links;
1554        DECLARE_COMPLETION_ONSTACK(wait);
1555        unsigned long flags;
1556        unsigned int err_mask;
1557        int rc;
1558
1559        spin_lock_irqsave(ap->lock, flags);
1560
1561        /* no internal command while frozen */
1562        if (ap->pflags & ATA_PFLAG_FROZEN) {
1563                spin_unlock_irqrestore(ap->lock, flags);
1564                return AC_ERR_SYSTEM;
1565        }
1566
1567        /* initialize internal qc */
1568
1569        /* XXX: Tag 0 is used for drivers with legacy EH as some
1570         * drivers choke if any other tag is given.  This breaks
1571         * ata_tag_internal() test for those drivers.  Don't use new
1572         * EH stuff without converting to it.
1573         */
1574        if (ap->ops->error_handler)
1575                tag = ATA_TAG_INTERNAL;
1576        else
1577                tag = 0;
1578
1579        if (test_and_set_bit(tag, &ap->qc_allocated))
1580                BUG();
1581        qc = __ata_qc_from_tag(ap, tag);
1582
1583        qc->tag = tag;
1584        qc->scsicmd = NULL;
1585        qc->ap = ap;
1586        qc->dev = dev;
1587        ata_qc_reinit(qc);
1588
1589        preempted_tag = link->active_tag;
1590        preempted_sactive = link->sactive;
1591        preempted_qc_active = ap->qc_active;
1592        preempted_nr_active_links = ap->nr_active_links;
1593        link->active_tag = ATA_TAG_POISON;
1594        link->sactive = 0;
1595        ap->qc_active = 0;
1596        ap->nr_active_links = 0;
1597
1598        /* prepare & issue qc */
1599        qc->tf = *tf;
1600        if (cdb)
1601                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1602        qc->flags |= ATA_QCFLAG_RESULT_TF;
1603        qc->dma_dir = dma_dir;
1604        if (dma_dir != DMA_NONE) {
1605                unsigned int i, buflen = 0;
1606                struct scatterlist *sg;
1607
1608                for_each_sg(sgl, sg, n_elem, i)
1609                        buflen += sg->length;
1610
1611                ata_sg_init(qc, sgl, n_elem);
1612                qc->nbytes = buflen;
1613        }
1614
1615        qc->private_data = &wait;
1616        qc->complete_fn = ata_qc_complete_internal;
1617
1618        ata_qc_issue(qc);
1619
1620        spin_unlock_irqrestore(ap->lock, flags);
1621
1622        if (!timeout) {
1623                if (ata_probe_timeout)
1624                        timeout = ata_probe_timeout * 1000;
1625                else {
1626                        timeout = ata_internal_cmd_timeout(dev, command);
1627                        auto_timeout = 1;
1628                }
1629        }
1630
1631        if (ap->ops->error_handler)
1632                ata_eh_release(ap);
1633
1634        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1635
1636        if (ap->ops->error_handler)
1637                ata_eh_acquire(ap);
1638
1639        ata_sff_flush_pio_task(ap);
1640
1641        if (!rc) {
1642                spin_lock_irqsave(ap->lock, flags);
1643
1644                /* We're racing with irq here.  If we lose, the
1645                 * following test prevents us from completing the qc
1646                 * twice.  If we win, the port is frozen and will be
1647                 * cleaned up by ->post_internal_cmd().
1648                 */
1649                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1650                        qc->err_mask |= AC_ERR_TIMEOUT;
1651
1652                        if (ap->ops->error_handler)
1653                                ata_port_freeze(ap);
1654                        else
1655                                ata_qc_complete(qc);
1656
1657                        if (ata_msg_warn(ap))
1658                                ata_dev_printk(dev, KERN_WARNING,
1659                                        "qc timeout (cmd 0x%x)\n", command);
1660                }
1661
1662                spin_unlock_irqrestore(ap->lock, flags);
1663        }
1664
1665        /* do post_internal_cmd */
1666        if (ap->ops->post_internal_cmd)
1667                ap->ops->post_internal_cmd(qc);
1668
1669        /* perform minimal error analysis */
1670        if (qc->flags & ATA_QCFLAG_FAILED) {
1671                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1672                        qc->err_mask |= AC_ERR_DEV;
1673
1674                if (!qc->err_mask)
1675                        qc->err_mask |= AC_ERR_OTHER;
1676
1677                if (qc->err_mask & ~AC_ERR_OTHER)
1678                        qc->err_mask &= ~AC_ERR_OTHER;
1679        }
1680
1681        /* finish up */
1682        spin_lock_irqsave(ap->lock, flags);
1683
1684        *tf = qc->result_tf;
1685        err_mask = qc->err_mask;
1686
1687        ata_qc_free(qc);
1688        link->active_tag = preempted_tag;
1689        link->sactive = preempted_sactive;
1690        ap->qc_active = preempted_qc_active;
1691        ap->nr_active_links = preempted_nr_active_links;
1692
1693        spin_unlock_irqrestore(ap->lock, flags);
1694
1695        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1696                ata_internal_cmd_timed_out(dev, command);
1697
1698        return err_mask;
1699}
1700
1701/**
1702 *      ata_exec_internal - execute libata internal command
1703 *      @dev: Device to which the command is sent
1704 *      @tf: Taskfile registers for the command and the result
1705 *      @cdb: CDB for packet command
1706 *      @dma_dir: Data tranfer direction of the command
1707 *      @buf: Data buffer of the command
1708 *      @buflen: Length of data buffer
1709 *      @timeout: Timeout in msecs (0 for default)
1710 *
1711 *      Wrapper around ata_exec_internal_sg() which takes simple
1712 *      buffer instead of sg list.
1713 *
1714 *      LOCKING:
1715 *      None.  Should be called with kernel context, might sleep.
1716 *
1717 *      RETURNS:
1718 *      Zero on success, AC_ERR_* mask on failure
1719 */
1720unsigned ata_exec_internal(struct ata_device *dev,
1721                           struct ata_taskfile *tf, const u8 *cdb,
1722                           int dma_dir, void *buf, unsigned int buflen,
1723                           unsigned long timeout)
1724{
1725        struct scatterlist *psg = NULL, sg;
1726        unsigned int n_elem = 0;
1727
1728        if (dma_dir != DMA_NONE) {
1729                WARN_ON(!buf);
1730                sg_init_one(&sg, buf, buflen);
1731                psg = &sg;
1732                n_elem++;
1733        }
1734
1735        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1736                                    timeout);
1737}
1738
1739/**
1740 *      ata_do_simple_cmd - execute simple internal command
1741 *      @dev: Device to which the command is sent
1742 *      @cmd: Opcode to execute
1743 *
1744 *      Execute a 'simple' command, that only consists of the opcode
1745 *      'cmd' itself, without filling any other registers
1746 *
1747 *      LOCKING:
1748 *      Kernel thread context (may sleep).
1749 *
1750 *      RETURNS:
1751 *      Zero on success, AC_ERR_* mask on failure
1752 */
1753unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1754{
1755        struct ata_taskfile tf;
1756
1757        ata_tf_init(dev, &tf);
1758
1759        tf.command = cmd;
1760        tf.flags |= ATA_TFLAG_DEVICE;
1761        tf.protocol = ATA_PROT_NODATA;
1762
1763        return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1764}
1765
1766/**
1767 *      ata_pio_need_iordy      -       check if iordy needed
1768 *      @adev: ATA device
1769 *
1770 *      Check if the current speed of the device requires IORDY. Used
1771 *      by various controllers for chip configuration.
1772 */
1773unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1774{
1775        /* Don't set IORDY if we're preparing for reset.  IORDY may
1776         * lead to controller lock up on certain controllers if the
1777         * port is not occupied.  See bko#11703 for details.
1778         */
1779        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1780                return 0;
1781        /* Controller doesn't support IORDY.  Probably a pointless
1782         * check as the caller should know this.
1783         */
1784        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1785                return 0;
1786        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1787        if (ata_id_is_cfa(adev->id)
1788            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1789                return 0;
1790        /* PIO3 and higher it is mandatory */
1791        if (adev->pio_mode > XFER_PIO_2)
1792                return 1;
1793        /* We turn it on when possible */
1794        if (ata_id_has_iordy(adev->id))
1795                return 1;
1796        return 0;
1797}
1798
1799/**
1800 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1801 *      @adev: ATA device
1802 *
1803 *      Compute the highest mode possible if we are not using iordy. Return
1804 *      -1 if no iordy mode is available.
1805 */
1806static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1807{
1808        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1809        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1810                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1811                /* Is the speed faster than the drive allows non IORDY ? */
1812                if (pio) {
1813                        /* This is cycle times not frequency - watch the logic! */
1814                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1815                                return 3 << ATA_SHIFT_PIO;
1816                        return 7 << ATA_SHIFT_PIO;
1817                }
1818        }
1819        return 3 << ATA_SHIFT_PIO;
1820}
1821
1822/**
1823 *      ata_do_dev_read_id              -       default ID read method
1824 *      @dev: device
1825 *      @tf: proposed taskfile
1826 *      @id: data buffer
1827 *
1828 *      Issue the identify taskfile and hand back the buffer containing
1829 *      identify data. For some RAID controllers and for pre ATA devices
1830 *      this function is wrapped or replaced by the driver
1831 */
1832unsigned int ata_do_dev_read_id(struct ata_device *dev,
1833                                        struct ata_taskfile *tf, u16 *id)
1834{
1835        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1836                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1837}
1838
1839/**
1840 *      ata_dev_read_id - Read ID data from the specified device
1841 *      @dev: target device
1842 *      @p_class: pointer to class of the target device (may be changed)
1843 *      @flags: ATA_READID_* flags
1844 *      @id: buffer to read IDENTIFY data into
1845 *
1846 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1847 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1848 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1849 *      for pre-ATA4 drives.
1850 *
1851 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1852 *      now we abort if we hit that case.
1853 *
1854 *      LOCKING:
1855 *      Kernel thread context (may sleep)
1856 *
1857 *      RETURNS:
1858 *      0 on success, -errno otherwise.
1859 */
1860int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1861                    unsigned int flags, u16 *id)
1862{
1863        struct ata_port *ap = dev->link->ap;
1864        unsigned int class = *p_class;
1865        struct ata_taskfile tf;
1866        unsigned int err_mask = 0;
1867        const char *reason;
1868        bool is_semb = class == ATA_DEV_SEMB;
1869        int may_fallback = 1, tried_spinup = 0;
1870        int rc;
1871
1872        if (ata_msg_ctl(ap))
1873                ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1874
1875retry:
1876        ata_tf_init(dev, &tf);
1877
1878        switch (class) {
1879        case ATA_DEV_SEMB:
1880                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1881        case ATA_DEV_ATA:
1882                tf.command = ATA_CMD_ID_ATA;
1883                break;
1884        case ATA_DEV_ATAPI:
1885                tf.command = ATA_CMD_ID_ATAPI;
1886                break;
1887        default:
1888                rc = -ENODEV;
1889                reason = "unsupported class";
1890                goto err_out;
1891        }
1892
1893        tf.protocol = ATA_PROT_PIO;
1894
1895        /* Some devices choke if TF registers contain garbage.  Make
1896         * sure those are properly initialized.
1897         */
1898        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1899
1900        /* Device presence detection is unreliable on some
1901         * controllers.  Always poll IDENTIFY if available.
1902         */
1903        tf.flags |= ATA_TFLAG_POLLING;
1904
1905        if (ap->ops->read_id)
1906                err_mask = ap->ops->read_id(dev, &tf, id);
1907        else
1908                err_mask = ata_do_dev_read_id(dev, &tf, id);
1909
1910        if (err_mask) {
1911                if (err_mask & AC_ERR_NODEV_HINT) {
1912                        ata_dev_printk(dev, KERN_DEBUG,
1913                                       "NODEV after polling detection\n");
1914                        return -ENOENT;
1915                }
1916
1917                if (is_semb) {
1918                        ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
1919                                       "device w/ SEMB sig, disabled\n");
1920                        /* SEMB is not supported yet */
1921                        *p_class = ATA_DEV_SEMB_UNSUP;
1922                        return 0;
1923                }
1924
1925                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1926                        /* Device or controller might have reported
1927                         * the wrong device class.  Give a shot at the
1928                         * other IDENTIFY if the current one is
1929                         * aborted by the device.
1930                         */
1931                        if (may_fallback) {
1932                                may_fallback = 0;
1933
1934                                if (class == ATA_DEV_ATA)
1935                                        class = ATA_DEV_ATAPI;
1936                                else
1937                                        class = ATA_DEV_ATA;
1938                                goto retry;
1939                        }
1940
1941                        /* Control reaches here iff the device aborted
1942                         * both flavors of IDENTIFYs which happens
1943                         * sometimes with phantom devices.
1944                         */
1945                        ata_dev_printk(dev, KERN_DEBUG,
1946                                       "both IDENTIFYs aborted, assuming NODEV\n");
1947                        return -ENOENT;
1948                }
1949
1950                rc = -EIO;
1951                reason = "I/O error";
1952                goto err_out;
1953        }
1954
1955        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1956                ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, "
1957                               "class=%d may_fallback=%d tried_spinup=%d\n",
1958                               class, may_fallback, tried_spinup);
1959                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1960                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1961        }
1962
1963        /* Falling back doesn't make sense if ID data was read
1964         * successfully at least once.
1965         */
1966        may_fallback = 0;
1967
1968        swap_buf_le16(id, ATA_ID_WORDS);
1969
1970        /* sanity check */
1971        rc = -EINVAL;
1972        reason = "device reports invalid type";
1973
1974        if (class == ATA_DEV_ATA) {
1975                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1976                        goto err_out;
1977        } else {
1978                if (ata_id_is_ata(id))
1979                        goto err_out;
1980        }
1981
1982        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1983                tried_spinup = 1;
1984                /*
1985                 * Drive powered-up in standby mode, and requires a specific
1986                 * SET_FEATURES spin-up subcommand before it will accept
1987                 * anything other than the original IDENTIFY command.
1988                 */
1989                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1990                if (err_mask && id[2] != 0x738c) {
1991                        rc = -EIO;
1992                        reason = "SPINUP failed";
1993                        goto err_out;
1994                }
1995                /*
1996                 * If the drive initially returned incomplete IDENTIFY info,
1997                 * we now must reissue the IDENTIFY command.
1998                 */
1999                if (id[2] == 0x37c8)
2000                        goto retry;
2001        }
2002
2003        if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2004                /*
2005                 * The exact sequence expected by certain pre-ATA4 drives is:
2006                 * SRST RESET
2007                 * IDENTIFY (optional in early ATA)
2008                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2009                 * anything else..
2010                 * Some drives were very specific about that exact sequence.
2011                 *
2012                 * Note that ATA4 says lba is mandatory so the second check
2013                 * should never trigger.
2014                 */
2015                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2016                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2017                        if (err_mask) {
2018                                rc = -EIO;
2019                                reason = "INIT_DEV_PARAMS failed";
2020                                goto err_out;
2021                        }
2022
2023                        /* current CHS translation info (id[53-58]) might be
2024                         * changed. reread the identify device info.
2025                         */
2026                        flags &= ~ATA_READID_POSTRESET;
2027                        goto retry;
2028                }
2029        }
2030
2031        *p_class = class;
2032
2033        return 0;
2034
2035 err_out:
2036        if (ata_msg_warn(ap))
2037                ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2038                               "(%s, err_mask=0x%x)\n", reason, err_mask);
2039        return rc;
2040}
2041
2042static int ata_do_link_spd_horkage(struct ata_device *dev)
2043{
2044        struct ata_link *plink = ata_dev_phys_link(dev);
2045        u32 target, target_limit;
2046
2047        if (!sata_scr_valid(plink))
2048                return 0;
2049
2050        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2051                target = 1;
2052        else
2053                return 0;
2054
2055        target_limit = (1 << target) - 1;
2056
2057        /* if already on stricter limit, no need to push further */
2058        if (plink->sata_spd_limit <= target_limit)
2059                return 0;
2060
2061        plink->sata_spd_limit = target_limit;
2062
2063        /* Request another EH round by returning -EAGAIN if link is
2064         * going faster than the target speed.  Forward progress is
2065         * guaranteed by setting sata_spd_limit to target_limit above.
2066         */
2067        if (plink->sata_spd > target) {
2068                ata_dev_printk(dev, KERN_INFO,
2069                               "applying link speed limit horkage to %s\n",
2070                               sata_spd_string(target));
2071                return -EAGAIN;
2072        }
2073        return 0;
2074}
2075
2076static inline u8 ata_dev_knobble(struct ata_device *dev)
2077{
2078        struct ata_port *ap = dev->link->ap;
2079
2080        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2081                return 0;
2082
2083        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2084}
2085
2086static int ata_dev_config_ncq(struct ata_device *dev,
2087                               char *desc, size_t desc_sz)
2088{
2089        struct ata_port *ap = dev->link->ap;
2090        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2091        unsigned int err_mask;
2092        char *aa_desc = "";
2093
2094        if (!ata_id_has_ncq(dev->id)) {
2095                desc[0] = '\0';
2096                return 0;
2097        }
2098        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2099                snprintf(desc, desc_sz, "NCQ (not used)");
2100                return 0;
2101        }
2102        if (ap->flags & ATA_FLAG_NCQ) {
2103                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2104                dev->flags |= ATA_DFLAG_NCQ;
2105        }
2106
2107        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2108                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2109                ata_id_has_fpdma_aa(dev->id)) {
2110                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2111                        SATA_FPDMA_AA);
2112                if (err_mask) {
2113                        ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2114                                "(error_mask=0x%x)\n", err_mask);
2115                        if (err_mask != AC_ERR_DEV) {
2116                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2117                                return -EIO;
2118                        }
2119                } else
2120                        aa_desc = ", AA";
2121        }
2122
2123        if (hdepth >= ddepth)
2124                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2125        else
2126                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2127                        ddepth, aa_desc);
2128        return 0;
2129}
2130
2131/**
2132 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2133 *      @dev: Target device to configure
2134 *
2135 *      Configure @dev according to @dev->id.  Generic and low-level
2136 *      driver specific fixups are also applied.
2137 *
2138 *      LOCKING:
2139 *      Kernel thread context (may sleep)
2140 *
2141 *      RETURNS:
2142 *      0 on success, -errno otherwise
2143 */
2144int ata_dev_configure(struct ata_device *dev)
2145{
2146        struct ata_port *ap = dev->link->ap;
2147        struct ata_eh_context *ehc = &dev->link->eh_context;
2148        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2149        const u16 *id = dev->id;
2150        unsigned long xfer_mask;
2151        char revbuf[7];         /* XYZ-99\0 */
2152        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2153        char modelbuf[ATA_ID_PROD_LEN+1];
2154        int rc;
2155
2156        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2157                ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2158                               __func__);
2159                return 0;
2160        }
2161
2162        if (ata_msg_probe(ap))
2163                ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2164
2165        /* set horkage */
2166        dev->horkage |= ata_dev_blacklisted(dev);
2167        ata_force_horkage(dev);
2168
2169        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2170                ata_dev_printk(dev, KERN_INFO,
2171                               "unsupported device, disabling\n");
2172                ata_dev_disable(dev);
2173                return 0;
2174        }
2175
2176        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2177            dev->class == ATA_DEV_ATAPI) {
2178                ata_dev_printk(dev, KERN_WARNING,
2179                        "WARNING: ATAPI is %s, device ignored.\n",
2180                        atapi_enabled ? "not supported with this driver"
2181                                      : "disabled");
2182                ata_dev_disable(dev);
2183                return 0;
2184        }
2185
2186        rc = ata_do_link_spd_horkage(dev);
2187        if (rc)
2188                return rc;
2189
2190        /* let ACPI work its magic */
2191        rc = ata_acpi_on_devcfg(dev);
2192        if (rc)
2193                return rc;
2194
2195        /* massage HPA, do it early as it might change IDENTIFY data */
2196        rc = ata_hpa_resize(dev);
2197        if (rc)
2198                return rc;
2199
2200        /* print device capabilities */
2201        if (ata_msg_probe(ap))
2202                ata_dev_printk(dev, KERN_DEBUG,
2203                               "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2204                               "85:%04x 86:%04x 87:%04x 88:%04x\n",
2205                               __func__,
2206                               id[49], id[82], id[83], id[84],
2207                               id[85], id[86], id[87], id[88]);
2208
2209        /* initialize to-be-configured parameters */
2210        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2211        dev->max_sectors = 0;
2212        dev->cdb_len = 0;
2213        dev->n_sectors = 0;
2214        dev->cylinders = 0;
2215        dev->heads = 0;
2216        dev->sectors = 0;
2217        dev->multi_count = 0;
2218
2219        /*
2220         * common ATA, ATAPI feature tests
2221         */
2222
2223        /* find max transfer mode; for printk only */
2224        xfer_mask = ata_id_xfermask(id);
2225
2226        if (ata_msg_probe(ap))
2227                ata_dump_id(id);
2228
2229        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2230        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2231                        sizeof(fwrevbuf));
2232
2233        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2234                        sizeof(modelbuf));
2235
2236        /* ATA-specific feature tests */
2237        if (dev->class == ATA_DEV_ATA) {
2238                if (ata_id_is_cfa(id)) {
2239                        /* CPRM may make this media unusable */
2240                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2241                                ata_dev_printk(dev, KERN_WARNING,
2242                                               "supports DRM functions and may "
2243                                               "not be fully accessible.\n");
2244                        snprintf(revbuf, 7, "CFA");
2245                } else {
2246                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2247                        /* Warn the user if the device has TPM extensions */
2248                        if (ata_id_has_tpm(id))
2249                                ata_dev_printk(dev, KERN_WARNING,
2250                                               "supports DRM functions and may "
2251                                               "not be fully accessible.\n");
2252                }
2253
2254                dev->n_sectors = ata_id_n_sectors(id);
2255
2256                /* get current R/W Multiple count setting */
2257                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2258                        unsigned int max = dev->id[47] & 0xff;
2259                        unsigned int cnt = dev->id[59] & 0xff;
2260                        /* only recognize/allow powers of two here */
2261                        if (is_power_of_2(max) && is_power_of_2(cnt))
2262                                if (cnt <= max)
2263                                        dev->multi_count = cnt;
2264                }
2265
2266                if (ata_id_has_lba(id)) {
2267                        const char *lba_desc;
2268                        char ncq_desc[24];
2269
2270                        lba_desc = "LBA";
2271                        dev->flags |= ATA_DFLAG_LBA;
2272                        if (ata_id_has_lba48(id)) {
2273                                dev->flags |= ATA_DFLAG_LBA48;
2274                                lba_desc = "LBA48";
2275
2276                                if (dev->n_sectors >= (1UL << 28) &&
2277                                    ata_id_has_flush_ext(id))
2278                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2279                        }
2280
2281                        /* config NCQ */
2282                        rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2283                        if (rc)
2284                                return rc;
2285
2286                        /* print device info to dmesg */
2287                        if (ata_msg_drv(ap) && print_info) {
2288                                ata_dev_printk(dev, KERN_INFO,
2289                                        "%s: %s, %s, max %s\n",
2290                                        revbuf, modelbuf, fwrevbuf,
2291                                        ata_mode_string(xfer_mask));
2292                                ata_dev_printk(dev, KERN_INFO,
2293                                        "%Lu sectors, multi %u: %s %s\n",
2294                                        (unsigned long long)dev->n_sectors,
2295                                        dev->multi_count, lba_desc, ncq_desc);
2296                        }
2297                } else {
2298                        /* CHS */
2299
2300                        /* Default translation */
2301                        dev->cylinders  = id[1];
2302                        dev->heads      = id[3];
2303                        dev->sectors    = id[6];
2304
2305                        if (ata_id_current_chs_valid(id)) {
2306                                /* Current CHS translation is valid. */
2307                                dev->cylinders = id[54];
2308                                dev->heads     = id[55];
2309                                dev->sectors   = id[56];
2310                        }
2311
2312                        /* print device info to dmesg */
2313                        if (ata_msg_drv(ap) && print_info) {
2314                                ata_dev_printk(dev, KERN_INFO,
2315                                        "%s: %s, %s, max %s\n",
2316                                        revbuf, modelbuf, fwrevbuf,
2317                                        ata_mode_string(xfer_mask));
2318                                ata_dev_printk(dev, KERN_INFO,
2319                                        "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2320                                        (unsigned long long)dev->n_sectors,
2321                                        dev->multi_count, dev->cylinders,
2322                                        dev->heads, dev->sectors);
2323                        }
2324                }
2325
2326                dev->cdb_len = 16;
2327        }
2328
2329        /* ATAPI-specific feature tests */
2330        else if (dev->class == ATA_DEV_ATAPI) {
2331                const char *cdb_intr_string = "";
2332                const char *atapi_an_string = "";
2333                const char *dma_dir_string = "";
2334                u32 sntf;
2335
2336                rc = atapi_cdb_len(id);
2337                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2338                        if (ata_msg_warn(ap))
2339                                ata_dev_printk(dev, KERN_WARNING,
2340                                               "unsupported CDB len\n");
2341                        rc = -EINVAL;
2342                        goto err_out_nosup;
2343                }
2344                dev->cdb_len = (unsigned int) rc;
2345
2346                /* Enable ATAPI AN if both the host and device have
2347                 * the support.  If PMP is attached, SNTF is required
2348                 * to enable ATAPI AN to discern between PHY status
2349                 * changed notifications and ATAPI ANs.
2350                 */
2351                if (atapi_an &&
2352                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2353                    (!sata_pmp_attached(ap) ||
2354                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2355                        unsigned int err_mask;
2356
2357                        /* issue SET feature command to turn this on */
2358                        err_mask = ata_dev_set_feature(dev,
2359                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2360                        if (err_mask)
2361                                ata_dev_printk(dev, KERN_ERR,
2362                                        "failed to enable ATAPI AN "
2363                                        "(err_mask=0x%x)\n", err_mask);
2364                        else {
2365                                dev->flags |= ATA_DFLAG_AN;
2366                                atapi_an_string = ", ATAPI AN";
2367                        }
2368                }
2369
2370                if (ata_id_cdb_intr(dev->id)) {
2371                        dev->flags |= ATA_DFLAG_CDB_INTR;
2372                        cdb_intr_string = ", CDB intr";
2373                }
2374
2375                if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2376                        dev->flags |= ATA_DFLAG_DMADIR;
2377                        dma_dir_string = ", DMADIR";
2378                }
2379
2380                /* print device info to dmesg */
2381                if (ata_msg_drv(ap) && print_info)
2382                        ata_dev_printk(dev, KERN_INFO,
2383                                       "ATAPI: %s, %s, max %s%s%s%s\n",
2384                                       modelbuf, fwrevbuf,
2385                                       ata_mode_string(xfer_mask),
2386                                       cdb_intr_string, atapi_an_string,
2387                                       dma_dir_string);
2388        }
2389
2390        /* determine max_sectors */
2391        dev->max_sectors = ATA_MAX_SECTORS;
2392        if (dev->flags & ATA_DFLAG_LBA48)
2393                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2394
2395        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2396           200 sectors */
2397        if (ata_dev_knobble(dev)) {
2398                if (ata_msg_drv(ap) && print_info)
2399                        ata_dev_printk(dev, KERN_INFO,
2400                                       "applying bridge limits\n");
2401                dev->udma_mask &= ATA_UDMA5;
2402                dev->max_sectors = ATA_MAX_SECTORS;
2403        }
2404
2405        if ((dev->class == ATA_DEV_ATAPI) &&
2406            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2407                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2408                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2409        }
2410
2411        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2412                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2413                                         dev->max_sectors);
2414
2415        if (ap->ops->dev_config)
2416                ap->ops->dev_config(dev);
2417
2418        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2419                /* Let the user know. We don't want to disallow opens for
2420                   rescue purposes, or in case the vendor is just a blithering
2421                   idiot. Do this after the dev_config call as some controllers
2422                   with buggy firmware may want to avoid reporting false device
2423                   bugs */
2424
2425                if (print_info) {
2426                        ata_dev_printk(dev, KERN_WARNING,
2427"Drive reports diagnostics failure. This may indicate a drive\n");
2428                        ata_dev_printk(dev, KERN_WARNING,
2429"fault or invalid emulation. Contact drive vendor for information.\n");
2430                }
2431        }
2432
2433        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2434                ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2435                               "firmware update to be fully functional.\n");
2436                ata_dev_printk(dev, KERN_WARNING, "         contact the vendor "
2437                               "or visit http://ata.wiki.kernel.org.\n");
2438        }
2439
2440        return 0;
2441
2442err_out_nosup:
2443        if (ata_msg_probe(ap))
2444                ata_dev_printk(dev, KERN_DEBUG,
2445                               "%s: EXIT, err\n", __func__);
2446        return rc;
2447}
2448
2449/**
2450 *      ata_cable_40wire        -       return 40 wire cable type
2451 *      @ap: port
2452 *
2453 *      Helper method for drivers which want to hardwire 40 wire cable
2454 *      detection.
2455 */
2456
2457int ata_cable_40wire(struct ata_port *ap)
2458{
2459        return ATA_CBL_PATA40;
2460}
2461
2462/**
2463 *      ata_cable_80wire        -       return 80 wire cable type
2464 *      @ap: port
2465 *
2466 *      Helper method for drivers which want to hardwire 80 wire cable
2467 *      detection.
2468 */
2469
2470int ata_cable_80wire(struct ata_port *ap)
2471{
2472        return ATA_CBL_PATA80;
2473}
2474
2475/**
2476 *      ata_cable_unknown       -       return unknown PATA cable.
2477 *      @ap: port
2478 *
2479 *      Helper method for drivers which have no PATA cable detection.
2480 */
2481
2482int ata_cable_unknown(struct ata_port *ap)
2483{
2484        return ATA_CBL_PATA_UNK;
2485}
2486
2487/**
2488 *      ata_cable_ignore        -       return ignored PATA cable.
2489 *      @ap: port
2490 *
2491 *      Helper method for drivers which don't use cable type to limit
2492 *      transfer mode.
2493 */
2494int ata_cable_ignore(struct ata_port *ap)
2495{
2496        return ATA_CBL_PATA_IGN;
2497}
2498
2499/**
2500 *      ata_cable_sata  -       return SATA cable type
2501 *      @ap: port
2502 *
2503 *      Helper method for drivers which have SATA cables
2504 */
2505
2506int ata_cable_sata(struct ata_port *ap)
2507{
2508        return ATA_CBL_SATA;
2509}
2510
2511/**
2512 *      ata_bus_probe - Reset and probe ATA bus
2513 *      @ap: Bus to probe
2514 *
2515 *      Master ATA bus probing function.  Initiates a hardware-dependent
2516 *      bus reset, then attempts to identify any devices found on
2517 *      the bus.
2518 *
2519 *      LOCKING:
2520 *      PCI/etc. bus probe sem.
2521 *
2522 *      RETURNS:
2523 *      Zero on success, negative errno otherwise.
2524 */
2525
2526int ata_bus_probe(struct ata_port *ap)
2527{
2528        unsigned int classes[ATA_MAX_DEVICES];
2529        int tries[ATA_MAX_DEVICES];
2530        int rc;
2531        struct ata_device *dev;
2532
2533        ata_for_each_dev(dev, &ap->link, ALL)
2534                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2535
2536 retry:
2537        ata_for_each_dev(dev, &ap->link, ALL) {
2538                /* If we issue an SRST then an ATA drive (not ATAPI)
2539                 * may change configuration and be in PIO0 timing. If
2540                 * we do a hard reset (or are coming from power on)
2541                 * this is true for ATA or ATAPI. Until we've set a
2542                 * suitable controller mode we should not touch the
2543                 * bus as we may be talking too fast.
2544                 */
2545                dev->pio_mode = XFER_PIO_0;
2546
2547                /* If the controller has a pio mode setup function
2548                 * then use it to set the chipset to rights. Don't
2549                 * touch the DMA setup as that will be dealt with when
2550                 * configuring devices.
2551                 */
2552                if (ap->ops->set_piomode)
2553                        ap->ops->set_piomode(ap, dev);
2554        }
2555
2556        /* reset and determine device classes */
2557        ap->ops->phy_reset(ap);
2558
2559        ata_for_each_dev(dev, &ap->link, ALL) {
2560                if (dev->class != ATA_DEV_UNKNOWN)
2561                        classes[dev->devno] = dev->class;
2562                else
2563                        classes[dev->devno] = ATA_DEV_NONE;
2564
2565                dev->class = ATA_DEV_UNKNOWN;
2566        }
2567
2568        /* read IDENTIFY page and configure devices. We have to do the identify
2569           specific sequence bass-ackwards so that PDIAG- is released by
2570           the slave device */
2571
2572        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2573                if (tries[dev->devno])
2574                        dev->class = classes[dev->devno];
2575
2576                if (!ata_dev_enabled(dev))
2577                        continue;
2578
2579                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2580                                     dev->id);
2581                if (rc)
2582                        goto fail;
2583        }
2584
2585        /* Now ask for the cable type as PDIAG- should have been released */
2586        if (ap->ops->cable_detect)
2587                ap->cbl = ap->ops->cable_detect(ap);
2588
2589        /* We may have SATA bridge glue hiding here irrespective of
2590         * the reported cable types and sensed types.  When SATA
2591         * drives indicate we have a bridge, we don't know which end
2592         * of the link the bridge is which is a problem.
2593         */
2594        ata_for_each_dev(dev, &ap->link, ENABLED)
2595                if (ata_id_is_sata(dev->id))
2596                        ap->cbl = ATA_CBL_SATA;
2597
2598        /* After the identify sequence we can now set up the devices. We do
2599           this in the normal order so that the user doesn't get confused */
2600
2601        ata_for_each_dev(dev, &ap->link, ENABLED) {
2602                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2603                rc = ata_dev_configure(dev);
2604                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2605                if (rc)
2606                        goto fail;
2607        }
2608
2609        /* configure transfer mode */
2610        rc = ata_set_mode(&ap->link, &dev);
2611        if (rc)
2612                goto fail;
2613
2614        ata_for_each_dev(dev, &ap->link, ENABLED)
2615                return 0;
2616
2617        return -ENODEV;
2618
2619 fail:
2620        tries[dev->devno]--;
2621
2622        switch (rc) {
2623        case -EINVAL:
2624                /* eeek, something went very wrong, give up */
2625                tries[dev->devno] = 0;
2626                break;
2627
2628        case -ENODEV:
2629                /* give it just one more chance */
2630                tries[dev->devno] = min(tries[dev->devno], 1);
2631        case -EIO:
2632                if (tries[dev->devno] == 1) {
2633                        /* This is the last chance, better to slow
2634                         * down than lose it.
2635                         */
2636                        sata_down_spd_limit(&ap->link, 0);
2637                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2638                }
2639        }
2640
2641        if (!tries[dev->devno])
2642                ata_dev_disable(dev);
2643
2644        goto retry;
2645}
2646
2647/**
2648 *      sata_print_link_status - Print SATA link status
2649 *      @link: SATA link to printk link status about
2650 *
2651 *      This function prints link speed and status of a SATA link.
2652 *
2653 *      LOCKING:
2654 *      None.
2655 */
2656static void sata_print_link_status(struct ata_link *link)
2657{
2658        u32 sstatus, scontrol, tmp;
2659
2660        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2661                return;
2662        sata_scr_read(link, SCR_CONTROL, &scontrol);
2663
2664        if (ata_phys_link_online(link)) {
2665                tmp = (sstatus >> 4) & 0xf;
2666                ata_link_printk(link, KERN_INFO,
2667                                "SATA link up %s (SStatus %X SControl %X)\n",
2668                                sata_spd_string(tmp), sstatus, scontrol);
2669        } else {
2670                ata_link_printk(link, KERN_INFO,
2671                                "SATA link down (SStatus %X SControl %X)\n",
2672                                sstatus, scontrol);
2673        }
2674}
2675
2676/**
2677 *      ata_dev_pair            -       return other device on cable
2678 *      @adev: device
2679 *
2680 *      Obtain the other device on the same cable, or if none is
2681 *      present NULL is returned
2682 */
2683
2684struct ata_device *ata_dev_pair(struct ata_device *adev)
2685{
2686        struct ata_link *link = adev->link;
2687        struct ata_device *pair = &link->device[1 - adev->devno];
2688        if (!ata_dev_enabled(pair))
2689                return NULL;
2690        return pair;
2691}
2692
2693/**
2694 *      sata_down_spd_limit - adjust SATA spd limit downward
2695 *      @link: Link to adjust SATA spd limit for
2696 *      @spd_limit: Additional limit
2697 *
2698 *      Adjust SATA spd limit of @link downward.  Note that this
2699 *      function only adjusts the limit.  The change must be applied
2700 *      using sata_set_spd().
2701 *
2702 *      If @spd_limit is non-zero, the speed is limited to equal to or
2703 *      lower than @spd_limit if such speed is supported.  If
2704 *      @spd_limit is slower than any supported speed, only the lowest
2705 *      supported speed is allowed.
2706 *
2707 *      LOCKING:
2708 *      Inherited from caller.
2709 *
2710 *      RETURNS:
2711 *      0 on success, negative errno on failure
2712 */
2713int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2714{
2715        u32 sstatus, spd, mask;
2716        int rc, bit;
2717
2718        if (!sata_scr_valid(link))
2719                return -EOPNOTSUPP;
2720
2721        /* If SCR can be read, use it to determine the current SPD.
2722         * If not, use cached value in link->sata_spd.
2723         */
2724        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2725        if (rc == 0 && ata_sstatus_online(sstatus))
2726                spd = (sstatus >> 4) & 0xf;
2727        else
2728                spd = link->sata_spd;
2729
2730        mask = link->sata_spd_limit;
2731        if (mask <= 1)
2732                return -EINVAL;
2733
2734        /* unconditionally mask off the highest bit */
2735        bit = fls(mask) - 1;
2736        mask &= ~(1 << bit);
2737
2738        /* Mask off all speeds higher than or equal to the current
2739         * one.  Force 1.5Gbps if current SPD is not available.
2740         */
2741        if (spd > 1)
2742                mask &= (1 << (spd - 1)) - 1;
2743        else
2744                mask &= 1;
2745
2746        /* were we already at the bottom? */
2747        if (!mask)
2748                return -EINVAL;
2749
2750        if (spd_limit) {
2751                if (mask & ((1 << spd_limit) - 1))
2752                        mask &= (1 << spd_limit) - 1;
2753                else {
2754                        bit = ffs(mask) - 1;
2755                        mask = 1 << bit;
2756                }
2757        }
2758
2759        link->sata_spd_limit = mask;
2760
2761        ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2762                        sata_spd_string(fls(mask)));
2763
2764        return 0;
2765}
2766
2767static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2768{
2769        struct ata_link *host_link = &link->ap->link;
2770        u32 limit, target, spd;
2771
2772        limit = link->sata_spd_limit;
2773
2774        /* Don't configure downstream link faster than upstream link.
2775         * It doesn't speed up anything and some PMPs choke on such
2776         * configuration.
2777         */
2778        if (!ata_is_host_link(link) && host_link->sata_spd)
2779                limit &= (1 << host_link->sata_spd) - 1;
2780
2781        if (limit == UINT_MAX)
2782                target = 0;
2783        else
2784                target = fls(limit);
2785
2786        spd = (*scontrol >> 4) & 0xf;
2787        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2788
2789        return spd != target;
2790}
2791
2792/**
2793 *      sata_set_spd_needed - is SATA spd configuration needed
2794 *      @link: Link in question
2795 *
2796 *      Test whether the spd limit in SControl matches
2797 *      @link->sata_spd_limit.  This function is used to determine
2798 *      whether hardreset is necessary to apply SATA spd
2799 *      configuration.
2800 *
2801 *      LOCKING:
2802 *      Inherited from caller.
2803 *
2804 *      RETURNS:
2805 *      1 if SATA spd configuration is needed, 0 otherwise.
2806 */
2807static int sata_set_spd_needed(struct ata_link *link)
2808{
2809        u32 scontrol;
2810
2811        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2812                return 1;
2813
2814        return __sata_set_spd_needed(link, &scontrol);
2815}
2816
2817/**
2818 *      sata_set_spd - set SATA spd according to spd limit
2819 *      @link: Link to set SATA spd for
2820 *
2821 *      Set SATA spd of @link according to sata_spd_limit.
2822 *
2823 *      LOCKING:
2824 *      Inherited from caller.
2825 *
2826 *      RETURNS:
2827 *      0 if spd doesn't need to be changed, 1 if spd has been
2828 *      changed.  Negative errno if SCR registers are inaccessible.
2829 */
2830int sata_set_spd(struct ata_link *link)
2831{
2832        u32 scontrol;
2833        int rc;
2834
2835        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2836                return rc;
2837
2838        if (!__sata_set_spd_needed(link, &scontrol))
2839                return 0;
2840
2841        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2842                return rc;
2843
2844        return 1;
2845}
2846
2847/*
2848 * This mode timing computation functionality is ported over from
2849 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2850 */
2851/*
2852 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2853 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2854 * for UDMA6, which is currently supported only by Maxtor drives.
2855 *
2856 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2857 */
2858
2859static const struct ata_timing ata_timing[] = {
2860/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2861        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2862        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2863        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2864        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2865        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2866        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2867        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2868
2869        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2870        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2871        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2872
2873        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2874        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2875        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2876        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2877        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2878
2879/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2880        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2881        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2882        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2883        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2884        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2885        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2886        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2887
2888        { 0xFF }
2889};
2890
2891#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
2892#define EZ(v, unit)             ((v)?ENOUGH(v, unit):0)
2893
2894static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2895{
2896        q->setup        = EZ(t->setup      * 1000,  T);
2897        q->act8b        = EZ(t->act8b      * 1000,  T);
2898        q->rec8b        = EZ(t->rec8b      * 1000,  T);
2899        q->cyc8b        = EZ(t->cyc8b      * 1000,  T);
2900        q->active       = EZ(t->active     * 1000,  T);
2901        q->recover      = EZ(t->recover    * 1000,  T);
2902        q->dmack_hold   = EZ(t->dmack_hold * 1000,  T);
2903        q->cycle        = EZ(t->cycle      * 1000,  T);
2904        q->udma         = EZ(t->udma       * 1000, UT);
2905}
2906
2907void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2908                      struct ata_timing *m, unsigned int what)
2909{
2910        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2911        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2912        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2913        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2914        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2915        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2916        if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2917        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2918        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2919}
2920
2921const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2922{
2923        const struct ata_timing *t = ata_timing;
2924
2925        while (xfer_mode > t->mode)
2926                t++;
2927
2928        if (xfer_mode == t->mode)
2929                return t;
2930        return NULL;
2931}
2932
2933int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2934                       struct ata_timing *t, int T, int UT)
2935{
2936        const u16 *id = adev->id;
2937        const struct ata_timing *s;
2938        struct ata_timing p;
2939
2940        /*
2941         * Find the mode.
2942         */
2943
2944        if (!(s = ata_timing_find_mode(speed)))
2945                return -EINVAL;
2946
2947        memcpy(t, s, sizeof(*s));
2948
2949        /*
2950         * If the drive is an EIDE drive, it can tell us it needs extended
2951         * PIO/MW_DMA cycle timing.
2952         */
2953
2954        if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
2955                memset(&p, 0, sizeof(p));
2956
2957                if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2958                        if (speed <= XFER_PIO_2)
2959                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2960                        else if ((speed <= XFER_PIO_4) ||
2961                                 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2962                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2963                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2964                        p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2965
2966                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2967        }
2968
2969        /*
2970         * Convert the timing to bus clock counts.
2971         */
2972
2973        ata_timing_quantize(t, t, T, UT);
2974
2975        /*
2976         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2977         * S.M.A.R.T * and some other commands. We have to ensure that the
2978         * DMA cycle timing is slower/equal than the fastest PIO timing.
2979         */
2980
2981        if (speed > XFER_PIO_6) {
2982                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2983                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2984        }
2985
2986        /*
2987         * Lengthen active & recovery time so that cycle time is correct.
2988         */
2989
2990        if (t->act8b + t->rec8b < t->cyc8b) {
2991                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2992                t->rec8b = t->cyc8b - t->act8b;
2993        }
2994
2995        if (t->active + t->recover < t->cycle) {
2996                t->active += (t->cycle - (t->active + t->recover)) / 2;
2997                t->recover = t->cycle - t->active;
2998        }
2999
3000        /* In a few cases quantisation may produce enough errors to
3001           leave t->cycle too low for the sum of active and recovery
3002           if so we must correct this */
3003        if (t->active + t->recover > t->cycle)
3004                t->cycle = t->active + t->recover;
3005
3006        return 0;
3007}
3008
3009/**
3010 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3011 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3012 *      @cycle: cycle duration in ns
3013 *
3014 *      Return matching xfer mode for @cycle.  The returned mode is of
3015 *      the transfer type specified by @xfer_shift.  If @cycle is too
3016 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3017 *      than the fastest known mode, the fasted mode is returned.
3018 *
3019 *      LOCKING:
3020 *      None.
3021 *
3022 *      RETURNS:
3023 *      Matching xfer_mode, 0xff if no match found.
3024 */
3025u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3026{
3027        u8 base_mode = 0xff, last_mode = 0xff;
3028        const struct ata_xfer_ent *ent;
3029        const struct ata_timing *t;
3030
3031        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3032                if (ent->shift == xfer_shift)
3033                        base_mode = ent->base;
3034
3035        for (t = ata_timing_find_mode(base_mode);
3036             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3037                unsigned short this_cycle;
3038
3039                switch (xfer_shift) {
3040                case ATA_SHIFT_PIO:
3041                case ATA_SHIFT_MWDMA:
3042                        this_cycle = t->cycle;
3043                        break;
3044                case ATA_SHIFT_UDMA:
3045                        this_cycle = t->udma;
3046                        break;
3047                default:
3048                        return 0xff;
3049                }
3050
3051                if (cycle > this_cycle)
3052                        break;
3053
3054                last_mode = t->mode;
3055        }
3056
3057        return last_mode;
3058}
3059
3060/**
3061 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3062 *      @dev: Device to adjust xfer masks
3063 *      @sel: ATA_DNXFER_* selector
3064 *
3065 *      Adjust xfer masks of @dev downward.  Note that this function
3066 *      does not apply the change.  Invoking ata_set_mode() afterwards
3067 *      will apply the limit.
3068 *
3069 *      LOCKING:
3070 *      Inherited from caller.
3071 *
3072 *      RETURNS:
3073 *      0 on success, negative errno on failure
3074 */
3075int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3076{
3077        char buf[32];
3078        unsigned long orig_mask, xfer_mask;
3079        unsigned long pio_mask, mwdma_mask, udma_mask;
3080        int quiet, highbit;
3081
3082        quiet = !!(sel & ATA_DNXFER_QUIET);
3083        sel &= ~ATA_DNXFER_QUIET;
3084
3085        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3086                                                  dev->mwdma_mask,
3087                                                  dev->udma_mask);
3088        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3089
3090        switch (sel) {
3091        case ATA_DNXFER_PIO:
3092                highbit = fls(pio_mask) - 1;
3093                pio_mask &= ~(1 << highbit);
3094                break;
3095
3096        case ATA_DNXFER_DMA:
3097                if (udma_mask) {
3098                        highbit = fls(udma_mask) - 1;
3099                        udma_mask &= ~(1 << highbit);
3100                        if (!udma_mask)
3101                                return -ENOENT;
3102                } else if (mwdma_mask) {
3103                        highbit = fls(mwdma_mask) - 1;
3104                        mwdma_mask &= ~(1 << highbit);
3105                        if (!mwdma_mask)
3106                                return -ENOENT;
3107                }
3108                break;
3109
3110        case ATA_DNXFER_40C:
3111                udma_mask &= ATA_UDMA_MASK_40C;
3112                break;
3113
3114        case ATA_DNXFER_FORCE_PIO0:
3115                pio_mask &= 1;
3116        case ATA_DNXFER_FORCE_PIO:
3117                mwdma_mask = 0;
3118                udma_mask = 0;
3119                break;
3120
3121        default:
3122                BUG();
3123        }
3124
3125        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3126
3127        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3128                return -ENOENT;
3129
3130        if (!quiet) {
3131                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3132                        snprintf(buf, sizeof(buf), "%s:%s",
3133                                 ata_mode_string(xfer_mask),
3134                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3135                else
3136                        snprintf(buf, sizeof(buf), "%s",
3137                                 ata_mode_string(xfer_mask));
3138
3139                ata_dev_printk(dev, KERN_WARNING,
3140                               "limiting speed to %s\n", buf);
3141        }
3142
3143        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3144                            &dev->udma_mask);
3145
3146        return 0;
3147}
3148
3149static int ata_dev_set_mode(struct ata_device *dev)
3150{
3151        struct ata_port *ap = dev->link->ap;
3152        struct ata_eh_context *ehc = &dev->link->eh_context;
3153        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3154        const char *dev_err_whine = "";
3155        int ign_dev_err = 0;
3156        unsigned int err_mask = 0;
3157        int rc;
3158
3159        dev->flags &= ~ATA_DFLAG_PIO;
3160        if (dev->xfer_shift == ATA_SHIFT_PIO)
3161                dev->flags |= ATA_DFLAG_PIO;
3162
3163        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3164                dev_err_whine = " (SET_XFERMODE skipped)";
3165        else {
3166                if (nosetxfer)
3167                        ata_dev_printk(dev, KERN_WARNING,
3168                                       "NOSETXFER but PATA detected - can't "
3169                                       "skip SETXFER, might malfunction\n");
3170                err_mask = ata_dev_set_xfermode(dev);
3171        }
3172
3173        if (err_mask & ~AC_ERR_DEV)
3174                goto fail;
3175
3176        /* revalidate */
3177        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3178        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3179        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3180        if (rc)
3181                return rc;
3182
3183        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3184                /* Old CFA may refuse this command, which is just fine */
3185                if (ata_id_is_cfa(dev->id))
3186                        ign_dev_err = 1;
3187                /* Catch several broken garbage emulations plus some pre
3188                   ATA devices */
3189                if (ata_id_major_version(dev->id) == 0 &&
3190                                        dev->pio_mode <= XFER_PIO_2)
3191                        ign_dev_err = 1;
3192                /* Some very old devices and some bad newer ones fail
3193                   any kind of SET_XFERMODE request but support PIO0-2
3194                   timings and no IORDY */
3195                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3196                        ign_dev_err = 1;
3197        }
3198        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3199           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3200        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3201            dev->dma_mode == XFER_MW_DMA_0 &&
3202            (dev->id[63] >> 8) & 1)
3203                ign_dev_err = 1;
3204
3205        /* if the device is actually configured correctly, ignore dev err */
3206        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3207                ign_dev_err = 1;
3208
3209        if (err_mask & AC_ERR_DEV) {
3210                if (!ign_dev_err)
3211                        goto fail;
3212                else
3213                        dev_err_whine = " (device error ignored)";
3214        }
3215
3216        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3217                dev->xfer_shift, (int)dev->xfer_mode);
3218
3219        ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3220                       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3221                       dev_err_whine);
3222
3223        return 0;
3224
3225 fail:
3226        ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3227                       "(err_mask=0x%x)\n", err_mask);
3228        return -EIO;
3229}
3230
3231/**
3232 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3233 *      @link: link on which timings will be programmed
3234 *      @r_failed_dev: out parameter for failed device
3235 *
3236 *      Standard implementation of the function used to tune and set
3237 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3238 *      ata_dev_set_mode() fails, pointer to the failing device is
3239 *      returned in @r_failed_dev.
3240 *
3241 *      LOCKING:
3242 *      PCI/etc. bus probe sem.
3243 *
3244 *      RETURNS:
3245 *      0 on success, negative errno otherwise
3246 */
3247
3248int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3249{
3250        struct ata_port *ap = link->ap;
3251        struct ata_device *dev;
3252        int rc = 0, used_dma = 0, found = 0;
3253
3254        /* step 1: calculate xfer_mask */
3255        ata_for_each_dev(dev, link, ENABLED) {
3256                unsigned long pio_mask, dma_mask;
3257                unsigned int mode_mask;
3258
3259                mode_mask = ATA_DMA_MASK_ATA;
3260                if (dev->class == ATA_DEV_ATAPI)
3261                        mode_mask = ATA_DMA_MASK_ATAPI;
3262                else if (ata_id_is_cfa(dev->id))
3263                        mode_mask = ATA_DMA_MASK_CFA;
3264
3265                ata_dev_xfermask(dev);
3266                ata_force_xfermask(dev);
3267
3268                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3269                dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3270
3271                if (libata_dma_mask & mode_mask)
3272                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3273                else
3274                        dma_mask = 0;
3275
3276                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3277                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3278
3279                found = 1;
3280                if (ata_dma_enabled(dev))
3281                        used_dma = 1;
3282        }
3283        if (!found)
3284                goto out;
3285
3286        /* step 2: always set host PIO timings */
3287        ata_for_each_dev(dev, link, ENABLED) {
3288                if (dev->pio_mode == 0xff) {
3289                        ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3290                        rc = -EINVAL;
3291                        goto out;
3292                }
3293
3294                dev->xfer_mode = dev->pio_mode;
3295                dev->xfer_shift = ATA_SHIFT_PIO;
3296                if (ap->ops->set_piomode)
3297                        ap->ops->set_piomode(ap, dev);
3298        }
3299
3300        /* step 3: set host DMA timings */
3301        ata_for_each_dev(dev, link, ENABLED) {
3302                if (!ata_dma_enabled(dev))
3303                        continue;
3304
3305                dev->xfer_mode = dev->dma_mode;
3306                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3307                if (ap->ops->set_dmamode)
3308                        ap->ops->set_dmamode(ap, dev);
3309        }
3310
3311        /* step 4: update devices' xfer mode */
3312        ata_for_each_dev(dev, link, ENABLED) {
3313                rc = ata_dev_set_mode(dev);
3314                if (rc)
3315                        goto out;
3316        }
3317
3318        /* Record simplex status. If we selected DMA then the other
3319         * host channels are not permitted to do so.
3320         */
3321        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3322                ap->host->simplex_claimed = ap;
3323
3324 out:
3325        if (rc)
3326                *r_failed_dev = dev;
3327        return rc;
3328}
3329
3330/**
3331 *      ata_wait_ready - wait for link to become ready
3332 *      @link: link to be waited on
3333 *      @deadline: deadline jiffies for the operation
3334 *      @check_ready: callback to check link readiness
3335 *
3336 *      Wait for @link to become ready.  @check_ready should return
3337 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3338 *      link doesn't seem to be occupied, other errno for other error
3339 *      conditions.
3340 *
3341 *      Transient -ENODEV conditions are allowed for
3342 *      ATA_TMOUT_FF_WAIT.
3343 *
3344 *      LOCKING:
3345 *      EH context.
3346 *
3347 *      RETURNS:
3348 *      0 if @linke is ready before @deadline; otherwise, -errno.
3349 */
3350int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3351                   int (*check_ready)(struct ata_link *link))
3352{
3353        unsigned long start = jiffies;
3354        unsigned long nodev_deadline;
3355        int warned = 0;
3356
3357        /* choose which 0xff timeout to use, read comment in libata.h */
3358        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3359                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3360        else
3361                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3362
3363        /* Slave readiness can't be tested separately from master.  On
3364         * M/S emulation configuration, this function should be called
3365         * only on the master and it will handle both master and slave.
3366         */
3367        WARN_ON(link == link->ap->slave_link);
3368
3369        if (time_after(nodev_deadline, deadline))
3370                nodev_deadline = deadline;
3371
3372        while (1) {
3373                unsigned long now = jiffies;
3374                int ready, tmp;
3375
3376                ready = tmp = check_ready(link);
3377                if (ready > 0)
3378                        return 0;
3379
3380                /*
3381                 * -ENODEV could be transient.  Ignore -ENODEV if link
3382                 * is online.  Also, some SATA devices take a long
3383                 * time to clear 0xff after reset.  Wait for
3384                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3385                 * offline.
3386                 *
3387                 * Note that some PATA controllers (pata_ali) explode
3388                 * if status register is read more than once when
3389                 * there's no device attached.
3390                 */
3391                if (ready == -ENODEV) {
3392                        if (ata_link_online(link))
3393                                ready = 0;
3394                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3395                                 !ata_link_offline(link) &&
3396                                 time_before(now, nodev_deadline))
3397                                ready = 0;
3398                }
3399
3400                if (ready)
3401                        return ready;
3402                if (time_after(now, deadline))
3403                        return -EBUSY;
3404
3405                if (!warned && time_after(now, start + 5 * HZ) &&
3406                    (deadline - now > 3 * HZ)) {
3407                        ata_link_printk(link, KERN_WARNING,
3408                                "link is slow to respond, please be patient "
3409                                "(ready=%d)\n", tmp);
3410                        warned = 1;
3411                }
3412
3413                ata_msleep(link->ap, 50);
3414        }
3415}
3416
3417/**
3418 *      ata_wait_after_reset - wait for link to become ready after reset
3419 *      @link: link to be waited on
3420 *      @deadline: deadline jiffies for the operation
3421 *      @check_ready: callback to check link readiness
3422 *
3423 *      Wait for @link to become ready after reset.
3424 *
3425 *      LOCKING:
3426 *      EH context.
3427 *
3428 *      RETURNS:
3429 *      0 if @linke is ready before @deadline; otherwise, -errno.
3430 */
3431int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3432                                int (*check_ready)(struct ata_link *link))
3433{
3434        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3435
3436        return ata_wait_ready(link, deadline, check_ready);
3437}
3438
3439/**
3440 *      sata_link_debounce - debounce SATA phy status
3441 *      @link: ATA link to debounce SATA phy status for
3442 *      @params: timing parameters { interval, duratinon, timeout } in msec
3443 *      @deadline: deadline jiffies for the operation
3444 *
3445 *      Make sure SStatus of @link reaches stable state, determined by
3446 *      holding the same value where DET is not 1 for @duration polled
3447 *      every @interval, before @timeout.  Timeout constraints the
3448 *      beginning of the stable state.  Because DET gets stuck at 1 on
3449 *      some controllers after hot unplugging, this functions waits
3450 *      until timeout then returns 0 if DET is stable at 1.
3451 *
3452 *      @timeout is further limited by @deadline.  The sooner of the
3453 *      two is used.
3454 *
3455 *      LOCKING:
3456 *      Kernel thread context (may sleep)
3457 *
3458 *      RETURNS:
3459 *      0 on success, -errno on failure.
3460 */
3461int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3462                       unsigned long deadline)
3463{
3464        unsigned long interval = params[0];
3465        unsigned long duration = params[1];
3466        unsigned long last_jiffies, t;
3467        u32 last, cur;
3468        int rc;
3469
3470        t = ata_deadline(jiffies, params[2]);
3471        if (time_before(t, deadline))
3472                deadline = t;
3473
3474        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3475                return rc;
3476        cur &= 0xf;
3477
3478        last = cur;
3479        last_jiffies = jiffies;
3480
3481        while (1) {
3482                ata_msleep(link->ap, interval);
3483                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3484                        return rc;
3485                cur &= 0xf;
3486
3487                /* DET stable? */
3488                if (cur == last) {
3489                        if (cur == 1 && time_before(jiffies, deadline))
3490                                continue;
3491                        if (time_after(jiffies,
3492                                       ata_deadline(last_jiffies, duration)))
3493                                return 0;
3494                        continue;
3495                }
3496
3497                /* unstable, start over */
3498                last = cur;
3499                last_jiffies = jiffies;
3500
3501                /* Check deadline.  If debouncing failed, return
3502                 * -EPIPE to tell upper layer to lower link speed.
3503                 */
3504                if (time_after(jiffies, deadline))
3505                        return -EPIPE;
3506        }
3507}
3508
3509/**
3510 *      sata_link_resume - resume SATA link
3511 *      @link: ATA link to resume SATA
3512 *      @params: timing parameters { interval, duratinon, timeout } in msec
3513 *      @deadline: deadline jiffies for the operation
3514 *
3515 *      Resume SATA phy @link and debounce it.
3516 *
3517 *      LOCKING:
3518 *      Kernel thread context (may sleep)
3519 *
3520 *      RETURNS:
3521 *      0 on success, -errno on failure.
3522 */
3523int sata_link_resume(struct ata_link *link, const unsigned long *params,
3524                     unsigned long deadline)
3525{
3526        int tries = ATA_LINK_RESUME_TRIES;
3527        u32 scontrol, serror;
3528        int rc;
3529
3530        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3531                return rc;
3532
3533        /*
3534         * Writes to SControl sometimes get ignored under certain
3535         * controllers (ata_piix SIDPR).  Make sure DET actually is
3536         * cleared.
3537         */
3538        do {
3539                scontrol = (scontrol & 0x0f0) | 0x300;
3540                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3541                        return rc;
3542                /*
3543                 * Some PHYs react badly if SStatus is pounded
3544                 * immediately after resuming.  Delay 200ms before
3545                 * debouncing.
3546                 */
3547                ata_msleep(link->ap, 200);
3548
3549                /* is SControl restored correctly? */
3550                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3551                        return rc;
3552        } while ((scontrol & 0xf0f) != 0x300 && --tries);
3553
3554        if ((scontrol & 0xf0f) != 0x300) {
3555                ata_link_printk(link, KERN_ERR,
3556                                "failed to resume link (SControl %X)\n",
3557                                scontrol);
3558                return 0;
3559        }
3560
3561        if (tries < ATA_LINK_RESUME_TRIES)
3562                ata_link_printk(link, KERN_WARNING,
3563                                "link resume succeeded after %d retries\n",
3564                                ATA_LINK_RESUME_TRIES - tries);
3565
3566        if ((rc = sata_link_debounce(link, params, deadline)))
3567                return rc;
3568
3569        /* clear SError, some PHYs require this even for SRST to work */
3570        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3571                rc = sata_scr_write(link, SCR_ERROR, serror);
3572
3573        return rc != -EINVAL ? rc : 0;
3574}
3575
3576/**
3577 *      sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3578 *      @link: ATA link to manipulate SControl for
3579 *      @policy: LPM policy to configure
3580 *      @spm_wakeup: initiate LPM transition to active state
3581 *
3582 *      Manipulate the IPM field of the SControl register of @link
3583 *      according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3584 *      @spm_wakeup is %true, the SPM field is manipulated to wake up
3585 *      the link.  This function also clears PHYRDY_CHG before
3586 *      returning.
3587 *
3588 *      LOCKING:
3589 *      EH context.
3590 *
3591 *      RETURNS:
3592 *      0 on succes, -errno otherwise.
3593 */
3594int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3595                      bool spm_wakeup)
3596{
3597        struct ata_eh_context *ehc = &link->eh_context;
3598        bool woken_up = false;
3599        u32 scontrol;
3600        int rc;
3601
3602        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3603        if (rc)
3604                return rc;
3605
3606        switch (policy) {
3607        case ATA_LPM_MAX_POWER:
3608                /* disable all LPM transitions */
3609                scontrol |= (0x3 << 8);
3610                /* initiate transition to active state */
3611                if (spm_wakeup) {
3612                        scontrol |= (0x4 << 12);
3613                        woken_up = true;
3614                }
3615                break;
3616        case ATA_LPM_MED_POWER:
3617                /* allow LPM to PARTIAL */
3618                scontrol &= ~(0x1 << 8);
3619                scontrol |= (0x2 << 8);
3620                break;
3621        case ATA_LPM_MIN_POWER:
3622                /* no restrictions on LPM transitions */
3623                scontrol &= ~(0x3 << 8);
3624                break;
3625        default:
3626                WARN_ON(1);
3627        }
3628
3629        rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3630        if (rc)
3631                return rc;
3632
3633        /* give the link time to transit out of LPM state */
3634        if (woken_up)
3635                msleep(10);
3636
3637        /* clear PHYRDY_CHG from SError */
3638        ehc->i.serror &= ~SERR_PHYRDY_CHG;
3639        return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3640}
3641
3642/**
3643 *      ata_std_prereset - prepare for reset
3644 *      @link: ATA link to be reset
3645 *      @deadline: deadline jiffies for the operation
3646 *
3647 *      @link is about to be reset.  Initialize it.  Failure from
3648 *      prereset makes libata abort whole reset sequence and give up
3649 *      that port, so prereset should be best-effort.  It does its
3650 *      best to prepare for reset sequence but if things go wrong, it
3651 *      should just whine, not fail.
3652 *
3653 *      LOCKING:
3654 *      Kernel thread context (may sleep)
3655 *
3656 *      RETURNS:
3657 *      0 on success, -errno otherwise.
3658 */
3659int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3660{
3661        struct ata_port *ap = link->ap;
3662        struct ata_eh_context *ehc = &link->eh_context;
3663        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3664        int rc;
3665
3666        /* if we're about to do hardreset, nothing more to do */
3667        if (ehc->i.action & ATA_EH_HARDRESET)
3668                return 0;
3669
3670        /* if SATA, resume link */
3671        if (ap->flags & ATA_FLAG_SATA) {
3672                rc = sata_link_resume(link, timing, deadline);
3673                /* whine about phy resume failure but proceed */
3674                if (rc && rc != -EOPNOTSUPP)
3675                        ata_link_printk(link, KERN_WARNING, "failed to resume "
3676                                        "link for reset (errno=%d)\n", rc);
3677        }
3678
3679        /* no point in trying softreset on offline link */
3680        if (ata_phys_link_offline(link))
3681                ehc->i.action &= ~ATA_EH_SOFTRESET;
3682
3683        return 0;
3684}
3685
3686/**
3687 *      sata_link_hardreset - reset link via SATA phy reset
3688 *      @link: link to reset
3689 *      @timing: timing parameters { interval, duratinon, timeout } in msec
3690 *      @deadline: deadline jiffies for the operation
3691 *      @online: optional out parameter indicating link onlineness
3692 *      @check_ready: optional callback to check link readiness
3693 *
3694 *      SATA phy-reset @link using DET bits of SControl register.
3695 *      After hardreset, link readiness is waited upon using
3696 *      ata_wait_ready() if @check_ready is specified.  LLDs are
3697 *      allowed to not specify @check_ready and wait itself after this
3698 *      function returns.  Device classification is LLD's
3699 *      responsibility.
3700 *
3701 *      *@online is set to one iff reset succeeded and @link is online
3702 *      after reset.
3703 *
3704 *      LOCKING:
3705 *      Kernel thread context (may sleep)
3706 *
3707 *      RETURNS:
3708 *      0 on success, -errno otherwise.
3709 */
3710int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3711                        unsigned long deadline,
3712                        bool *online, int (*check_ready)(struct ata_link *))
3713{
3714        u32 scontrol;
3715        int rc;
3716
3717        DPRINTK("ENTER\n");
3718
3719        if (online)
3720                *online = false;
3721
3722        if (sata_set_spd_needed(link)) {
3723                /* SATA spec says nothing about how to reconfigure
3724                 * spd.  To be on the safe side, turn off phy during
3725                 * reconfiguration.  This works for at least ICH7 AHCI
3726                 * and Sil3124.
3727                 */
3728                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3729                        goto out;
3730
3731                scontrol = (scontrol & 0x0f0) | 0x304;
3732
3733                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3734                        goto out;
3735
3736                sata_set_spd(link);
3737        }
3738
3739        /* issue phy wake/reset */
3740        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3741                goto out;
3742
3743        scontrol = (scontrol & 0x0f0) | 0x301;
3744
3745        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3746                goto out;
3747
3748        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3749         * 10.4.2 says at least 1 ms.
3750         */
3751        ata_msleep(link->ap, 1);
3752
3753        /* bring link back */
3754        rc = sata_link_resume(link, timing, deadline);
3755        if (rc)
3756                goto out;
3757        /* if link is offline nothing more to do */
3758        if (ata_phys_link_offline(link))
3759                goto out;
3760
3761        /* Link is online.  From this point, -ENODEV too is an error. */
3762        if (online)
3763                *online = true;
3764
3765        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3766                /* If PMP is supported, we have to do follow-up SRST.
3767                 * Some PMPs don't send D2H Reg FIS after hardreset if
3768                 * the first port is empty.  Wait only for
3769                 * ATA_TMOUT_PMP_SRST_WAIT.
3770                 */
3771                if (check_ready) {
3772                        unsigned long pmp_deadline;
3773
3774                        pmp_deadline = ata_deadline(jiffies,
3775                                                    ATA_TMOUT_PMP_SRST_WAIT);
3776                        if (time_after(pmp_deadline, deadline))
3777                                pmp_deadline = deadline;
3778                        ata_wait_ready(link, pmp_deadline, check_ready);
3779                }
3780                rc = -EAGAIN;
3781                goto out;
3782        }
3783
3784        rc = 0;
3785        if (check_ready)
3786                rc = ata_wait_ready(link, deadline, check_ready);
3787 out:
3788        if (rc && rc != -EAGAIN) {
3789                /* online is set iff link is online && reset succeeded */
3790                if (online)
3791                        *online = false;
3792                ata_link_printk(link, KERN_ERR,
3793                                "COMRESET failed (errno=%d)\n", rc);
3794        }
3795        DPRINTK("EXIT, rc=%d\n", rc);
3796        return rc;
3797}
3798
3799/**
3800 *      sata_std_hardreset - COMRESET w/o waiting or classification
3801 *      @link: link to reset
3802 *      @class: resulting class of attached device
3803 *      @deadline: deadline jiffies for the operation
3804 *
3805 *      Standard SATA COMRESET w/o waiting or classification.
3806 *
3807 *      LOCKING:
3808 *      Kernel thread context (may sleep)
3809 *
3810 *      RETURNS:
3811 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3812 */
3813int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3814                       unsigned long deadline)
3815{
3816        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3817        bool online;
3818        int rc;
3819
3820        /* do hardreset */
3821        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3822        return online ? -EAGAIN : rc;
3823}
3824
3825/**
3826 *      ata_std_postreset - standard postreset callback
3827 *      @link: the target ata_link
3828 *      @classes: classes of attached devices
3829 *
3830 *      This function is invoked after a successful reset.  Note that
3831 *      the device might have been reset more than once using
3832 *      different reset methods before postreset is invoked.
3833 *
3834 *      LOCKING:
3835 *      Kernel thread context (may sleep)
3836 */
3837void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3838{
3839        u32 serror;
3840
3841        DPRINTK("ENTER\n");
3842
3843        /* reset complete, clear SError */
3844        if (!sata_scr_read(link, SCR_ERROR, &serror))
3845                sata_scr_write(link, SCR_ERROR, serror);
3846
3847        /* print link status */
3848        sata_print_link_status(link);
3849
3850        DPRINTK("EXIT\n");
3851}
3852
3853/**
3854 *      ata_dev_same_device - Determine whether new ID matches configured device
3855 *      @dev: device to compare against
3856 *      @new_class: class of the new device
3857 *      @new_id: IDENTIFY page of the new device
3858 *
3859 *      Compare @new_class and @new_id against @dev and determine
3860 *      whether @dev is the device indicated by @new_class and
3861 *      @new_id.
3862 *
3863 *      LOCKING:
3864 *      None.
3865 *
3866 *      RETURNS:
3867 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
3868 */
3869static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3870                               const u16 *new_id)
3871{
3872        const u16 *old_id = dev->id;
3873        unsigned char model[2][ATA_ID_PROD_LEN + 1];
3874        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3875
3876        if (dev->class != new_class) {
3877                ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3878                               dev->class, new_class);
3879                return 0;
3880        }
3881
3882        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3883        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3884        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3885        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3886
3887        if (strcmp(model[0], model[1])) {
3888                ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3889                               "'%s' != '%s'\n", model[0], model[1]);
3890                return 0;
3891        }
3892
3893        if (strcmp(serial[0], serial[1])) {
3894                ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3895                               "'%s' != '%s'\n", serial[0], serial[1]);
3896                return 0;
3897        }
3898
3899        return 1;
3900}
3901
3902/**
3903 *      ata_dev_reread_id - Re-read IDENTIFY data
3904 *      @dev: target ATA device
3905 *      @readid_flags: read ID flags
3906 *
3907 *      Re-read IDENTIFY page and make sure @dev is still attached to
3908 *      the port.
3909 *
3910 *      LOCKING:
3911 *      Kernel thread context (may sleep)
3912 *
3913 *      RETURNS:
3914 *      0 on success, negative errno otherwise
3915 */
3916int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3917{
3918        unsigned int class = dev->class;
3919        u16 *id = (void *)dev->link->ap->sector_buf;
3920        int rc;
3921
3922        /* read ID data */
3923        rc = ata_dev_read_id(dev, &class, readid_flags, id);
3924        if (rc)
3925                return rc;
3926
3927        /* is the device still there? */
3928        if (!ata_dev_same_device(dev, class, id))
3929                return -ENODEV;
3930
3931        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3932        return 0;
3933}
3934
3935/**
3936 *      ata_dev_revalidate - Revalidate ATA device
3937 *      @dev: device to revalidate
3938 *      @new_class: new class code
3939 *      @readid_flags: read ID flags
3940 *
3941 *      Re-read IDENTIFY page, make sure @dev is still attached to the
3942 *      port and reconfigure it according to the new IDENTIFY page.
3943 *
3944 *      LOCKING:
3945 *      Kernel thread context (may sleep)
3946 *
3947 *      RETURNS:
3948 *      0 on success, negative errno otherwise
3949 */
3950int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3951                       unsigned int readid_flags)
3952{
3953        u64 n_sectors = dev->n_sectors;
3954        u64 n_native_sectors = dev->n_native_sectors;
3955        int rc;
3956
3957        if (!ata_dev_enabled(dev))
3958                return -ENODEV;
3959
3960        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3961        if (ata_class_enabled(new_class) &&
3962            new_class != ATA_DEV_ATA &&
3963            new_class != ATA_DEV_ATAPI &&
3964            new_class != ATA_DEV_SEMB) {
3965                ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3966                               dev->class, new_class);
3967                rc = -ENODEV;
3968                goto fail;
3969        }
3970
3971        /* re-read ID */
3972        rc = ata_dev_reread_id(dev, readid_flags);
3973        if (rc)
3974                goto fail;
3975
3976        /* configure device according to the new ID */
3977        rc = ata_dev_configure(dev);
3978        if (rc)
3979                goto fail;
3980
3981        /* verify n_sectors hasn't changed */
3982        if (dev->class != ATA_DEV_ATA || !n_sectors ||
3983            dev->n_sectors == n_sectors)
3984                return 0;
3985
3986        /* n_sectors has changed */
3987        ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
3988                       (unsigned long long)n_sectors,
3989                       (unsigned long long)dev->n_sectors);
3990
3991        /*
3992         * Something could have caused HPA to be unlocked
3993         * involuntarily.  If n_native_sectors hasn't changed and the
3994         * new size matches it, keep the device.
3995         */
3996        if (dev->n_native_sectors == n_native_sectors &&
3997            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3998                ata_dev_printk(dev, KERN_WARNING,
3999                               "new n_sectors matches native, probably "
4000                               "late HPA unlock, n_sectors updated\n");
4001                /* use the larger n_sectors */
4002                return 0;
4003        }
4004
4005        /*
4006         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4007         * unlocking HPA in those cases.
4008         *
4009         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4010         */
4011        if (dev->n_native_sectors == n_native_sectors &&
4012            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4013            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4014                ata_dev_printk(dev, KERN_WARNING,
4015                               "old n_sectors matches native, probably "
4016                               "late HPA lock, will try to unlock HPA\n");
4017                /* try unlocking HPA */
4018                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4019                rc = -EIO;
4020        } else
4021                rc = -ENODEV;
4022
4023        /* restore original n_[native_]sectors and fail */
4024        dev->n_native_sectors = n_native_sectors;
4025        dev->n_sectors = n_sectors;
4026 fail:
4027        ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4028        return rc;
4029}
4030
4031struct ata_blacklist_entry {
4032        const char *model_num;
4033        const char *model_rev;
4034        unsigned long horkage;
4035};
4036
4037static const struct ata_blacklist_entry ata_device_blacklist [] = {
4038        /* Devices with DMA related problems under Linux */
4039        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4040        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4041        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4042        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4043        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4044        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4045        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4046        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4047        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4048        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
4049        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4050        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4051        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4052        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4053        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4054        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
4055        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4056        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4057        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4058        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4059        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4060        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4061        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4062        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4063        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4064        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4065        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4066        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4067        /* Odd clown on sil3726/4726 PMPs */
4068        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4069
4070        /* Weird ATAPI devices */
4071        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4072        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4073
4074        /* Devices we expect to fail diagnostics */
4075
4076        /* Devices where NCQ should be avoided */
4077        /* NCQ is slow */
4078        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4079        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4080        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4081        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4082        /* NCQ is broken */
4083        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4084        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4085        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4086        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4087        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
4088
4089        /* Seagate NCQ + FLUSH CACHE firmware bug */
4090        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4091                                                ATA_HORKAGE_FIRMWARE_WARN },
4092
4093        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4094                                                ATA_HORKAGE_FIRMWARE_WARN },
4095
4096        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4097                                                ATA_HORKAGE_FIRMWARE_WARN },
4098
4099        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4100                                                ATA_HORKAGE_FIRMWARE_WARN },
4101
4102        /* Blacklist entries taken from Silicon Image 3124/3132
4103           Windows driver .inf file - also several Linux problem reports */
4104        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4105        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4106        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4107
4108        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4109        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
4110
4111        /* devices which puke on READ_NATIVE_MAX */
4112        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4113        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4114        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4115        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4116
4117        /* this one allows HPA unlocking but fails IOs on the area */
4118        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
4119
4120        /* Devices which report 1 sector over size HPA */
4121        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4122        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4123        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4124
4125        /* Devices which get the IVB wrong */
4126        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4127        /* Maybe we should just blacklist TSSTcorp... */
4128        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4129
4130        /* Devices that do not need bridging limits applied */
4131        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4132
4133        /* Devices which aren't very happy with higher link speeds */
4134        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4135
4136        /*
4137         * Devices which choke on SETXFER.  Applies only if both the
4138         * device and controller are SATA.
4139         */
4140        { "PIONEER DVD-RW  DVRTD08",    "1.00", ATA_HORKAGE_NOSETXFER },
4141        { "PIONEER DVD-RW  DVR-212D",   "1.28", ATA_HORKAGE_NOSETXFER },
4142
4143        /* End Marker */
4144        { }
4145};
4146
4147/**
4148 *      glob_match - match a text string against a glob-style pattern
4149 *      @text: the string to be examined
4150 *      @pattern: the glob-style pattern to be matched against
4151 *
4152 *      Either/both of text and pattern can be empty strings.
4153 *
4154 *      Match text against a glob-style pattern, with wildcards and simple sets:
4155 *
4156 *              ?       matches any single character.
4157 *              *       matches any run of characters.
4158 *              [xyz]   matches a single character from the set: x, y, or z.
4159 *              [a-d]   matches a single character from the range: a, b, c, or d.
4160 *              [a-d0-9] matches a single character from either range.
4161 *
4162 *      The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4163 *      Behaviour with malformed patterns is undefined, though generally reasonable.
4164 *
4165 *      Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4166 *
4167 *      This function uses one level of recursion per '*' in pattern.
4168 *      Since it calls _nothing_ else, and has _no_ explicit local variables,
4169 *      this will not cause stack problems for any reasonable use here.
4170 *
4171 *      RETURNS:
4172 *      0 on match, 1 otherwise.
4173 */
4174static int glob_match (const char *text, const char *pattern)
4175{
4176        do {
4177                /* Match single character or a '?' wildcard */
4178                if (*text == *pattern || *pattern == '?') {
4179                        if (!*pattern++)
4180                                return 0;  /* End of both strings: match */
4181                } else {
4182                        /* Match single char against a '[' bracketed ']' pattern set */
4183                        if (!*text || *pattern != '[')
4184                                break;  /* Not a pattern set */
4185                        while (*++pattern && *pattern != ']' && *text != *pattern) {
4186                                if (*pattern == '-' && *(pattern - 1) != '[')
4187                                        if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4188                                                ++pattern;
4189                                                break;
4190                                        }
4191                        }
4192                        if (!*pattern || *pattern == ']')
4193                                return 1;  /* No match */
4194                        while (*pattern && *pattern++ != ']');
4195                }
4196        } while (*++text && *pattern);
4197
4198        /* Match any run of chars against a '*' wildcard */
4199        if (*pattern == '*') {
4200                if (!*++pattern)
4201                        return 0;  /* Match: avoid recursion at end of pattern */
4202                /* Loop to handle additional pattern chars after the wildcard */
4203                while (*text) {
4204                        if (glob_match(text, pattern) == 0)
4205                                return 0;  /* Remainder matched */
4206                        ++text;  /* Absorb (match) this char and try again */
4207                }
4208        }
4209        if (!*text && !*pattern)
4210                return 0;  /* End of both strings: match */
4211        return 1;  /* No match */
4212}
4213 
4214static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4215{
4216        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4217        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4218        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4219
4220        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4221        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4222
4223        while (ad->model_num) {
4224                if (!glob_match(model_num, ad->model_num)) {
4225                        if (ad->model_rev == NULL)
4226                                return ad->horkage;
4227                        if (!glob_match(model_rev, ad->model_rev))
4228                                return ad->horkage;
4229                }
4230                ad++;
4231        }
4232        return 0;
4233}
4234
4235static int ata_dma_blacklisted(const struct ata_device *dev)
4236{
4237        /* We don't support polling DMA.
4238         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4239         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4240         */
4241        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4242            (dev->flags & ATA_DFLAG_CDB_INTR))
4243                return 1;
4244        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4245}
4246
4247/**
4248 *      ata_is_40wire           -       check drive side detection
4249 *      @dev: device
4250 *
4251 *      Perform drive side detection decoding, allowing for device vendors
4252 *      who can't follow the documentation.
4253 */
4254
4255static int ata_is_40wire(struct ata_device *dev)
4256{
4257        if (dev->horkage & ATA_HORKAGE_IVB)
4258                return ata_drive_40wire_relaxed(dev->id);
4259        return ata_drive_40wire(dev->id);
4260}
4261
4262/**
4263 *      cable_is_40wire         -       40/80/SATA decider
4264 *      @ap: port to consider
4265 *
4266 *      This function encapsulates the policy for speed management
4267 *      in one place. At the moment we don't cache the result but
4268 *      there is a good case for setting ap->cbl to the result when
4269 *      we are called with unknown cables (and figuring out if it
4270 *      impacts hotplug at all).
4271 *
4272 *      Return 1 if the cable appears to be 40 wire.
4273 */
4274
4275static int cable_is_40wire(struct ata_port *ap)
4276{
4277        struct ata_link *link;
4278        struct ata_device *dev;
4279
4280        /* If the controller thinks we are 40 wire, we are. */
4281        if (ap->cbl == ATA_CBL_PATA40)
4282                return 1;
4283
4284        /* If the controller thinks we are 80 wire, we are. */
4285        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4286                return 0;
4287
4288        /* If the system is known to be 40 wire short cable (eg
4289         * laptop), then we allow 80 wire modes even if the drive
4290         * isn't sure.
4291         */
4292        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4293                return 0;
4294
4295        /* If the controller doesn't know, we scan.
4296         *
4297         * Note: We look for all 40 wire detects at this point.  Any
4298         *       80 wire detect is taken to be 80 wire cable because
4299         * - in many setups only the one drive (slave if present) will
4300         *   give a valid detect
4301         * - if you have a non detect capable drive you don't want it
4302         *   to colour the choice
4303         */
4304        ata_for_each_link(link, ap, EDGE) {
4305                ata_for_each_dev(dev, link, ENABLED) {
4306                        if (!ata_is_40wire(dev))
4307                                return 0;
4308                }
4309        }
4310        return 1;
4311}
4312
4313/**
4314 *      ata_dev_xfermask - Compute supported xfermask of the given device
4315 *      @dev: Device to compute xfermask for
4316 *
4317 *      Compute supported xfermask of @dev and store it in
4318 *      dev->*_mask.  This function is responsible for applying all
4319 *      known limits including host controller limits, device
4320 *      blacklist, etc...
4321 *
4322 *      LOCKING:
4323 *      None.
4324 */
4325static void ata_dev_xfermask(struct ata_device *dev)
4326{
4327        struct ata_link *link = dev->link;
4328        struct ata_port *ap = link->ap;
4329        struct ata_host *host = ap->host;
4330        unsigned long xfer_mask;
4331
4332        /* controller modes available */
4333        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4334                                      ap->mwdma_mask, ap->udma_mask);
4335
4336        /* drive modes available */
4337        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4338                                       dev->mwdma_mask, dev->udma_mask);
4339        xfer_mask &= ata_id_xfermask(dev->id);
4340
4341        /*
4342         *      CFA Advanced TrueIDE timings are not allowed on a shared
4343         *      cable
4344         */
4345        if (ata_dev_pair(dev)) {
4346                /* No PIO5 or PIO6 */
4347                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4348                /* No MWDMA3 or MWDMA 4 */
4349                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4350        }
4351
4352        if (ata_dma_blacklisted(dev)) {
4353                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4354                ata_dev_printk(dev, KERN_WARNING,
4355                               "device is on DMA blacklist, disabling DMA\n");
4356        }
4357
4358        if ((host->flags & ATA_HOST_SIMPLEX) &&
4359            host->simplex_claimed && host->simplex_claimed != ap) {
4360                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4361                ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4362                               "other device, disabling DMA\n");
4363        }
4364
4365        if (ap->flags & ATA_FLAG_NO_IORDY)
4366                xfer_mask &= ata_pio_mask_no_iordy(dev);
4367
4368        if (ap->ops->mode_filter)
4369                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4370
4371        /* Apply cable rule here.  Don't apply it early because when
4372         * we handle hot plug the cable type can itself change.
4373         * Check this last so that we know if the transfer rate was
4374         * solely limited by the cable.
4375         * Unknown or 80 wire cables reported host side are checked
4376         * drive side as well. Cases where we know a 40wire cable
4377         * is used safely for 80 are not checked here.
4378         */
4379        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4380                /* UDMA/44 or higher would be available */
4381                if (cable_is_40wire(ap)) {
4382                        ata_dev_printk(dev, KERN_WARNING,
4383                                 "limited to UDMA/33 due to 40-wire cable\n");
4384                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4385                }
4386
4387        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4388                            &dev->mwdma_mask, &dev->udma_mask);
4389}
4390
4391/**
4392 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4393 *      @dev: Device to which command will be sent
4394 *
4395 *      Issue SET FEATURES - XFER MODE command to device @dev
4396 *      on port @ap.
4397 *
4398 *      LOCKING:
4399 *      PCI/etc. bus probe sem.
4400 *
4401 *      RETURNS:
4402 *      0 on success, AC_ERR_* mask otherwise.
4403 */
4404
4405static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4406{
4407        struct ata_taskfile tf;
4408        unsigned int err_mask;
4409
4410        /* set up set-features taskfile */
4411        DPRINTK("set features - xfer mode\n");
4412
4413        /* Some controllers and ATAPI devices show flaky interrupt
4414         * behavior after setting xfer mode.  Use polling instead.
4415         */
4416        ata_tf_init(dev, &tf);
4417        tf.command = ATA_CMD_SET_FEATURES;
4418        tf.feature = SETFEATURES_XFER;
4419        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4420        tf.protocol = ATA_PROT_NODATA;
4421        /* If we are using IORDY we must send the mode setting command */
4422        if (ata_pio_need_iordy(dev))
4423                tf.nsect = dev->xfer_mode;
4424        /* If the device has IORDY and the controller does not - turn it off */
4425        else if (ata_id_has_iordy(dev->id))
4426                tf.nsect = 0x01;
4427        else /* In the ancient relic department - skip all of this */
4428                return 0;
4429
4430        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4431
4432        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4433        return err_mask;
4434}
4435
4436/**
4437 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4438 *      @dev: Device to which command will be sent
4439 *      @enable: Whether to enable or disable the feature
4440 *      @feature: The sector count represents the feature to set
4441 *
4442 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4443 *      on port @ap with sector count
4444 *
4445 *      LOCKING:
4446 *      PCI/etc. bus probe sem.
4447 *
4448 *      RETURNS:
4449 *      0 on success, AC_ERR_* mask otherwise.
4450 */
4451unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4452{
4453        struct ata_taskfile tf;
4454        unsigned int err_mask;
4455
4456        /* set up set-features taskfile */
4457        DPRINTK("set features - SATA features\n");
4458
4459        ata_tf_init(dev, &tf);
4460        tf.command = ATA_CMD_SET_FEATURES;
4461        tf.feature = enable;
4462        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4463        tf.protocol = ATA_PROT_NODATA;
4464        tf.nsect = feature;
4465
4466        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4467
4468        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4469        return err_mask;
4470}
4471
4472/**
4473 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4474 *      @dev: Device to which command will be sent
4475 *      @heads: Number of heads (taskfile parameter)
4476 *      @sectors: Number of sectors (taskfile parameter)
4477 *
4478 *      LOCKING:
4479 *      Kernel thread context (may sleep)
4480 *
4481 *      RETURNS:
4482 *      0 on success, AC_ERR_* mask otherwise.
4483 */
4484static unsigned int ata_dev_init_params(struct ata_device *dev,
4485                                        u16 heads, u16 sectors)
4486{
4487        struct ata_taskfile tf;
4488        unsigned int err_mask;
4489
4490        /* Number of sectors per track 1-255. Number of heads 1-16 */
4491        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4492                return AC_ERR_INVALID;
4493
4494        /* set up init dev params taskfile */
4495        DPRINTK("init dev params \n");
4496
4497        ata_tf_init(dev, &tf);
4498        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4499        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4500        tf.protocol = ATA_PROT_NODATA;
4501        tf.nsect = sectors;
4502        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4503
4504        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4505        /* A clean abort indicates an original or just out of spec drive
4506           and we should continue as we issue the setup based on the
4507           drive reported working geometry */
4508        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4509                err_mask = 0;
4510
4511        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4512        return err_mask;
4513}
4514
4515/**
4516 *      ata_sg_clean - Unmap DMA memory associated with command
4517 *      @qc: Command containing DMA memory to be released
4518 *
4519 *      Unmap all mapped DMA memory associated with this command.
4520 *
4521 *      LOCKING:
4522 *      spin_lock_irqsave(host lock)
4523 */
4524void ata_sg_clean(struct ata_queued_cmd *qc)
4525{
4526        struct ata_port *ap = qc->ap;
4527        struct scatterlist *sg = qc->sg;
4528        int dir = qc->dma_dir;
4529
4530        WARN_ON_ONCE(sg == NULL);
4531
4532        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4533
4534        if (qc->n_elem)
4535                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4536
4537        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4538        qc->sg = NULL;
4539}
4540
4541/**
4542 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4543 *      @qc: Metadata associated with taskfile to check
4544 *
4545 *      Allow low-level driver to filter ATA PACKET commands, returning
4546 *      a status indicating whether or not it is OK to use DMA for the
4547 *      supplied PACKET command.
4548 *
4549 *      LOCKING:
4550 *      spin_lock_irqsave(host lock)
4551 *
4552 *      RETURNS: 0 when ATAPI DMA can be used
4553 *               nonzero otherwise
4554 */
4555int atapi_check_dma(struct ata_queued_cmd *qc)
4556{
4557        struct ata_port *ap = qc->ap;
4558
4559        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4560         * few ATAPI devices choke on such DMA requests.
4561         */
4562        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4563            unlikely(qc->nbytes & 15))
4564                return 1;
4565
4566        if (ap->ops->check_atapi_dma)
4567                return ap->ops->check_atapi_dma(qc);
4568
4569        return 0;
4570}
4571
4572/**
4573 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4574 *      @qc: ATA command in question
4575 *
4576 *      Non-NCQ commands cannot run with any other command, NCQ or
4577 *      not.  As upper layer only knows the queue depth, we are
4578 *      responsible for maintaining exclusion.  This function checks
4579 *      whether a new command @qc can be issued.
4580 *
4581 *      LOCKING:
4582 *      spin_lock_irqsave(host lock)
4583 *
4584 *      RETURNS:
4585 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4586 */
4587int ata_std_qc_defer(struct ata_queued_cmd *qc)
4588{
4589        struct ata_link *link = qc->dev->link;
4590
4591        if (qc->tf.protocol == ATA_PROT_NCQ) {
4592                if (!ata_tag_valid(link->active_tag))
4593                        return 0;
4594        } else {
4595                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4596                        return 0;
4597        }
4598
4599        return ATA_DEFER_LINK;
4600}
4601
4602void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4603
4604/**
4605 *      ata_sg_init - Associate command with scatter-gather table.
4606 *      @qc: Command to be associated
4607 *      @sg: Scatter-gather table.
4608 *      @n_elem: Number of elements in s/g table.
4609 *
4610 *      Initialize the data-related elements of queued_cmd @qc
4611 *      to point to a scatter-gather table @sg, containing @n_elem
4612 *      elements.
4613 *
4614 *      LOCKING:
4615 *      spin_lock_irqsave(host lock)
4616 */
4617void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4618                 unsigned int n_elem)
4619{
4620        qc->sg = sg;
4621        qc->n_elem = n_elem;
4622        qc->cursg = qc->sg;
4623}
4624
4625/**
4626 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4627 *      @qc: Command with scatter-gather table to be mapped.
4628 *
4629 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4630 *
4631 *      LOCKING:
4632 *      spin_lock_irqsave(host lock)
4633 *
4634 *      RETURNS:
4635 *      Zero on success, negative on error.
4636 *
4637 */
4638static int ata_sg_setup(struct ata_queued_cmd *qc)
4639{
4640        struct ata_port *ap = qc->ap;
4641        unsigned int n_elem;
4642
4643        VPRINTK("ENTER, ata%u\n", ap->print_id);
4644
4645        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4646        if (n_elem < 1)
4647                return -1;
4648
4649        DPRINTK("%d sg elements mapped\n", n_elem);
4650        qc->orig_n_elem = qc->n_elem;
4651        qc->n_elem = n_elem;
4652        qc->flags |= ATA_QCFLAG_DMAMAP;
4653
4654        return 0;
4655}
4656
4657/**
4658 *      swap_buf_le16 - swap halves of 16-bit words in place
4659 *      @buf:  Buffer to swap
4660 *      @buf_words:  Number of 16-bit words in buffer.
4661 *
4662 *      Swap halves of 16-bit words if needed to convert from
4663 *      little-endian byte order to native cpu byte order, or
4664 *      vice-versa.
4665 *
4666 *      LOCKING:
4667 *      Inherited from caller.
4668 */
4669void swap_buf_le16(u16 *buf, unsigned int buf_words)
4670{
4671#ifdef __BIG_ENDIAN
4672        unsigned int i;
4673
4674        for (i = 0; i < buf_words; i++)
4675                buf[i] = le16_to_cpu(buf[i]);
4676#endif /* __BIG_ENDIAN */
4677}
4678
4679/**
4680 *      ata_qc_new - Request an available ATA command, for queueing
4681 *      @ap: target port
4682 *
4683 *      LOCKING:
4684 *      None.
4685 */
4686
4687static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4688{
4689        struct ata_queued_cmd *qc = NULL;
4690        unsigned int i;
4691
4692        /* no command while frozen */
4693        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4694                return NULL;
4695
4696        /* the last tag is reserved for internal command. */
4697        for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4698                if (!test_and_set_bit(i, &ap->qc_allocated)) {
4699                        qc = __ata_qc_from_tag(ap, i);
4700                        break;
4701                }
4702
4703        if (qc)
4704                qc->tag = i;
4705
4706        return qc;
4707}
4708
4709/**
4710 *      ata_qc_new_init - Request an available ATA command, and initialize it
4711 *      @dev: Device from whom we request an available command structure
4712 *
4713 *      LOCKING:
4714 *      None.
4715 */
4716
4717struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4718{
4719        struct ata_port *ap = dev->link->ap;
4720        struct ata_queued_cmd *qc;
4721
4722        qc = ata_qc_new(ap);
4723        if (qc) {
4724                qc->scsicmd = NULL;
4725                qc->ap = ap;
4726                qc->dev = dev;
4727
4728                ata_qc_reinit(qc);
4729        }
4730
4731        return qc;
4732}
4733
4734/**
4735 *      ata_qc_free - free unused ata_queued_cmd
4736 *      @qc: Command to complete
4737 *
4738 *      Designed to free unused ata_queued_cmd object
4739 *      in case something prevents using it.
4740 *
4741 *      LOCKING:
4742 *      spin_lock_irqsave(host lock)
4743 */
4744void ata_qc_free(struct ata_queued_cmd *qc)
4745{
4746        struct ata_port *ap;
4747        unsigned int tag;
4748
4749        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4750        ap = qc->ap;
4751
4752        qc->flags = 0;
4753        tag = qc->tag;
4754        if (likely(ata_tag_valid(tag))) {
4755                qc->tag = ATA_TAG_POISON;
4756                clear_bit(tag, &ap->qc_allocated);
4757        }
4758}
4759
4760void __ata_qc_complete(struct ata_queued_cmd *qc)
4761{
4762        struct ata_port *ap;
4763        struct ata_link *link;
4764
4765        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4766        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4767        ap = qc->ap;
4768        link = qc->dev->link;
4769
4770        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4771                ata_sg_clean(qc);
4772
4773        /* command should be marked inactive atomically with qc completion */
4774        if (qc->tf.protocol == ATA_PROT_NCQ) {
4775                link->sactive &= ~(1 << qc->tag);
4776                if (!link->sactive)
4777                        ap->nr_active_links--;
4778        } else {
4779                link->active_tag = ATA_TAG_POISON;
4780                ap->nr_active_links--;
4781        }
4782
4783        /* clear exclusive status */
4784        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4785                     ap->excl_link == link))
4786                ap->excl_link = NULL;
4787
4788        /* atapi: mark qc as inactive to prevent the interrupt handler
4789         * from completing the command twice later, before the error handler
4790         * is called. (when rc != 0 and atapi request sense is needed)
4791         */
4792        qc->flags &= ~ATA_QCFLAG_ACTIVE;
4793        ap->qc_active &= ~(1 << qc->tag);
4794
4795        /* call completion callback */
4796        qc->complete_fn(qc);
4797}
4798
4799static void fill_result_tf(struct ata_queued_cmd *qc)
4800{
4801        struct ata_port *ap = qc->ap;
4802
4803        qc->result_tf.flags = qc->tf.flags;
4804        ap->ops->qc_fill_rtf(qc);
4805}
4806
4807static void ata_verify_xfer(struct ata_queued_cmd *qc)
4808{
4809        struct ata_device *dev = qc->dev;
4810
4811        if (ata_is_nodata(qc->tf.protocol))
4812                return;
4813
4814        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4815                return;
4816
4817        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4818}
4819
4820/**
4821 *      ata_qc_complete - Complete an active ATA command
4822 *      @qc: Command to complete
4823 *
4824 *      Indicate to the mid and upper layers that an ATA command has
4825 *      completed, with either an ok or not-ok status.
4826 *
4827 *      Refrain from calling this function multiple times when
4828 *      successfully completing multiple NCQ commands.
4829 *      ata_qc_complete_multiple() should be used instead, which will
4830 *      properly update IRQ expect state.
4831 *
4832 *      LOCKING:
4833 *      spin_lock_irqsave(host lock)
4834 */
4835void ata_qc_complete(struct ata_queued_cmd *qc)
4836{
4837        struct ata_port *ap = qc->ap;
4838
4839        /* XXX: New EH and old EH use different mechanisms to
4840         * synchronize EH with regular execution path.
4841         *
4842         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4843         * Normal execution path is responsible for not accessing a
4844         * failed qc.  libata core enforces the rule by returning NULL
4845         * from ata_qc_from_tag() for failed qcs.
4846         *
4847         * Old EH depends on ata_qc_complete() nullifying completion
4848         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4849         * not synchronize with interrupt handler.  Only PIO task is
4850         * taken care of.
4851         */
4852        if (ap->ops->error_handler) {
4853                struct ata_device *dev = qc->dev;
4854                struct ata_eh_info *ehi = &dev->link->eh_info;
4855
4856                if (unlikely(qc->err_mask))
4857                        qc->flags |= ATA_QCFLAG_FAILED;
4858
4859                /*
4860                 * Finish internal commands without any further processing
4861                 * and always with the result TF filled.
4862                 */
4863                if (unlikely(ata_tag_internal(qc->tag))) {
4864                        fill_result_tf(qc);
4865                        __ata_qc_complete(qc);
4866                        return;
4867                }
4868
4869                /*
4870                 * Non-internal qc has failed.  Fill the result TF and
4871                 * summon EH.
4872                 */
4873                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4874                        fill_result_tf(qc);
4875                        ata_qc_schedule_eh(qc);
4876                        return;
4877                }
4878
4879                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4880
4881                /* read result TF if requested */
4882                if (qc->flags & ATA_QCFLAG_RESULT_TF)
4883                        fill_result_tf(qc);
4884
4885                /* Some commands need post-processing after successful
4886                 * completion.
4887                 */
4888                switch (qc->tf.command) {
4889                case ATA_CMD_SET_FEATURES:
4890                        if (qc->tf.feature != SETFEATURES_WC_ON &&
4891                            qc->tf.feature != SETFEATURES_WC_OFF)
4892                                break;
4893                        /* fall through */
4894                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4895                case ATA_CMD_SET_MULTI: /* multi_count changed */
4896                        /* revalidate device */
4897                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4898                        ata_port_schedule_eh(ap);
4899                        break;
4900
4901                case ATA_CMD_SLEEP:
4902                        dev->flags |= ATA_DFLAG_SLEEPING;
4903                        break;
4904                }
4905
4906                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4907                        ata_verify_xfer(qc);
4908
4909                __ata_qc_complete(qc);
4910        } else {
4911                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4912                        return;
4913
4914                /* read result TF if failed or requested */
4915                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4916                        fill_result_tf(qc);
4917
4918                __ata_qc_complete(qc);
4919        }
4920}
4921
4922/**
4923 *      ata_qc_complete_multiple - Complete multiple qcs successfully
4924 *      @ap: port in question
4925 *      @qc_active: new qc_active mask
4926 *
4927 *      Complete in-flight commands.  This functions is meant to be
4928 *      called from low-level driver's interrupt routine to complete
4929 *      requests normally.  ap->qc_active and @qc_active is compared
4930 *      and commands are completed accordingly.
4931 *
4932 *      Always use this function when completing multiple NCQ commands
4933 *      from IRQ handlers instead of calling ata_qc_complete()
4934 *      multiple times to keep IRQ expect status properly in sync.
4935 *
4936 *      LOCKING:
4937 *      spin_lock_irqsave(host lock)
4938 *
4939 *      RETURNS:
4940 *      Number of completed commands on success, -errno otherwise.
4941 */
4942int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4943{
4944        int nr_done = 0;
4945        u32 done_mask;
4946
4947        done_mask = ap->qc_active ^ qc_active;
4948
4949        if (unlikely(done_mask & qc_active)) {
4950                ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4951                                "(%08x->%08x)\n", ap->qc_active, qc_active);
4952                return -EINVAL;
4953        }
4954
4955        while (done_mask) {
4956                struct ata_queued_cmd *qc;
4957                unsigned int tag = __ffs(done_mask);
4958
4959                qc = ata_qc_from_tag(ap, tag);
4960                if (qc) {
4961                        ata_qc_complete(qc);
4962                        nr_done++;
4963                }
4964                done_mask &= ~(1 << tag);
4965        }
4966
4967        return nr_done;
4968}
4969
4970/**
4971 *      ata_qc_issue - issue taskfile to device
4972 *      @qc: command to issue to device
4973 *
4974 *      Prepare an ATA command to submission to device.
4975 *      This includes mapping the data into a DMA-able
4976 *      area, filling in the S/G table, and finally
4977 *      writing the taskfile to hardware, starting the command.
4978 *
4979 *      LOCKING:
4980 *      spin_lock_irqsave(host lock)
4981 */
4982void ata_qc_issue(struct ata_queued_cmd *qc)
4983{
4984        struct ata_port *ap = qc->ap;
4985        struct ata_link *link = qc->dev->link;
4986        u8 prot = qc->tf.protocol;
4987
4988        /* Make sure only one non-NCQ command is outstanding.  The
4989         * check is skipped for old EH because it reuses active qc to
4990         * request ATAPI sense.
4991         */
4992        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4993
4994        if (ata_is_ncq(prot)) {
4995                WARN_ON_ONCE(link->sactive & (1 << qc->tag));
4996
4997                if (!link->sactive)
4998                        ap->nr_active_links++;
4999                link->sactive |= 1 << qc->tag;
5000        } else {
5001                WARN_ON_ONCE(link->sactive);
5002
5003                ap->nr_active_links++;
5004                link->active_tag = qc->tag;
5005        }
5006
5007        qc->flags |= ATA_QCFLAG_ACTIVE;
5008        ap->qc_active |= 1 << qc->tag;
5009
5010        /*
5011         * We guarantee to LLDs that they will have at least one
5012         * non-zero sg if the command is a data command.
5013         */
5014        if (WARN_ON_ONCE(ata_is_data(prot) &&
5015                         (!qc->sg || !qc->n_elem || !qc->nbytes)))
5016                goto sys_err;
5017
5018        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5019                                 (ap->flags & ATA_FLAG_PIO_DMA)))
5020                if (ata_sg_setup(qc))
5021                        goto sys_err;
5022
5023        /* if device is sleeping, schedule reset and abort the link */
5024        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5025                link->eh_info.action |= ATA_EH_RESET;
5026                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5027                ata_link_abort(link);
5028                return;
5029        }
5030
5031        ap->ops->qc_prep(qc);
5032
5033        qc->err_mask |= ap->ops->qc_issue(qc);
5034        if (unlikely(qc->err_mask))
5035                goto err;
5036        return;
5037
5038sys_err:
5039        qc->err_mask |= AC_ERR_SYSTEM;
5040err:
5041        ata_qc_complete(qc);
5042}
5043
5044/**
5045 *      sata_scr_valid - test whether SCRs are accessible
5046 *      @link: ATA link to test SCR accessibility for
5047 *
5048 *      Test whether SCRs are accessible for @link.
5049 *
5050 *      LOCKING:
5051 *      None.
5052 *
5053 *      RETURNS:
5054 *      1 if SCRs are accessible, 0 otherwise.
5055 */
5056int sata_scr_valid(struct ata_link *link)
5057{
5058        struct ata_port *ap = link->ap;
5059
5060        return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5061}
5062
5063/**
5064 *      sata_scr_read - read SCR register of the specified port
5065 *      @link: ATA link to read SCR for
5066 *      @reg: SCR to read
5067 *      @val: Place to store read value
5068 *
5069 *      Read SCR register @reg of @link into *@val.  This function is
5070 *      guaranteed to succeed if @link is ap->link, the cable type of
5071 *      the port is SATA and the port implements ->scr_read.
5072 *
5073 *      LOCKING:
5074 *      None if @link is ap->link.  Kernel thread context otherwise.
5075 *
5076 *      RETURNS:
5077 *      0 on success, negative errno on failure.
5078 */
5079int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5080{
5081        if (ata_is_host_link(link)) {
5082                if (sata_scr_valid(link))
5083                        return link->ap->ops->scr_read(link, reg, val);
5084                return -EOPNOTSUPP;
5085        }
5086
5087        return sata_pmp_scr_read(link, reg, val);
5088}
5089
5090/**
5091 *      sata_scr_write - write SCR register of the specified port
5092 *      @link: ATA link to write SCR for
5093 *      @reg: SCR to write
5094 *      @val: value to write
5095 *
5096 *      Write @val to SCR register @reg of @link.  This function is
5097 *      guaranteed to succeed if @link is ap->link, the cable type of
5098 *      the port is SATA and the port implements ->scr_read.
5099 *
5100 *      LOCKING:
5101 *      None if @link is ap->link.  Kernel thread context otherwise.
5102 *
5103 *      RETURNS:
5104 *      0 on success, negative errno on failure.
5105 */
5106int sata_scr_write(struct ata_link *link, int reg, u32 val)
5107{
5108        if (ata_is_host_link(link)) {
5109                if (sata_scr_valid(link))
5110                        return link->ap->ops->scr_write(link, reg, val);
5111                return -EOPNOTSUPP;
5112        }
5113
5114        return sata_pmp_scr_write(link, reg, val);
5115}
5116
5117/**
5118 *      sata_scr_write_flush - write SCR register of the specified port and flush
5119 *      @link: ATA link to write SCR for
5120 *      @reg: SCR to write
5121 *      @val: value to write
5122 *
5123 *      This function is identical to sata_scr_write() except that this
5124 *      function performs flush after writing to the register.
5125 *
5126 *      LOCKING:
5127 *      None if @link is ap->link.  Kernel thread context otherwise.
5128 *
5129 *      RETURNS:
5130 *      0 on success, negative errno on failure.
5131 */
5132int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5133{
5134        if (ata_is_host_link(link)) {
5135                int rc;
5136
5137                if (sata_scr_valid(link)) {
5138                        rc = link->ap->ops->scr_write(link, reg, val);
5139                        if (rc == 0)
5140                                rc = link->ap->ops->scr_read(link, reg, &val);
5141                        return rc;
5142                }
5143                return -EOPNOTSUPP;
5144        }
5145
5146        return sata_pmp_scr_write(link, reg, val);
5147}
5148
5149/**
5150 *      ata_phys_link_online - test whether the given link is online
5151 *      @link: ATA link to test
5152 *
5153 *      Test whether @link is online.  Note that this function returns
5154 *      0 if online status of @link cannot be obtained, so
5155 *      ata_link_online(link) != !ata_link_offline(link).
5156 *
5157 *      LOCKING:
5158 *      None.
5159 *
5160 *      RETURNS:
5161 *      True if the port online status is available and online.
5162 */
5163bool ata_phys_link_online(struct ata_link *link)
5164{
5165        u32 sstatus;
5166
5167        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5168            ata_sstatus_online(sstatus))
5169                return true;
5170        return false;
5171}
5172
5173/**
5174 *      ata_phys_link_offline - test whether the given link is offline
5175 *      @link: ATA link to test
5176 *
5177 *      Test whether @link is offline.  Note that this function
5178 *      returns 0 if offline status of @link cannot be obtained, so
5179 *      ata_link_online(link) != !ata_link_offline(link).
5180 *
5181 *      LOCKING:
5182 *      None.
5183 *
5184 *      RETURNS:
5185 *      True if the port offline status is available and offline.
5186 */
5187bool ata_phys_link_offline(struct ata_link *link)
5188{
5189        u32 sstatus;
5190
5191        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5192            !ata_sstatus_online(sstatus))
5193                return true;
5194        return false;
5195}
5196
5197/**
5198 *      ata_link_online - test whether the given link is online
5199 *      @link: ATA link to test
5200 *
5201 *      Test whether @link is online.  This is identical to
5202 *      ata_phys_link_online() when there's no slave link.  When
5203 *      there's a slave link, this function should only be called on
5204 *      the master link and will return true if any of M/S links is
5205 *      online.
5206 *
5207 *      LOCKING:
5208 *      None.
5209 *
5210 *      RETURNS:
5211 *      True if the port online status is available and online.
5212 */
5213bool ata_link_online(struct ata_link *link)
5214{
5215        struct ata_link *slave = link->ap->slave_link;
5216
5217        WARN_ON(link == slave); /* shouldn't be called on slave link */
5218
5219        return ata_phys_link_online(link) ||
5220                (slave && ata_phys_link_online(slave));
5221}
5222
5223/**
5224 *      ata_link_offline - test whether the given link is offline
5225 *      @link: ATA link to test
5226 *
5227 *      Test whether @link is offline.  This is identical to
5228 *      ata_phys_link_offline() when there's no slave link.  When
5229 *      there's a slave link, this function should only be called on
5230 *      the master link and will return true if both M/S links are
5231 *      offline.
5232 *
5233 *      LOCKING:
5234 *      None.
5235 *
5236 *      RETURNS:
5237 *      True if the port offline status is available and offline.
5238 */
5239bool ata_link_offline(struct ata_link *link)
5240{
5241        struct ata_link *slave = link->ap->slave_link;
5242
5243        WARN_ON(link == slave); /* shouldn't be called on slave link */
5244
5245        return ata_phys_link_offline(link) &&
5246                (!slave || ata_phys_link_offline(slave));
5247}
5248
5249#ifdef CONFIG_PM
5250static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5251                               unsigned int action, unsigned int ehi_flags,
5252                               int wait)
5253{
5254        unsigned long flags;
5255        int i, rc;
5256
5257        for (i = 0; i < host->n_ports; i++) {
5258                struct ata_port *ap = host->ports[i];
5259                struct ata_link *link;
5260
5261                /* Previous resume operation might still be in
5262                 * progress.  Wait for PM_PENDING to clear.
5263                 */
5264                if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5265                        ata_port_wait_eh(ap);
5266                        WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5267                }
5268
5269                /* request PM ops to EH */
5270                spin_lock_irqsave(ap->lock, flags);
5271
5272                ap->pm_mesg = mesg;
5273                if (wait) {
5274                        rc = 0;
5275                        ap->pm_result = &rc;
5276                }
5277
5278                ap->pflags |= ATA_PFLAG_PM_PENDING;
5279                ata_for_each_link(link, ap, HOST_FIRST) {
5280                        link->eh_info.action |= action;
5281                        link->eh_info.flags |= ehi_flags;
5282                }
5283
5284                ata_port_schedule_eh(ap);
5285
5286                spin_unlock_irqrestore(ap->lock, flags);
5287
5288                /* wait and check result */
5289                if (wait) {
5290                        ata_port_wait_eh(ap);
5291                        WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5292                        if (rc)
5293                                return rc;
5294                }
5295        }
5296
5297        return 0;
5298}
5299
5300/**
5301 *      ata_host_suspend - suspend host
5302 *      @host: host to suspend
5303 *      @mesg: PM message
5304 *
5305 *      Suspend @host.  Actual operation is performed by EH.  This
5306 *      function requests EH to perform PM operations and waits for EH
5307 *      to finish.
5308 *
5309 *      LOCKING:
5310 *      Kernel thread context (may sleep).
5311 *
5312 *      RETURNS:
5313 *      0 on success, -errno on failure.
5314 */
5315int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5316{
5317        unsigned int ehi_flags = ATA_EHI_QUIET;
5318        int rc;
5319
5320        /*
5321         * On some hardware, device fails to respond after spun down
5322         * for suspend.  As the device won't be used before being
5323         * resumed, we don't need to touch the device.  Ask EH to skip
5324         * the usual stuff and proceed directly to suspend.
5325         *
5326         * http://thread.gmane.org/gmane.linux.ide/46764
5327         */
5328        if (mesg.event == PM_EVENT_SUSPEND)
5329                ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5330
5331        rc = ata_host_request_pm(host, mesg, 0, ehi_flags, 1);
5332        if (rc == 0)
5333                host->dev->power.power_state = mesg;
5334        return rc;
5335}
5336
5337/**
5338 *      ata_host_resume - resume host
5339 *      @host: host to resume
5340 *
5341 *      Resume @host.  Actual operation is performed by EH.  This
5342 *      function requests EH to perform PM operations and returns.
5343 *      Note that all resume operations are performed parallely.
5344 *
5345 *      LOCKING:
5346 *      Kernel thread context (may sleep).
5347 */
5348void ata_host_resume(struct ata_host *host)
5349{
5350        ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5351                            ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5352        host->dev->power.power_state = PMSG_ON;
5353}
5354#endif
5355
5356/**
5357 *      ata_dev_init - Initialize an ata_device structure
5358 *      @dev: Device structure to initialize
5359 *
5360 *      Initialize @dev in preparation for probing.
5361 *
5362 *      LOCKING:
5363 *      Inherited from caller.
5364 */
5365void ata_dev_init(struct ata_device *dev)
5366{
5367        struct ata_link *link = ata_dev_phys_link(dev);
5368        struct ata_port *ap = link->ap;
5369        unsigned long flags;
5370
5371        /* SATA spd limit is bound to the attached device, reset together */
5372        link->sata_spd_limit = link->hw_sata_spd_limit;
5373        link->sata_spd = 0;
5374
5375        /* High bits of dev->flags are used to record warm plug
5376         * requests which occur asynchronously.  Synchronize using
5377         * host lock.
5378         */
5379        spin_lock_irqsave(ap->lock, flags);
5380        dev->flags &= ~ATA_DFLAG_INIT_MASK;
5381        dev->horkage = 0;
5382        spin_unlock_irqrestore(ap->lock, flags);
5383
5384        memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5385               ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5386        dev->pio_mask = UINT_MAX;
5387        dev->mwdma_mask = UINT_MAX;
5388        dev->udma_mask = UINT_MAX;
5389}
5390
5391/**
5392 *      ata_link_init - Initialize an ata_link structure
5393 *      @ap: ATA port link is attached to
5394 *      @link: Link structure to initialize
5395 *      @pmp: Port multiplier port number
5396 *
5397 *      Initialize @link.
5398 *
5399 *      LOCKING:
5400 *      Kernel thread context (may sleep)
5401 */
5402void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5403{
5404        int i;
5405
5406        /* clear everything except for devices */
5407        memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5408               ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5409
5410        link->ap = ap;
5411        link->pmp = pmp;
5412        link->active_tag = ATA_TAG_POISON;
5413        link->hw_sata_spd_limit = UINT_MAX;
5414
5415        /* can't use iterator, ap isn't initialized yet */
5416        for (i = 0; i < ATA_MAX_DEVICES; i++) {
5417                struct ata_device *dev = &link->device[i];
5418
5419                dev->link = link;
5420                dev->devno = dev - link->device;
5421#ifdef CONFIG_ATA_ACPI
5422                dev->gtf_filter = ata_acpi_gtf_filter;
5423#endif
5424                ata_dev_init(dev);
5425        }
5426}
5427
5428/**
5429 *      sata_link_init_spd - Initialize link->sata_spd_limit
5430 *      @link: Link to configure sata_spd_limit for
5431 *
5432 *      Initialize @link->[hw_]sata_spd_limit to the currently
5433 *      configured value.
5434 *
5435 *      LOCKING:
5436 *      Kernel thread context (may sleep).
5437 *
5438 *      RETURNS:
5439 *      0 on success, -errno on failure.
5440 */
5441int sata_link_init_spd(struct ata_link *link)
5442{
5443        u8 spd;
5444        int rc;
5445
5446        rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5447        if (rc)
5448                return rc;
5449
5450        spd = (link->saved_scontrol >> 4) & 0xf;
5451        if (spd)
5452                link->hw_sata_spd_limit &= (1 << spd) - 1;
5453
5454        ata_force_link_limits(link);
5455
5456        link->sata_spd_limit = link->hw_sata_spd_limit;
5457
5458        return 0;
5459}
5460
5461/**
5462 *      ata_port_alloc - allocate and initialize basic ATA port resources
5463 *      @host: ATA host this allocated port belongs to
5464 *
5465 *      Allocate and initialize basic ATA port resources.
5466 *
5467 *      RETURNS:
5468 *      Allocate ATA port on success, NULL on failure.
5469 *
5470 *      LOCKING:
5471 *      Inherited from calling layer (may sleep).
5472 */
5473struct ata_port *ata_port_alloc(struct ata_host *host)
5474{
5475        struct ata_port *ap;
5476
5477        DPRINTK("ENTER\n");
5478
5479        ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5480        if (!ap)
5481                return NULL;
5482        
5483        ap->pflags |= ATA_PFLAG_INITIALIZING;
5484        ap->lock = &host->lock;
5485        ap->print_id = -1;
5486        ap->host = host;
5487        ap->dev = host->dev;
5488
5489#if defined(ATA_VERBOSE_DEBUG)
5490        /* turn on all debugging levels */
5491        ap->msg_enable = 0x00FF;
5492#elif defined(ATA_DEBUG)
5493        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5494#else
5495        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5496#endif
5497
5498        mutex_init(&ap->scsi_scan_mutex);
5499        INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5500        INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5501        INIT_LIST_HEAD(&ap->eh_done_q);
5502        init_waitqueue_head(&ap->eh_wait_q);
5503        init_completion(&ap->park_req_pending);
5504        init_timer_deferrable(&ap->fastdrain_timer);
5505        ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5506        ap->fastdrain_timer.data = (unsigned long)ap;
5507
5508        ap->cbl = ATA_CBL_NONE;
5509
5510        ata_link_init(ap, &ap->link, 0);
5511
5512#ifdef ATA_IRQ_TRAP
5513        ap->stats.unhandled_irq = 1;
5514        ap->stats.idle_irq = 1;
5515#endif
5516        ata_sff_port_init(ap);
5517
5518        return ap;
5519}
5520
5521static void ata_host_release(struct device *gendev, void *res)
5522{
5523        struct ata_host *host = dev_get_drvdata(gendev);
5524        int i;
5525
5526        for (i = 0; i < host->n_ports; i++) {
5527                struct ata_port *ap = host->ports[i];
5528
5529                if (!ap)
5530                        continue;
5531
5532                if (ap->scsi_host)
5533                        scsi_host_put(ap->scsi_host);
5534
5535                kfree(ap->pmp_link);
5536                kfree(ap->slave_link);
5537                kfree(ap);
5538                host->ports[i] = NULL;
5539        }
5540
5541        dev_set_drvdata(gendev, NULL);
5542}
5543
5544/**
5545 *      ata_host_alloc - allocate and init basic ATA host resources
5546 *      @dev: generic device this host is associated with
5547 *      @max_ports: maximum number of ATA ports associated with this host
5548 *
5549 *      Allocate and initialize basic ATA host resources.  LLD calls
5550 *      this function to allocate a host, initializes it fully and
5551 *      attaches it using ata_host_register().
5552 *
5553 *      @max_ports ports are allocated and host->n_ports is
5554 *      initialized to @max_ports.  The caller is allowed to decrease
5555 *      host->n_ports before calling ata_host_register().  The unused
5556 *      ports will be automatically freed on registration.
5557 *
5558 *      RETURNS:
5559 *      Allocate ATA host on success, NULL on failure.
5560 *
5561 *      LOCKING:
5562 *      Inherited from calling layer (may sleep).
5563 */
5564struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5565{
5566        struct ata_host *host;
5567        size_t sz;
5568        int i;
5569
5570        DPRINTK("ENTER\n");
5571
5572        if (!devres_open_group(dev, NULL, GFP_KERNEL))
5573                return NULL;
5574
5575        /* alloc a container for our list of ATA ports (buses) */
5576        sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5577        /* alloc a container for our list of ATA ports (buses) */
5578        host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5579        if (!host)
5580                goto err_out;
5581
5582        devres_add(dev, host);
5583        dev_set_drvdata(dev, host);
5584
5585        spin_lock_init(&host->lock);
5586        mutex_init(&host->eh_mutex);
5587        host->dev = dev;
5588        host->n_ports = max_ports;
5589
5590        /* allocate ports bound to this host */
5591        for (i = 0; i < max_ports; i++) {
5592                struct ata_port *ap;
5593
5594                ap = ata_port_alloc(host);
5595                if (!ap)
5596                        goto err_out;
5597
5598                ap->port_no = i;
5599                host->ports[i] = ap;
5600        }
5601
5602        devres_remove_group(dev, NULL);
5603        return host;
5604
5605 err_out:
5606        devres_release_group(dev, NULL);
5607        return NULL;
5608}
5609
5610/**
5611 *      ata_host_alloc_pinfo - alloc host and init with port_info array
5612 *      @dev: generic device this host is associated with
5613 *      @ppi: array of ATA port_info to initialize host with
5614 *      @n_ports: number of ATA ports attached to this host
5615 *
5616 *      Allocate ATA host and initialize with info from @ppi.  If NULL
5617 *      terminated, @ppi may contain fewer entries than @n_ports.  The
5618 *      last entry will be used for the remaining ports.
5619 *
5620 *      RETURNS:
5621 *      Allocate ATA host on success, NULL on failure.
5622 *
5623 *      LOCKING:
5624 *      Inherited from calling layer (may sleep).
5625 */
5626struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5627                                      const struct ata_port_info * const * ppi,
5628                                      int n_ports)
5629{
5630        const struct ata_port_info *pi;
5631        struct ata_host *host;
5632        int i, j;
5633
5634        host = ata_host_alloc(dev, n_ports);
5635        if (!host)
5636                return NULL;
5637
5638        for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5639                struct ata_port *ap = host->ports[i];
5640
5641                if (ppi[j])
5642                        pi = ppi[j++];
5643
5644                ap->pio_mask = pi->pio_mask;
5645                ap->mwdma_mask = pi->mwdma_mask;
5646                ap->udma_mask = pi->udma_mask;
5647                ap->flags |= pi->flags;
5648                ap->link.flags |= pi->link_flags;
5649                ap->ops = pi->port_ops;
5650
5651                if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5652                        host->ops = pi->port_ops;
5653        }
5654
5655        return host;
5656}
5657
5658/**
5659 *      ata_slave_link_init - initialize slave link
5660 *      @ap: port to initialize slave link for
5661 *
5662 *      Create and initialize slave link for @ap.  This enables slave
5663 *      link handling on the port.
5664 *
5665 *      In libata, a port contains links and a link contains devices.
5666 *      There is single host link but if a PMP is attached to it,
5667 *      there can be multiple fan-out links.  On SATA, there's usually
5668 *      a single device connected to a link but PATA and SATA
5669 *      controllers emulating TF based interface can have two - master
5670 *      and slave.
5671 *
5672 *      However, there are a few controllers which don't fit into this
5673 *      abstraction too well - SATA controllers which emulate TF
5674 *      interface with both master and slave devices but also have
5675 *      separate SCR register sets for each device.  These controllers
5676 *      need separate links for physical link handling
5677 *      (e.g. onlineness, link speed) but should be treated like a
5678 *      traditional M/S controller for everything else (e.g. command
5679 *      issue, softreset).
5680 *
5681 *      slave_link is libata's way of handling this class of
5682 *      controllers without impacting core layer too much.  For
5683 *      anything other than physical link handling, the default host
5684 *      link is used for both master and slave.  For physical link
5685 *      handling, separate @ap->slave_link is used.  All dirty details
5686 *      are implemented inside libata core layer.  From LLD's POV, the
5687 *      only difference is that prereset, hardreset and postreset are
5688 *      called once more for the slave link, so the reset sequence
5689 *      looks like the following.
5690 *
5691 *      prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5692 *      softreset(M) -> postreset(M) -> postreset(S)
5693 *
5694 *      Note that softreset is called only for the master.  Softreset
5695 *      resets both M/S by definition, so SRST on master should handle
5696 *      both (the standard method will work just fine).
5697 *
5698 *      LOCKING:
5699 *      Should be called before host is registered.
5700 *
5701 *      RETURNS:
5702 *      0 on success, -errno on failure.
5703 */
5704int ata_slave_link_init(struct ata_port *ap)
5705{
5706        struct ata_link *link;
5707
5708        WARN_ON(ap->slave_link);
5709        WARN_ON(ap->flags & ATA_FLAG_PMP);
5710
5711        link = kzalloc(sizeof(*link), GFP_KERNEL);
5712        if (!link)
5713                return -ENOMEM;
5714
5715        ata_link_init(ap, link, 1);
5716        ap->slave_link = link;
5717        return 0;
5718}
5719
5720static void ata_host_stop(struct device *gendev, void *res)
5721{
5722        struct ata_host *host = dev_get_drvdata(gendev);
5723        int i;
5724
5725        WARN_ON(!(host->flags & ATA_HOST_STARTED));
5726
5727        for (i = 0; i < host->n_ports; i++) {
5728                struct ata_port *ap = host->ports[i];
5729
5730                if (ap->ops->port_stop)
5731                        ap->ops->port_stop(ap);
5732        }
5733
5734        if (host->ops->host_stop)
5735                host->ops->host_stop(host);
5736}
5737
5738/**
5739 *      ata_finalize_port_ops - finalize ata_port_operations
5740 *      @ops: ata_port_operations to finalize
5741 *
5742 *      An ata_port_operations can inherit from another ops and that
5743 *      ops can again inherit from another.  This can go on as many
5744 *      times as necessary as long as there is no loop in the
5745 *      inheritance chain.
5746 *
5747 *      Ops tables are finalized when the host is started.  NULL or
5748 *      unspecified entries are inherited from the closet ancestor
5749 *      which has the method and the entry is populated with it.
5750 *      After finalization, the ops table directly points to all the
5751 *      methods and ->inherits is no longer necessary and cleared.
5752 *
5753 *      Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5754 *
5755 *      LOCKING:
5756 *      None.
5757 */
5758static void ata_finalize_port_ops(struct ata_port_operations *ops)
5759{
5760        static DEFINE_SPINLOCK(lock);
5761        const struct ata_port_operations *cur;
5762        void **begin = (void **)ops;
5763        void **end = (void **)&ops->inherits;
5764        void **pp;
5765
5766        if (!ops || !ops->inherits)
5767                return;
5768
5769        spin_lock(&lock);
5770
5771        for (cur = ops->inherits; cur; cur = cur->inherits) {
5772                void **inherit = (void **)cur;
5773
5774                for (pp = begin; pp < end; pp++, inherit++)
5775                        if (!*pp)
5776                                *pp = *inherit;
5777        }
5778
5779        for (pp = begin; pp < end; pp++)
5780                if (IS_ERR(*pp))
5781                        *pp = NULL;
5782
5783        ops->inherits = NULL;
5784
5785        spin_unlock(&lock);
5786}
5787
5788/**
5789 *      ata_host_start - start and freeze ports of an ATA host
5790 *      @host: ATA host to start ports for
5791 *
5792 *      Start and then freeze ports of @host.  Started status is
5793 *      recorded in host->flags, so this function can be called
5794 *      multiple times.  Ports are guaranteed to get started only
5795 *      once.  If host->ops isn't initialized yet, its set to the
5796 *      first non-dummy port ops.
5797 *
5798 *      LOCKING:
5799 *      Inherited from calling layer (may sleep).
5800 *
5801 *      RETURNS:
5802 *      0 if all ports are started successfully, -errno otherwise.
5803 */
5804int ata_host_start(struct ata_host *host)
5805{
5806        int have_stop = 0;
5807        void *start_dr = NULL;
5808        int i, rc;
5809
5810        if (host->flags & ATA_HOST_STARTED)
5811                return 0;
5812
5813        ata_finalize_port_ops(host->ops);
5814
5815        for (i = 0; i < host->n_ports; i++) {
5816                struct ata_port *ap = host->ports[i];
5817
5818                ata_finalize_port_ops(ap->ops);
5819
5820                if (!host->ops && !ata_port_is_dummy(ap))
5821                        host->ops = ap->ops;
5822
5823                if (ap->ops->port_stop)
5824                        have_stop = 1;
5825        }
5826
5827        if (host->ops->host_stop)
5828                have_stop = 1;
5829
5830        if (have_stop) {
5831                start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5832                if (!start_dr)
5833                        return -ENOMEM;
5834        }
5835
5836        for (i = 0; i < host->n_ports; i++) {
5837                struct ata_port *ap = host->ports[i];
5838
5839                if (ap->ops->port_start) {
5840                        rc = ap->ops->port_start(ap);
5841                        if (rc) {
5842                                if (rc != -ENODEV)
5843                                        dev_printk(KERN_ERR, host->dev,
5844                                                "failed to start port %d "
5845                                                "(errno=%d)\n", i, rc);
5846                                goto err_out;
5847                        }
5848                }
5849                ata_eh_freeze_port(ap);
5850        }
5851
5852        if (start_dr)
5853                devres_add(host->dev, start_dr);
5854        host->flags |= ATA_HOST_STARTED;
5855        return 0;
5856
5857 err_out:
5858        while (--i >= 0) {
5859                struct ata_port *ap = host->ports[i];
5860
5861                if (ap->ops->port_stop)
5862                        ap->ops->port_stop(ap);
5863        }
5864        devres_free(start_dr);
5865        return rc;
5866}
5867
5868/**
5869 *      ata_sas_host_init - Initialize a host struct
5870 *      @host:  host to initialize
5871 *      @dev:   device host is attached to
5872 *      @flags: host flags
5873 *      @ops:   port_ops
5874 *
5875 *      LOCKING:
5876 *      PCI/etc. bus probe sem.
5877 *
5878 */
5879/* KILLME - the only user left is ipr */
5880void ata_host_init(struct ata_host *host, struct device *dev,
5881                   unsigned long flags, struct ata_port_operations *ops)
5882{
5883        spin_lock_init(&host->lock);
5884        mutex_init(&host->eh_mutex);
5885        host->dev = dev;
5886        host->flags = flags;
5887        host->ops = ops;
5888}
5889
5890
5891static void async_port_probe(void *data, async_cookie_t cookie)
5892{
5893        int rc;
5894        struct ata_port *ap = data;
5895
5896        /*
5897         * If we're not allowed to scan this host in parallel,
5898         * we need to wait until all previous scans have completed
5899         * before going further.
5900         * Jeff Garzik says this is only within a controller, so we
5901         * don't need to wait for port 0, only for later ports.
5902         */
5903        if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5904                async_synchronize_cookie(cookie);
5905
5906        /* probe */
5907        if (ap->ops->error_handler) {
5908                struct ata_eh_info *ehi = &ap->link.eh_info;
5909                unsigned long flags;
5910
5911                /* kick EH for boot probing */
5912                spin_lock_irqsave(ap->lock, flags);
5913
5914                ehi->probe_mask |= ATA_ALL_DEVICES;
5915                ehi->action |= ATA_EH_RESET;
5916                ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5917
5918                ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5919                ap->pflags |= ATA_PFLAG_LOADING;
5920                ata_port_schedule_eh(ap);
5921
5922                spin_unlock_irqrestore(ap->lock, flags);
5923
5924                /* wait for EH to finish */
5925                ata_port_wait_eh(ap);
5926        } else {
5927                DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5928                rc = ata_bus_probe(ap);
5929                DPRINTK("ata%u: bus probe end\n", ap->print_id);
5930
5931                if (rc) {
5932                        /* FIXME: do something useful here?
5933                         * Current libata behavior will
5934                         * tear down everything when
5935                         * the module is removed
5936                         * or the h/w is unplugged.
5937                         */
5938                }
5939        }
5940
5941        /* in order to keep device order, we need to synchronize at this point */
5942        async_synchronize_cookie(cookie);
5943
5944        ata_scsi_scan_host(ap, 1);
5945
5946}
5947/**
5948 *      ata_host_register - register initialized ATA host
5949 *      @host: ATA host to register
5950 *      @sht: template for SCSI host
5951 *
5952 *      Register initialized ATA host.  @host is allocated using
5953 *      ata_host_alloc() and fully initialized by LLD.  This function
5954 *      starts ports, registers @host with ATA and SCSI layers and
5955 *      probe registered devices.
5956 *
5957 *      LOCKING:
5958 *      Inherited from calling layer (may sleep).
5959 *
5960 *      RETURNS:
5961 *      0 on success, -errno otherwise.
5962 */
5963int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5964{
5965        int i, rc;
5966
5967        /* host must have been started */
5968        if (!(host->flags & ATA_HOST_STARTED)) {
5969                dev_printk(KERN_ERR, host->dev,
5970                           "BUG: trying to register unstarted host\n");
5971                WARN_ON(1);
5972                return -EINVAL;
5973        }
5974
5975        /* Blow away unused ports.  This happens when LLD can't
5976         * determine the exact number of ports to allocate at
5977         * allocation time.
5978         */
5979        for (i = host->n_ports; host->ports[i]; i++)
5980                kfree(host->ports[i]);
5981
5982        /* give ports names and add SCSI hosts */
5983        for (i = 0; i < host->n_ports; i++)
5984                host->ports[i]->print_id = ata_print_id++;
5985
5986        
5987        /* Create associated sysfs transport objects  */
5988        for (i = 0; i < host->n_ports; i++) {
5989                rc = ata_tport_add(host->dev,host->ports[i]);
5990                if (rc) {
5991                        goto err_tadd;
5992                }
5993        }
5994
5995        rc = ata_scsi_add_hosts(host, sht);
5996        if (rc)
5997                goto err_tadd;
5998
5999        /* associate with ACPI nodes */
6000        ata_acpi_associate(host);
6001
6002        /* set cable, sata_spd_limit and report */
6003        for (i = 0; i < host->n_ports; i++) {
6004                struct ata_port *ap = host->ports[i];
6005                unsigned long xfer_mask;
6006
6007                /* set SATA cable type if still unset */
6008                if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6009                        ap->cbl = ATA_CBL_SATA;
6010
6011                /* init sata_spd_limit to the current value */
6012                sata_link_init_spd(&ap->link);
6013                if (ap->slave_link)
6014                        sata_link_init_spd(ap->slave_link);
6015
6016                /* print per-port info to dmesg */
6017                xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6018                                              ap->udma_mask);
6019
6020                if (!ata_port_is_dummy(ap)) {
6021                        ata_port_printk(ap, KERN_INFO,
6022                                        "%cATA max %s %s\n",
6023                                        (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6024                                        ata_mode_string(xfer_mask),
6025                                        ap->link.eh_info.desc);
6026                        ata_ehi_clear_desc(&ap->link.eh_info);
6027                } else
6028                        ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6029        }
6030
6031        /* perform each probe asynchronously */
6032        for (i = 0; i < host->n_ports; i++) {
6033                struct ata_port *ap = host->ports[i];
6034                async_schedule(async_port_probe, ap);
6035        }
6036
6037        return 0;
6038
6039 err_tadd:
6040        while (--i >= 0) {
6041                ata_tport_delete(host->ports[i]);
6042        }
6043        return rc;
6044
6045}
6046
6047/**
6048 *      ata_host_activate - start host, request IRQ and register it
6049 *      @host: target ATA host
6050 *      @irq: IRQ to request
6051 *      @irq_handler: irq_handler used when requesting IRQ
6052 *      @irq_flags: irq_flags used when requesting IRQ
6053 *      @sht: scsi_host_template to use when registering the host
6054 *
6055 *      After allocating an ATA host and initializing it, most libata
6056 *      LLDs perform three steps to activate the host - start host,
6057 *      request IRQ and register it.  This helper takes necessasry
6058 *      arguments and performs the three steps in one go.
6059 *
6060 *      An invalid IRQ skips the IRQ registration and expects the host to
6061 *      have set polling mode on the port. In this case, @irq_handler
6062 *      should be NULL.
6063 *
6064 *      LOCKING:
6065 *      Inherited from calling layer (may sleep).
6066 *
6067 *      RETURNS:
6068 *      0 on success, -errno otherwise.
6069 */
6070int ata_host_activate(struct ata_host *host, int irq,
6071                      irq_handler_t irq_handler, unsigned long irq_flags,
6072                      struct scsi_host_template *sht)
6073{
6074        int i, rc;
6075
6076        rc = ata_host_start(host);
6077        if (rc)
6078                return rc;
6079
6080        /* Special case for polling mode */
6081        if (!irq) {
6082                WARN_ON(irq_handler);
6083                return ata_host_register(host, sht);
6084        }
6085
6086        rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6087                              dev_driver_string(host->dev), host);
6088        if (rc)
6089                return rc;
6090
6091        for (i = 0; i < host->n_ports; i++)
6092                ata_port_desc(host->ports[i], "irq %d", irq);
6093
6094        rc = ata_host_register(host, sht);
6095        /* if failed, just free the IRQ and leave ports alone */
6096        if (rc)
6097                devm_free_irq(host->dev, irq, host);
6098
6099        return rc;
6100}
6101
6102/**
6103 *      ata_port_detach - Detach ATA port in prepration of device removal
6104 *      @ap: ATA port to be detached
6105 *
6106 *      Detach all ATA devices and the associated SCSI devices of @ap;
6107 *      then, remove the associated SCSI host.  @ap is guaranteed to
6108 *      be quiescent on return from this function.
6109 *
6110 *      LOCKING:
6111 *      Kernel thread context (may sleep).
6112 */
6113static void ata_port_detach(struct ata_port *ap)
6114{
6115        unsigned long flags;
6116
6117        if (!ap->ops->error_handler)
6118                goto skip_eh;
6119
6120        /* tell EH we're leaving & flush EH */
6121        spin_lock_irqsave(ap->lock, flags);
6122        ap->pflags |= ATA_PFLAG_UNLOADING;
6123        ata_port_schedule_eh(ap);
6124        spin_unlock_irqrestore(ap->lock, flags);
6125
6126        /* wait till EH commits suicide */
6127        ata_port_wait_eh(ap);
6128
6129        /* it better be dead now */
6130        WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6131
6132        cancel_delayed_work_sync(&ap->hotplug_task);
6133
6134 skip_eh:
6135        if (ap->pmp_link) {
6136                int i;
6137                for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6138                        ata_tlink_delete(&ap->pmp_link[i]);
6139        }
6140        ata_tport_delete(ap);
6141
6142        /* remove the associated SCSI host */
6143        scsi_remove_host(ap->scsi_host);
6144}
6145
6146/**
6147 *      ata_host_detach - Detach all ports of an ATA host
6148 *      @host: Host to detach
6149 *
6150 *      Detach all ports of @host.
6151 *
6152 *      LOCKING:
6153 *      Kernel thread context (may sleep).
6154 */
6155void ata_host_detach(struct ata_host *host)
6156{
6157        int i;
6158
6159        for (i = 0; i < host->n_ports; i++)
6160                ata_port_detach(host->ports[i]);
6161
6162        /* the host is dead now, dissociate ACPI */
6163        ata_acpi_dissociate(host);
6164}
6165
6166#ifdef CONFIG_PCI
6167
6168/**
6169 *      ata_pci_remove_one - PCI layer callback for device removal
6170 *      @pdev: PCI device that was removed
6171 *
6172 *      PCI layer indicates to libata via this hook that hot-unplug or
6173 *      module unload event has occurred.  Detach all ports.  Resource
6174 *      release is handled via devres.
6175 *
6176 *      LOCKING:
6177 *      Inherited from PCI layer (may sleep).
6178 */
6179void ata_pci_remove_one(struct pci_dev *pdev)
6180{
6181        struct device *dev = &pdev->dev;
6182        struct ata_host *host = dev_get_drvdata(dev);
6183
6184        ata_host_detach(host);
6185}
6186
6187/* move to PCI subsystem */
6188int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6189{
6190        unsigned long tmp = 0;
6191
6192        switch (bits->width) {
6193        case 1: {
6194                u8 tmp8 = 0;
6195                pci_read_config_byte(pdev, bits->reg, &tmp8);
6196                tmp = tmp8;
6197                break;
6198        }
6199        case 2: {
6200                u16 tmp16 = 0;
6201                pci_read_config_word(pdev, bits->reg, &tmp16);
6202                tmp = tmp16;
6203                break;
6204        }
6205        case 4: {
6206                u32 tmp32 = 0;
6207                pci_read_config_dword(pdev, bits->reg, &tmp32);
6208                tmp = tmp32;
6209                break;
6210        }
6211
6212        default:
6213                return -EINVAL;
6214        }
6215
6216        tmp &= bits->mask;
6217
6218        return (tmp == bits->val) ? 1 : 0;
6219}
6220
6221#ifdef CONFIG_PM
6222void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6223{
6224        pci_save_state(pdev);
6225        pci_disable_device(pdev);
6226
6227        if (mesg.event & PM_EVENT_SLEEP)
6228                pci_set_power_state(pdev, PCI_D3hot);
6229}
6230
6231int ata_pci_device_do_resume(struct pci_dev *pdev)
6232{
6233        int rc;
6234
6235        pci_set_power_state(pdev, PCI_D0);
6236        pci_restore_state(pdev);
6237
6238        rc = pcim_enable_device(pdev);
6239        if (rc) {
6240                dev_printk(KERN_ERR, &pdev->dev,
6241                           "failed to enable device after resume (%d)\n", rc);
6242                return rc;
6243        }
6244
6245        pci_set_master(pdev);
6246        return 0;
6247}
6248
6249int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6250{
6251        struct ata_host *host = dev_get_drvdata(&pdev->dev);
6252        int rc = 0;
6253
6254        rc = ata_host_suspend(host, mesg);
6255        if (rc)
6256                return rc;
6257
6258        ata_pci_device_do_suspend(pdev, mesg);
6259
6260        return 0;
6261}
6262
6263int ata_pci_device_resume(struct pci_dev *pdev)
6264{
6265        struct ata_host *host = dev_get_drvdata(&pdev->dev);
6266        int rc;
6267
6268        rc = ata_pci_device_do_resume(pdev);
6269        if (rc == 0)
6270                ata_host_resume(host);
6271        return rc;
6272}
6273#endif /* CONFIG_PM */
6274
6275#endif /* CONFIG_PCI */
6276
6277static int __init ata_parse_force_one(char **cur,
6278                                      struct ata_force_ent *force_ent,
6279                                      const char **reason)
6280{
6281        /* FIXME: Currently, there's no way to tag init const data and
6282         * using __initdata causes build failure on some versions of
6283         * gcc.  Once __initdataconst is implemented, add const to the
6284         * following structure.
6285         */
6286        static struct ata_force_param force_tbl[] __initdata = {
6287                { "40c",        .cbl            = ATA_CBL_PATA40 },
6288                { "80c",        .cbl            = ATA_CBL_PATA80 },
6289                { "short40c",   .cbl            = ATA_CBL_PATA40_SHORT },
6290                { "unk",        .cbl            = ATA_CBL_PATA_UNK },
6291                { "ign",        .cbl            = ATA_CBL_PATA_IGN },
6292                { "sata",       .cbl            = ATA_CBL_SATA },
6293                { "1.5Gbps",    .spd_limit      = 1 },
6294                { "3.0Gbps",    .spd_limit      = 2 },
6295                { "noncq",      .horkage_on     = ATA_HORKAGE_NONCQ },
6296                { "ncq",        .horkage_off    = ATA_HORKAGE_NONCQ },
6297                { "dump_id",    .horkage_on     = ATA_HORKAGE_DUMP_ID },
6298                { "pio0",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 0) },
6299                { "pio1",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 1) },
6300                { "pio2",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 2) },
6301                { "pio3",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 3) },
6302                { "pio4",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 4) },
6303                { "pio5",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 5) },
6304                { "pio6",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 6) },
6305                { "mwdma0",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 0) },
6306                { "mwdma1",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 1) },
6307                { "mwdma2",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 2) },
6308                { "mwdma3",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 3) },
6309                { "mwdma4",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 4) },
6310                { "udma0",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6311                { "udma16",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6312                { "udma/16",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6313                { "udma1",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6314                { "udma25",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6315                { "udma/25",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6316                { "udma2",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6317                { "udma33",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6318                { "udma/33",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6319                { "udma3",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6320                { "udma44",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6321                { "udma/44",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6322                { "udma4",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6323                { "udma66",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6324                { "udma/66",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6325                { "udma5",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6326                { "udma100",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6327                { "udma/100",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6328                { "udma6",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6329                { "udma133",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6330                { "udma/133",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6331                { "udma7",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 7) },
6332                { "nohrst",     .lflags         = ATA_LFLAG_NO_HRST },
6333                { "nosrst",     .lflags         = ATA_LFLAG_NO_SRST },
6334                { "norst",      .lflags         = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6335        };
6336        char *start = *cur, *p = *cur;
6337        char *id, *val, *endp;
6338        const struct ata_force_param *match_fp = NULL;
6339        int nr_matches = 0, i;
6340
6341        /* find where this param ends and update *cur */
6342        while (*p != '\0' && *p != ',')
6343                p++;
6344
6345        if (*p == '\0')
6346                *cur = p;
6347        else
6348                *cur = p + 1;
6349
6350        *p = '\0';
6351
6352        /* parse */
6353        p = strchr(start, ':');
6354        if (!p) {
6355                val = strstrip(start);
6356                goto parse_val;
6357        }
6358        *p = '\0';
6359
6360        id = strstrip(start);
6361        val = strstrip(p + 1);
6362
6363        /* parse id */
6364        p = strchr(id, '.');
6365        if (p) {
6366                *p++ = '\0';
6367                force_ent->device = simple_strtoul(p, &endp, 10);
6368                if (p == endp || *endp != '\0') {
6369                        *reason = "invalid device";
6370                        return -EINVAL;
6371                }
6372        }
6373
6374        force_ent->port = simple_strtoul(id, &endp, 10);
6375        if (p == endp || *endp != '\0') {
6376                *reason = "invalid port/link";
6377                return -EINVAL;
6378        }
6379
6380 parse_val:
6381        /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6382        for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6383                const struct ata_force_param *fp = &force_tbl[i];
6384
6385                if (strncasecmp(val, fp->name, strlen(val)))
6386                        continue;
6387
6388                nr_matches++;
6389                match_fp = fp;
6390
6391                if (strcasecmp(val, fp->name) == 0) {
6392                        nr_matches = 1;
6393                        break;
6394                }
6395        }
6396
6397        if (!nr_matches) {
6398                *reason = "unknown value";
6399                return -EINVAL;
6400        }
6401        if (nr_matches > 1) {
6402                *reason = "ambigious value";
6403                return -EINVAL;
6404        }
6405
6406        force_ent->param = *match_fp;
6407
6408        return 0;
6409}
6410
6411static void __init ata_parse_force_param(void)
6412{
6413        int idx = 0, size = 1;
6414        int last_port = -1, last_device = -1;
6415        char *p, *cur, *next;
6416
6417        /* calculate maximum number of params and allocate force_tbl */
6418        for (p = ata_force_param_buf; *p; p++)
6419                if (*p == ',')
6420                        size++;
6421
6422        ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6423        if (!ata_force_tbl) {
6424                printk(KERN_WARNING "ata: failed to extend force table, "
6425                       "libata.force ignored\n");
6426                return;
6427        }
6428
6429        /* parse and populate the table */
6430        for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6431                const char *reason = "";
6432                struct ata_force_ent te = { .port = -1, .device = -1 };
6433
6434                next = cur;
6435                if (ata_parse_force_one(&next, &te, &reason)) {
6436                        printk(KERN_WARNING "ata: failed to parse force "
6437                               "parameter \"%s\" (%s)\n",
6438                               cur, reason);
6439                        continue;
6440                }
6441
6442                if (te.port == -1) {
6443                        te.port = last_port;
6444                        te.device = last_device;
6445                }
6446
6447                ata_force_tbl[idx++] = te;
6448
6449                last_port = te.port;
6450                last_device = te.device;
6451        }
6452
6453        ata_force_tbl_size = idx;
6454}
6455
6456static int __init ata_init(void)
6457{
6458        int rc;
6459
6460        ata_parse_force_param();
6461
6462        rc = ata_sff_init();
6463        if (rc) {
6464                kfree(ata_force_tbl);
6465                return rc;
6466        }
6467
6468        libata_transport_init();
6469        ata_scsi_transport_template = ata_attach_transport();
6470        if (!ata_scsi_transport_template) {
6471                ata_sff_exit();
6472                rc = -ENOMEM;
6473                goto err_out;
6474        }               
6475
6476        printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6477        return 0;
6478
6479err_out:
6480        return rc;
6481}
6482
6483static void __exit ata_exit(void)
6484{
6485        ata_release_transport(ata_scsi_transport_template);
6486        libata_transport_exit();
6487        ata_sff_exit();
6488        kfree(ata_force_tbl);
6489}
6490
6491subsys_initcall(ata_init);
6492module_exit(ata_exit);
6493
6494static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6495
6496int ata_ratelimit(void)
6497{
6498        return __ratelimit(&ratelimit);
6499}
6500
6501/**
6502 *      ata_msleep - ATA EH owner aware msleep
6503 *      @ap: ATA port to attribute the sleep to
6504 *      @msecs: duration to sleep in milliseconds
6505 *
6506 *      Sleeps @msecs.  If the current task is owner of @ap's EH, the
6507 *      ownership is released before going to sleep and reacquired
6508 *      after the sleep is complete.  IOW, other ports sharing the
6509 *      @ap->host will be allowed to own the EH while this task is
6510 *      sleeping.
6511 *
6512 *      LOCKING:
6513 *      Might sleep.
6514 */
6515void ata_msleep(struct ata_port *ap, unsigned int msecs)
6516{
6517        bool owns_eh = ap && ap->host->eh_owner == current;
6518
6519        if (owns_eh)
6520                ata_eh_release(ap);
6521
6522        msleep(msecs);
6523
6524        if (owns_eh)
6525                ata_eh_acquire(ap);
6526}
6527
6528/**
6529 *      ata_wait_register - wait until register value changes
6530 *      @ap: ATA port to wait register for, can be NULL
6531 *      @reg: IO-mapped register
6532 *      @mask: Mask to apply to read register value
6533 *      @val: Wait condition
6534 *      @interval: polling interval in milliseconds
6535 *      @timeout: timeout in milliseconds
6536 *
6537 *      Waiting for some bits of register to change is a common
6538 *      operation for ATA controllers.  This function reads 32bit LE
6539 *      IO-mapped register @reg and tests for the following condition.
6540 *
6541 *      (*@reg & mask) != val
6542 *
6543 *      If the condition is met, it returns; otherwise, the process is
6544 *      repeated after @interval_msec until timeout.
6545 *
6546 *      LOCKING:
6547 *      Kernel thread context (may sleep)
6548 *
6549 *      RETURNS:
6550 *      The final register value.
6551 */
6552u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6553                      unsigned long interval, unsigned long timeout)
6554{
6555        unsigned long deadline;
6556        u32 tmp;
6557
6558        tmp = ioread32(reg);
6559
6560        /* Calculate timeout _after_ the first read to make sure
6561         * preceding writes reach the controller before starting to
6562         * eat away the timeout.
6563         */
6564        deadline = ata_deadline(jiffies, timeout);
6565
6566        while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6567                ata_msleep(ap, interval);
6568                tmp = ioread32(reg);
6569        }
6570
6571        return tmp;
6572}
6573
6574/*
6575 * Dummy port_ops
6576 */
6577static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6578{
6579        return AC_ERR_SYSTEM;
6580}
6581
6582static void ata_dummy_error_handler(struct ata_port *ap)
6583{
6584        /* truly dummy */
6585}
6586
6587struct ata_port_operations ata_dummy_port_ops = {
6588        .qc_prep                = ata_noop_qc_prep,
6589        .qc_issue               = ata_dummy_qc_issue,
6590        .error_handler          = ata_dummy_error_handler,
6591};
6592
6593const struct ata_port_info ata_dummy_port_info = {
6594        .port_ops               = &ata_dummy_port_ops,
6595};
6596
6597/*
6598 * libata is essentially a library of internal helper functions for
6599 * low-level ATA host controller drivers.  As such, the API/ABI is
6600 * likely to change as new drivers are added and updated.
6601 * Do not depend on ABI/API stability.
6602 */
6603EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6604EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6605EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6606EXPORT_SYMBOL_GPL(ata_base_port_ops);
6607EXPORT_SYMBOL_GPL(sata_port_ops);
6608EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6609EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6610EXPORT_SYMBOL_GPL(ata_link_next);
6611EXPORT_SYMBOL_GPL(ata_dev_next);
6612EXPORT_SYMBOL_GPL(ata_std_bios_param);
6613EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6614EXPORT_SYMBOL_GPL(ata_host_init);
6615EXPORT_SYMBOL_GPL(ata_host_alloc);
6616EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6617EXPORT_SYMBOL_GPL(ata_slave_link_init);
6618EXPORT_SYMBOL_GPL(ata_host_start);
6619EXPORT_SYMBOL_GPL(ata_host_register);
6620EXPORT_SYMBOL_GPL(ata_host_activate);
6621EXPORT_SYMBOL_GPL(ata_host_detach);
6622EXPORT_SYMBOL_GPL(ata_sg_init);
6623EXPORT_SYMBOL_GPL(ata_qc_complete);
6624EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6625EXPORT_SYMBOL_GPL(atapi_cmd_type);
6626EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6627EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6628EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6629EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6630EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6631EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6632EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6633EXPORT_SYMBOL_GPL(ata_mode_string);
6634EXPORT_SYMBOL_GPL(ata_id_xfermask);
6635EXPORT_SYMBOL_GPL(ata_do_set_mode);
6636EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6637EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6638EXPORT_SYMBOL_GPL(ata_dev_disable);
6639EXPORT_SYMBOL_GPL(sata_set_spd);
6640EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6641EXPORT_SYMBOL_GPL(sata_link_debounce);
6642EXPORT_SYMBOL_GPL(sata_link_resume);
6643EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6644EXPORT_SYMBOL_GPL(ata_std_prereset);
6645EXPORT_SYMBOL_GPL(sata_link_hardreset);
6646EXPORT_SYMBOL_GPL(sata_std_hardreset);
6647EXPORT_SYMBOL_GPL(ata_std_postreset);
6648EXPORT_SYMBOL_GPL(ata_dev_classify);
6649EXPORT_SYMBOL_GPL(ata_dev_pair);
6650EXPORT_SYMBOL_GPL(ata_ratelimit);
6651EXPORT_SYMBOL_GPL(ata_msleep);
6652EXPORT_SYMBOL_GPL(ata_wait_register);
6653EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6654EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6655EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6656EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6657EXPORT_SYMBOL_GPL(sata_scr_valid);
6658EXPORT_SYMBOL_GPL(sata_scr_read);
6659EXPORT_SYMBOL_GPL(sata_scr_write);
6660EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6661EXPORT_SYMBOL_GPL(ata_link_online);
6662EXPORT_SYMBOL_GPL(ata_link_offline);
6663#ifdef CONFIG_PM
6664EXPORT_SYMBOL_GPL(ata_host_suspend);
6665EXPORT_SYMBOL_GPL(ata_host_resume);
6666#endif /* CONFIG_PM */
6667EXPORT_SYMBOL_GPL(ata_id_string);
6668EXPORT_SYMBOL_GPL(ata_id_c_string);
6669EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6670EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6671
6672EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6673EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6674EXPORT_SYMBOL_GPL(ata_timing_compute);
6675EXPORT_SYMBOL_GPL(ata_timing_merge);
6676EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6677
6678#ifdef CONFIG_PCI
6679EXPORT_SYMBOL_GPL(pci_test_config_bits);
6680EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6681#ifdef CONFIG_PM
6682EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6683EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6684EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6685EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6686#endif /* CONFIG_PM */
6687#endif /* CONFIG_PCI */
6688
6689EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6690EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6691EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6692EXPORT_SYMBOL_GPL(ata_port_desc);
6693#ifdef CONFIG_PCI
6694EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6695#endif /* CONFIG_PCI */
6696EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6697EXPORT_SYMBOL_GPL(ata_link_abort);
6698EXPORT_SYMBOL_GPL(ata_port_abort);
6699EXPORT_SYMBOL_GPL(ata_port_freeze);
6700EXPORT_SYMBOL_GPL(sata_async_notification);
6701EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6702EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6703EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6704EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6705EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6706EXPORT_SYMBOL_GPL(ata_do_eh);
6707EXPORT_SYMBOL_GPL(ata_std_error_handler);
6708
6709EXPORT_SYMBOL_GPL(ata_cable_40wire);
6710EXPORT_SYMBOL_GPL(ata_cable_80wire);
6711EXPORT_SYMBOL_GPL(ata_cable_unknown);
6712EXPORT_SYMBOL_GPL(ata_cable_ignore);
6713EXPORT_SYMBOL_GPL(ata_cable_sata);
6714