linux/drivers/ata/pata_octeon_cf.c
<<
>>
Prefs
   1/*
   2 * Driver for the Octeon bootbus compact flash.
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 2005 - 2009 Cavium Networks
   9 * Copyright (C) 2008 Wind River Systems
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/module.h>
  14#include <linux/libata.h>
  15#include <linux/irq.h>
  16#include <linux/slab.h>
  17#include <linux/platform_device.h>
  18#include <linux/workqueue.h>
  19#include <scsi/scsi_host.h>
  20
  21#include <asm/octeon/octeon.h>
  22
  23/*
  24 * The Octeon bootbus compact flash interface is connected in at least
  25 * 3 different configurations on various evaluation boards:
  26 *
  27 * -- 8  bits no irq, no DMA
  28 * -- 16 bits no irq, no DMA
  29 * -- 16 bits True IDE mode with DMA, but no irq.
  30 *
  31 * In the last case the DMA engine can generate an interrupt when the
  32 * transfer is complete.  For the first two cases only PIO is supported.
  33 *
  34 */
  35
  36#define DRV_NAME        "pata_octeon_cf"
  37#define DRV_VERSION     "2.1"
  38
  39
  40struct octeon_cf_port {
  41        struct workqueue_struct *wq;
  42        struct delayed_work delayed_finish;
  43        struct ata_port *ap;
  44        int dma_finished;
  45};
  46
  47static struct scsi_host_template octeon_cf_sht = {
  48        ATA_PIO_SHT(DRV_NAME),
  49};
  50
  51/**
  52 * Convert nanosecond based time to setting used in the
  53 * boot bus timing register, based on timing multiple
  54 */
  55static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
  56{
  57        unsigned int val;
  58
  59        /*
  60         * Compute # of eclock periods to get desired duration in
  61         * nanoseconds.
  62         */
  63        val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
  64                          1000 * tim_mult);
  65
  66        return val;
  67}
  68
  69static void octeon_cf_set_boot_reg_cfg(int cs)
  70{
  71        union cvmx_mio_boot_reg_cfgx reg_cfg;
  72        reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
  73        reg_cfg.s.dmack = 0;    /* Don't assert DMACK on access */
  74        reg_cfg.s.tim_mult = 2; /* Timing mutiplier 2x */
  75        reg_cfg.s.rd_dly = 0;   /* Sample on falling edge of BOOT_OE */
  76        reg_cfg.s.sam = 0;      /* Don't combine write and output enable */
  77        reg_cfg.s.we_ext = 0;   /* No write enable extension */
  78        reg_cfg.s.oe_ext = 0;   /* No read enable extension */
  79        reg_cfg.s.en = 1;       /* Enable this region */
  80        reg_cfg.s.orbit = 0;    /* Don't combine with previous region */
  81        reg_cfg.s.ale = 0;      /* Don't do address multiplexing */
  82        cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
  83}
  84
  85/**
  86 * Called after libata determines the needed PIO mode. This
  87 * function programs the Octeon bootbus regions to support the
  88 * timing requirements of the PIO mode.
  89 *
  90 * @ap:     ATA port information
  91 * @dev:    ATA device
  92 */
  93static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
  94{
  95        struct octeon_cf_data *ocd = ap->dev->platform_data;
  96        union cvmx_mio_boot_reg_timx reg_tim;
  97        int cs = ocd->base_region;
  98        int T;
  99        struct ata_timing timing;
 100
 101        int use_iordy;
 102        int trh;
 103        int pause;
 104        /* These names are timing parameters from the ATA spec */
 105        int t1;
 106        int t2;
 107        int t2i;
 108
 109        T = (int)(2000000000000LL / octeon_get_clock_rate());
 110
 111        if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T))
 112                BUG();
 113
 114        t1 = timing.setup;
 115        if (t1)
 116                t1--;
 117        t2 = timing.active;
 118        if (t2)
 119                t2--;
 120        t2i = timing.act8b;
 121        if (t2i)
 122                t2i--;
 123
 124        trh = ns_to_tim_reg(2, 20);
 125        if (trh)
 126                trh--;
 127
 128        pause = timing.cycle - timing.active - timing.setup - trh;
 129        if (pause)
 130                pause--;
 131
 132        octeon_cf_set_boot_reg_cfg(cs);
 133        if (ocd->dma_engine >= 0)
 134                /* True IDE mode, program both chip selects.  */
 135                octeon_cf_set_boot_reg_cfg(cs + 1);
 136
 137
 138        use_iordy = ata_pio_need_iordy(dev);
 139
 140        reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cs));
 141        /* Disable page mode */
 142        reg_tim.s.pagem = 0;
 143        /* Enable dynamic timing */
 144        reg_tim.s.waitm = use_iordy;
 145        /* Pages are disabled */
 146        reg_tim.s.pages = 0;
 147        /* We don't use multiplexed address mode */
 148        reg_tim.s.ale = 0;
 149        /* Not used */
 150        reg_tim.s.page = 0;
 151        /* Time after IORDY to coninue to assert the data */
 152        reg_tim.s.wait = 0;
 153        /* Time to wait to complete the cycle. */
 154        reg_tim.s.pause = pause;
 155        /* How long to hold after a write to de-assert CE. */
 156        reg_tim.s.wr_hld = trh;
 157        /* How long to wait after a read to de-assert CE. */
 158        reg_tim.s.rd_hld = trh;
 159        /* How long write enable is asserted */
 160        reg_tim.s.we = t2;
 161        /* How long read enable is asserted */
 162        reg_tim.s.oe = t2;
 163        /* Time after CE that read/write starts */
 164        reg_tim.s.ce = ns_to_tim_reg(2, 5);
 165        /* Time before CE that address is valid */
 166        reg_tim.s.adr = 0;
 167
 168        /* Program the bootbus region timing for the data port chip select. */
 169        cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs), reg_tim.u64);
 170        if (ocd->dma_engine >= 0)
 171                /* True IDE mode, program both chip selects.  */
 172                cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs + 1), reg_tim.u64);
 173}
 174
 175static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
 176{
 177        struct octeon_cf_data *ocd = dev->link->ap->dev->platform_data;
 178        union cvmx_mio_boot_dma_timx dma_tim;
 179        unsigned int oe_a;
 180        unsigned int oe_n;
 181        unsigned int dma_ackh;
 182        unsigned int dma_arq;
 183        unsigned int pause;
 184        unsigned int T0, Tkr, Td;
 185        unsigned int tim_mult;
 186
 187        const struct ata_timing *timing;
 188
 189        timing = ata_timing_find_mode(dev->dma_mode);
 190        T0      = timing->cycle;
 191        Td      = timing->active;
 192        Tkr     = timing->recover;
 193        dma_ackh = timing->dmack_hold;
 194
 195        dma_tim.u64 = 0;
 196        /* dma_tim.s.tim_mult = 0 --> 4x */
 197        tim_mult = 4;
 198
 199        /* not spec'ed, value in eclocks, not affected by tim_mult */
 200        dma_arq = 8;
 201        pause = 25 - dma_arq * 1000 /
 202                (octeon_get_clock_rate() / 1000000); /* Tz */
 203
 204        oe_a = Td;
 205        /* Tkr from cf spec, lengthened to meet T0 */
 206        oe_n = max(T0 - oe_a, Tkr);
 207
 208        dma_tim.s.dmack_pi = 1;
 209
 210        dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
 211        dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
 212
 213        /*
 214         * This is tI, C.F. spec. says 0, but Sony CF card requires
 215         * more, we use 20 nS.
 216         */
 217        dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
 218        dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
 219
 220        dma_tim.s.dmarq = dma_arq;
 221        dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
 222
 223        dma_tim.s.rd_dly = 0;   /* Sample right on edge */
 224
 225        /*  writes only */
 226        dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
 227        dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
 228
 229        pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
 230                 ns_to_tim_reg(tim_mult, 60));
 231        pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: "
 232                 "%d, dmarq: %d, pause: %d\n",
 233                 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
 234                 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
 235
 236        cvmx_write_csr(CVMX_MIO_BOOT_DMA_TIMX(ocd->dma_engine),
 237                       dma_tim.u64);
 238
 239}
 240
 241/**
 242 * Handle an 8 bit I/O request.
 243 *
 244 * @dev:        Device to access
 245 * @buffer:     Data buffer
 246 * @buflen:     Length of the buffer.
 247 * @rw:         True to write.
 248 */
 249static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
 250                                         unsigned char *buffer,
 251                                         unsigned int buflen,
 252                                         int rw)
 253{
 254        struct ata_port *ap             = dev->link->ap;
 255        void __iomem *data_addr         = ap->ioaddr.data_addr;
 256        unsigned long words;
 257        int count;
 258
 259        words = buflen;
 260        if (rw) {
 261                count = 16;
 262                while (words--) {
 263                        iowrite8(*buffer, data_addr);
 264                        buffer++;
 265                        /*
 266                         * Every 16 writes do a read so the bootbus
 267                         * FIFO doesn't fill up.
 268                         */
 269                        if (--count == 0) {
 270                                ioread8(ap->ioaddr.altstatus_addr);
 271                                count = 16;
 272                        }
 273                }
 274        } else {
 275                ioread8_rep(data_addr, buffer, words);
 276        }
 277        return buflen;
 278}
 279
 280/**
 281 * Handle a 16 bit I/O request.
 282 *
 283 * @dev:        Device to access
 284 * @buffer:     Data buffer
 285 * @buflen:     Length of the buffer.
 286 * @rw:         True to write.
 287 */
 288static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
 289                                          unsigned char *buffer,
 290                                          unsigned int buflen,
 291                                          int rw)
 292{
 293        struct ata_port *ap             = dev->link->ap;
 294        void __iomem *data_addr         = ap->ioaddr.data_addr;
 295        unsigned long words;
 296        int count;
 297
 298        words = buflen / 2;
 299        if (rw) {
 300                count = 16;
 301                while (words--) {
 302                        iowrite16(*(uint16_t *)buffer, data_addr);
 303                        buffer += sizeof(uint16_t);
 304                        /*
 305                         * Every 16 writes do a read so the bootbus
 306                         * FIFO doesn't fill up.
 307                         */
 308                        if (--count == 0) {
 309                                ioread8(ap->ioaddr.altstatus_addr);
 310                                count = 16;
 311                        }
 312                }
 313        } else {
 314                while (words--) {
 315                        *(uint16_t *)buffer = ioread16(data_addr);
 316                        buffer += sizeof(uint16_t);
 317                }
 318        }
 319        /* Transfer trailing 1 byte, if any. */
 320        if (unlikely(buflen & 0x01)) {
 321                __le16 align_buf[1] = { 0 };
 322
 323                if (rw == READ) {
 324                        align_buf[0] = cpu_to_le16(ioread16(data_addr));
 325                        memcpy(buffer, align_buf, 1);
 326                } else {
 327                        memcpy(align_buf, buffer, 1);
 328                        iowrite16(le16_to_cpu(align_buf[0]), data_addr);
 329                }
 330                words++;
 331        }
 332        return buflen;
 333}
 334
 335/**
 336 * Read the taskfile for 16bit non-True IDE only.
 337 */
 338static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
 339{
 340        u16 blob;
 341        /* The base of the registers is at ioaddr.data_addr. */
 342        void __iomem *base = ap->ioaddr.data_addr;
 343
 344        blob = __raw_readw(base + 0xc);
 345        tf->feature = blob >> 8;
 346
 347        blob = __raw_readw(base + 2);
 348        tf->nsect = blob & 0xff;
 349        tf->lbal = blob >> 8;
 350
 351        blob = __raw_readw(base + 4);
 352        tf->lbam = blob & 0xff;
 353        tf->lbah = blob >> 8;
 354
 355        blob = __raw_readw(base + 6);
 356        tf->device = blob & 0xff;
 357        tf->command = blob >> 8;
 358
 359        if (tf->flags & ATA_TFLAG_LBA48) {
 360                if (likely(ap->ioaddr.ctl_addr)) {
 361                        iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
 362
 363                        blob = __raw_readw(base + 0xc);
 364                        tf->hob_feature = blob >> 8;
 365
 366                        blob = __raw_readw(base + 2);
 367                        tf->hob_nsect = blob & 0xff;
 368                        tf->hob_lbal = blob >> 8;
 369
 370                        blob = __raw_readw(base + 4);
 371                        tf->hob_lbam = blob & 0xff;
 372                        tf->hob_lbah = blob >> 8;
 373
 374                        iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
 375                        ap->last_ctl = tf->ctl;
 376                } else {
 377                        WARN_ON(1);
 378                }
 379        }
 380}
 381
 382static u8 octeon_cf_check_status16(struct ata_port *ap)
 383{
 384        u16 blob;
 385        void __iomem *base = ap->ioaddr.data_addr;
 386
 387        blob = __raw_readw(base + 6);
 388        return blob >> 8;
 389}
 390
 391static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
 392                                 unsigned long deadline)
 393{
 394        struct ata_port *ap = link->ap;
 395        void __iomem *base = ap->ioaddr.data_addr;
 396        int rc;
 397        u8 err;
 398
 399        DPRINTK("about to softreset\n");
 400        __raw_writew(ap->ctl, base + 0xe);
 401        udelay(20);
 402        __raw_writew(ap->ctl | ATA_SRST, base + 0xe);
 403        udelay(20);
 404        __raw_writew(ap->ctl, base + 0xe);
 405
 406        rc = ata_sff_wait_after_reset(link, 1, deadline);
 407        if (rc) {
 408                ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
 409                return rc;
 410        }
 411
 412        /* determine by signature whether we have ATA or ATAPI devices */
 413        classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
 414        DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
 415        return 0;
 416}
 417
 418/**
 419 * Load the taskfile for 16bit non-True IDE only.  The device_addr is
 420 * not loaded, we do this as part of octeon_cf_exec_command16.
 421 */
 422static void octeon_cf_tf_load16(struct ata_port *ap,
 423                                const struct ata_taskfile *tf)
 424{
 425        unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 426        /* The base of the registers is at ioaddr.data_addr. */
 427        void __iomem *base = ap->ioaddr.data_addr;
 428
 429        if (tf->ctl != ap->last_ctl) {
 430                iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
 431                ap->last_ctl = tf->ctl;
 432                ata_wait_idle(ap);
 433        }
 434        if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 435                __raw_writew(tf->hob_feature << 8, base + 0xc);
 436                __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
 437                __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
 438                VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
 439                        tf->hob_feature,
 440                        tf->hob_nsect,
 441                        tf->hob_lbal,
 442                        tf->hob_lbam,
 443                        tf->hob_lbah);
 444        }
 445        if (is_addr) {
 446                __raw_writew(tf->feature << 8, base + 0xc);
 447                __raw_writew(tf->nsect | tf->lbal << 8, base + 2);
 448                __raw_writew(tf->lbam | tf->lbah << 8, base + 4);
 449                VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
 450                        tf->feature,
 451                        tf->nsect,
 452                        tf->lbal,
 453                        tf->lbam,
 454                        tf->lbah);
 455        }
 456        ata_wait_idle(ap);
 457}
 458
 459
 460static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
 461{
 462/*  There is only one device, do nothing. */
 463        return;
 464}
 465
 466/*
 467 * Issue ATA command to host controller.  The device_addr is also sent
 468 * as it must be written in a combined write with the command.
 469 */
 470static void octeon_cf_exec_command16(struct ata_port *ap,
 471                                const struct ata_taskfile *tf)
 472{
 473        /* The base of the registers is at ioaddr.data_addr. */
 474        void __iomem *base = ap->ioaddr.data_addr;
 475        u16 blob;
 476
 477        if (tf->flags & ATA_TFLAG_DEVICE) {
 478                VPRINTK("device 0x%X\n", tf->device);
 479                blob = tf->device;
 480        } else {
 481                blob = 0;
 482        }
 483
 484        DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
 485        blob |= (tf->command << 8);
 486        __raw_writew(blob, base + 6);
 487
 488
 489        ata_wait_idle(ap);
 490}
 491
 492static void octeon_cf_irq_on(struct ata_port *ap)
 493{
 494}
 495
 496static void octeon_cf_irq_clear(struct ata_port *ap)
 497{
 498        return;
 499}
 500
 501static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
 502{
 503        struct ata_port *ap = qc->ap;
 504        struct octeon_cf_port *cf_port;
 505
 506        cf_port = ap->private_data;
 507        DPRINTK("ENTER\n");
 508        /* issue r/w command */
 509        qc->cursg = qc->sg;
 510        cf_port->dma_finished = 0;
 511        ap->ops->sff_exec_command(ap, &qc->tf);
 512        DPRINTK("EXIT\n");
 513}
 514
 515/**
 516 * Start a DMA transfer that was already setup
 517 *
 518 * @qc:     Information about the DMA
 519 */
 520static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
 521{
 522        struct octeon_cf_data *ocd = qc->ap->dev->platform_data;
 523        union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
 524        union cvmx_mio_boot_dma_intx mio_boot_dma_int;
 525        struct scatterlist *sg;
 526
 527        VPRINTK("%d scatterlists\n", qc->n_elem);
 528
 529        /* Get the scatter list entry we need to DMA into */
 530        sg = qc->cursg;
 531        BUG_ON(!sg);
 532
 533        /*
 534         * Clear the DMA complete status.
 535         */
 536        mio_boot_dma_int.u64 = 0;
 537        mio_boot_dma_int.s.done = 1;
 538        cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
 539                       mio_boot_dma_int.u64);
 540
 541        /* Enable the interrupt.  */
 542        cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine),
 543                       mio_boot_dma_int.u64);
 544
 545        /* Set the direction of the DMA */
 546        mio_boot_dma_cfg.u64 = 0;
 547        mio_boot_dma_cfg.s.en = 1;
 548        mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
 549
 550        /*
 551         * Don't stop the DMA if the device deasserts DMARQ. Many
 552         * compact flashes deassert DMARQ for a short time between
 553         * sectors. Instead of stopping and restarting the DMA, we'll
 554         * let the hardware do it. If the DMA is really stopped early
 555         * due to an error condition, a later timeout will force us to
 556         * stop.
 557         */
 558        mio_boot_dma_cfg.s.clr = 0;
 559
 560        /* Size is specified in 16bit words and minus one notation */
 561        mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
 562
 563        /* We need to swap the high and low bytes of every 16 bits */
 564        mio_boot_dma_cfg.s.swap8 = 1;
 565
 566        mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
 567
 568        VPRINTK("%s %d bytes address=%p\n",
 569                (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
 570                (void *)(unsigned long)mio_boot_dma_cfg.s.adr);
 571
 572        cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine),
 573                       mio_boot_dma_cfg.u64);
 574}
 575
 576/**
 577 *
 578 *      LOCKING:
 579 *      spin_lock_irqsave(host lock)
 580 *
 581 */
 582static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
 583                                        struct ata_queued_cmd *qc)
 584{
 585        struct ata_eh_info *ehi = &ap->link.eh_info;
 586        struct octeon_cf_data *ocd = ap->dev->platform_data;
 587        union cvmx_mio_boot_dma_cfgx dma_cfg;
 588        union cvmx_mio_boot_dma_intx dma_int;
 589        struct octeon_cf_port *cf_port;
 590        u8 status;
 591
 592        VPRINTK("ata%u: protocol %d task_state %d\n",
 593                ap->print_id, qc->tf.protocol, ap->hsm_task_state);
 594
 595
 596        if (ap->hsm_task_state != HSM_ST_LAST)
 597                return 0;
 598
 599        cf_port = ap->private_data;
 600
 601        dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
 602        if (dma_cfg.s.size != 0xfffff) {
 603                /* Error, the transfer was not complete.  */
 604                qc->err_mask |= AC_ERR_HOST_BUS;
 605                ap->hsm_task_state = HSM_ST_ERR;
 606        }
 607
 608        /* Stop and clear the dma engine.  */
 609        dma_cfg.u64 = 0;
 610        dma_cfg.s.size = -1;
 611        cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine), dma_cfg.u64);
 612
 613        /* Disable the interrupt.  */
 614        dma_int.u64 = 0;
 615        cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine), dma_int.u64);
 616
 617        /* Clear the DMA complete status */
 618        dma_int.s.done = 1;
 619        cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), dma_int.u64);
 620
 621        status = ap->ops->sff_check_status(ap);
 622
 623        ata_sff_hsm_move(ap, qc, status, 0);
 624
 625        if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
 626                ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
 627
 628        return 1;
 629}
 630
 631/*
 632 * Check if any queued commands have more DMAs, if so start the next
 633 * transfer, else do end of transfer handling.
 634 */
 635static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
 636{
 637        struct ata_host *host = dev_instance;
 638        struct octeon_cf_port *cf_port;
 639        int i;
 640        unsigned int handled = 0;
 641        unsigned long flags;
 642
 643        spin_lock_irqsave(&host->lock, flags);
 644
 645        DPRINTK("ENTER\n");
 646        for (i = 0; i < host->n_ports; i++) {
 647                u8 status;
 648                struct ata_port *ap;
 649                struct ata_queued_cmd *qc;
 650                union cvmx_mio_boot_dma_intx dma_int;
 651                union cvmx_mio_boot_dma_cfgx dma_cfg;
 652                struct octeon_cf_data *ocd;
 653
 654                ap = host->ports[i];
 655                ocd = ap->dev->platform_data;
 656                cf_port = ap->private_data;
 657                dma_int.u64 =
 658                        cvmx_read_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine));
 659                dma_cfg.u64 =
 660                        cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
 661
 662                qc = ata_qc_from_tag(ap, ap->link.active_tag);
 663
 664                if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) {
 665                        if (dma_int.s.done && !dma_cfg.s.en) {
 666                                if (!sg_is_last(qc->cursg)) {
 667                                        qc->cursg = sg_next(qc->cursg);
 668                                        handled = 1;
 669                                        octeon_cf_dma_start(qc);
 670                                        continue;
 671                                } else {
 672                                        cf_port->dma_finished = 1;
 673                                }
 674                        }
 675                        if (!cf_port->dma_finished)
 676                                continue;
 677                        status = ioread8(ap->ioaddr.altstatus_addr);
 678                        if (status & (ATA_BUSY | ATA_DRQ)) {
 679                                /*
 680                                 * We are busy, try to handle it
 681                                 * later.  This is the DMA finished
 682                                 * interrupt, and it could take a
 683                                 * little while for the card to be
 684                                 * ready for more commands.
 685                                 */
 686                                /* Clear DMA irq. */
 687                                dma_int.u64 = 0;
 688                                dma_int.s.done = 1;
 689                                cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
 690                                               dma_int.u64);
 691
 692                                queue_delayed_work(cf_port->wq,
 693                                                   &cf_port->delayed_finish, 1);
 694                                handled = 1;
 695                        } else {
 696                                handled |= octeon_cf_dma_finished(ap, qc);
 697                        }
 698                }
 699        }
 700        spin_unlock_irqrestore(&host->lock, flags);
 701        DPRINTK("EXIT\n");
 702        return IRQ_RETVAL(handled);
 703}
 704
 705static void octeon_cf_delayed_finish(struct work_struct *work)
 706{
 707        struct octeon_cf_port *cf_port = container_of(work,
 708                                                      struct octeon_cf_port,
 709                                                      delayed_finish.work);
 710        struct ata_port *ap = cf_port->ap;
 711        struct ata_host *host = ap->host;
 712        struct ata_queued_cmd *qc;
 713        unsigned long flags;
 714        u8 status;
 715
 716        spin_lock_irqsave(&host->lock, flags);
 717
 718        /*
 719         * If the port is not waiting for completion, it must have
 720         * handled it previously.  The hsm_task_state is
 721         * protected by host->lock.
 722         */
 723        if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
 724                goto out;
 725
 726        status = ioread8(ap->ioaddr.altstatus_addr);
 727        if (status & (ATA_BUSY | ATA_DRQ)) {
 728                /* Still busy, try again. */
 729                queue_delayed_work(cf_port->wq,
 730                                   &cf_port->delayed_finish, 1);
 731                goto out;
 732        }
 733        qc = ata_qc_from_tag(ap, ap->link.active_tag);
 734        if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
 735                octeon_cf_dma_finished(ap, qc);
 736out:
 737        spin_unlock_irqrestore(&host->lock, flags);
 738}
 739
 740static void octeon_cf_dev_config(struct ata_device *dev)
 741{
 742        /*
 743         * A maximum of 2^20 - 1 16 bit transfers are possible with
 744         * the bootbus DMA.  So we need to throttle max_sectors to
 745         * (2^12 - 1 == 4095) to assure that this can never happen.
 746         */
 747        dev->max_sectors = min(dev->max_sectors, 4095U);
 748}
 749
 750/*
 751 * We don't do ATAPI DMA so return 0.
 752 */
 753static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
 754{
 755        return 0;
 756}
 757
 758static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
 759{
 760        struct ata_port *ap = qc->ap;
 761
 762        switch (qc->tf.protocol) {
 763        case ATA_PROT_DMA:
 764                WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
 765
 766                ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
 767                octeon_cf_dma_setup(qc);            /* set up dma */
 768                octeon_cf_dma_start(qc);            /* initiate dma */
 769                ap->hsm_task_state = HSM_ST_LAST;
 770                break;
 771
 772        case ATAPI_PROT_DMA:
 773                dev_err(ap->dev, "Error, ATAPI not supported\n");
 774                BUG();
 775
 776        default:
 777                return ata_sff_qc_issue(qc);
 778        }
 779
 780        return 0;
 781}
 782
 783static struct ata_port_operations octeon_cf_ops = {
 784        .inherits               = &ata_sff_port_ops,
 785        .check_atapi_dma        = octeon_cf_check_atapi_dma,
 786        .qc_prep                = ata_noop_qc_prep,
 787        .qc_issue               = octeon_cf_qc_issue,
 788        .sff_dev_select         = octeon_cf_dev_select,
 789        .sff_irq_on             = octeon_cf_irq_on,
 790        .sff_irq_clear          = octeon_cf_irq_clear,
 791        .cable_detect           = ata_cable_40wire,
 792        .set_piomode            = octeon_cf_set_piomode,
 793        .set_dmamode            = octeon_cf_set_dmamode,
 794        .dev_config             = octeon_cf_dev_config,
 795};
 796
 797static int __devinit octeon_cf_probe(struct platform_device *pdev)
 798{
 799        struct resource *res_cs0, *res_cs1;
 800
 801        void __iomem *cs0;
 802        void __iomem *cs1 = NULL;
 803        struct ata_host *host;
 804        struct ata_port *ap;
 805        struct octeon_cf_data *ocd;
 806        int irq = 0;
 807        irq_handler_t irq_handler = NULL;
 808        void __iomem *base;
 809        struct octeon_cf_port *cf_port;
 810
 811        res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 812
 813        if (!res_cs0)
 814                return -EINVAL;
 815
 816        ocd = pdev->dev.platform_data;
 817
 818        cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
 819                                   resource_size(res_cs0));
 820
 821        if (!cs0)
 822                return -ENOMEM;
 823
 824        /* Determine from availability of DMA if True IDE mode or not */
 825        if (ocd->dma_engine >= 0) {
 826                res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
 827                if (!res_cs1)
 828                        return -EINVAL;
 829
 830                cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
 831                                           resource_size(res_cs1));
 832
 833                if (!cs1)
 834                        return -ENOMEM;
 835        }
 836
 837        cf_port = kzalloc(sizeof(*cf_port), GFP_KERNEL);
 838        if (!cf_port)
 839                return -ENOMEM;
 840
 841        /* allocate host */
 842        host = ata_host_alloc(&pdev->dev, 1);
 843        if (!host)
 844                goto free_cf_port;
 845
 846        ap = host->ports[0];
 847        ap->private_data = cf_port;
 848        cf_port->ap = ap;
 849        ap->ops = &octeon_cf_ops;
 850        ap->pio_mask = ATA_PIO6;
 851        ap->flags |= ATA_FLAG_MMIO | ATA_FLAG_NO_LEGACY
 852                  | ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
 853
 854        base = cs0 + ocd->base_region_bias;
 855        if (!ocd->is16bit) {
 856                ap->ioaddr.cmd_addr     = base;
 857                ata_sff_std_ports(&ap->ioaddr);
 858
 859                ap->ioaddr.altstatus_addr = base + 0xe;
 860                ap->ioaddr.ctl_addr     = base + 0xe;
 861                octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
 862        } else if (cs1) {
 863                /* Presence of cs1 indicates True IDE mode.  */
 864                ap->ioaddr.cmd_addr     = base + (ATA_REG_CMD << 1) + 1;
 865                ap->ioaddr.data_addr    = base + (ATA_REG_DATA << 1);
 866                ap->ioaddr.error_addr   = base + (ATA_REG_ERR << 1) + 1;
 867                ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
 868                ap->ioaddr.nsect_addr   = base + (ATA_REG_NSECT << 1) + 1;
 869                ap->ioaddr.lbal_addr    = base + (ATA_REG_LBAL << 1) + 1;
 870                ap->ioaddr.lbam_addr    = base + (ATA_REG_LBAM << 1) + 1;
 871                ap->ioaddr.lbah_addr    = base + (ATA_REG_LBAH << 1) + 1;
 872                ap->ioaddr.device_addr  = base + (ATA_REG_DEVICE << 1) + 1;
 873                ap->ioaddr.status_addr  = base + (ATA_REG_STATUS << 1) + 1;
 874                ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
 875                ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
 876                ap->ioaddr.ctl_addr     = cs1 + (6 << 1) + 1;
 877                octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
 878
 879                ap->mwdma_mask  = ATA_MWDMA4;
 880                irq = platform_get_irq(pdev, 0);
 881                irq_handler = octeon_cf_interrupt;
 882
 883                /* True IDE mode needs delayed work to poll for not-busy.  */
 884                cf_port->wq = create_singlethread_workqueue(DRV_NAME);
 885                if (!cf_port->wq)
 886                        goto free_cf_port;
 887                INIT_DELAYED_WORK(&cf_port->delayed_finish,
 888                                  octeon_cf_delayed_finish);
 889
 890        } else {
 891                /* 16 bit but not True IDE */
 892                octeon_cf_ops.sff_data_xfer     = octeon_cf_data_xfer16;
 893                octeon_cf_ops.softreset         = octeon_cf_softreset16;
 894                octeon_cf_ops.sff_check_status  = octeon_cf_check_status16;
 895                octeon_cf_ops.sff_tf_read       = octeon_cf_tf_read16;
 896                octeon_cf_ops.sff_tf_load       = octeon_cf_tf_load16;
 897                octeon_cf_ops.sff_exec_command  = octeon_cf_exec_command16;
 898
 899                ap->ioaddr.data_addr    = base + ATA_REG_DATA;
 900                ap->ioaddr.nsect_addr   = base + ATA_REG_NSECT;
 901                ap->ioaddr.lbal_addr    = base + ATA_REG_LBAL;
 902                ap->ioaddr.ctl_addr     = base + 0xe;
 903                ap->ioaddr.altstatus_addr = base + 0xe;
 904        }
 905
 906        ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
 907
 908
 909        dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
 910                 (ocd->is16bit) ? 16 : 8,
 911                 (cs1) ? ", True IDE" : "");
 912
 913
 914        return ata_host_activate(host, irq, irq_handler, 0, &octeon_cf_sht);
 915
 916free_cf_port:
 917        kfree(cf_port);
 918        return -ENOMEM;
 919}
 920
 921static struct platform_driver octeon_cf_driver = {
 922        .probe          = octeon_cf_probe,
 923        .driver         = {
 924                .name   = DRV_NAME,
 925                .owner  = THIS_MODULE,
 926        },
 927};
 928
 929static int __init octeon_cf_init(void)
 930{
 931        return platform_driver_register(&octeon_cf_driver);
 932}
 933
 934
 935MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
 936MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
 937MODULE_LICENSE("GPL");
 938MODULE_VERSION(DRV_VERSION);
 939MODULE_ALIAS("platform:" DRV_NAME);
 940
 941module_init(octeon_cf_init);
 942