linux/drivers/ata/sata_dwc_460ex.c
<<
>>
Prefs
   1/*
   2 * drivers/ata/sata_dwc_460ex.c
   3 *
   4 * Synopsys DesignWare Cores (DWC) SATA host driver
   5 *
   6 * Author: Mark Miesfeld <mmiesfeld@amcc.com>
   7 *
   8 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
   9 * Copyright 2008 DENX Software Engineering
  10 *
  11 * Based on versions provided by AMCC and Synopsys which are:
  12 *          Copyright 2006 Applied Micro Circuits Corporation
  13 *          COPYRIGHT (C) 2005  SYNOPSYS, INC.  ALL RIGHTS RESERVED
  14 *
  15 * This program is free software; you can redistribute  it and/or modify it
  16 * under  the terms of  the GNU General  Public License as published by the
  17 * Free Software Foundation;  either version 2 of the  License, or (at your
  18 * option) any later version.
  19 */
  20
  21#ifdef CONFIG_SATA_DWC_DEBUG
  22#define DEBUG
  23#endif
  24
  25#ifdef CONFIG_SATA_DWC_VDEBUG
  26#define VERBOSE_DEBUG
  27#define DEBUG_NCQ
  28#endif
  29
  30#include <linux/kernel.h>
  31#include <linux/module.h>
  32#include <linux/init.h>
  33#include <linux/device.h>
  34#include <linux/of_platform.h>
  35#include <linux/platform_device.h>
  36#include <linux/libata.h>
  37#include <linux/slab.h>
  38#include "libata.h"
  39
  40#include <scsi/scsi_host.h>
  41#include <scsi/scsi_cmnd.h>
  42
  43#define DRV_NAME        "sata-dwc"
  44#define DRV_VERSION     "1.0"
  45
  46/* SATA DMA driver Globals */
  47#define DMA_NUM_CHANS           1
  48#define DMA_NUM_CHAN_REGS       8
  49
  50/* SATA DMA Register definitions */
  51#define AHB_DMA_BRST_DFLT       64      /* 16 data items burst length*/
  52
  53struct dmareg {
  54        u32 low;                /* Low bits 0-31 */
  55        u32 high;               /* High bits 32-63 */
  56};
  57
  58/* DMA Per Channel registers */
  59struct dma_chan_regs {
  60        struct dmareg sar;      /* Source Address */
  61        struct dmareg dar;      /* Destination address */
  62        struct dmareg llp;      /* Linked List Pointer */
  63        struct dmareg ctl;      /* Control */
  64        struct dmareg sstat;    /* Source Status not implemented in core */
  65        struct dmareg dstat;    /* Destination Status not implemented in core*/
  66        struct dmareg sstatar;  /* Source Status Address not impl in core */
  67        struct dmareg dstatar;  /* Destination Status Address not implemente */
  68        struct dmareg cfg;      /* Config */
  69        struct dmareg sgr;      /* Source Gather */
  70        struct dmareg dsr;      /* Destination Scatter */
  71};
  72
  73/* Generic Interrupt Registers */
  74struct dma_interrupt_regs {
  75        struct dmareg tfr;      /* Transfer Interrupt */
  76        struct dmareg block;    /* Block Interrupt */
  77        struct dmareg srctran;  /* Source Transfer Interrupt */
  78        struct dmareg dsttran;  /* Dest Transfer Interrupt */
  79        struct dmareg error;    /* Error */
  80};
  81
  82struct ahb_dma_regs {
  83        struct dma_chan_regs    chan_regs[DMA_NUM_CHAN_REGS];
  84        struct dma_interrupt_regs interrupt_raw;        /* Raw Interrupt */
  85        struct dma_interrupt_regs interrupt_status;     /* Interrupt Status */
  86        struct dma_interrupt_regs interrupt_mask;       /* Interrupt Mask */
  87        struct dma_interrupt_regs interrupt_clear;      /* Interrupt Clear */
  88        struct dmareg           statusInt;      /* Interrupt combined*/
  89        struct dmareg           rq_srcreg;      /* Src Trans Req */
  90        struct dmareg           rq_dstreg;      /* Dst Trans Req */
  91        struct dmareg           rq_sgl_srcreg;  /* Sngl Src Trans Req*/
  92        struct dmareg           rq_sgl_dstreg;  /* Sngl Dst Trans Req*/
  93        struct dmareg           rq_lst_srcreg;  /* Last Src Trans Req*/
  94        struct dmareg           rq_lst_dstreg;  /* Last Dst Trans Req*/
  95        struct dmareg           dma_cfg;                /* DMA Config */
  96        struct dmareg           dma_chan_en;            /* DMA Channel Enable*/
  97        struct dmareg           dma_id;                 /* DMA ID */
  98        struct dmareg           dma_test;               /* DMA Test */
  99        struct dmareg           res1;                   /* reserved */
 100        struct dmareg           res2;                   /* reserved */
 101        /*
 102         * DMA Comp Params
 103         * Param 6 = dma_param[0], Param 5 = dma_param[1],
 104         * Param 4 = dma_param[2] ...
 105         */
 106        struct dmareg           dma_params[6];
 107};
 108
 109/* Data structure for linked list item */
 110struct lli {
 111        u32             sar;            /* Source Address */
 112        u32             dar;            /* Destination address */
 113        u32             llp;            /* Linked List Pointer */
 114        struct dmareg   ctl;            /* Control */
 115        struct dmareg   dstat;          /* Destination Status */
 116};
 117
 118enum {
 119        SATA_DWC_DMAC_LLI_SZ =  (sizeof(struct lli)),
 120        SATA_DWC_DMAC_LLI_NUM = 256,
 121        SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \
 122                                        SATA_DWC_DMAC_LLI_NUM),
 123        SATA_DWC_DMAC_TWIDTH_BYTES = 4,
 124        SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \
 125                                                SATA_DWC_DMAC_TWIDTH_BYTES),
 126};
 127
 128/* DMA Register Operation Bits */
 129enum {
 130        DMA_EN  =               0x00000001, /* Enable AHB DMA */
 131        DMA_CTL_LLP_SRCEN =     0x10000000, /* Blk chain enable Src */
 132        DMA_CTL_LLP_DSTEN =     0x08000000, /* Blk chain enable Dst */
 133};
 134
 135#define DMA_CTL_BLK_TS(size)    ((size) & 0x000000FFF)  /* Blk Transfer size */
 136#define DMA_CHANNEL(ch)         (0x00000001 << (ch))    /* Select channel */
 137        /* Enable channel */
 138#define DMA_ENABLE_CHAN(ch)     ((0x00000001 << (ch)) |                 \
 139                                 ((0x000000001 << (ch)) << 8))
 140        /* Disable channel */
 141#define DMA_DISABLE_CHAN(ch)    (0x00000000 | ((0x000000001 << (ch)) << 8))
 142        /* Transfer Type & Flow Controller */
 143#define DMA_CTL_TTFC(type)      (((type) & 0x7) << 20)
 144#define DMA_CTL_SMS(num)        (((num) & 0x3) << 25) /* Src Master Select */
 145#define DMA_CTL_DMS(num)        (((num) & 0x3) << 23)/* Dst Master Select */
 146        /* Src Burst Transaction Length */
 147#define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
 148        /* Dst Burst Transaction Length */
 149#define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
 150        /* Source Transfer Width */
 151#define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
 152        /* Destination Transfer Width */
 153#define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
 154
 155/* Assign HW handshaking interface (x) to destination / source peripheral */
 156#define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
 157#define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
 158#define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
 159
 160/*
 161 * This define is used to set block chaining disabled in the control low
 162 * register.  It is already in little endian format so it can be &'d dirctly.
 163 * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
 164 */
 165enum {
 166        DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7,
 167        DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */
 168        DMA_CTL_TTFC_M2P_PER =  0x00000003, /* Mem to per, peripheral cntr */
 169        DMA_CTL_SINC_INC =      0x00000000, /* Source Address Increment */
 170        DMA_CTL_SINC_DEC =      0x00000200,
 171        DMA_CTL_SINC_NOCHANGE = 0x00000400,
 172        DMA_CTL_DINC_INC =      0x00000000, /* Destination Address Increment */
 173        DMA_CTL_DINC_DEC =      0x00000080,
 174        DMA_CTL_DINC_NOCHANGE = 0x00000100,
 175        DMA_CTL_INT_EN =        0x00000001, /* Interrupt Enable */
 176
 177/* Channel Configuration Register high bits */
 178        DMA_CFG_FCMOD_REQ =     0x00000001, /* Flow Control - request based */
 179        DMA_CFG_PROTCTL =       (0x00000003 << 2),/* Protection Control */
 180
 181/* Channel Configuration Register low bits */
 182        DMA_CFG_RELD_DST =      0x80000000, /* Reload Dest / Src Addr */
 183        DMA_CFG_RELD_SRC =      0x40000000,
 184        DMA_CFG_HS_SELSRC =     0x00000800, /* Software handshake Src/ Dest */
 185        DMA_CFG_HS_SELDST =     0x00000400,
 186        DMA_CFG_FIFOEMPTY =     (0x00000001 << 9), /* FIFO Empty bit */
 187
 188/* Channel Linked List Pointer Register */
 189        DMA_LLP_AHBMASTER1 =    0,      /* List Master Select */
 190        DMA_LLP_AHBMASTER2 =    1,
 191
 192        SATA_DWC_MAX_PORTS = 1,
 193
 194        SATA_DWC_SCR_OFFSET = 0x24,
 195        SATA_DWC_REG_OFFSET = 0x64,
 196};
 197
 198/* DWC SATA Registers */
 199struct sata_dwc_regs {
 200        u32 fptagr;             /* 1st party DMA tag */
 201        u32 fpbor;              /* 1st party DMA buffer offset */
 202        u32 fptcr;              /* 1st party DMA Xfr count */
 203        u32 dmacr;              /* DMA Control */
 204        u32 dbtsr;              /* DMA Burst Transac size */
 205        u32 intpr;              /* Interrupt Pending */
 206        u32 intmr;              /* Interrupt Mask */
 207        u32 errmr;              /* Error Mask */
 208        u32 llcr;               /* Link Layer Control */
 209        u32 phycr;              /* PHY Control */
 210        u32 physr;              /* PHY Status */
 211        u32 rxbistpd;           /* Recvd BIST pattern def register */
 212        u32 rxbistpd1;          /* Recvd BIST data dword1 */
 213        u32 rxbistpd2;          /* Recvd BIST pattern data dword2 */
 214        u32 txbistpd;           /* Trans BIST pattern def register */
 215        u32 txbistpd1;          /* Trans BIST data dword1 */
 216        u32 txbistpd2;          /* Trans BIST data dword2 */
 217        u32 bistcr;             /* BIST Control Register */
 218        u32 bistfctr;           /* BIST FIS Count Register */
 219        u32 bistsr;             /* BIST Status Register */
 220        u32 bistdecr;           /* BIST Dword Error count register */
 221        u32 res[15];            /* Reserved locations */
 222        u32 testr;              /* Test Register */
 223        u32 versionr;           /* Version Register */
 224        u32 idr;                /* ID Register */
 225        u32 unimpl[192];        /* Unimplemented */
 226        u32 dmadr[256]; /* FIFO Locations in DMA Mode */
 227};
 228
 229enum {
 230        SCR_SCONTROL_DET_ENABLE =       0x00000001,
 231        SCR_SSTATUS_DET_PRESENT =       0x00000001,
 232        SCR_SERROR_DIAG_X       =       0x04000000,
 233/* DWC SATA Register Operations */
 234        SATA_DWC_TXFIFO_DEPTH   =       0x01FF,
 235        SATA_DWC_RXFIFO_DEPTH   =       0x01FF,
 236        SATA_DWC_DMACR_TMOD_TXCHEN =    0x00000004,
 237        SATA_DWC_DMACR_TXCHEN   = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
 238        SATA_DWC_DMACR_RXCHEN   = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
 239        SATA_DWC_DMACR_TXRXCH_CLEAR =   SATA_DWC_DMACR_TMOD_TXCHEN,
 240        SATA_DWC_INTPR_DMAT     =       0x00000001,
 241        SATA_DWC_INTPR_NEWFP    =       0x00000002,
 242        SATA_DWC_INTPR_PMABRT   =       0x00000004,
 243        SATA_DWC_INTPR_ERR      =       0x00000008,
 244        SATA_DWC_INTPR_NEWBIST  =       0x00000010,
 245        SATA_DWC_INTPR_IPF      =       0x10000000,
 246        SATA_DWC_INTMR_DMATM    =       0x00000001,
 247        SATA_DWC_INTMR_NEWFPM   =       0x00000002,
 248        SATA_DWC_INTMR_PMABRTM  =       0x00000004,
 249        SATA_DWC_INTMR_ERRM     =       0x00000008,
 250        SATA_DWC_INTMR_NEWBISTM =       0x00000010,
 251        SATA_DWC_LLCR_SCRAMEN   =       0x00000001,
 252        SATA_DWC_LLCR_DESCRAMEN =       0x00000002,
 253        SATA_DWC_LLCR_RPDEN     =       0x00000004,
 254/* This is all error bits, zero's are reserved fields. */
 255        SATA_DWC_SERROR_ERR_BITS =      0x0FFF0F03
 256};
 257
 258#define SATA_DWC_SCR0_SPD_GET(v)        (((v) >> 4) & 0x0000000F)
 259#define SATA_DWC_DMACR_TX_CLEAR(v)      (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
 260                                                 SATA_DWC_DMACR_TMOD_TXCHEN)
 261#define SATA_DWC_DMACR_RX_CLEAR(v)      (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
 262                                                 SATA_DWC_DMACR_TMOD_TXCHEN)
 263#define SATA_DWC_DBTSR_MWR(size)        (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
 264#define SATA_DWC_DBTSR_MRD(size)        ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
 265                                                 << 16)
 266struct sata_dwc_device {
 267        struct device           *dev;           /* generic device struct */
 268        struct ata_probe_ent    *pe;            /* ptr to probe-ent */
 269        struct ata_host         *host;
 270        u8                      *reg_base;
 271        struct sata_dwc_regs    *sata_dwc_regs; /* DW Synopsys SATA specific */
 272        int                     irq_dma;
 273};
 274
 275#define SATA_DWC_QCMD_MAX       32
 276
 277struct sata_dwc_device_port {
 278        struct sata_dwc_device  *hsdev;
 279        int                     cmd_issued[SATA_DWC_QCMD_MAX];
 280        struct lli              *llit[SATA_DWC_QCMD_MAX];  /* DMA LLI table */
 281        dma_addr_t              llit_dma[SATA_DWC_QCMD_MAX];
 282        u32                     dma_chan[SATA_DWC_QCMD_MAX];
 283        int                     dma_pending[SATA_DWC_QCMD_MAX];
 284};
 285
 286/*
 287 * Commonly used DWC SATA driver Macros
 288 */
 289#define HSDEV_FROM_HOST(host)  ((struct sata_dwc_device *)\
 290                                        (host)->private_data)
 291#define HSDEV_FROM_AP(ap)  ((struct sata_dwc_device *)\
 292                                        (ap)->host->private_data)
 293#define HSDEVP_FROM_AP(ap)   ((struct sata_dwc_device_port *)\
 294                                        (ap)->private_data)
 295#define HSDEV_FROM_QC(qc)       ((struct sata_dwc_device *)\
 296                                        (qc)->ap->host->private_data)
 297#define HSDEV_FROM_HSDEVP(p)    ((struct sata_dwc_device *)\
 298                                                (hsdevp)->hsdev)
 299
 300enum {
 301        SATA_DWC_CMD_ISSUED_NOT         = 0,
 302        SATA_DWC_CMD_ISSUED_PEND        = 1,
 303        SATA_DWC_CMD_ISSUED_EXEC        = 2,
 304        SATA_DWC_CMD_ISSUED_NODATA      = 3,
 305
 306        SATA_DWC_DMA_PENDING_NONE       = 0,
 307        SATA_DWC_DMA_PENDING_TX         = 1,
 308        SATA_DWC_DMA_PENDING_RX         = 2,
 309};
 310
 311struct sata_dwc_host_priv {
 312        void    __iomem  *scr_addr_sstatus;
 313        u32     sata_dwc_sactive_issued ;
 314        u32     sata_dwc_sactive_queued ;
 315        u32     dma_interrupt_count;
 316        struct  ahb_dma_regs    *sata_dma_regs;
 317        struct  device  *dwc_dev;
 318};
 319struct sata_dwc_host_priv host_pvt;
 320/*
 321 * Prototypes
 322 */
 323static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
 324static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
 325                                u32 check_status);
 326static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
 327static void sata_dwc_port_stop(struct ata_port *ap);
 328static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
 329static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq);
 330static void dma_dwc_exit(struct sata_dwc_device *hsdev);
 331static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
 332                              struct lli *lli, dma_addr_t dma_lli,
 333                              void __iomem *addr, int dir);
 334static void dma_dwc_xfer_start(int dma_ch);
 335
 336static void sata_dwc_tf_dump(struct ata_taskfile *tf)
 337{
 338        dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:"
 339                "0x%lx device: %x\n", tf->command, ata_get_cmd_descript\
 340                (tf->protocol), tf->flags, tf->device);
 341        dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
 342                "lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal,
 343                 tf->lbam, tf->lbah);
 344        dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x "
 345                "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
 346                tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
 347                tf->hob_lbah);
 348}
 349
 350/*
 351 * Function: get_burst_length_encode
 352 * arguments: datalength: length in bytes of data
 353 * returns value to be programmed in register corrresponding to data length
 354 * This value is effectively the log(base 2) of the length
 355 */
 356static  int get_burst_length_encode(int datalength)
 357{
 358        int items = datalength >> 2;    /* div by 4 to get lword count */
 359
 360        if (items >= 64)
 361                return 5;
 362
 363        if (items >= 32)
 364                return 4;
 365
 366        if (items >= 16)
 367                return 3;
 368
 369        if (items >= 8)
 370                return 2;
 371
 372        if (items >= 4)
 373                return 1;
 374
 375        return 0;
 376}
 377
 378static  void clear_chan_interrupts(int c)
 379{
 380        out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low),
 381                 DMA_CHANNEL(c));
 382        out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low),
 383                 DMA_CHANNEL(c));
 384        out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low),
 385                 DMA_CHANNEL(c));
 386        out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low),
 387                 DMA_CHANNEL(c));
 388        out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low),
 389                 DMA_CHANNEL(c));
 390}
 391
 392/*
 393 * Function: dma_request_channel
 394 * arguments: None
 395 * returns channel number if available else -1
 396 * This function assigns the next available DMA channel from the list to the
 397 * requester
 398 */
 399static int dma_request_channel(void)
 400{
 401        int i;
 402
 403        for (i = 0; i < DMA_NUM_CHANS; i++) {
 404                if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &\
 405                        DMA_CHANNEL(i)))
 406                        return i;
 407        }
 408        dev_err(host_pvt.dwc_dev, "%s NO channel chan_en: 0x%08x\n", __func__,
 409                in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)));
 410        return -1;
 411}
 412
 413/*
 414 * Function: dma_dwc_interrupt
 415 * arguments: irq, dev_id, pt_regs
 416 * returns channel number if available else -1
 417 * Interrupt Handler for DW AHB SATA DMA
 418 */
 419static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance)
 420{
 421        int chan;
 422        u32 tfr_reg, err_reg;
 423        unsigned long flags;
 424        struct sata_dwc_device *hsdev =
 425                (struct sata_dwc_device *)hsdev_instance;
 426        struct ata_host *host = (struct ata_host *)hsdev->host;
 427        struct ata_port *ap;
 428        struct sata_dwc_device_port *hsdevp;
 429        u8 tag = 0;
 430        unsigned int port = 0;
 431
 432        spin_lock_irqsave(&host->lock, flags);
 433        ap = host->ports[port];
 434        hsdevp = HSDEVP_FROM_AP(ap);
 435        tag = ap->link.active_tag;
 436
 437        tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\
 438                        .low));
 439        err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\
 440                        .low));
 441
 442        dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
 443                tfr_reg, err_reg, hsdevp->dma_pending[tag], port);
 444
 445        for (chan = 0; chan < DMA_NUM_CHANS; chan++) {
 446                /* Check for end-of-transfer interrupt. */
 447                if (tfr_reg & DMA_CHANNEL(chan)) {
 448                        /*
 449                         * Each DMA command produces 2 interrupts.  Only
 450                         * complete the command after both interrupts have been
 451                         * seen. (See sata_dwc_isr())
 452                         */
 453                        host_pvt.dma_interrupt_count++;
 454                        sata_dwc_clear_dmacr(hsdevp, tag);
 455
 456                        if (hsdevp->dma_pending[tag] ==
 457                            SATA_DWC_DMA_PENDING_NONE) {
 458                                dev_err(ap->dev, "DMA not pending eot=0x%08x "
 459                                        "err=0x%08x tag=0x%02x pending=%d\n",
 460                                        tfr_reg, err_reg, tag,
 461                                        hsdevp->dma_pending[tag]);
 462                        }
 463
 464                        if ((host_pvt.dma_interrupt_count % 2) == 0)
 465                                sata_dwc_dma_xfer_complete(ap, 1);
 466
 467                        /* Clear the interrupt */
 468                        out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
 469                                .tfr.low),
 470                                 DMA_CHANNEL(chan));
 471                }
 472
 473                /* Check for error interrupt. */
 474                if (err_reg & DMA_CHANNEL(chan)) {
 475                        /* TODO Need error handler ! */
 476                        dev_err(ap->dev, "error interrupt err_reg=0x%08x\n",
 477                                err_reg);
 478
 479                        /* Clear the interrupt. */
 480                        out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
 481                                .error.low),
 482                                 DMA_CHANNEL(chan));
 483                }
 484        }
 485        spin_unlock_irqrestore(&host->lock, flags);
 486        return IRQ_HANDLED;
 487}
 488
 489/*
 490 * Function: dma_request_interrupts
 491 * arguments: hsdev
 492 * returns status
 493 * This function registers ISR for a particular DMA channel interrupt
 494 */
 495static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq)
 496{
 497        int retval = 0;
 498        int chan;
 499
 500        for (chan = 0; chan < DMA_NUM_CHANS; chan++) {
 501                /* Unmask error interrupt */
 502                out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low,
 503                         DMA_ENABLE_CHAN(chan));
 504
 505                /* Unmask end-of-transfer interrupt */
 506                out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low,
 507                         DMA_ENABLE_CHAN(chan));
 508        }
 509
 510        retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev);
 511        if (retval) {
 512                dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n",
 513                __func__, irq);
 514                return -ENODEV;
 515        }
 516
 517        /* Mark this interrupt as requested */
 518        hsdev->irq_dma = irq;
 519        return 0;
 520}
 521
 522/*
 523 * Function: map_sg_to_lli
 524 * The Synopsis driver has a comment proposing that better performance
 525 * is possible by only enabling interrupts on the last item in the linked list.
 526 * However, it seems that could be a problem if an error happened on one of the
 527 * first items.  The transfer would halt, but no error interrupt would occur.
 528 * Currently this function sets interrupts enabled for each linked list item:
 529 * DMA_CTL_INT_EN.
 530 */
 531static int map_sg_to_lli(struct scatterlist *sg, int num_elems,
 532                        struct lli *lli, dma_addr_t dma_lli,
 533                        void __iomem *dmadr_addr, int dir)
 534{
 535        int i, idx = 0;
 536        int fis_len = 0;
 537        dma_addr_t next_llp;
 538        int bl;
 539
 540        dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x"
 541                " dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli,
 542                (u32)dmadr_addr);
 543
 544        bl = get_burst_length_encode(AHB_DMA_BRST_DFLT);
 545
 546        for (i = 0; i < num_elems; i++, sg++) {
 547                u32 addr, offset;
 548                u32 sg_len, len;
 549
 550                addr = (u32) sg_dma_address(sg);
 551                sg_len = sg_dma_len(sg);
 552
 553                dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len"
 554                        "=%d\n", __func__, i, addr, sg_len);
 555
 556                while (sg_len) {
 557                        if (idx >= SATA_DWC_DMAC_LLI_NUM) {
 558                                /* The LLI table is not large enough. */
 559                                dev_err(host_pvt.dwc_dev, "LLI table overrun "
 560                                "(idx=%d)\n", idx);
 561                                break;
 562                        }
 563                        len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ?
 564                                SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len;
 565
 566                        offset = addr & 0xffff;
 567                        if ((offset + sg_len) > 0x10000)
 568                                len = 0x10000 - offset;
 569
 570                        /*
 571                         * Make sure a LLI block is not created that will span
 572                         * 8K max FIS boundary.  If the block spans such a FIS
 573                         * boundary, there is a chance that a DMA burst will
 574                         * cross that boundary -- this results in an error in
 575                         * the host controller.
 576                         */
 577                        if (fis_len + len > 8192) {
 578                                dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len="
 579                                        "%d(0x%x) len=%d(0x%x)\n", fis_len,
 580                                         fis_len, len, len);
 581                                len = 8192 - fis_len;
 582                                fis_len = 0;
 583                        } else {
 584                                fis_len += len;
 585                        }
 586                        if (fis_len == 8192)
 587                                fis_len = 0;
 588
 589                        /*
 590                         * Set DMA addresses and lower half of control register
 591                         * based on direction.
 592                         */
 593                        if (dir == DMA_FROM_DEVICE) {
 594                                lli[idx].dar = cpu_to_le32(addr);
 595                                lli[idx].sar = cpu_to_le32((u32)dmadr_addr);
 596
 597                                lli[idx].ctl.low = cpu_to_le32(
 598                                        DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) |
 599                                        DMA_CTL_SMS(0) |
 600                                        DMA_CTL_DMS(1) |
 601                                        DMA_CTL_SRC_MSIZE(bl) |
 602                                        DMA_CTL_DST_MSIZE(bl) |
 603                                        DMA_CTL_SINC_NOCHANGE |
 604                                        DMA_CTL_SRC_TRWID(2) |
 605                                        DMA_CTL_DST_TRWID(2) |
 606                                        DMA_CTL_INT_EN |
 607                                        DMA_CTL_LLP_SRCEN |
 608                                        DMA_CTL_LLP_DSTEN);
 609                        } else {        /* DMA_TO_DEVICE */
 610                                lli[idx].sar = cpu_to_le32(addr);
 611                                lli[idx].dar = cpu_to_le32((u32)dmadr_addr);
 612
 613                                lli[idx].ctl.low = cpu_to_le32(
 614                                        DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) |
 615                                        DMA_CTL_SMS(1) |
 616                                        DMA_CTL_DMS(0) |
 617                                        DMA_CTL_SRC_MSIZE(bl) |
 618                                        DMA_CTL_DST_MSIZE(bl) |
 619                                        DMA_CTL_DINC_NOCHANGE |
 620                                        DMA_CTL_SRC_TRWID(2) |
 621                                        DMA_CTL_DST_TRWID(2) |
 622                                        DMA_CTL_INT_EN |
 623                                        DMA_CTL_LLP_SRCEN |
 624                                        DMA_CTL_LLP_DSTEN);
 625                        }
 626
 627                        dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: "
 628                                "0x%08x val: 0x%08x\n", __func__,
 629                                len, DMA_CTL_BLK_TS(len / 4));
 630
 631                        /* Program the LLI CTL high register */
 632                        lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\
 633                                                (len / 4));
 634
 635                        /* Program the next pointer.  The next pointer must be
 636                         * the physical address, not the virtual address.
 637                         */
 638                        next_llp = (dma_lli + ((idx + 1) * sizeof(struct \
 639                                                        lli)));
 640
 641                        /* The last 2 bits encode the list master select. */
 642                        next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2);
 643
 644                        lli[idx].llp = cpu_to_le32(next_llp);
 645                        idx++;
 646                        sg_len -= len;
 647                        addr += len;
 648                }
 649        }
 650
 651        /*
 652         * The last next ptr has to be zero and the last control low register
 653         * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
 654         * and destination enable) set back to 0 (disabled.) This is what tells
 655         * the core that this is the last item in the linked list.
 656         */
 657        if (idx) {
 658                lli[idx-1].llp = 0x00000000;
 659                lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32;
 660
 661                /* Flush cache to memory */
 662                dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx),
 663                               DMA_BIDIRECTIONAL);
 664        }
 665
 666        return idx;
 667}
 668
 669/*
 670 * Function: dma_dwc_xfer_start
 671 * arguments: Channel number
 672 * Return : None
 673 * Enables the DMA channel
 674 */
 675static void dma_dwc_xfer_start(int dma_ch)
 676{
 677        /* Enable the DMA channel */
 678        out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low),
 679                 in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) |
 680                 DMA_ENABLE_CHAN(dma_ch));
 681}
 682
 683static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
 684                              struct lli *lli, dma_addr_t dma_lli,
 685                              void __iomem *addr, int dir)
 686{
 687        int dma_ch;
 688        int num_lli;
 689        /* Acquire DMA channel */
 690        dma_ch = dma_request_channel();
 691        if (dma_ch == -1) {
 692                dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n",
 693                         __func__);
 694                return -EAGAIN;
 695        }
 696
 697        /* Convert SG list to linked list of items (LLIs) for AHB DMA */
 698        num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir);
 699
 700        dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
 701                " 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems,
 702                 lli, (u32)dma_lli, addr, num_lli);
 703
 704        clear_chan_interrupts(dma_ch);
 705
 706        /* Program the CFG register. */
 707        out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high),
 708                 DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ);
 709        out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low), 0);
 710
 711        /* Program the address of the linked list */
 712        out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low),
 713                 DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2));
 714
 715        /* Program the CTL register with src enable / dst enable */
 716        out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low),
 717                 DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN);
 718        return 0;
 719}
 720
 721/*
 722 * Function: dma_dwc_exit
 723 * arguments: None
 724 * returns status
 725 * This function exits the SATA DMA driver
 726 */
 727static void dma_dwc_exit(struct sata_dwc_device *hsdev)
 728{
 729        dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__);
 730        if (host_pvt.sata_dma_regs)
 731                iounmap(host_pvt.sata_dma_regs);
 732
 733        if (hsdev->irq_dma)
 734                free_irq(hsdev->irq_dma, hsdev);
 735}
 736
 737/*
 738 * Function: dma_dwc_init
 739 * arguments: hsdev
 740 * returns status
 741 * This function initializes the SATA DMA driver
 742 */
 743static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq)
 744{
 745        int err;
 746
 747        err = dma_request_interrupts(hsdev, irq);
 748        if (err) {
 749                dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns"
 750                        " %d\n", __func__, err);
 751                goto error_out;
 752        }
 753
 754        /* Enabe DMA */
 755        out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN);
 756
 757        dev_notice(host_pvt.dwc_dev, "DMA initialized\n");
 758        dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\
 759                sata_dma_regs);
 760
 761        return 0;
 762
 763error_out:
 764        dma_dwc_exit(hsdev);
 765
 766        return err;
 767}
 768
 769static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
 770{
 771        if (scr > SCR_NOTIFICATION) {
 772                dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
 773                        __func__, scr);
 774                return -EINVAL;
 775        }
 776
 777        *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4));
 778        dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
 779                __func__, link->ap->print_id, scr, *val);
 780
 781        return 0;
 782}
 783
 784static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
 785{
 786        dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
 787                __func__, link->ap->print_id, scr, val);
 788        if (scr > SCR_NOTIFICATION) {
 789                dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
 790                         __func__, scr);
 791                return -EINVAL;
 792        }
 793        out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val);
 794
 795        return 0;
 796}
 797
 798static u32 core_scr_read(unsigned int scr)
 799{
 800        return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\
 801                        (scr * 4));
 802}
 803
 804static void core_scr_write(unsigned int scr, u32 val)
 805{
 806        out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4),
 807                val);
 808}
 809
 810static void clear_serror(void)
 811{
 812        u32 val;
 813        val = core_scr_read(SCR_ERROR);
 814        core_scr_write(SCR_ERROR, val);
 815
 816}
 817
 818static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
 819{
 820        out_le32(&hsdev->sata_dwc_regs->intpr,
 821                 in_le32(&hsdev->sata_dwc_regs->intpr));
 822}
 823
 824static u32 qcmd_tag_to_mask(u8 tag)
 825{
 826        return 0x00000001 << (tag & 0x1f);
 827}
 828
 829/* See ahci.c */
 830static void sata_dwc_error_intr(struct ata_port *ap,
 831                                struct sata_dwc_device *hsdev, uint intpr)
 832{
 833        struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
 834        struct ata_eh_info *ehi = &ap->link.eh_info;
 835        unsigned int err_mask = 0, action = 0;
 836        struct ata_queued_cmd *qc;
 837        u32 serror;
 838        u8 status, tag;
 839        u32 err_reg;
 840
 841        ata_ehi_clear_desc(ehi);
 842
 843        serror = core_scr_read(SCR_ERROR);
 844        status = ap->ops->sff_check_status(ap);
 845
 846        err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\
 847                        low));
 848        tag = ap->link.active_tag;
 849
 850        dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
 851                "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
 852                __func__, serror, intpr, status, host_pvt.dma_interrupt_count,
 853                hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg);
 854
 855        /* Clear error register and interrupt bit */
 856        clear_serror();
 857        clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
 858
 859        /* This is the only error happening now.  TODO check for exact error */
 860
 861        err_mask |= AC_ERR_HOST_BUS;
 862        action |= ATA_EH_RESET;
 863
 864        /* Pass this on to EH */
 865        ehi->serror |= serror;
 866        ehi->action |= action;
 867
 868        qc = ata_qc_from_tag(ap, tag);
 869        if (qc)
 870                qc->err_mask |= err_mask;
 871        else
 872                ehi->err_mask |= err_mask;
 873
 874        ata_port_abort(ap);
 875}
 876
 877/*
 878 * Function : sata_dwc_isr
 879 * arguments : irq, void *dev_instance, struct pt_regs *regs
 880 * Return value : irqreturn_t - status of IRQ
 881 * This Interrupt handler called via port ops registered function.
 882 * .irq_handler = sata_dwc_isr
 883 */
 884static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
 885{
 886        struct ata_host *host = (struct ata_host *)dev_instance;
 887        struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
 888        struct ata_port *ap;
 889        struct ata_queued_cmd *qc;
 890        unsigned long flags;
 891        u8 status, tag;
 892        int handled, num_processed, port = 0;
 893        uint intpr, sactive, sactive2, tag_mask;
 894        struct sata_dwc_device_port *hsdevp;
 895        host_pvt.sata_dwc_sactive_issued = 0;
 896
 897        spin_lock_irqsave(&host->lock, flags);
 898
 899        /* Read the interrupt register */
 900        intpr = in_le32(&hsdev->sata_dwc_regs->intpr);
 901
 902        ap = host->ports[port];
 903        hsdevp = HSDEVP_FROM_AP(ap);
 904
 905        dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
 906                ap->link.active_tag);
 907
 908        /* Check for error interrupt */
 909        if (intpr & SATA_DWC_INTPR_ERR) {
 910                sata_dwc_error_intr(ap, hsdev, intpr);
 911                handled = 1;
 912                goto DONE;
 913        }
 914
 915        /* Check for DMA SETUP FIS (FP DMA) interrupt */
 916        if (intpr & SATA_DWC_INTPR_NEWFP) {
 917                clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
 918
 919                tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr));
 920                dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
 921                if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
 922                        dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
 923
 924                host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag);
 925
 926                qc = ata_qc_from_tag(ap, tag);
 927                /*
 928                 * Start FP DMA for NCQ command.  At this point the tag is the
 929                 * active tag.  It is the tag that matches the command about to
 930                 * be completed.
 931                 */
 932                qc->ap->link.active_tag = tag;
 933                sata_dwc_bmdma_start_by_tag(qc, tag);
 934
 935                handled = 1;
 936                goto DONE;
 937        }
 938        sactive = core_scr_read(SCR_ACTIVE);
 939        tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
 940
 941        /* If no sactive issued and tag_mask is zero then this is not NCQ */
 942        if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) {
 943                if (ap->link.active_tag == ATA_TAG_POISON)
 944                        tag = 0;
 945                else
 946                        tag = ap->link.active_tag;
 947                qc = ata_qc_from_tag(ap, tag);
 948
 949                /* DEV interrupt w/ no active qc? */
 950                if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
 951                        dev_err(ap->dev, "%s interrupt with no active qc "
 952                                "qc=%p\n", __func__, qc);
 953                        ap->ops->sff_check_status(ap);
 954                        handled = 1;
 955                        goto DONE;
 956                }
 957                status = ap->ops->sff_check_status(ap);
 958
 959                qc->ap->link.active_tag = tag;
 960                hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
 961
 962                if (status & ATA_ERR) {
 963                        dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
 964                        sata_dwc_qc_complete(ap, qc, 1);
 965                        handled = 1;
 966                        goto DONE;
 967                }
 968
 969                dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
 970                        __func__, ata_get_cmd_descript(qc->tf.protocol));
 971DRVSTILLBUSY:
 972                if (ata_is_dma(qc->tf.protocol)) {
 973                        /*
 974                         * Each DMA transaction produces 2 interrupts. The DMAC
 975                         * transfer complete interrupt and the SATA controller
 976                         * operation done interrupt. The command should be
 977                         * completed only after both interrupts are seen.
 978                         */
 979                        host_pvt.dma_interrupt_count++;
 980                        if (hsdevp->dma_pending[tag] == \
 981                                        SATA_DWC_DMA_PENDING_NONE) {
 982                                dev_err(ap->dev, "%s: DMA not pending "
 983                                        "intpr=0x%08x status=0x%08x pending"
 984                                        "=%d\n", __func__, intpr, status,
 985                                        hsdevp->dma_pending[tag]);
 986                        }
 987
 988                        if ((host_pvt.dma_interrupt_count % 2) == 0)
 989                                sata_dwc_dma_xfer_complete(ap, 1);
 990                } else if (ata_is_pio(qc->tf.protocol)) {
 991                        ata_sff_hsm_move(ap, qc, status, 0);
 992                        handled = 1;
 993                        goto DONE;
 994                } else {
 995                        if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
 996                                goto DRVSTILLBUSY;
 997                }
 998
 999                handled = 1;
1000                goto DONE;
1001        }
1002
1003        /*
1004         * This is a NCQ command. At this point we need to figure out for which
1005         * tags we have gotten a completion interrupt.  One interrupt may serve
1006         * as completion for more than one operation when commands are queued
1007         * (NCQ).  We need to process each completed command.
1008         */
1009
1010         /* process completed commands */
1011        sactive = core_scr_read(SCR_ACTIVE);
1012        tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
1013
1014        if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \
1015                                                        tag_mask > 1) {
1016                dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x  sactive_issued=0x%08x"
1017                        "tag_mask=0x%08x\n", __func__, sactive,
1018                        host_pvt.sata_dwc_sactive_issued, tag_mask);
1019        }
1020
1021        if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \
1022                                        (host_pvt.sata_dwc_sactive_issued)) {
1023                dev_warn(ap->dev, "Bad tag mask?  sactive=0x%08x "
1024                         "(host_pvt.sata_dwc_sactive_issued)=0x%08x  tag_mask"
1025                         "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued,
1026                          tag_mask);
1027        }
1028
1029        /* read just to clear ... not bad if currently still busy */
1030        status = ap->ops->sff_check_status(ap);
1031        dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
1032
1033        tag = 0;
1034        num_processed = 0;
1035        while (tag_mask) {
1036                num_processed++;
1037                while (!(tag_mask & 0x00000001)) {
1038                        tag++;
1039                        tag_mask <<= 1;
1040                }
1041
1042                tag_mask &= (~0x00000001);
1043                qc = ata_qc_from_tag(ap, tag);
1044
1045                /* To be picked up by completion functions */
1046                qc->ap->link.active_tag = tag;
1047                hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1048
1049                /* Let libata/scsi layers handle error */
1050                if (status & ATA_ERR) {
1051                        dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
1052                                status);
1053                        sata_dwc_qc_complete(ap, qc, 1);
1054                        handled = 1;
1055                        goto DONE;
1056                }
1057
1058                /* Process completed command */
1059                dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
1060                        ata_get_cmd_descript(qc->tf.protocol));
1061                if (ata_is_dma(qc->tf.protocol)) {
1062                        host_pvt.dma_interrupt_count++;
1063                        if (hsdevp->dma_pending[tag] == \
1064                                        SATA_DWC_DMA_PENDING_NONE)
1065                                dev_warn(ap->dev, "%s: DMA not pending?\n",
1066                                        __func__);
1067                        if ((host_pvt.dma_interrupt_count % 2) == 0)
1068                                sata_dwc_dma_xfer_complete(ap, 1);
1069                } else {
1070                        if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1071                                goto STILLBUSY;
1072                }
1073                continue;
1074
1075STILLBUSY:
1076                ap->stats.idle_irq++;
1077                dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
1078                        ap->print_id);
1079        } /* while tag_mask */
1080
1081        /*
1082         * Check to see if any commands completed while we were processing our
1083         * initial set of completed commands (read status clears interrupts,
1084         * so we might miss a completed command interrupt if one came in while
1085         * we were processing --we read status as part of processing a completed
1086         * command).
1087         */
1088        sactive2 = core_scr_read(SCR_ACTIVE);
1089        if (sactive2 != sactive) {
1090                dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2"
1091                        "=0x%x\n", sactive, sactive2);
1092        }
1093        handled = 1;
1094
1095DONE:
1096        spin_unlock_irqrestore(&host->lock, flags);
1097        return IRQ_RETVAL(handled);
1098}
1099
1100static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
1101{
1102        struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
1103
1104        if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
1105                out_le32(&(hsdev->sata_dwc_regs->dmacr),
1106                         SATA_DWC_DMACR_RX_CLEAR(
1107                                 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1108        } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
1109                out_le32(&(hsdev->sata_dwc_regs->dmacr),
1110                         SATA_DWC_DMACR_TX_CLEAR(
1111                                 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1112        } else {
1113                /*
1114                 * This should not happen, it indicates the driver is out of
1115                 * sync.  If it does happen, clear dmacr anyway.
1116                 */
1117                dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and"
1118                        "TX DMA not pending tag=0x%02x pending=%d"
1119                        " dmacr: 0x%08x\n", __func__, tag,
1120                        hsdevp->dma_pending[tag],
1121                        in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1122                out_le32(&(hsdev->sata_dwc_regs->dmacr),
1123                        SATA_DWC_DMACR_TXRXCH_CLEAR);
1124        }
1125}
1126
1127static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
1128{
1129        struct ata_queued_cmd *qc;
1130        struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1131        struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1132        u8 tag = 0;
1133
1134        tag = ap->link.active_tag;
1135        qc = ata_qc_from_tag(ap, tag);
1136        if (!qc) {
1137                dev_err(ap->dev, "failed to get qc");
1138                return;
1139        }
1140
1141#ifdef DEBUG_NCQ
1142        if (tag > 0) {
1143                dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1144                         "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command,
1145                         ata_get_cmd_descript(qc->dma_dir),
1146                         ata_get_cmd_descript(qc->tf.protocol),
1147                         in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1148        }
1149#endif
1150
1151        if (ata_is_dma(qc->tf.protocol)) {
1152                if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
1153                        dev_err(ap->dev, "%s DMA protocol RX and TX DMA not "
1154                                "pending dmacr: 0x%08x\n", __func__,
1155                                in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1156                }
1157
1158                hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
1159                sata_dwc_qc_complete(ap, qc, check_status);
1160                ap->link.active_tag = ATA_TAG_POISON;
1161        } else {
1162                sata_dwc_qc_complete(ap, qc, check_status);
1163        }
1164}
1165
1166static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
1167                                u32 check_status)
1168{
1169        u8 status = 0;
1170        u32 mask = 0x0;
1171        u8 tag = qc->tag;
1172        struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1173        host_pvt.sata_dwc_sactive_queued = 0;
1174        dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);
1175
1176        if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
1177                dev_err(ap->dev, "TX DMA PENDING\n");
1178        else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
1179                dev_err(ap->dev, "RX DMA PENDING\n");
1180        dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1181                " protocol=%d\n", qc->tf.command, status, ap->print_id,
1182                 qc->tf.protocol);
1183
1184        /* clear active bit */
1185        mask = (~(qcmd_tag_to_mask(tag)));
1186        host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \
1187                                                & mask;
1188        host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \
1189                                                & mask;
1190        ata_qc_complete(qc);
1191        return 0;
1192}
1193
1194static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
1195{
1196        /* Enable selective interrupts by setting the interrupt maskregister*/
1197        out_le32(&hsdev->sata_dwc_regs->intmr,
1198                 SATA_DWC_INTMR_ERRM |
1199                 SATA_DWC_INTMR_NEWFPM |
1200                 SATA_DWC_INTMR_PMABRTM |
1201                 SATA_DWC_INTMR_DMATM);
1202        /*
1203         * Unmask the error bits that should trigger an error interrupt by
1204         * setting the error mask register.
1205         */
1206        out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
1207
1208        dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1209                 __func__, in_le32(&hsdev->sata_dwc_regs->intmr),
1210                in_le32(&hsdev->sata_dwc_regs->errmr));
1211}
1212
1213static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base)
1214{
1215        port->cmd_addr = (void *)base + 0x00;
1216        port->data_addr = (void *)base + 0x00;
1217
1218        port->error_addr = (void *)base + 0x04;
1219        port->feature_addr = (void *)base + 0x04;
1220
1221        port->nsect_addr = (void *)base + 0x08;
1222
1223        port->lbal_addr = (void *)base + 0x0c;
1224        port->lbam_addr = (void *)base + 0x10;
1225        port->lbah_addr = (void *)base + 0x14;
1226
1227        port->device_addr = (void *)base + 0x18;
1228        port->command_addr = (void *)base + 0x1c;
1229        port->status_addr = (void *)base + 0x1c;
1230
1231        port->altstatus_addr = (void *)base + 0x20;
1232        port->ctl_addr = (void *)base + 0x20;
1233}
1234
1235/*
1236 * Function : sata_dwc_port_start
1237 * arguments : struct ata_ioports *port
1238 * Return value : returns 0 if success, error code otherwise
1239 * This function allocates the scatter gather LLI table for AHB DMA
1240 */
1241static int sata_dwc_port_start(struct ata_port *ap)
1242{
1243        int err = 0;
1244        struct sata_dwc_device *hsdev;
1245        struct sata_dwc_device_port *hsdevp = NULL;
1246        struct device *pdev;
1247        int i;
1248
1249        hsdev = HSDEV_FROM_AP(ap);
1250
1251        dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
1252
1253        hsdev->host = ap->host;
1254        pdev = ap->host->dev;
1255        if (!pdev) {
1256                dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
1257                err = -ENODEV;
1258                goto CLEANUP;
1259        }
1260
1261        /* Allocate Port Struct */
1262        hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
1263        if (!hsdevp) {
1264                dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
1265                err = -ENOMEM;
1266                goto CLEANUP;
1267        }
1268        hsdevp->hsdev = hsdev;
1269
1270        for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
1271                hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
1272
1273        ap->bmdma_prd = 0;      /* set these so libata doesn't use them */
1274        ap->bmdma_prd_dma = 0;
1275
1276        /*
1277         * DMA - Assign scatter gather LLI table. We can't use the libata
1278         * version since it's PRD is IDE PCI specific.
1279         */
1280        for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1281                hsdevp->llit[i] = dma_alloc_coherent(pdev,
1282                                                     SATA_DWC_DMAC_LLI_TBL_SZ,
1283                                                     &(hsdevp->llit_dma[i]),
1284                                                     GFP_ATOMIC);
1285                if (!hsdevp->llit[i]) {
1286                        dev_err(ap->dev, "%s: dma_alloc_coherent failed\n",
1287                                 __func__);
1288                        err = -ENOMEM;
1289                        goto CLEANUP;
1290                }
1291        }
1292
1293        if (ap->port_no == 0)  {
1294                dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1295                        __func__);
1296                out_le32(&hsdev->sata_dwc_regs->dmacr,
1297                         SATA_DWC_DMACR_TXRXCH_CLEAR);
1298
1299                dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
1300                         __func__);
1301                out_le32(&hsdev->sata_dwc_regs->dbtsr,
1302                         (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1303                          SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
1304        }
1305
1306        /* Clear any error bits before libata starts issuing commands */
1307        clear_serror();
1308        ap->private_data = hsdevp;
1309
1310CLEANUP:
1311        if (err) {
1312                sata_dwc_port_stop(ap);
1313                dev_dbg(ap->dev, "%s: fail\n", __func__);
1314        } else {
1315                dev_dbg(ap->dev, "%s: done\n", __func__);
1316        }
1317
1318        return err;
1319}
1320
1321static void sata_dwc_port_stop(struct ata_port *ap)
1322{
1323        int i;
1324        struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1325        struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1326
1327        dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
1328
1329        if (hsdevp && hsdev) {
1330                /* deallocate LLI table */
1331                for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1332                        dma_free_coherent(ap->host->dev,
1333                                          SATA_DWC_DMAC_LLI_TBL_SZ,
1334                                         hsdevp->llit[i], hsdevp->llit_dma[i]);
1335                }
1336
1337                kfree(hsdevp);
1338        }
1339        ap->private_data = NULL;
1340}
1341
1342/*
1343 * Function : sata_dwc_exec_command_by_tag
1344 * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1345 * Return value : None
1346 * This function keeps track of individual command tag ids and calls
1347 * ata_exec_command in libata
1348 */
1349static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
1350                                         struct ata_taskfile *tf,
1351                                         u8 tag, u32 cmd_issued)
1352{
1353        unsigned long flags;
1354        struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1355
1356        dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
1357                ata_get_cmd_descript(tf), tag);
1358
1359        spin_lock_irqsave(&ap->host->lock, flags);
1360        hsdevp->cmd_issued[tag] = cmd_issued;
1361        spin_unlock_irqrestore(&ap->host->lock, flags);
1362        /*
1363         * Clear SError before executing a new command.
1364         * sata_dwc_scr_write and read can not be used here. Clearing the PM
1365         * managed SError register for the disk needs to be done before the
1366         * task file is loaded.
1367         */
1368        clear_serror();
1369        ata_sff_exec_command(ap, tf);
1370}
1371
1372static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
1373{
1374        sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
1375                                     SATA_DWC_CMD_ISSUED_PEND);
1376}
1377
1378static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
1379{
1380        u8 tag = qc->tag;
1381
1382        if (ata_is_ncq(qc->tf.protocol)) {
1383                dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1384                        __func__, qc->ap->link.sactive, tag);
1385        } else {
1386                tag = 0;
1387        }
1388        sata_dwc_bmdma_setup_by_tag(qc, tag);
1389}
1390
1391static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
1392{
1393        int start_dma;
1394        u32 reg, dma_chan;
1395        struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
1396        struct ata_port *ap = qc->ap;
1397        struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1398        int dir = qc->dma_dir;
1399        dma_chan = hsdevp->dma_chan[tag];
1400
1401        if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
1402                start_dma = 1;
1403                if (dir == DMA_TO_DEVICE)
1404                        hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
1405                else
1406                        hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
1407        } else {
1408                dev_err(ap->dev, "%s: Command not pending cmd_issued=%d "
1409                        "(tag=%d) DMA NOT started\n", __func__,
1410                        hsdevp->cmd_issued[tag], tag);
1411                start_dma = 0;
1412        }
1413
1414        dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1415                "start_dma? %x\n", __func__, qc, tag, qc->tf.command,
1416                ata_get_cmd_descript(qc->dma_dir), start_dma);
1417        sata_dwc_tf_dump(&(qc->tf));
1418
1419        if (start_dma) {
1420                reg = core_scr_read(SCR_ERROR);
1421                if (reg & SATA_DWC_SERROR_ERR_BITS) {
1422                        dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
1423                                __func__, reg);
1424                }
1425
1426                if (dir == DMA_TO_DEVICE)
1427                        out_le32(&hsdev->sata_dwc_regs->dmacr,
1428                                SATA_DWC_DMACR_TXCHEN);
1429                else
1430                        out_le32(&hsdev->sata_dwc_regs->dmacr,
1431                                SATA_DWC_DMACR_RXCHEN);
1432
1433                /* Enable AHB DMA transfer on the specified channel */
1434                dma_dwc_xfer_start(dma_chan);
1435        }
1436}
1437
1438static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
1439{
1440        u8 tag = qc->tag;
1441
1442        if (ata_is_ncq(qc->tf.protocol)) {
1443                dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1444                        __func__, qc->ap->link.sactive, tag);
1445        } else {
1446                tag = 0;
1447        }
1448        dev_dbg(qc->ap->dev, "%s\n", __func__);
1449        sata_dwc_bmdma_start_by_tag(qc, tag);
1450}
1451
1452/*
1453 * Function : sata_dwc_qc_prep_by_tag
1454 * arguments : ata_queued_cmd *qc, u8 tag
1455 * Return value : None
1456 * qc_prep for a particular queued command based on tag
1457 */
1458static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag)
1459{
1460        struct scatterlist *sg = qc->sg;
1461        struct ata_port *ap = qc->ap;
1462        int dma_chan;
1463        struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1464        struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1465        int err;
1466
1467        dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n",
1468                __func__, ap->port_no, ata_get_cmd_descript(qc->dma_dir),
1469                 qc->n_elem);
1470
1471        dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag],
1472                                      hsdevp->llit_dma[tag],
1473                                      (void *__iomem)(&hsdev->sata_dwc_regs->\
1474                                      dmadr), qc->dma_dir);
1475        if (dma_chan < 0) {
1476                dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n",
1477                        __func__, err);
1478                return;
1479        }
1480        hsdevp->dma_chan[tag] = dma_chan;
1481}
1482
1483static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
1484{
1485        u32 sactive;
1486        u8 tag = qc->tag;
1487        struct ata_port *ap = qc->ap;
1488
1489#ifdef DEBUG_NCQ
1490        if (qc->tag > 0 || ap->link.sactive > 1)
1491                dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1492                         "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1493                         __func__, ap->print_id, qc->tf.command,
1494                         ata_get_cmd_descript(&qc->tf),
1495                         qc->tag, ata_get_cmd_descript(qc->tf.protocol),
1496                         ap->link.active_tag, ap->link.sactive);
1497#endif
1498
1499        if (!ata_is_ncq(qc->tf.protocol))
1500                tag = 0;
1501        sata_dwc_qc_prep_by_tag(qc, tag);
1502
1503        if (ata_is_ncq(qc->tf.protocol)) {
1504                sactive = core_scr_read(SCR_ACTIVE);
1505                sactive |= (0x00000001 << tag);
1506                core_scr_write(SCR_ACTIVE, sactive);
1507
1508                dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x "
1509                        "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive,
1510                        sactive);
1511
1512                ap->ops->sff_tf_load(ap, &qc->tf);
1513                sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag,
1514                                             SATA_DWC_CMD_ISSUED_PEND);
1515        } else {
1516                ata_sff_qc_issue(qc);
1517        }
1518        return 0;
1519}
1520
1521/*
1522 * Function : sata_dwc_qc_prep
1523 * arguments : ata_queued_cmd *qc
1524 * Return value : None
1525 * qc_prep for a particular queued command
1526 */
1527
1528static void sata_dwc_qc_prep(struct ata_queued_cmd *qc)
1529{
1530        if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO))
1531                return;
1532
1533#ifdef DEBUG_NCQ
1534        if (qc->tag > 0)
1535                dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1536                         __func__, tag, qc->ap->link.active_tag);
1537
1538        return ;
1539#endif
1540}
1541
1542static void sata_dwc_error_handler(struct ata_port *ap)
1543{
1544        ap->link.flags |= ATA_LFLAG_NO_HRST;
1545        ata_sff_error_handler(ap);
1546}
1547
1548/*
1549 * scsi mid-layer and libata interface structures
1550 */
1551static struct scsi_host_template sata_dwc_sht = {
1552        ATA_NCQ_SHT(DRV_NAME),
1553        /*
1554         * test-only: Currently this driver doesn't handle NCQ
1555         * correctly. We enable NCQ but set the queue depth to a
1556         * max of 1. This will get fixed in in a future release.
1557         */
1558        .sg_tablesize           = LIBATA_MAX_PRD,
1559        .can_queue              = ATA_DEF_QUEUE,        /* ATA_MAX_QUEUE */
1560        .dma_boundary           = ATA_DMA_BOUNDARY,
1561};
1562
1563static struct ata_port_operations sata_dwc_ops = {
1564        .inherits               = &ata_sff_port_ops,
1565
1566        .error_handler          = sata_dwc_error_handler,
1567
1568        .qc_prep                = sata_dwc_qc_prep,
1569        .qc_issue               = sata_dwc_qc_issue,
1570
1571        .scr_read               = sata_dwc_scr_read,
1572        .scr_write              = sata_dwc_scr_write,
1573
1574        .port_start             = sata_dwc_port_start,
1575        .port_stop              = sata_dwc_port_stop,
1576
1577        .bmdma_setup            = sata_dwc_bmdma_setup,
1578        .bmdma_start            = sata_dwc_bmdma_start,
1579};
1580
1581static const struct ata_port_info sata_dwc_port_info[] = {
1582        {
1583                .flags          = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
1584                                  ATA_FLAG_MMIO | ATA_FLAG_NCQ,
1585                .pio_mask       = 0x1f, /* pio 0-4 */
1586                .udma_mask      = ATA_UDMA6,
1587                .port_ops       = &sata_dwc_ops,
1588        },
1589};
1590
1591static int sata_dwc_probe(struct platform_device *ofdev,
1592                        const struct of_device_id *match)
1593{
1594        struct sata_dwc_device *hsdev;
1595        u32 idr, versionr;
1596        char *ver = (char *)&versionr;
1597        u8 *base = NULL;
1598        int err = 0;
1599        int irq, rc;
1600        struct ata_host *host;
1601        struct ata_port_info pi = sata_dwc_port_info[0];
1602        const struct ata_port_info *ppi[] = { &pi, NULL };
1603
1604        /* Allocate DWC SATA device */
1605        hsdev = kmalloc(sizeof(*hsdev), GFP_KERNEL);
1606        if (hsdev == NULL) {
1607                dev_err(&ofdev->dev, "kmalloc failed for hsdev\n");
1608                err = -ENOMEM;
1609                goto error_out;
1610        }
1611        memset(hsdev, 0, sizeof(*hsdev));
1612
1613        /* Ioremap SATA registers */
1614        base = of_iomap(ofdev->dev.of_node, 0);
1615        if (!base) {
1616                dev_err(&ofdev->dev, "ioremap failed for SATA register"
1617                        " address\n");
1618                err = -ENODEV;
1619                goto error_out;
1620        }
1621        hsdev->reg_base = base;
1622        dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");
1623
1624        /* Synopsys DWC SATA specific Registers */
1625        hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
1626
1627        /* Allocate and fill host */
1628        host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
1629        if (!host) {
1630                dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n");
1631                err = -ENOMEM;
1632                goto error_out;
1633        }
1634
1635        host->private_data = hsdev;
1636
1637        /* Setup port */
1638        host->ports[0]->ioaddr.cmd_addr = base;
1639        host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
1640        host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
1641        sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base);
1642
1643        /* Read the ID and Version Registers */
1644        idr = in_le32(&hsdev->sata_dwc_regs->idr);
1645        versionr = in_le32(&hsdev->sata_dwc_regs->versionr);
1646        dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
1647                   idr, ver[0], ver[1], ver[2]);
1648
1649        /* Get SATA DMA interrupt number */
1650        irq = irq_of_parse_and_map(ofdev->dev.of_node, 1);
1651        if (irq == NO_IRQ) {
1652                dev_err(&ofdev->dev, "no SATA DMA irq\n");
1653                err = -ENODEV;
1654                goto error_out;
1655        }
1656
1657        /* Get physical SATA DMA register base address */
1658        host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1);
1659        if (!(host_pvt.sata_dma_regs)) {
1660                dev_err(&ofdev->dev, "ioremap failed for AHBDMA register"
1661                        " address\n");
1662                err = -ENODEV;
1663                goto error_out;
1664        }
1665
1666        /* Save dev for later use in dev_xxx() routines */
1667        host_pvt.dwc_dev = &ofdev->dev;
1668
1669        /* Initialize AHB DMAC */
1670        dma_dwc_init(hsdev, irq);
1671
1672        /* Enable SATA Interrupts */
1673        sata_dwc_enable_interrupts(hsdev);
1674
1675        /* Get SATA interrupt number */
1676        irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1677        if (irq == NO_IRQ) {
1678                dev_err(&ofdev->dev, "no SATA DMA irq\n");
1679                err = -ENODEV;
1680                goto error_out;
1681        }
1682
1683        /*
1684         * Now, register with libATA core, this will also initiate the
1685         * device discovery process, invoking our port_start() handler &
1686         * error_handler() to execute a dummy Softreset EH session
1687         */
1688        rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
1689
1690        if (rc != 0)
1691                dev_err(&ofdev->dev, "failed to activate host");
1692
1693        dev_set_drvdata(&ofdev->dev, host);
1694        return 0;
1695
1696error_out:
1697        /* Free SATA DMA resources */
1698        dma_dwc_exit(hsdev);
1699
1700        if (base)
1701                iounmap(base);
1702        return err;
1703}
1704
1705static int sata_dwc_remove(struct platform_device *ofdev)
1706{
1707        struct device *dev = &ofdev->dev;
1708        struct ata_host *host = dev_get_drvdata(dev);
1709        struct sata_dwc_device *hsdev = host->private_data;
1710
1711        ata_host_detach(host);
1712        dev_set_drvdata(dev, NULL);
1713
1714        /* Free SATA DMA resources */
1715        dma_dwc_exit(hsdev);
1716
1717        iounmap(hsdev->reg_base);
1718        kfree(hsdev);
1719        kfree(host);
1720        dev_dbg(&ofdev->dev, "done\n");
1721        return 0;
1722}
1723
1724static const struct of_device_id sata_dwc_match[] = {
1725        { .compatible = "amcc,sata-460ex", },
1726        {}
1727};
1728MODULE_DEVICE_TABLE(of, sata_dwc_match);
1729
1730static struct of_platform_driver sata_dwc_driver = {
1731        .driver = {
1732                .name = DRV_NAME,
1733                .owner = THIS_MODULE,
1734                .of_match_table = sata_dwc_match,
1735        },
1736        .probe = sata_dwc_probe,
1737        .remove = sata_dwc_remove,
1738};
1739
1740static int __init sata_dwc_init(void)
1741{
1742        return  of_register_platform_driver(&sata_dwc_driver);
1743}
1744
1745static void __exit sata_dwc_exit(void)
1746{
1747        of_unregister_platform_driver(&sata_dwc_driver);
1748}
1749
1750module_init(sata_dwc_init);
1751module_exit(sata_dwc_exit);
1752
1753MODULE_LICENSE("GPL");
1754MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1755MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1756MODULE_VERSION(DRV_VERSION);
1757