linux/drivers/ata/sata_mv.c
<<
>>
Prefs
   1/*
   2 * sata_mv.c - Marvell SATA support
   3 *
   4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
   5 * Copyright 2005: EMC Corporation, all rights reserved.
   6 * Copyright 2005 Red Hat, Inc.  All rights reserved.
   7 *
   8 * Originally written by Brett Russ.
   9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
  10 *
  11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; version 2 of the License.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  25 *
  26 */
  27
  28/*
  29 * sata_mv TODO list:
  30 *
  31 * --> Develop a low-power-consumption strategy, and implement it.
  32 *
  33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
  34 *
  35 * --> [Experiment, Marvell value added] Is it possible to use target
  36 *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
  37 *       creating LibATA target mode support would be very interesting.
  38 *
  39 *       Target mode, for those without docs, is the ability to directly
  40 *       connect two SATA ports.
  41 */
  42
  43/*
  44 * 80x1-B2 errata PCI#11:
  45 *
  46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
  47 * should be careful to insert those cards only onto PCI-X bus #0,
  48 * and only in device slots 0..7, not higher.  The chips may not
  49 * work correctly otherwise  (note: this is a pretty rare condition).
  50 */
  51
  52#include <linux/kernel.h>
  53#include <linux/module.h>
  54#include <linux/pci.h>
  55#include <linux/init.h>
  56#include <linux/blkdev.h>
  57#include <linux/delay.h>
  58#include <linux/interrupt.h>
  59#include <linux/dmapool.h>
  60#include <linux/dma-mapping.h>
  61#include <linux/device.h>
  62#include <linux/clk.h>
  63#include <linux/platform_device.h>
  64#include <linux/ata_platform.h>
  65#include <linux/mbus.h>
  66#include <linux/bitops.h>
  67#include <linux/gfp.h>
  68#include <scsi/scsi_host.h>
  69#include <scsi/scsi_cmnd.h>
  70#include <scsi/scsi_device.h>
  71#include <linux/libata.h>
  72
  73#define DRV_NAME        "sata_mv"
  74#define DRV_VERSION     "1.28"
  75
  76/*
  77 * module options
  78 */
  79
  80static int msi;
  81#ifdef CONFIG_PCI
  82module_param(msi, int, S_IRUGO);
  83MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  84#endif
  85
  86static int irq_coalescing_io_count;
  87module_param(irq_coalescing_io_count, int, S_IRUGO);
  88MODULE_PARM_DESC(irq_coalescing_io_count,
  89                 "IRQ coalescing I/O count threshold (0..255)");
  90
  91static int irq_coalescing_usecs;
  92module_param(irq_coalescing_usecs, int, S_IRUGO);
  93MODULE_PARM_DESC(irq_coalescing_usecs,
  94                 "IRQ coalescing time threshold in usecs");
  95
  96enum {
  97        /* BAR's are enumerated in terms of pci_resource_start() terms */
  98        MV_PRIMARY_BAR          = 0,    /* offset 0x10: memory space */
  99        MV_IO_BAR               = 2,    /* offset 0x18: IO space */
 100        MV_MISC_BAR             = 3,    /* offset 0x1c: FLASH, NVRAM, SRAM */
 101
 102        MV_MAJOR_REG_AREA_SZ    = 0x10000,      /* 64KB */
 103        MV_MINOR_REG_AREA_SZ    = 0x2000,       /* 8KB */
 104
 105        /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
 106        COAL_CLOCKS_PER_USEC    = 150,          /* for calculating COAL_TIMEs */
 107        MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
 108        MAX_COAL_IO_COUNT       = 255,          /* completed I/O count */
 109
 110        MV_PCI_REG_BASE         = 0,
 111
 112        /*
 113         * Per-chip ("all ports") interrupt coalescing feature.
 114         * This is only for GEN_II / GEN_IIE hardware.
 115         *
 116         * Coalescing defers the interrupt until either the IO_THRESHOLD
 117         * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
 118         */
 119        COAL_REG_BASE           = 0x18000,
 120        IRQ_COAL_CAUSE          = (COAL_REG_BASE + 0x08),
 121        ALL_PORTS_COAL_IRQ      = (1 << 4),     /* all ports irq event */
 122
 123        IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
 124        IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
 125
 126        /*
 127         * Registers for the (unused here) transaction coalescing feature:
 128         */
 129        TRAN_COAL_CAUSE_LO      = (COAL_REG_BASE + 0x88),
 130        TRAN_COAL_CAUSE_HI      = (COAL_REG_BASE + 0x8c),
 131
 132        SATAHC0_REG_BASE        = 0x20000,
 133        FLASH_CTL               = 0x1046c,
 134        GPIO_PORT_CTL           = 0x104f0,
 135        RESET_CFG               = 0x180d8,
 136
 137        MV_PCI_REG_SZ           = MV_MAJOR_REG_AREA_SZ,
 138        MV_SATAHC_REG_SZ        = MV_MAJOR_REG_AREA_SZ,
 139        MV_SATAHC_ARBTR_REG_SZ  = MV_MINOR_REG_AREA_SZ,         /* arbiter */
 140        MV_PORT_REG_SZ          = MV_MINOR_REG_AREA_SZ,
 141
 142        MV_MAX_Q_DEPTH          = 32,
 143        MV_MAX_Q_DEPTH_MASK     = MV_MAX_Q_DEPTH - 1,
 144
 145        /* CRQB needs alignment on a 1KB boundary. Size == 1KB
 146         * CRPB needs alignment on a 256B boundary. Size == 256B
 147         * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
 148         */
 149        MV_CRQB_Q_SZ            = (32 * MV_MAX_Q_DEPTH),
 150        MV_CRPB_Q_SZ            = (8 * MV_MAX_Q_DEPTH),
 151        MV_MAX_SG_CT            = 256,
 152        MV_SG_TBL_SZ            = (16 * MV_MAX_SG_CT),
 153
 154        /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
 155        MV_PORT_HC_SHIFT        = 2,
 156        MV_PORTS_PER_HC         = (1 << MV_PORT_HC_SHIFT), /* 4 */
 157        /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
 158        MV_PORT_MASK            = (MV_PORTS_PER_HC - 1),   /* 3 */
 159
 160        /* Host Flags */
 161        MV_FLAG_DUAL_HC         = (1 << 30),  /* two SATA Host Controllers */
 162
 163        MV_COMMON_FLAGS         = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
 164                                  ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
 165
 166        MV_GEN_I_FLAGS          = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
 167
 168        MV_GEN_II_FLAGS         = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
 169                                  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
 170
 171        MV_GEN_IIE_FLAGS        = MV_GEN_II_FLAGS | ATA_FLAG_AN,
 172
 173        CRQB_FLAG_READ          = (1 << 0),
 174        CRQB_TAG_SHIFT          = 1,
 175        CRQB_IOID_SHIFT         = 6,    /* CRQB Gen-II/IIE IO Id shift */
 176        CRQB_PMP_SHIFT          = 12,   /* CRQB Gen-II/IIE PMP shift */
 177        CRQB_HOSTQ_SHIFT        = 17,   /* CRQB Gen-II/IIE HostQueTag shift */
 178        CRQB_CMD_ADDR_SHIFT     = 8,
 179        CRQB_CMD_CS             = (0x2 << 11),
 180        CRQB_CMD_LAST           = (1 << 15),
 181
 182        CRPB_FLAG_STATUS_SHIFT  = 8,
 183        CRPB_IOID_SHIFT_6       = 5,    /* CRPB Gen-II IO Id shift */
 184        CRPB_IOID_SHIFT_7       = 7,    /* CRPB Gen-IIE IO Id shift */
 185
 186        EPRD_FLAG_END_OF_TBL    = (1 << 31),
 187
 188        /* PCI interface registers */
 189
 190        MV_PCI_COMMAND          = 0xc00,
 191        MV_PCI_COMMAND_MWRCOM   = (1 << 4),     /* PCI Master Write Combining */
 192        MV_PCI_COMMAND_MRDTRIG  = (1 << 7),     /* PCI Master Read Trigger */
 193
 194        PCI_MAIN_CMD_STS        = 0xd30,
 195        STOP_PCI_MASTER         = (1 << 2),
 196        PCI_MASTER_EMPTY        = (1 << 3),
 197        GLOB_SFT_RST            = (1 << 4),
 198
 199        MV_PCI_MODE             = 0xd00,
 200        MV_PCI_MODE_MASK        = 0x30,
 201
 202        MV_PCI_EXP_ROM_BAR_CTL  = 0xd2c,
 203        MV_PCI_DISC_TIMER       = 0xd04,
 204        MV_PCI_MSI_TRIGGER      = 0xc38,
 205        MV_PCI_SERR_MASK        = 0xc28,
 206        MV_PCI_XBAR_TMOUT       = 0x1d04,
 207        MV_PCI_ERR_LOW_ADDRESS  = 0x1d40,
 208        MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
 209        MV_PCI_ERR_ATTRIBUTE    = 0x1d48,
 210        MV_PCI_ERR_COMMAND      = 0x1d50,
 211
 212        PCI_IRQ_CAUSE           = 0x1d58,
 213        PCI_IRQ_MASK            = 0x1d5c,
 214        PCI_UNMASK_ALL_IRQS     = 0x7fffff,     /* bits 22-0 */
 215
 216        PCIE_IRQ_CAUSE          = 0x1900,
 217        PCIE_IRQ_MASK           = 0x1910,
 218        PCIE_UNMASK_ALL_IRQS    = 0x40a,        /* assorted bits */
 219
 220        /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
 221        PCI_HC_MAIN_IRQ_CAUSE   = 0x1d60,
 222        PCI_HC_MAIN_IRQ_MASK    = 0x1d64,
 223        SOC_HC_MAIN_IRQ_CAUSE   = 0x20020,
 224        SOC_HC_MAIN_IRQ_MASK    = 0x20024,
 225        ERR_IRQ                 = (1 << 0),     /* shift by (2 * port #) */
 226        DONE_IRQ                = (1 << 1),     /* shift by (2 * port #) */
 227        HC0_IRQ_PEND            = 0x1ff,        /* bits 0-8 = HC0's ports */
 228        HC_SHIFT                = 9,            /* bits 9-17 = HC1's ports */
 229        DONE_IRQ_0_3            = 0x000000aa,   /* DONE_IRQ ports 0,1,2,3 */
 230        DONE_IRQ_4_7            = (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
 231        PCI_ERR                 = (1 << 18),
 232        TRAN_COAL_LO_DONE       = (1 << 19),    /* transaction coalescing */
 233        TRAN_COAL_HI_DONE       = (1 << 20),    /* transaction coalescing */
 234        PORTS_0_3_COAL_DONE     = (1 << 8),     /* HC0 IRQ coalescing */
 235        PORTS_4_7_COAL_DONE     = (1 << 17),    /* HC1 IRQ coalescing */
 236        ALL_PORTS_COAL_DONE     = (1 << 21),    /* GEN_II(E) IRQ coalescing */
 237        GPIO_INT                = (1 << 22),
 238        SELF_INT                = (1 << 23),
 239        TWSI_INT                = (1 << 24),
 240        HC_MAIN_RSVD            = (0x7f << 25), /* bits 31-25 */
 241        HC_MAIN_RSVD_5          = (0x1fff << 19), /* bits 31-19 */
 242        HC_MAIN_RSVD_SOC        = (0x3fffffb << 6),     /* bits 31-9, 7-6 */
 243
 244        /* SATAHC registers */
 245        HC_CFG                  = 0x00,
 246
 247        HC_IRQ_CAUSE            = 0x14,
 248        DMA_IRQ                 = (1 << 0),     /* shift by port # */
 249        HC_COAL_IRQ             = (1 << 4),     /* IRQ coalescing */
 250        DEV_IRQ                 = (1 << 8),     /* shift by port # */
 251
 252        /*
 253         * Per-HC (Host-Controller) interrupt coalescing feature.
 254         * This is present on all chip generations.
 255         *
 256         * Coalescing defers the interrupt until either the IO_THRESHOLD
 257         * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
 258         */
 259        HC_IRQ_COAL_IO_THRESHOLD        = 0x000c,
 260        HC_IRQ_COAL_TIME_THRESHOLD      = 0x0010,
 261
 262        SOC_LED_CTRL            = 0x2c,
 263        SOC_LED_CTRL_BLINK      = (1 << 0),     /* Active LED blink */
 264        SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),   /* Multiplex dev presence */
 265                                                /*  with dev activity LED */
 266
 267        /* Shadow block registers */
 268        SHD_BLK                 = 0x100,
 269        SHD_CTL_AST             = 0x20,         /* ofs from SHD_BLK */
 270
 271        /* SATA registers */
 272        SATA_STATUS             = 0x300,  /* ctrl, err regs follow status */
 273        SATA_ACTIVE             = 0x350,
 274        FIS_IRQ_CAUSE           = 0x364,
 275        FIS_IRQ_CAUSE_AN        = (1 << 9),     /* async notification */
 276
 277        LTMODE                  = 0x30c,        /* requires read-after-write */
 278        LTMODE_BIT8             = (1 << 8),     /* unknown, but necessary */
 279
 280        PHY_MODE2               = 0x330,
 281        PHY_MODE3               = 0x310,
 282
 283        PHY_MODE4               = 0x314,        /* requires read-after-write */
 284        PHY_MODE4_CFG_MASK      = 0x00000003,   /* phy internal config field */
 285        PHY_MODE4_CFG_VALUE     = 0x00000001,   /* phy internal config field */
 286        PHY_MODE4_RSVD_ZEROS    = 0x5de3fffa,   /* Gen2e always write zeros */
 287        PHY_MODE4_RSVD_ONES     = 0x00000005,   /* Gen2e always write ones */
 288
 289        SATA_IFCTL              = 0x344,
 290        SATA_TESTCTL            = 0x348,
 291        SATA_IFSTAT             = 0x34c,
 292        VENDOR_UNIQUE_FIS       = 0x35c,
 293
 294        FISCFG                  = 0x360,
 295        FISCFG_WAIT_DEV_ERR     = (1 << 8),     /* wait for host on DevErr */
 296        FISCFG_SINGLE_SYNC      = (1 << 16),    /* SYNC on DMA activation */
 297
 298        PHY_MODE9_GEN2          = 0x398,
 299        PHY_MODE9_GEN1          = 0x39c,
 300        PHYCFG_OFS              = 0x3a0,        /* only in 65n devices */
 301
 302        MV5_PHY_MODE            = 0x74,
 303        MV5_LTMODE              = 0x30,
 304        MV5_PHY_CTL             = 0x0C,
 305        SATA_IFCFG              = 0x050,
 306
 307        MV_M2_PREAMP_MASK       = 0x7e0,
 308
 309        /* Port registers */
 310        EDMA_CFG                = 0,
 311        EDMA_CFG_Q_DEPTH        = 0x1f,         /* max device queue depth */
 312        EDMA_CFG_NCQ            = (1 << 5),     /* for R/W FPDMA queued */
 313        EDMA_CFG_NCQ_GO_ON_ERR  = (1 << 14),    /* continue on error */
 314        EDMA_CFG_RD_BRST_EXT    = (1 << 11),    /* read burst 512B */
 315        EDMA_CFG_WR_BUFF_LEN    = (1 << 13),    /* write buffer 512B */
 316        EDMA_CFG_EDMA_FBS       = (1 << 16),    /* EDMA FIS-Based Switching */
 317        EDMA_CFG_FBS            = (1 << 26),    /* FIS-Based Switching */
 318
 319        EDMA_ERR_IRQ_CAUSE      = 0x8,
 320        EDMA_ERR_IRQ_MASK       = 0xc,
 321        EDMA_ERR_D_PAR          = (1 << 0),     /* UDMA data parity err */
 322        EDMA_ERR_PRD_PAR        = (1 << 1),     /* UDMA PRD parity err */
 323        EDMA_ERR_DEV            = (1 << 2),     /* device error */
 324        EDMA_ERR_DEV_DCON       = (1 << 3),     /* device disconnect */
 325        EDMA_ERR_DEV_CON        = (1 << 4),     /* device connected */
 326        EDMA_ERR_SERR           = (1 << 5),     /* SError bits [WBDST] raised */
 327        EDMA_ERR_SELF_DIS       = (1 << 7),     /* Gen II/IIE self-disable */
 328        EDMA_ERR_SELF_DIS_5     = (1 << 8),     /* Gen I self-disable */
 329        EDMA_ERR_BIST_ASYNC     = (1 << 8),     /* BIST FIS or Async Notify */
 330        EDMA_ERR_TRANS_IRQ_7    = (1 << 8),     /* Gen IIE transprt layer irq */
 331        EDMA_ERR_CRQB_PAR       = (1 << 9),     /* CRQB parity error */
 332        EDMA_ERR_CRPB_PAR       = (1 << 10),    /* CRPB parity error */
 333        EDMA_ERR_INTRL_PAR      = (1 << 11),    /* internal parity error */
 334        EDMA_ERR_IORDY          = (1 << 12),    /* IORdy timeout */
 335
 336        EDMA_ERR_LNK_CTRL_RX    = (0xf << 13),  /* link ctrl rx error */
 337        EDMA_ERR_LNK_CTRL_RX_0  = (1 << 13),    /* transient: CRC err */
 338        EDMA_ERR_LNK_CTRL_RX_1  = (1 << 14),    /* transient: FIFO err */
 339        EDMA_ERR_LNK_CTRL_RX_2  = (1 << 15),    /* fatal: caught SYNC */
 340        EDMA_ERR_LNK_CTRL_RX_3  = (1 << 16),    /* transient: FIS rx err */
 341
 342        EDMA_ERR_LNK_DATA_RX    = (0xf << 17),  /* link data rx error */
 343
 344        EDMA_ERR_LNK_CTRL_TX    = (0x1f << 21), /* link ctrl tx error */
 345        EDMA_ERR_LNK_CTRL_TX_0  = (1 << 21),    /* transient: CRC err */
 346        EDMA_ERR_LNK_CTRL_TX_1  = (1 << 22),    /* transient: FIFO err */
 347        EDMA_ERR_LNK_CTRL_TX_2  = (1 << 23),    /* transient: caught SYNC */
 348        EDMA_ERR_LNK_CTRL_TX_3  = (1 << 24),    /* transient: caught DMAT */
 349        EDMA_ERR_LNK_CTRL_TX_4  = (1 << 25),    /* transient: FIS collision */
 350
 351        EDMA_ERR_LNK_DATA_TX    = (0x1f << 26), /* link data tx error */
 352
 353        EDMA_ERR_TRANS_PROTO    = (1 << 31),    /* transport protocol error */
 354        EDMA_ERR_OVERRUN_5      = (1 << 5),
 355        EDMA_ERR_UNDERRUN_5     = (1 << 6),
 356
 357        EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
 358                                  EDMA_ERR_LNK_CTRL_RX_1 |
 359                                  EDMA_ERR_LNK_CTRL_RX_3 |
 360                                  EDMA_ERR_LNK_CTRL_TX,
 361
 362        EDMA_EH_FREEZE          = EDMA_ERR_D_PAR |
 363                                  EDMA_ERR_PRD_PAR |
 364                                  EDMA_ERR_DEV_DCON |
 365                                  EDMA_ERR_DEV_CON |
 366                                  EDMA_ERR_SERR |
 367                                  EDMA_ERR_SELF_DIS |
 368                                  EDMA_ERR_CRQB_PAR |
 369                                  EDMA_ERR_CRPB_PAR |
 370                                  EDMA_ERR_INTRL_PAR |
 371                                  EDMA_ERR_IORDY |
 372                                  EDMA_ERR_LNK_CTRL_RX_2 |
 373                                  EDMA_ERR_LNK_DATA_RX |
 374                                  EDMA_ERR_LNK_DATA_TX |
 375                                  EDMA_ERR_TRANS_PROTO,
 376
 377        EDMA_EH_FREEZE_5        = EDMA_ERR_D_PAR |
 378                                  EDMA_ERR_PRD_PAR |
 379                                  EDMA_ERR_DEV_DCON |
 380                                  EDMA_ERR_DEV_CON |
 381                                  EDMA_ERR_OVERRUN_5 |
 382                                  EDMA_ERR_UNDERRUN_5 |
 383                                  EDMA_ERR_SELF_DIS_5 |
 384                                  EDMA_ERR_CRQB_PAR |
 385                                  EDMA_ERR_CRPB_PAR |
 386                                  EDMA_ERR_INTRL_PAR |
 387                                  EDMA_ERR_IORDY,
 388
 389        EDMA_REQ_Q_BASE_HI      = 0x10,
 390        EDMA_REQ_Q_IN_PTR       = 0x14,         /* also contains BASE_LO */
 391
 392        EDMA_REQ_Q_OUT_PTR      = 0x18,
 393        EDMA_REQ_Q_PTR_SHIFT    = 5,
 394
 395        EDMA_RSP_Q_BASE_HI      = 0x1c,
 396        EDMA_RSP_Q_IN_PTR       = 0x20,
 397        EDMA_RSP_Q_OUT_PTR      = 0x24,         /* also contains BASE_LO */
 398        EDMA_RSP_Q_PTR_SHIFT    = 3,
 399
 400        EDMA_CMD                = 0x28,         /* EDMA command register */
 401        EDMA_EN                 = (1 << 0),     /* enable EDMA */
 402        EDMA_DS                 = (1 << 1),     /* disable EDMA; self-negated */
 403        EDMA_RESET              = (1 << 2),     /* reset eng/trans/link/phy */
 404
 405        EDMA_STATUS             = 0x30,         /* EDMA engine status */
 406        EDMA_STATUS_CACHE_EMPTY = (1 << 6),     /* GenIIe command cache empty */
 407        EDMA_STATUS_IDLE        = (1 << 7),     /* GenIIe EDMA enabled/idle */
 408
 409        EDMA_IORDY_TMOUT        = 0x34,
 410        EDMA_ARB_CFG            = 0x38,
 411
 412        EDMA_HALTCOND           = 0x60,         /* GenIIe halt conditions */
 413        EDMA_UNKNOWN_RSVD       = 0x6C,         /* GenIIe unknown/reserved */
 414
 415        BMDMA_CMD               = 0x224,        /* bmdma command register */
 416        BMDMA_STATUS            = 0x228,        /* bmdma status register */
 417        BMDMA_PRD_LOW           = 0x22c,        /* bmdma PRD addr 31:0 */
 418        BMDMA_PRD_HIGH          = 0x230,        /* bmdma PRD addr 63:32 */
 419
 420        /* Host private flags (hp_flags) */
 421        MV_HP_FLAG_MSI          = (1 << 0),
 422        MV_HP_ERRATA_50XXB0     = (1 << 1),
 423        MV_HP_ERRATA_50XXB2     = (1 << 2),
 424        MV_HP_ERRATA_60X1B2     = (1 << 3),
 425        MV_HP_ERRATA_60X1C0     = (1 << 4),
 426        MV_HP_GEN_I             = (1 << 6),     /* Generation I: 50xx */
 427        MV_HP_GEN_II            = (1 << 7),     /* Generation II: 60xx */
 428        MV_HP_GEN_IIE           = (1 << 8),     /* Generation IIE: 6042/7042 */
 429        MV_HP_PCIE              = (1 << 9),     /* PCIe bus/regs: 7042 */
 430        MV_HP_CUT_THROUGH       = (1 << 10),    /* can use EDMA cut-through */
 431        MV_HP_FLAG_SOC          = (1 << 11),    /* SystemOnChip, no PCI */
 432        MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),   /* is led blinking enabled? */
 433
 434        /* Port private flags (pp_flags) */
 435        MV_PP_FLAG_EDMA_EN      = (1 << 0),     /* is EDMA engine enabled? */
 436        MV_PP_FLAG_NCQ_EN       = (1 << 1),     /* is EDMA set up for NCQ? */
 437        MV_PP_FLAG_FBS_EN       = (1 << 2),     /* is EDMA set up for FBS? */
 438        MV_PP_FLAG_DELAYED_EH   = (1 << 3),     /* delayed dev err handling */
 439        MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),    /* ignore initial ATA_DRDY */
 440};
 441
 442#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
 443#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
 444#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
 445#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
 446#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
 447
 448#define WINDOW_CTRL(i)          (0x20030 + ((i) << 4))
 449#define WINDOW_BASE(i)          (0x20034 + ((i) << 4))
 450
 451enum {
 452        /* DMA boundary 0xffff is required by the s/g splitting
 453         * we need on /length/ in mv_fill-sg().
 454         */
 455        MV_DMA_BOUNDARY         = 0xffffU,
 456
 457        /* mask of register bits containing lower 32 bits
 458         * of EDMA request queue DMA address
 459         */
 460        EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
 461
 462        /* ditto, for response queue */
 463        EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
 464};
 465
 466enum chip_type {
 467        chip_504x,
 468        chip_508x,
 469        chip_5080,
 470        chip_604x,
 471        chip_608x,
 472        chip_6042,
 473        chip_7042,
 474        chip_soc,
 475};
 476
 477/* Command ReQuest Block: 32B */
 478struct mv_crqb {
 479        __le32                  sg_addr;
 480        __le32                  sg_addr_hi;
 481        __le16                  ctrl_flags;
 482        __le16                  ata_cmd[11];
 483};
 484
 485struct mv_crqb_iie {
 486        __le32                  addr;
 487        __le32                  addr_hi;
 488        __le32                  flags;
 489        __le32                  len;
 490        __le32                  ata_cmd[4];
 491};
 492
 493/* Command ResPonse Block: 8B */
 494struct mv_crpb {
 495        __le16                  id;
 496        __le16                  flags;
 497        __le32                  tmstmp;
 498};
 499
 500/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
 501struct mv_sg {
 502        __le32                  addr;
 503        __le32                  flags_size;
 504        __le32                  addr_hi;
 505        __le32                  reserved;
 506};
 507
 508/*
 509 * We keep a local cache of a few frequently accessed port
 510 * registers here, to avoid having to read them (very slow)
 511 * when switching between EDMA and non-EDMA modes.
 512 */
 513struct mv_cached_regs {
 514        u32                     fiscfg;
 515        u32                     ltmode;
 516        u32                     haltcond;
 517        u32                     unknown_rsvd;
 518};
 519
 520struct mv_port_priv {
 521        struct mv_crqb          *crqb;
 522        dma_addr_t              crqb_dma;
 523        struct mv_crpb          *crpb;
 524        dma_addr_t              crpb_dma;
 525        struct mv_sg            *sg_tbl[MV_MAX_Q_DEPTH];
 526        dma_addr_t              sg_tbl_dma[MV_MAX_Q_DEPTH];
 527
 528        unsigned int            req_idx;
 529        unsigned int            resp_idx;
 530
 531        u32                     pp_flags;
 532        struct mv_cached_regs   cached;
 533        unsigned int            delayed_eh_pmp_map;
 534};
 535
 536struct mv_port_signal {
 537        u32                     amps;
 538        u32                     pre;
 539};
 540
 541struct mv_host_priv {
 542        u32                     hp_flags;
 543        unsigned int            board_idx;
 544        u32                     main_irq_mask;
 545        struct mv_port_signal   signal[8];
 546        const struct mv_hw_ops  *ops;
 547        int                     n_ports;
 548        void __iomem            *base;
 549        void __iomem            *main_irq_cause_addr;
 550        void __iomem            *main_irq_mask_addr;
 551        u32                     irq_cause_offset;
 552        u32                     irq_mask_offset;
 553        u32                     unmask_all_irqs;
 554
 555#if defined(CONFIG_HAVE_CLK)
 556        struct clk              *clk;
 557#endif
 558        /*
 559         * These consistent DMA memory pools give us guaranteed
 560         * alignment for hardware-accessed data structures,
 561         * and less memory waste in accomplishing the alignment.
 562         */
 563        struct dma_pool         *crqb_pool;
 564        struct dma_pool         *crpb_pool;
 565        struct dma_pool         *sg_tbl_pool;
 566};
 567
 568struct mv_hw_ops {
 569        void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
 570                           unsigned int port);
 571        void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
 572        void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
 573                           void __iomem *mmio);
 574        int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
 575                        unsigned int n_hc);
 576        void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
 577        void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
 578};
 579
 580static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 581static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 582static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 583static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 584static int mv_port_start(struct ata_port *ap);
 585static void mv_port_stop(struct ata_port *ap);
 586static int mv_qc_defer(struct ata_queued_cmd *qc);
 587static void mv_qc_prep(struct ata_queued_cmd *qc);
 588static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
 589static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
 590static int mv_hardreset(struct ata_link *link, unsigned int *class,
 591                        unsigned long deadline);
 592static void mv_eh_freeze(struct ata_port *ap);
 593static void mv_eh_thaw(struct ata_port *ap);
 594static void mv6_dev_config(struct ata_device *dev);
 595
 596static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 597                           unsigned int port);
 598static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 599static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
 600                           void __iomem *mmio);
 601static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 602                        unsigned int n_hc);
 603static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 604static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
 605
 606static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 607                           unsigned int port);
 608static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 609static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
 610                           void __iomem *mmio);
 611static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 612                        unsigned int n_hc);
 613static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 614static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
 615                                      void __iomem *mmio);
 616static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
 617                                      void __iomem *mmio);
 618static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
 619                                  void __iomem *mmio, unsigned int n_hc);
 620static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
 621                                      void __iomem *mmio);
 622static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
 623static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
 624                                  void __iomem *mmio, unsigned int port);
 625static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
 626static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
 627                             unsigned int port_no);
 628static int mv_stop_edma(struct ata_port *ap);
 629static int mv_stop_edma_engine(void __iomem *port_mmio);
 630static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
 631
 632static void mv_pmp_select(struct ata_port *ap, int pmp);
 633static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
 634                                unsigned long deadline);
 635static int  mv_softreset(struct ata_link *link, unsigned int *class,
 636                                unsigned long deadline);
 637static void mv_pmp_error_handler(struct ata_port *ap);
 638static void mv_process_crpb_entries(struct ata_port *ap,
 639                                        struct mv_port_priv *pp);
 640
 641static void mv_sff_irq_clear(struct ata_port *ap);
 642static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
 643static void mv_bmdma_setup(struct ata_queued_cmd *qc);
 644static void mv_bmdma_start(struct ata_queued_cmd *qc);
 645static void mv_bmdma_stop(struct ata_queued_cmd *qc);
 646static u8   mv_bmdma_status(struct ata_port *ap);
 647static u8 mv_sff_check_status(struct ata_port *ap);
 648
 649/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
 650 * because we have to allow room for worst case splitting of
 651 * PRDs for 64K boundaries in mv_fill_sg().
 652 */
 653static struct scsi_host_template mv5_sht = {
 654        ATA_BASE_SHT(DRV_NAME),
 655        .sg_tablesize           = MV_MAX_SG_CT / 2,
 656        .dma_boundary           = MV_DMA_BOUNDARY,
 657};
 658
 659static struct scsi_host_template mv6_sht = {
 660        ATA_NCQ_SHT(DRV_NAME),
 661        .can_queue              = MV_MAX_Q_DEPTH - 1,
 662        .sg_tablesize           = MV_MAX_SG_CT / 2,
 663        .dma_boundary           = MV_DMA_BOUNDARY,
 664};
 665
 666static struct ata_port_operations mv5_ops = {
 667        .inherits               = &ata_sff_port_ops,
 668
 669        .lost_interrupt         = ATA_OP_NULL,
 670
 671        .qc_defer               = mv_qc_defer,
 672        .qc_prep                = mv_qc_prep,
 673        .qc_issue               = mv_qc_issue,
 674
 675        .freeze                 = mv_eh_freeze,
 676        .thaw                   = mv_eh_thaw,
 677        .hardreset              = mv_hardreset,
 678
 679        .scr_read               = mv5_scr_read,
 680        .scr_write              = mv5_scr_write,
 681
 682        .port_start             = mv_port_start,
 683        .port_stop              = mv_port_stop,
 684};
 685
 686static struct ata_port_operations mv6_ops = {
 687        .inherits               = &ata_bmdma_port_ops,
 688
 689        .lost_interrupt         = ATA_OP_NULL,
 690
 691        .qc_defer               = mv_qc_defer,
 692        .qc_prep                = mv_qc_prep,
 693        .qc_issue               = mv_qc_issue,
 694
 695        .dev_config             = mv6_dev_config,
 696
 697        .freeze                 = mv_eh_freeze,
 698        .thaw                   = mv_eh_thaw,
 699        .hardreset              = mv_hardreset,
 700        .softreset              = mv_softreset,
 701        .pmp_hardreset          = mv_pmp_hardreset,
 702        .pmp_softreset          = mv_softreset,
 703        .error_handler          = mv_pmp_error_handler,
 704
 705        .scr_read               = mv_scr_read,
 706        .scr_write              = mv_scr_write,
 707
 708        .sff_check_status       = mv_sff_check_status,
 709        .sff_irq_clear          = mv_sff_irq_clear,
 710        .check_atapi_dma        = mv_check_atapi_dma,
 711        .bmdma_setup            = mv_bmdma_setup,
 712        .bmdma_start            = mv_bmdma_start,
 713        .bmdma_stop             = mv_bmdma_stop,
 714        .bmdma_status           = mv_bmdma_status,
 715
 716        .port_start             = mv_port_start,
 717        .port_stop              = mv_port_stop,
 718};
 719
 720static struct ata_port_operations mv_iie_ops = {
 721        .inherits               = &mv6_ops,
 722        .dev_config             = ATA_OP_NULL,
 723        .qc_prep                = mv_qc_prep_iie,
 724};
 725
 726static const struct ata_port_info mv_port_info[] = {
 727        {  /* chip_504x */
 728                .flags          = MV_GEN_I_FLAGS,
 729                .pio_mask       = ATA_PIO4,
 730                .udma_mask      = ATA_UDMA6,
 731                .port_ops       = &mv5_ops,
 732        },
 733        {  /* chip_508x */
 734                .flags          = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
 735                .pio_mask       = ATA_PIO4,
 736                .udma_mask      = ATA_UDMA6,
 737                .port_ops       = &mv5_ops,
 738        },
 739        {  /* chip_5080 */
 740                .flags          = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
 741                .pio_mask       = ATA_PIO4,
 742                .udma_mask      = ATA_UDMA6,
 743                .port_ops       = &mv5_ops,
 744        },
 745        {  /* chip_604x */
 746                .flags          = MV_GEN_II_FLAGS,
 747                .pio_mask       = ATA_PIO4,
 748                .udma_mask      = ATA_UDMA6,
 749                .port_ops       = &mv6_ops,
 750        },
 751        {  /* chip_608x */
 752                .flags          = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
 753                .pio_mask       = ATA_PIO4,
 754                .udma_mask      = ATA_UDMA6,
 755                .port_ops       = &mv6_ops,
 756        },
 757        {  /* chip_6042 */
 758                .flags          = MV_GEN_IIE_FLAGS,
 759                .pio_mask       = ATA_PIO4,
 760                .udma_mask      = ATA_UDMA6,
 761                .port_ops       = &mv_iie_ops,
 762        },
 763        {  /* chip_7042 */
 764                .flags          = MV_GEN_IIE_FLAGS,
 765                .pio_mask       = ATA_PIO4,
 766                .udma_mask      = ATA_UDMA6,
 767                .port_ops       = &mv_iie_ops,
 768        },
 769        {  /* chip_soc */
 770                .flags          = MV_GEN_IIE_FLAGS,
 771                .pio_mask       = ATA_PIO4,
 772                .udma_mask      = ATA_UDMA6,
 773                .port_ops       = &mv_iie_ops,
 774        },
 775};
 776
 777static const struct pci_device_id mv_pci_tbl[] = {
 778        { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
 779        { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
 780        { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
 781        { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
 782        /* RocketRAID 1720/174x have different identifiers */
 783        { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
 784        { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
 785        { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
 786
 787        { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
 788        { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
 789        { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
 790        { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
 791        { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
 792
 793        { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
 794
 795        /* Adaptec 1430SA */
 796        { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
 797
 798        /* Marvell 7042 support */
 799        { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
 800
 801        /* Highpoint RocketRAID PCIe series */
 802        { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
 803        { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
 804
 805        { }                     /* terminate list */
 806};
 807
 808static const struct mv_hw_ops mv5xxx_ops = {
 809        .phy_errata             = mv5_phy_errata,
 810        .enable_leds            = mv5_enable_leds,
 811        .read_preamp            = mv5_read_preamp,
 812        .reset_hc               = mv5_reset_hc,
 813        .reset_flash            = mv5_reset_flash,
 814        .reset_bus              = mv5_reset_bus,
 815};
 816
 817static const struct mv_hw_ops mv6xxx_ops = {
 818        .phy_errata             = mv6_phy_errata,
 819        .enable_leds            = mv6_enable_leds,
 820        .read_preamp            = mv6_read_preamp,
 821        .reset_hc               = mv6_reset_hc,
 822        .reset_flash            = mv6_reset_flash,
 823        .reset_bus              = mv_reset_pci_bus,
 824};
 825
 826static const struct mv_hw_ops mv_soc_ops = {
 827        .phy_errata             = mv6_phy_errata,
 828        .enable_leds            = mv_soc_enable_leds,
 829        .read_preamp            = mv_soc_read_preamp,
 830        .reset_hc               = mv_soc_reset_hc,
 831        .reset_flash            = mv_soc_reset_flash,
 832        .reset_bus              = mv_soc_reset_bus,
 833};
 834
 835static const struct mv_hw_ops mv_soc_65n_ops = {
 836        .phy_errata             = mv_soc_65n_phy_errata,
 837        .enable_leds            = mv_soc_enable_leds,
 838        .reset_hc               = mv_soc_reset_hc,
 839        .reset_flash            = mv_soc_reset_flash,
 840        .reset_bus              = mv_soc_reset_bus,
 841};
 842
 843/*
 844 * Functions
 845 */
 846
 847static inline void writelfl(unsigned long data, void __iomem *addr)
 848{
 849        writel(data, addr);
 850        (void) readl(addr);     /* flush to avoid PCI posted write */
 851}
 852
 853static inline unsigned int mv_hc_from_port(unsigned int port)
 854{
 855        return port >> MV_PORT_HC_SHIFT;
 856}
 857
 858static inline unsigned int mv_hardport_from_port(unsigned int port)
 859{
 860        return port & MV_PORT_MASK;
 861}
 862
 863/*
 864 * Consolidate some rather tricky bit shift calculations.
 865 * This is hot-path stuff, so not a function.
 866 * Simple code, with two return values, so macro rather than inline.
 867 *
 868 * port is the sole input, in range 0..7.
 869 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
 870 * hardport is the other output, in range 0..3.
 871 *
 872 * Note that port and hardport may be the same variable in some cases.
 873 */
 874#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)    \
 875{                                                               \
 876        shift    = mv_hc_from_port(port) * HC_SHIFT;            \
 877        hardport = mv_hardport_from_port(port);                 \
 878        shift   += hardport * 2;                                \
 879}
 880
 881static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
 882{
 883        return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
 884}
 885
 886static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
 887                                                 unsigned int port)
 888{
 889        return mv_hc_base(base, mv_hc_from_port(port));
 890}
 891
 892static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
 893{
 894        return  mv_hc_base_from_port(base, port) +
 895                MV_SATAHC_ARBTR_REG_SZ +
 896                (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
 897}
 898
 899static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
 900{
 901        void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
 902        unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
 903
 904        return hc_mmio + ofs;
 905}
 906
 907static inline void __iomem *mv_host_base(struct ata_host *host)
 908{
 909        struct mv_host_priv *hpriv = host->private_data;
 910        return hpriv->base;
 911}
 912
 913static inline void __iomem *mv_ap_base(struct ata_port *ap)
 914{
 915        return mv_port_base(mv_host_base(ap->host), ap->port_no);
 916}
 917
 918static inline int mv_get_hc_count(unsigned long port_flags)
 919{
 920        return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
 921}
 922
 923/**
 924 *      mv_save_cached_regs - (re-)initialize cached port registers
 925 *      @ap: the port whose registers we are caching
 926 *
 927 *      Initialize the local cache of port registers,
 928 *      so that reading them over and over again can
 929 *      be avoided on the hotter paths of this driver.
 930 *      This saves a few microseconds each time we switch
 931 *      to/from EDMA mode to perform (eg.) a drive cache flush.
 932 */
 933static void mv_save_cached_regs(struct ata_port *ap)
 934{
 935        void __iomem *port_mmio = mv_ap_base(ap);
 936        struct mv_port_priv *pp = ap->private_data;
 937
 938        pp->cached.fiscfg = readl(port_mmio + FISCFG);
 939        pp->cached.ltmode = readl(port_mmio + LTMODE);
 940        pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
 941        pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
 942}
 943
 944/**
 945 *      mv_write_cached_reg - write to a cached port register
 946 *      @addr: hardware address of the register
 947 *      @old: pointer to cached value of the register
 948 *      @new: new value for the register
 949 *
 950 *      Write a new value to a cached register,
 951 *      but only if the value is different from before.
 952 */
 953static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
 954{
 955        if (new != *old) {
 956                unsigned long laddr;
 957                *old = new;
 958                /*
 959                 * Workaround for 88SX60x1-B2 FEr SATA#13:
 960                 * Read-after-write is needed to prevent generating 64-bit
 961                 * write cycles on the PCI bus for SATA interface registers
 962                 * at offsets ending in 0x4 or 0xc.
 963                 *
 964                 * Looks like a lot of fuss, but it avoids an unnecessary
 965                 * +1 usec read-after-write delay for unaffected registers.
 966                 */
 967                laddr = (long)addr & 0xffff;
 968                if (laddr >= 0x300 && laddr <= 0x33c) {
 969                        laddr &= 0x000f;
 970                        if (laddr == 0x4 || laddr == 0xc) {
 971                                writelfl(new, addr); /* read after write */
 972                                return;
 973                        }
 974                }
 975                writel(new, addr); /* unaffected by the errata */
 976        }
 977}
 978
 979static void mv_set_edma_ptrs(void __iomem *port_mmio,
 980                             struct mv_host_priv *hpriv,
 981                             struct mv_port_priv *pp)
 982{
 983        u32 index;
 984
 985        /*
 986         * initialize request queue
 987         */
 988        pp->req_idx &= MV_MAX_Q_DEPTH_MASK;     /* paranoia */
 989        index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
 990
 991        WARN_ON(pp->crqb_dma & 0x3ff);
 992        writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
 993        writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
 994                 port_mmio + EDMA_REQ_Q_IN_PTR);
 995        writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
 996
 997        /*
 998         * initialize response queue
 999         */
1000        pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;    /* paranoia */
1001        index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1002
1003        WARN_ON(pp->crpb_dma & 0xff);
1004        writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1005        writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1006        writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1007                 port_mmio + EDMA_RSP_Q_OUT_PTR);
1008}
1009
1010static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1011{
1012        /*
1013         * When writing to the main_irq_mask in hardware,
1014         * we must ensure exclusivity between the interrupt coalescing bits
1015         * and the corresponding individual port DONE_IRQ bits.
1016         *
1017         * Note that this register is really an "IRQ enable" register,
1018         * not an "IRQ mask" register as Marvell's naming might suggest.
1019         */
1020        if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1021                mask &= ~DONE_IRQ_0_3;
1022        if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1023                mask &= ~DONE_IRQ_4_7;
1024        writelfl(mask, hpriv->main_irq_mask_addr);
1025}
1026
1027static void mv_set_main_irq_mask(struct ata_host *host,
1028                                 u32 disable_bits, u32 enable_bits)
1029{
1030        struct mv_host_priv *hpriv = host->private_data;
1031        u32 old_mask, new_mask;
1032
1033        old_mask = hpriv->main_irq_mask;
1034        new_mask = (old_mask & ~disable_bits) | enable_bits;
1035        if (new_mask != old_mask) {
1036                hpriv->main_irq_mask = new_mask;
1037                mv_write_main_irq_mask(new_mask, hpriv);
1038        }
1039}
1040
1041static void mv_enable_port_irqs(struct ata_port *ap,
1042                                     unsigned int port_bits)
1043{
1044        unsigned int shift, hardport, port = ap->port_no;
1045        u32 disable_bits, enable_bits;
1046
1047        MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1048
1049        disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1050        enable_bits  = port_bits << shift;
1051        mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1052}
1053
1054static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1055                                          void __iomem *port_mmio,
1056                                          unsigned int port_irqs)
1057{
1058        struct mv_host_priv *hpriv = ap->host->private_data;
1059        int hardport = mv_hardport_from_port(ap->port_no);
1060        void __iomem *hc_mmio = mv_hc_base_from_port(
1061                                mv_host_base(ap->host), ap->port_no);
1062        u32 hc_irq_cause;
1063
1064        /* clear EDMA event indicators, if any */
1065        writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1066
1067        /* clear pending irq events */
1068        hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1069        writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1070
1071        /* clear FIS IRQ Cause */
1072        if (IS_GEN_IIE(hpriv))
1073                writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1074
1075        mv_enable_port_irqs(ap, port_irqs);
1076}
1077
1078static void mv_set_irq_coalescing(struct ata_host *host,
1079                                  unsigned int count, unsigned int usecs)
1080{
1081        struct mv_host_priv *hpriv = host->private_data;
1082        void __iomem *mmio = hpriv->base, *hc_mmio;
1083        u32 coal_enable = 0;
1084        unsigned long flags;
1085        unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1086        const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1087                                                        ALL_PORTS_COAL_DONE;
1088
1089        /* Disable IRQ coalescing if either threshold is zero */
1090        if (!usecs || !count) {
1091                clks = count = 0;
1092        } else {
1093                /* Respect maximum limits of the hardware */
1094                clks = usecs * COAL_CLOCKS_PER_USEC;
1095                if (clks > MAX_COAL_TIME_THRESHOLD)
1096                        clks = MAX_COAL_TIME_THRESHOLD;
1097                if (count > MAX_COAL_IO_COUNT)
1098                        count = MAX_COAL_IO_COUNT;
1099        }
1100
1101        spin_lock_irqsave(&host->lock, flags);
1102        mv_set_main_irq_mask(host, coal_disable, 0);
1103
1104        if (is_dual_hc && !IS_GEN_I(hpriv)) {
1105                /*
1106                 * GEN_II/GEN_IIE with dual host controllers:
1107                 * one set of global thresholds for the entire chip.
1108                 */
1109                writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1110                writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1111                /* clear leftover coal IRQ bit */
1112                writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1113                if (count)
1114                        coal_enable = ALL_PORTS_COAL_DONE;
1115                clks = count = 0; /* force clearing of regular regs below */
1116        }
1117
1118        /*
1119         * All chips: independent thresholds for each HC on the chip.
1120         */
1121        hc_mmio = mv_hc_base_from_port(mmio, 0);
1122        writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1123        writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1124        writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1125        if (count)
1126                coal_enable |= PORTS_0_3_COAL_DONE;
1127        if (is_dual_hc) {
1128                hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1129                writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1130                writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1131                writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1132                if (count)
1133                        coal_enable |= PORTS_4_7_COAL_DONE;
1134        }
1135
1136        mv_set_main_irq_mask(host, 0, coal_enable);
1137        spin_unlock_irqrestore(&host->lock, flags);
1138}
1139
1140/**
1141 *      mv_start_edma - Enable eDMA engine
1142 *      @base: port base address
1143 *      @pp: port private data
1144 *
1145 *      Verify the local cache of the eDMA state is accurate with a
1146 *      WARN_ON.
1147 *
1148 *      LOCKING:
1149 *      Inherited from caller.
1150 */
1151static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1152                         struct mv_port_priv *pp, u8 protocol)
1153{
1154        int want_ncq = (protocol == ATA_PROT_NCQ);
1155
1156        if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1157                int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1158                if (want_ncq != using_ncq)
1159                        mv_stop_edma(ap);
1160        }
1161        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1162                struct mv_host_priv *hpriv = ap->host->private_data;
1163
1164                mv_edma_cfg(ap, want_ncq, 1);
1165
1166                mv_set_edma_ptrs(port_mmio, hpriv, pp);
1167                mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1168
1169                writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1170                pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1171        }
1172}
1173
1174static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1175{
1176        void __iomem *port_mmio = mv_ap_base(ap);
1177        const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1178        const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1179        int i;
1180
1181        /*
1182         * Wait for the EDMA engine to finish transactions in progress.
1183         * No idea what a good "timeout" value might be, but measurements
1184         * indicate that it often requires hundreds of microseconds
1185         * with two drives in-use.  So we use the 15msec value above
1186         * as a rough guess at what even more drives might require.
1187         */
1188        for (i = 0; i < timeout; ++i) {
1189                u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1190                if ((edma_stat & empty_idle) == empty_idle)
1191                        break;
1192                udelay(per_loop);
1193        }
1194        /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1195}
1196
1197/**
1198 *      mv_stop_edma_engine - Disable eDMA engine
1199 *      @port_mmio: io base address
1200 *
1201 *      LOCKING:
1202 *      Inherited from caller.
1203 */
1204static int mv_stop_edma_engine(void __iomem *port_mmio)
1205{
1206        int i;
1207
1208        /* Disable eDMA.  The disable bit auto clears. */
1209        writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1210
1211        /* Wait for the chip to confirm eDMA is off. */
1212        for (i = 10000; i > 0; i--) {
1213                u32 reg = readl(port_mmio + EDMA_CMD);
1214                if (!(reg & EDMA_EN))
1215                        return 0;
1216                udelay(10);
1217        }
1218        return -EIO;
1219}
1220
1221static int mv_stop_edma(struct ata_port *ap)
1222{
1223        void __iomem *port_mmio = mv_ap_base(ap);
1224        struct mv_port_priv *pp = ap->private_data;
1225        int err = 0;
1226
1227        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1228                return 0;
1229        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1230        mv_wait_for_edma_empty_idle(ap);
1231        if (mv_stop_edma_engine(port_mmio)) {
1232                ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
1233                err = -EIO;
1234        }
1235        mv_edma_cfg(ap, 0, 0);
1236        return err;
1237}
1238
1239#ifdef ATA_DEBUG
1240static void mv_dump_mem(void __iomem *start, unsigned bytes)
1241{
1242        int b, w;
1243        for (b = 0; b < bytes; ) {
1244                DPRINTK("%p: ", start + b);
1245                for (w = 0; b < bytes && w < 4; w++) {
1246                        printk("%08x ", readl(start + b));
1247                        b += sizeof(u32);
1248                }
1249                printk("\n");
1250        }
1251}
1252#endif
1253
1254static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1255{
1256#ifdef ATA_DEBUG
1257        int b, w;
1258        u32 dw;
1259        for (b = 0; b < bytes; ) {
1260                DPRINTK("%02x: ", b);
1261                for (w = 0; b < bytes && w < 4; w++) {
1262                        (void) pci_read_config_dword(pdev, b, &dw);
1263                        printk("%08x ", dw);
1264                        b += sizeof(u32);
1265                }
1266                printk("\n");
1267        }
1268#endif
1269}
1270static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1271                             struct pci_dev *pdev)
1272{
1273#ifdef ATA_DEBUG
1274        void __iomem *hc_base = mv_hc_base(mmio_base,
1275                                           port >> MV_PORT_HC_SHIFT);
1276        void __iomem *port_base;
1277        int start_port, num_ports, p, start_hc, num_hcs, hc;
1278
1279        if (0 > port) {
1280                start_hc = start_port = 0;
1281                num_ports = 8;          /* shld be benign for 4 port devs */
1282                num_hcs = 2;
1283        } else {
1284                start_hc = port >> MV_PORT_HC_SHIFT;
1285                start_port = port;
1286                num_ports = num_hcs = 1;
1287        }
1288        DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1289                num_ports > 1 ? num_ports - 1 : start_port);
1290
1291        if (NULL != pdev) {
1292                DPRINTK("PCI config space regs:\n");
1293                mv_dump_pci_cfg(pdev, 0x68);
1294        }
1295        DPRINTK("PCI regs:\n");
1296        mv_dump_mem(mmio_base+0xc00, 0x3c);
1297        mv_dump_mem(mmio_base+0xd00, 0x34);
1298        mv_dump_mem(mmio_base+0xf00, 0x4);
1299        mv_dump_mem(mmio_base+0x1d00, 0x6c);
1300        for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1301                hc_base = mv_hc_base(mmio_base, hc);
1302                DPRINTK("HC regs (HC %i):\n", hc);
1303                mv_dump_mem(hc_base, 0x1c);
1304        }
1305        for (p = start_port; p < start_port + num_ports; p++) {
1306                port_base = mv_port_base(mmio_base, p);
1307                DPRINTK("EDMA regs (port %i):\n", p);
1308                mv_dump_mem(port_base, 0x54);
1309                DPRINTK("SATA regs (port %i):\n", p);
1310                mv_dump_mem(port_base+0x300, 0x60);
1311        }
1312#endif
1313}
1314
1315static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1316{
1317        unsigned int ofs;
1318
1319        switch (sc_reg_in) {
1320        case SCR_STATUS:
1321        case SCR_CONTROL:
1322        case SCR_ERROR:
1323                ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1324                break;
1325        case SCR_ACTIVE:
1326                ofs = SATA_ACTIVE;   /* active is not with the others */
1327                break;
1328        default:
1329                ofs = 0xffffffffU;
1330                break;
1331        }
1332        return ofs;
1333}
1334
1335static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1336{
1337        unsigned int ofs = mv_scr_offset(sc_reg_in);
1338
1339        if (ofs != 0xffffffffU) {
1340                *val = readl(mv_ap_base(link->ap) + ofs);
1341                return 0;
1342        } else
1343                return -EINVAL;
1344}
1345
1346static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1347{
1348        unsigned int ofs = mv_scr_offset(sc_reg_in);
1349
1350        if (ofs != 0xffffffffU) {
1351                void __iomem *addr = mv_ap_base(link->ap) + ofs;
1352                if (sc_reg_in == SCR_CONTROL) {
1353                        /*
1354                         * Workaround for 88SX60x1 FEr SATA#26:
1355                         *
1356                         * COMRESETs have to take care not to accidently
1357                         * put the drive to sleep when writing SCR_CONTROL.
1358                         * Setting bits 12..15 prevents this problem.
1359                         *
1360                         * So if we see an outbound COMMRESET, set those bits.
1361                         * Ditto for the followup write that clears the reset.
1362                         *
1363                         * The proprietary driver does this for
1364                         * all chip versions, and so do we.
1365                         */
1366                        if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1367                                val |= 0xf000;
1368                }
1369                writelfl(val, addr);
1370                return 0;
1371        } else
1372                return -EINVAL;
1373}
1374
1375static void mv6_dev_config(struct ata_device *adev)
1376{
1377        /*
1378         * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1379         *
1380         * Gen-II does not support NCQ over a port multiplier
1381         *  (no FIS-based switching).
1382         */
1383        if (adev->flags & ATA_DFLAG_NCQ) {
1384                if (sata_pmp_attached(adev->link->ap)) {
1385                        adev->flags &= ~ATA_DFLAG_NCQ;
1386                        ata_dev_printk(adev, KERN_INFO,
1387                                "NCQ disabled for command-based switching\n");
1388                }
1389        }
1390}
1391
1392static int mv_qc_defer(struct ata_queued_cmd *qc)
1393{
1394        struct ata_link *link = qc->dev->link;
1395        struct ata_port *ap = link->ap;
1396        struct mv_port_priv *pp = ap->private_data;
1397
1398        /*
1399         * Don't allow new commands if we're in a delayed EH state
1400         * for NCQ and/or FIS-based switching.
1401         */
1402        if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1403                return ATA_DEFER_PORT;
1404
1405        /* PIO commands need exclusive link: no other commands [DMA or PIO]
1406         * can run concurrently.
1407         * set excl_link when we want to send a PIO command in DMA mode
1408         * or a non-NCQ command in NCQ mode.
1409         * When we receive a command from that link, and there are no
1410         * outstanding commands, mark a flag to clear excl_link and let
1411         * the command go through.
1412         */
1413        if (unlikely(ap->excl_link)) {
1414                if (link == ap->excl_link) {
1415                        if (ap->nr_active_links)
1416                                return ATA_DEFER_PORT;
1417                        qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1418                        return 0;
1419                } else
1420                        return ATA_DEFER_PORT;
1421        }
1422
1423        /*
1424         * If the port is completely idle, then allow the new qc.
1425         */
1426        if (ap->nr_active_links == 0)
1427                return 0;
1428
1429        /*
1430         * The port is operating in host queuing mode (EDMA) with NCQ
1431         * enabled, allow multiple NCQ commands.  EDMA also allows
1432         * queueing multiple DMA commands but libata core currently
1433         * doesn't allow it.
1434         */
1435        if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1436            (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1437                if (ata_is_ncq(qc->tf.protocol))
1438                        return 0;
1439                else {
1440                        ap->excl_link = link;
1441                        return ATA_DEFER_PORT;
1442                }
1443        }
1444
1445        return ATA_DEFER_PORT;
1446}
1447
1448static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1449{
1450        struct mv_port_priv *pp = ap->private_data;
1451        void __iomem *port_mmio;
1452
1453        u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1454        u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1455        u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1456
1457        ltmode   = *old_ltmode & ~LTMODE_BIT8;
1458        haltcond = *old_haltcond | EDMA_ERR_DEV;
1459
1460        if (want_fbs) {
1461                fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1462                ltmode = *old_ltmode | LTMODE_BIT8;
1463                if (want_ncq)
1464                        haltcond &= ~EDMA_ERR_DEV;
1465                else
1466                        fiscfg |=  FISCFG_WAIT_DEV_ERR;
1467        } else {
1468                fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1469        }
1470
1471        port_mmio = mv_ap_base(ap);
1472        mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1473        mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1474        mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1475}
1476
1477static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1478{
1479        struct mv_host_priv *hpriv = ap->host->private_data;
1480        u32 old, new;
1481
1482        /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1483        old = readl(hpriv->base + GPIO_PORT_CTL);
1484        if (want_ncq)
1485                new = old | (1 << 22);
1486        else
1487                new = old & ~(1 << 22);
1488        if (new != old)
1489                writel(new, hpriv->base + GPIO_PORT_CTL);
1490}
1491
1492/**
1493 *      mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1494 *      @ap: Port being initialized
1495 *
1496 *      There are two DMA modes on these chips:  basic DMA, and EDMA.
1497 *
1498 *      Bit-0 of the "EDMA RESERVED" register enables/disables use
1499 *      of basic DMA on the GEN_IIE versions of the chips.
1500 *
1501 *      This bit survives EDMA resets, and must be set for basic DMA
1502 *      to function, and should be cleared when EDMA is active.
1503 */
1504static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1505{
1506        struct mv_port_priv *pp = ap->private_data;
1507        u32 new, *old = &pp->cached.unknown_rsvd;
1508
1509        if (enable_bmdma)
1510                new = *old | 1;
1511        else
1512                new = *old & ~1;
1513        mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1514}
1515
1516/*
1517 * SOC chips have an issue whereby the HDD LEDs don't always blink
1518 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1519 * of the SOC takes care of it, generating a steady blink rate when
1520 * any drive on the chip is active.
1521 *
1522 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1523 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1524 *
1525 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1526 * LED operation works then, and provides better (more accurate) feedback.
1527 *
1528 * Note that this code assumes that an SOC never has more than one HC onboard.
1529 */
1530static void mv_soc_led_blink_enable(struct ata_port *ap)
1531{
1532        struct ata_host *host = ap->host;
1533        struct mv_host_priv *hpriv = host->private_data;
1534        void __iomem *hc_mmio;
1535        u32 led_ctrl;
1536
1537        if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1538                return;
1539        hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1540        hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1541        led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1542        writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1543}
1544
1545static void mv_soc_led_blink_disable(struct ata_port *ap)
1546{
1547        struct ata_host *host = ap->host;
1548        struct mv_host_priv *hpriv = host->private_data;
1549        void __iomem *hc_mmio;
1550        u32 led_ctrl;
1551        unsigned int port;
1552
1553        if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1554                return;
1555
1556        /* disable led-blink only if no ports are using NCQ */
1557        for (port = 0; port < hpriv->n_ports; port++) {
1558                struct ata_port *this_ap = host->ports[port];
1559                struct mv_port_priv *pp = this_ap->private_data;
1560
1561                if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1562                        return;
1563        }
1564
1565        hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1566        hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1567        led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1568        writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1569}
1570
1571static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1572{
1573        u32 cfg;
1574        struct mv_port_priv *pp    = ap->private_data;
1575        struct mv_host_priv *hpriv = ap->host->private_data;
1576        void __iomem *port_mmio    = mv_ap_base(ap);
1577
1578        /* set up non-NCQ EDMA configuration */
1579        cfg = EDMA_CFG_Q_DEPTH;         /* always 0x1f for *all* chips */
1580        pp->pp_flags &=
1581          ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1582
1583        if (IS_GEN_I(hpriv))
1584                cfg |= (1 << 8);        /* enab config burst size mask */
1585
1586        else if (IS_GEN_II(hpriv)) {
1587                cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1588                mv_60x1_errata_sata25(ap, want_ncq);
1589
1590        } else if (IS_GEN_IIE(hpriv)) {
1591                int want_fbs = sata_pmp_attached(ap);
1592                /*
1593                 * Possible future enhancement:
1594                 *
1595                 * The chip can use FBS with non-NCQ, if we allow it,
1596                 * But first we need to have the error handling in place
1597                 * for this mode (datasheet section 7.3.15.4.2.3).
1598                 * So disallow non-NCQ FBS for now.
1599                 */
1600                want_fbs &= want_ncq;
1601
1602                mv_config_fbs(ap, want_ncq, want_fbs);
1603
1604                if (want_fbs) {
1605                        pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1606                        cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1607                }
1608
1609                cfg |= (1 << 23);       /* do not mask PM field in rx'd FIS */
1610                if (want_edma) {
1611                        cfg |= (1 << 22); /* enab 4-entry host queue cache */
1612                        if (!IS_SOC(hpriv))
1613                                cfg |= (1 << 18); /* enab early completion */
1614                }
1615                if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1616                        cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1617                mv_bmdma_enable_iie(ap, !want_edma);
1618
1619                if (IS_SOC(hpriv)) {
1620                        if (want_ncq)
1621                                mv_soc_led_blink_enable(ap);
1622                        else
1623                                mv_soc_led_blink_disable(ap);
1624                }
1625        }
1626
1627        if (want_ncq) {
1628                cfg |= EDMA_CFG_NCQ;
1629                pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1630        }
1631
1632        writelfl(cfg, port_mmio + EDMA_CFG);
1633}
1634
1635static void mv_port_free_dma_mem(struct ata_port *ap)
1636{
1637        struct mv_host_priv *hpriv = ap->host->private_data;
1638        struct mv_port_priv *pp = ap->private_data;
1639        int tag;
1640
1641        if (pp->crqb) {
1642                dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1643                pp->crqb = NULL;
1644        }
1645        if (pp->crpb) {
1646                dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1647                pp->crpb = NULL;
1648        }
1649        /*
1650         * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1651         * For later hardware, we have one unique sg_tbl per NCQ tag.
1652         */
1653        for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1654                if (pp->sg_tbl[tag]) {
1655                        if (tag == 0 || !IS_GEN_I(hpriv))
1656                                dma_pool_free(hpriv->sg_tbl_pool,
1657                                              pp->sg_tbl[tag],
1658                                              pp->sg_tbl_dma[tag]);
1659                        pp->sg_tbl[tag] = NULL;
1660                }
1661        }
1662}
1663
1664/**
1665 *      mv_port_start - Port specific init/start routine.
1666 *      @ap: ATA channel to manipulate
1667 *
1668 *      Allocate and point to DMA memory, init port private memory,
1669 *      zero indices.
1670 *
1671 *      LOCKING:
1672 *      Inherited from caller.
1673 */
1674static int mv_port_start(struct ata_port *ap)
1675{
1676        struct device *dev = ap->host->dev;
1677        struct mv_host_priv *hpriv = ap->host->private_data;
1678        struct mv_port_priv *pp;
1679        unsigned long flags;
1680        int tag;
1681
1682        pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1683        if (!pp)
1684                return -ENOMEM;
1685        ap->private_data = pp;
1686
1687        pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1688        if (!pp->crqb)
1689                return -ENOMEM;
1690        memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1691
1692        pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1693        if (!pp->crpb)
1694                goto out_port_free_dma_mem;
1695        memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1696
1697        /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1698        if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1699                ap->flags |= ATA_FLAG_AN;
1700        /*
1701         * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1702         * For later hardware, we need one unique sg_tbl per NCQ tag.
1703         */
1704        for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1705                if (tag == 0 || !IS_GEN_I(hpriv)) {
1706                        pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1707                                              GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1708                        if (!pp->sg_tbl[tag])
1709                                goto out_port_free_dma_mem;
1710                } else {
1711                        pp->sg_tbl[tag]     = pp->sg_tbl[0];
1712                        pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1713                }
1714        }
1715
1716        spin_lock_irqsave(ap->lock, flags);
1717        mv_save_cached_regs(ap);
1718        mv_edma_cfg(ap, 0, 0);
1719        spin_unlock_irqrestore(ap->lock, flags);
1720
1721        return 0;
1722
1723out_port_free_dma_mem:
1724        mv_port_free_dma_mem(ap);
1725        return -ENOMEM;
1726}
1727
1728/**
1729 *      mv_port_stop - Port specific cleanup/stop routine.
1730 *      @ap: ATA channel to manipulate
1731 *
1732 *      Stop DMA, cleanup port memory.
1733 *
1734 *      LOCKING:
1735 *      This routine uses the host lock to protect the DMA stop.
1736 */
1737static void mv_port_stop(struct ata_port *ap)
1738{
1739        unsigned long flags;
1740
1741        spin_lock_irqsave(ap->lock, flags);
1742        mv_stop_edma(ap);
1743        mv_enable_port_irqs(ap, 0);
1744        spin_unlock_irqrestore(ap->lock, flags);
1745        mv_port_free_dma_mem(ap);
1746}
1747
1748/**
1749 *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1750 *      @qc: queued command whose SG list to source from
1751 *
1752 *      Populate the SG list and mark the last entry.
1753 *
1754 *      LOCKING:
1755 *      Inherited from caller.
1756 */
1757static void mv_fill_sg(struct ata_queued_cmd *qc)
1758{
1759        struct mv_port_priv *pp = qc->ap->private_data;
1760        struct scatterlist *sg;
1761        struct mv_sg *mv_sg, *last_sg = NULL;
1762        unsigned int si;
1763
1764        mv_sg = pp->sg_tbl[qc->tag];
1765        for_each_sg(qc->sg, sg, qc->n_elem, si) {
1766                dma_addr_t addr = sg_dma_address(sg);
1767                u32 sg_len = sg_dma_len(sg);
1768
1769                while (sg_len) {
1770                        u32 offset = addr & 0xffff;
1771                        u32 len = sg_len;
1772
1773                        if (offset + len > 0x10000)
1774                                len = 0x10000 - offset;
1775
1776                        mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1777                        mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1778                        mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1779                        mv_sg->reserved = 0;
1780
1781                        sg_len -= len;
1782                        addr += len;
1783
1784                        last_sg = mv_sg;
1785                        mv_sg++;
1786                }
1787        }
1788
1789        if (likely(last_sg))
1790                last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1791        mb(); /* ensure data structure is visible to the chipset */
1792}
1793
1794static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1795{
1796        u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1797                (last ? CRQB_CMD_LAST : 0);
1798        *cmdw = cpu_to_le16(tmp);
1799}
1800
1801/**
1802 *      mv_sff_irq_clear - Clear hardware interrupt after DMA.
1803 *      @ap: Port associated with this ATA transaction.
1804 *
1805 *      We need this only for ATAPI bmdma transactions,
1806 *      as otherwise we experience spurious interrupts
1807 *      after libata-sff handles the bmdma interrupts.
1808 */
1809static void mv_sff_irq_clear(struct ata_port *ap)
1810{
1811        mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1812}
1813
1814/**
1815 *      mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1816 *      @qc: queued command to check for chipset/DMA compatibility.
1817 *
1818 *      The bmdma engines cannot handle speculative data sizes
1819 *      (bytecount under/over flow).  So only allow DMA for
1820 *      data transfer commands with known data sizes.
1821 *
1822 *      LOCKING:
1823 *      Inherited from caller.
1824 */
1825static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1826{
1827        struct scsi_cmnd *scmd = qc->scsicmd;
1828
1829        if (scmd) {
1830                switch (scmd->cmnd[0]) {
1831                case READ_6:
1832                case READ_10:
1833                case READ_12:
1834                case WRITE_6:
1835                case WRITE_10:
1836                case WRITE_12:
1837                case GPCMD_READ_CD:
1838                case GPCMD_SEND_DVD_STRUCTURE:
1839                case GPCMD_SEND_CUE_SHEET:
1840                        return 0; /* DMA is safe */
1841                }
1842        }
1843        return -EOPNOTSUPP; /* use PIO instead */
1844}
1845
1846/**
1847 *      mv_bmdma_setup - Set up BMDMA transaction
1848 *      @qc: queued command to prepare DMA for.
1849 *
1850 *      LOCKING:
1851 *      Inherited from caller.
1852 */
1853static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1854{
1855        struct ata_port *ap = qc->ap;
1856        void __iomem *port_mmio = mv_ap_base(ap);
1857        struct mv_port_priv *pp = ap->private_data;
1858
1859        mv_fill_sg(qc);
1860
1861        /* clear all DMA cmd bits */
1862        writel(0, port_mmio + BMDMA_CMD);
1863
1864        /* load PRD table addr. */
1865        writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1866                port_mmio + BMDMA_PRD_HIGH);
1867        writelfl(pp->sg_tbl_dma[qc->tag],
1868                port_mmio + BMDMA_PRD_LOW);
1869
1870        /* issue r/w command */
1871        ap->ops->sff_exec_command(ap, &qc->tf);
1872}
1873
1874/**
1875 *      mv_bmdma_start - Start a BMDMA transaction
1876 *      @qc: queued command to start DMA on.
1877 *
1878 *      LOCKING:
1879 *      Inherited from caller.
1880 */
1881static void mv_bmdma_start(struct ata_queued_cmd *qc)
1882{
1883        struct ata_port *ap = qc->ap;
1884        void __iomem *port_mmio = mv_ap_base(ap);
1885        unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1886        u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1887
1888        /* start host DMA transaction */
1889        writelfl(cmd, port_mmio + BMDMA_CMD);
1890}
1891
1892/**
1893 *      mv_bmdma_stop - Stop BMDMA transfer
1894 *      @qc: queued command to stop DMA on.
1895 *
1896 *      Clears the ATA_DMA_START flag in the bmdma control register
1897 *
1898 *      LOCKING:
1899 *      Inherited from caller.
1900 */
1901static void mv_bmdma_stop_ap(struct ata_port *ap)
1902{
1903        void __iomem *port_mmio = mv_ap_base(ap);
1904        u32 cmd;
1905
1906        /* clear start/stop bit */
1907        cmd = readl(port_mmio + BMDMA_CMD);
1908        if (cmd & ATA_DMA_START) {
1909                cmd &= ~ATA_DMA_START;
1910                writelfl(cmd, port_mmio + BMDMA_CMD);
1911
1912                /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1913                ata_sff_dma_pause(ap);
1914        }
1915}
1916
1917static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1918{
1919        mv_bmdma_stop_ap(qc->ap);
1920}
1921
1922/**
1923 *      mv_bmdma_status - Read BMDMA status
1924 *      @ap: port for which to retrieve DMA status.
1925 *
1926 *      Read and return equivalent of the sff BMDMA status register.
1927 *
1928 *      LOCKING:
1929 *      Inherited from caller.
1930 */
1931static u8 mv_bmdma_status(struct ata_port *ap)
1932{
1933        void __iomem *port_mmio = mv_ap_base(ap);
1934        u32 reg, status;
1935
1936        /*
1937         * Other bits are valid only if ATA_DMA_ACTIVE==0,
1938         * and the ATA_DMA_INTR bit doesn't exist.
1939         */
1940        reg = readl(port_mmio + BMDMA_STATUS);
1941        if (reg & ATA_DMA_ACTIVE)
1942                status = ATA_DMA_ACTIVE;
1943        else if (reg & ATA_DMA_ERR)
1944                status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1945        else {
1946                /*
1947                 * Just because DMA_ACTIVE is 0 (DMA completed),
1948                 * this does _not_ mean the device is "done".
1949                 * So we should not yet be signalling ATA_DMA_INTR
1950                 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1951                 */
1952                mv_bmdma_stop_ap(ap);
1953                if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1954                        status = 0;
1955                else
1956                        status = ATA_DMA_INTR;
1957        }
1958        return status;
1959}
1960
1961static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1962{
1963        struct ata_taskfile *tf = &qc->tf;
1964        /*
1965         * Workaround for 88SX60x1 FEr SATA#24.
1966         *
1967         * Chip may corrupt WRITEs if multi_count >= 4kB.
1968         * Note that READs are unaffected.
1969         *
1970         * It's not clear if this errata really means "4K bytes",
1971         * or if it always happens for multi_count > 7
1972         * regardless of device sector_size.
1973         *
1974         * So, for safety, any write with multi_count > 7
1975         * gets converted here into a regular PIO write instead:
1976         */
1977        if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1978                if (qc->dev->multi_count > 7) {
1979                        switch (tf->command) {
1980                        case ATA_CMD_WRITE_MULTI:
1981                                tf->command = ATA_CMD_PIO_WRITE;
1982                                break;
1983                        case ATA_CMD_WRITE_MULTI_FUA_EXT:
1984                                tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1985                                /* fall through */
1986                        case ATA_CMD_WRITE_MULTI_EXT:
1987                                tf->command = ATA_CMD_PIO_WRITE_EXT;
1988                                break;
1989                        }
1990                }
1991        }
1992}
1993
1994/**
1995 *      mv_qc_prep - Host specific command preparation.
1996 *      @qc: queued command to prepare
1997 *
1998 *      This routine simply redirects to the general purpose routine
1999 *      if command is not DMA.  Else, it handles prep of the CRQB
2000 *      (command request block), does some sanity checking, and calls
2001 *      the SG load routine.
2002 *
2003 *      LOCKING:
2004 *      Inherited from caller.
2005 */
2006static void mv_qc_prep(struct ata_queued_cmd *qc)
2007{
2008        struct ata_port *ap = qc->ap;
2009        struct mv_port_priv *pp = ap->private_data;
2010        __le16 *cw;
2011        struct ata_taskfile *tf = &qc->tf;
2012        u16 flags = 0;
2013        unsigned in_index;
2014
2015        switch (tf->protocol) {
2016        case ATA_PROT_DMA:
2017                if (tf->command == ATA_CMD_DSM)
2018                        return;
2019                /* fall-thru */
2020        case ATA_PROT_NCQ:
2021                break;  /* continue below */
2022        case ATA_PROT_PIO:
2023                mv_rw_multi_errata_sata24(qc);
2024                return;
2025        default:
2026                return;
2027        }
2028
2029        /* Fill in command request block
2030         */
2031        if (!(tf->flags & ATA_TFLAG_WRITE))
2032                flags |= CRQB_FLAG_READ;
2033        WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2034        flags |= qc->tag << CRQB_TAG_SHIFT;
2035        flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2036
2037        /* get current queue index from software */
2038        in_index = pp->req_idx;
2039
2040        pp->crqb[in_index].sg_addr =
2041                cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2042        pp->crqb[in_index].sg_addr_hi =
2043                cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2044        pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2045
2046        cw = &pp->crqb[in_index].ata_cmd[0];
2047
2048        /* Sadly, the CRQB cannot accomodate all registers--there are
2049         * only 11 bytes...so we must pick and choose required
2050         * registers based on the command.  So, we drop feature and
2051         * hob_feature for [RW] DMA commands, but they are needed for
2052         * NCQ.  NCQ will drop hob_nsect, which is not needed there
2053         * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2054         */
2055        switch (tf->command) {
2056        case ATA_CMD_READ:
2057        case ATA_CMD_READ_EXT:
2058        case ATA_CMD_WRITE:
2059        case ATA_CMD_WRITE_EXT:
2060        case ATA_CMD_WRITE_FUA_EXT:
2061                mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2062                break;
2063        case ATA_CMD_FPDMA_READ:
2064        case ATA_CMD_FPDMA_WRITE:
2065                mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2066                mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2067                break;
2068        default:
2069                /* The only other commands EDMA supports in non-queued and
2070                 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2071                 * of which are defined/used by Linux.  If we get here, this
2072                 * driver needs work.
2073                 *
2074                 * FIXME: modify libata to give qc_prep a return value and
2075                 * return error here.
2076                 */
2077                BUG_ON(tf->command);
2078                break;
2079        }
2080        mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2081        mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2082        mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2083        mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2084        mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2085        mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2086        mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2087        mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2088        mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);    /* last */
2089
2090        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2091                return;
2092        mv_fill_sg(qc);
2093}
2094
2095/**
2096 *      mv_qc_prep_iie - Host specific command preparation.
2097 *      @qc: queued command to prepare
2098 *
2099 *      This routine simply redirects to the general purpose routine
2100 *      if command is not DMA.  Else, it handles prep of the CRQB
2101 *      (command request block), does some sanity checking, and calls
2102 *      the SG load routine.
2103 *
2104 *      LOCKING:
2105 *      Inherited from caller.
2106 */
2107static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2108{
2109        struct ata_port *ap = qc->ap;
2110        struct mv_port_priv *pp = ap->private_data;
2111        struct mv_crqb_iie *crqb;
2112        struct ata_taskfile *tf = &qc->tf;
2113        unsigned in_index;
2114        u32 flags = 0;
2115
2116        if ((tf->protocol != ATA_PROT_DMA) &&
2117            (tf->protocol != ATA_PROT_NCQ))
2118                return;
2119        if (tf->command == ATA_CMD_DSM)
2120                return;  /* use bmdma for this */
2121
2122        /* Fill in Gen IIE command request block */
2123        if (!(tf->flags & ATA_TFLAG_WRITE))
2124                flags |= CRQB_FLAG_READ;
2125
2126        WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2127        flags |= qc->tag << CRQB_TAG_SHIFT;
2128        flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2129        flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2130
2131        /* get current queue index from software */
2132        in_index = pp->req_idx;
2133
2134        crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2135        crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2136        crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2137        crqb->flags = cpu_to_le32(flags);
2138
2139        crqb->ata_cmd[0] = cpu_to_le32(
2140                        (tf->command << 16) |
2141                        (tf->feature << 24)
2142                );
2143        crqb->ata_cmd[1] = cpu_to_le32(
2144                        (tf->lbal << 0) |
2145                        (tf->lbam << 8) |
2146                        (tf->lbah << 16) |
2147                        (tf->device << 24)
2148                );
2149        crqb->ata_cmd[2] = cpu_to_le32(
2150                        (tf->hob_lbal << 0) |
2151                        (tf->hob_lbam << 8) |
2152                        (tf->hob_lbah << 16) |
2153                        (tf->hob_feature << 24)
2154                );
2155        crqb->ata_cmd[3] = cpu_to_le32(
2156                        (tf->nsect << 0) |
2157                        (tf->hob_nsect << 8)
2158                );
2159
2160        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2161                return;
2162        mv_fill_sg(qc);
2163}
2164
2165/**
2166 *      mv_sff_check_status - fetch device status, if valid
2167 *      @ap: ATA port to fetch status from
2168 *
2169 *      When using command issue via mv_qc_issue_fis(),
2170 *      the initial ATA_BUSY state does not show up in the
2171 *      ATA status (shadow) register.  This can confuse libata!
2172 *
2173 *      So we have a hook here to fake ATA_BUSY for that situation,
2174 *      until the first time a BUSY, DRQ, or ERR bit is seen.
2175 *
2176 *      The rest of the time, it simply returns the ATA status register.
2177 */
2178static u8 mv_sff_check_status(struct ata_port *ap)
2179{
2180        u8 stat = ioread8(ap->ioaddr.status_addr);
2181        struct mv_port_priv *pp = ap->private_data;
2182
2183        if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2184                if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2185                        pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2186                else
2187                        stat = ATA_BUSY;
2188        }
2189        return stat;
2190}
2191
2192/**
2193 *      mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2194 *      @fis: fis to be sent
2195 *      @nwords: number of 32-bit words in the fis
2196 */
2197static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2198{
2199        void __iomem *port_mmio = mv_ap_base(ap);
2200        u32 ifctl, old_ifctl, ifstat;
2201        int i, timeout = 200, final_word = nwords - 1;
2202
2203        /* Initiate FIS transmission mode */
2204        old_ifctl = readl(port_mmio + SATA_IFCTL);
2205        ifctl = 0x100 | (old_ifctl & 0xf);
2206        writelfl(ifctl, port_mmio + SATA_IFCTL);
2207
2208        /* Send all words of the FIS except for the final word */
2209        for (i = 0; i < final_word; ++i)
2210                writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2211
2212        /* Flag end-of-transmission, and then send the final word */
2213        writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2214        writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2215
2216        /*
2217         * Wait for FIS transmission to complete.
2218         * This typically takes just a single iteration.
2219         */
2220        do {
2221                ifstat = readl(port_mmio + SATA_IFSTAT);
2222        } while (!(ifstat & 0x1000) && --timeout);
2223
2224        /* Restore original port configuration */
2225        writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2226
2227        /* See if it worked */
2228        if ((ifstat & 0x3000) != 0x1000) {
2229                ata_port_printk(ap, KERN_WARNING,
2230                                "%s transmission error, ifstat=%08x\n",
2231                                __func__, ifstat);
2232                return AC_ERR_OTHER;
2233        }
2234        return 0;
2235}
2236
2237/**
2238 *      mv_qc_issue_fis - Issue a command directly as a FIS
2239 *      @qc: queued command to start
2240 *
2241 *      Note that the ATA shadow registers are not updated
2242 *      after command issue, so the device will appear "READY"
2243 *      if polled, even while it is BUSY processing the command.
2244 *
2245 *      So we use a status hook to fake ATA_BUSY until the drive changes state.
2246 *
2247 *      Note: we don't get updated shadow regs on *completion*
2248 *      of non-data commands. So avoid sending them via this function,
2249 *      as they will appear to have completed immediately.
2250 *
2251 *      GEN_IIE has special registers that we could get the result tf from,
2252 *      but earlier chipsets do not.  For now, we ignore those registers.
2253 */
2254static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2255{
2256        struct ata_port *ap = qc->ap;
2257        struct mv_port_priv *pp = ap->private_data;
2258        struct ata_link *link = qc->dev->link;
2259        u32 fis[5];
2260        int err = 0;
2261
2262        ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2263        err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2264        if (err)
2265                return err;
2266
2267        switch (qc->tf.protocol) {
2268        case ATAPI_PROT_PIO:
2269                pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2270                /* fall through */
2271        case ATAPI_PROT_NODATA:
2272                ap->hsm_task_state = HSM_ST_FIRST;
2273                break;
2274        case ATA_PROT_PIO:
2275                pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2276                if (qc->tf.flags & ATA_TFLAG_WRITE)
2277                        ap->hsm_task_state = HSM_ST_FIRST;
2278                else
2279                        ap->hsm_task_state = HSM_ST;
2280                break;
2281        default:
2282                ap->hsm_task_state = HSM_ST_LAST;
2283                break;
2284        }
2285
2286        if (qc->tf.flags & ATA_TFLAG_POLLING)
2287                ata_sff_queue_pio_task(link, 0);
2288        return 0;
2289}
2290
2291/**
2292 *      mv_qc_issue - Initiate a command to the host
2293 *      @qc: queued command to start
2294 *
2295 *      This routine simply redirects to the general purpose routine
2296 *      if command is not DMA.  Else, it sanity checks our local
2297 *      caches of the request producer/consumer indices then enables
2298 *      DMA and bumps the request producer index.
2299 *
2300 *      LOCKING:
2301 *      Inherited from caller.
2302 */
2303static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2304{
2305        static int limit_warnings = 10;
2306        struct ata_port *ap = qc->ap;
2307        void __iomem *port_mmio = mv_ap_base(ap);
2308        struct mv_port_priv *pp = ap->private_data;
2309        u32 in_index;
2310        unsigned int port_irqs;
2311
2312        pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2313
2314        switch (qc->tf.protocol) {
2315        case ATA_PROT_DMA:
2316                if (qc->tf.command == ATA_CMD_DSM) {
2317                        if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2318                                return AC_ERR_OTHER;
2319                        break;  /* use bmdma for this */
2320                }
2321                /* fall thru */
2322        case ATA_PROT_NCQ:
2323                mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2324                pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2325                in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2326
2327                /* Write the request in pointer to kick the EDMA to life */
2328                writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2329                                        port_mmio + EDMA_REQ_Q_IN_PTR);
2330                return 0;
2331
2332        case ATA_PROT_PIO:
2333                /*
2334                 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2335                 *
2336                 * Someday, we might implement special polling workarounds
2337                 * for these, but it all seems rather unnecessary since we
2338                 * normally use only DMA for commands which transfer more
2339                 * than a single block of data.
2340                 *
2341                 * Much of the time, this could just work regardless.
2342                 * So for now, just log the incident, and allow the attempt.
2343                 */
2344                if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2345                        --limit_warnings;
2346                        ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2347                                        ": attempting PIO w/multiple DRQ: "
2348                                        "this may fail due to h/w errata\n");
2349                }
2350                /* drop through */
2351        case ATA_PROT_NODATA:
2352        case ATAPI_PROT_PIO:
2353        case ATAPI_PROT_NODATA:
2354                if (ap->flags & ATA_FLAG_PIO_POLLING)
2355                        qc->tf.flags |= ATA_TFLAG_POLLING;
2356                break;
2357        }
2358
2359        if (qc->tf.flags & ATA_TFLAG_POLLING)
2360                port_irqs = ERR_IRQ;    /* mask device interrupt when polling */
2361        else
2362                port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2363
2364        /*
2365         * We're about to send a non-EDMA capable command to the
2366         * port.  Turn off EDMA so there won't be problems accessing
2367         * shadow block, etc registers.
2368         */
2369        mv_stop_edma(ap);
2370        mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2371        mv_pmp_select(ap, qc->dev->link->pmp);
2372
2373        if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2374                struct mv_host_priv *hpriv = ap->host->private_data;
2375                /*
2376                 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2377                 *
2378                 * After any NCQ error, the READ_LOG_EXT command
2379                 * from libata-eh *must* use mv_qc_issue_fis().
2380                 * Otherwise it might fail, due to chip errata.
2381                 *
2382                 * Rather than special-case it, we'll just *always*
2383                 * use this method here for READ_LOG_EXT, making for
2384                 * easier testing.
2385                 */
2386                if (IS_GEN_II(hpriv))
2387                        return mv_qc_issue_fis(qc);
2388        }
2389        return ata_bmdma_qc_issue(qc);
2390}
2391
2392static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2393{
2394        struct mv_port_priv *pp = ap->private_data;
2395        struct ata_queued_cmd *qc;
2396
2397        if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2398                return NULL;
2399        qc = ata_qc_from_tag(ap, ap->link.active_tag);
2400        if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2401                return qc;
2402        return NULL;
2403}
2404
2405static void mv_pmp_error_handler(struct ata_port *ap)
2406{
2407        unsigned int pmp, pmp_map;
2408        struct mv_port_priv *pp = ap->private_data;
2409
2410        if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2411                /*
2412                 * Perform NCQ error analysis on failed PMPs
2413                 * before we freeze the port entirely.
2414                 *
2415                 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2416                 */
2417                pmp_map = pp->delayed_eh_pmp_map;
2418                pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2419                for (pmp = 0; pmp_map != 0; pmp++) {
2420                        unsigned int this_pmp = (1 << pmp);
2421                        if (pmp_map & this_pmp) {
2422                                struct ata_link *link = &ap->pmp_link[pmp];
2423                                pmp_map &= ~this_pmp;
2424                                ata_eh_analyze_ncq_error(link);
2425                        }
2426                }
2427                ata_port_freeze(ap);
2428        }
2429        sata_pmp_error_handler(ap);
2430}
2431
2432static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2433{
2434        void __iomem *port_mmio = mv_ap_base(ap);
2435
2436        return readl(port_mmio + SATA_TESTCTL) >> 16;
2437}
2438
2439static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2440{
2441        struct ata_eh_info *ehi;
2442        unsigned int pmp;
2443
2444        /*
2445         * Initialize EH info for PMPs which saw device errors
2446         */
2447        ehi = &ap->link.eh_info;
2448        for (pmp = 0; pmp_map != 0; pmp++) {
2449                unsigned int this_pmp = (1 << pmp);
2450                if (pmp_map & this_pmp) {
2451                        struct ata_link *link = &ap->pmp_link[pmp];
2452
2453                        pmp_map &= ~this_pmp;
2454                        ehi = &link->eh_info;
2455                        ata_ehi_clear_desc(ehi);
2456                        ata_ehi_push_desc(ehi, "dev err");
2457                        ehi->err_mask |= AC_ERR_DEV;
2458                        ehi->action |= ATA_EH_RESET;
2459                        ata_link_abort(link);
2460                }
2461        }
2462}
2463
2464static int mv_req_q_empty(struct ata_port *ap)
2465{
2466        void __iomem *port_mmio = mv_ap_base(ap);
2467        u32 in_ptr, out_ptr;
2468
2469        in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2470                        >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2471        out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2472                        >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2473        return (in_ptr == out_ptr);     /* 1 == queue_is_empty */
2474}
2475
2476static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2477{
2478        struct mv_port_priv *pp = ap->private_data;
2479        int failed_links;
2480        unsigned int old_map, new_map;
2481
2482        /*
2483         * Device error during FBS+NCQ operation:
2484         *
2485         * Set a port flag to prevent further I/O being enqueued.
2486         * Leave the EDMA running to drain outstanding commands from this port.
2487         * Perform the post-mortem/EH only when all responses are complete.
2488         * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2489         */
2490        if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2491                pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2492                pp->delayed_eh_pmp_map = 0;
2493        }
2494        old_map = pp->delayed_eh_pmp_map;
2495        new_map = old_map | mv_get_err_pmp_map(ap);
2496
2497        if (old_map != new_map) {
2498                pp->delayed_eh_pmp_map = new_map;
2499                mv_pmp_eh_prep(ap, new_map & ~old_map);
2500        }
2501        failed_links = hweight16(new_map);
2502
2503        ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2504                        "failed_links=%d nr_active_links=%d\n",
2505                        __func__, pp->delayed_eh_pmp_map,
2506                        ap->qc_active, failed_links,
2507                        ap->nr_active_links);
2508
2509        if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2510                mv_process_crpb_entries(ap, pp);
2511                mv_stop_edma(ap);
2512                mv_eh_freeze(ap);
2513                ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2514                return 1;       /* handled */
2515        }
2516        ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2517        return 1;       /* handled */
2518}
2519
2520static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2521{
2522        /*
2523         * Possible future enhancement:
2524         *
2525         * FBS+non-NCQ operation is not yet implemented.
2526         * See related notes in mv_edma_cfg().
2527         *
2528         * Device error during FBS+non-NCQ operation:
2529         *
2530         * We need to snapshot the shadow registers for each failed command.
2531         * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2532         */
2533        return 0;       /* not handled */
2534}
2535
2536static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2537{
2538        struct mv_port_priv *pp = ap->private_data;
2539
2540        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2541                return 0;       /* EDMA was not active: not handled */
2542        if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2543                return 0;       /* FBS was not active: not handled */
2544
2545        if (!(edma_err_cause & EDMA_ERR_DEV))
2546                return 0;       /* non DEV error: not handled */
2547        edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2548        if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2549                return 0;       /* other problems: not handled */
2550
2551        if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2552                /*
2553                 * EDMA should NOT have self-disabled for this case.
2554                 * If it did, then something is wrong elsewhere,
2555                 * and we cannot handle it here.
2556                 */
2557                if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2558                        ata_port_printk(ap, KERN_WARNING,
2559                                "%s: err_cause=0x%x pp_flags=0x%x\n",
2560                                __func__, edma_err_cause, pp->pp_flags);
2561                        return 0; /* not handled */
2562                }
2563                return mv_handle_fbs_ncq_dev_err(ap);
2564        } else {
2565                /*
2566                 * EDMA should have self-disabled for this case.
2567                 * If it did not, then something is wrong elsewhere,
2568                 * and we cannot handle it here.
2569                 */
2570                if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2571                        ata_port_printk(ap, KERN_WARNING,
2572                                "%s: err_cause=0x%x pp_flags=0x%x\n",
2573                                __func__, edma_err_cause, pp->pp_flags);
2574                        return 0; /* not handled */
2575                }
2576                return mv_handle_fbs_non_ncq_dev_err(ap);
2577        }
2578        return 0;       /* not handled */
2579}
2580
2581static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2582{
2583        struct ata_eh_info *ehi = &ap->link.eh_info;
2584        char *when = "idle";
2585
2586        ata_ehi_clear_desc(ehi);
2587        if (edma_was_enabled) {
2588                when = "EDMA enabled";
2589        } else {
2590                struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2591                if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2592                        when = "polling";
2593        }
2594        ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2595        ehi->err_mask |= AC_ERR_OTHER;
2596        ehi->action   |= ATA_EH_RESET;
2597        ata_port_freeze(ap);
2598}
2599
2600/**
2601 *      mv_err_intr - Handle error interrupts on the port
2602 *      @ap: ATA channel to manipulate
2603 *
2604 *      Most cases require a full reset of the chip's state machine,
2605 *      which also performs a COMRESET.
2606 *      Also, if the port disabled DMA, update our cached copy to match.
2607 *
2608 *      LOCKING:
2609 *      Inherited from caller.
2610 */
2611static void mv_err_intr(struct ata_port *ap)
2612{
2613        void __iomem *port_mmio = mv_ap_base(ap);
2614        u32 edma_err_cause, eh_freeze_mask, serr = 0;
2615        u32 fis_cause = 0;
2616        struct mv_port_priv *pp = ap->private_data;
2617        struct mv_host_priv *hpriv = ap->host->private_data;
2618        unsigned int action = 0, err_mask = 0;
2619        struct ata_eh_info *ehi = &ap->link.eh_info;
2620        struct ata_queued_cmd *qc;
2621        int abort = 0;
2622
2623        /*
2624         * Read and clear the SError and err_cause bits.
2625         * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2626         * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2627         */
2628        sata_scr_read(&ap->link, SCR_ERROR, &serr);
2629        sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2630
2631        edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2632        if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2633                fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2634                writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2635        }
2636        writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2637
2638        if (edma_err_cause & EDMA_ERR_DEV) {
2639                /*
2640                 * Device errors during FIS-based switching operation
2641                 * require special handling.
2642                 */
2643                if (mv_handle_dev_err(ap, edma_err_cause))
2644                        return;
2645        }
2646
2647        qc = mv_get_active_qc(ap);
2648        ata_ehi_clear_desc(ehi);
2649        ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2650                          edma_err_cause, pp->pp_flags);
2651
2652        if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2653                ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2654                if (fis_cause & FIS_IRQ_CAUSE_AN) {
2655                        u32 ec = edma_err_cause &
2656                               ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2657                        sata_async_notification(ap);
2658                        if (!ec)
2659                                return; /* Just an AN; no need for the nukes */
2660                        ata_ehi_push_desc(ehi, "SDB notify");
2661                }
2662        }
2663        /*
2664         * All generations share these EDMA error cause bits:
2665         */
2666        if (edma_err_cause & EDMA_ERR_DEV) {
2667                err_mask |= AC_ERR_DEV;
2668                action |= ATA_EH_RESET;
2669                ata_ehi_push_desc(ehi, "dev error");
2670        }
2671        if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2672                        EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2673                        EDMA_ERR_INTRL_PAR)) {
2674                err_mask |= AC_ERR_ATA_BUS;
2675                action |= ATA_EH_RESET;
2676                ata_ehi_push_desc(ehi, "parity error");
2677        }
2678        if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2679                ata_ehi_hotplugged(ehi);
2680                ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2681                        "dev disconnect" : "dev connect");
2682                action |= ATA_EH_RESET;
2683        }
2684
2685        /*
2686         * Gen-I has a different SELF_DIS bit,
2687         * different FREEZE bits, and no SERR bit:
2688         */
2689        if (IS_GEN_I(hpriv)) {
2690                eh_freeze_mask = EDMA_EH_FREEZE_5;
2691                if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2692                        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2693                        ata_ehi_push_desc(ehi, "EDMA self-disable");
2694                }
2695        } else {
2696                eh_freeze_mask = EDMA_EH_FREEZE;
2697                if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2698                        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2699                        ata_ehi_push_desc(ehi, "EDMA self-disable");
2700                }
2701                if (edma_err_cause & EDMA_ERR_SERR) {
2702                        ata_ehi_push_desc(ehi, "SError=%08x", serr);
2703                        err_mask |= AC_ERR_ATA_BUS;
2704                        action |= ATA_EH_RESET;
2705                }
2706        }
2707
2708        if (!err_mask) {
2709                err_mask = AC_ERR_OTHER;
2710                action |= ATA_EH_RESET;
2711        }
2712
2713        ehi->serror |= serr;
2714        ehi->action |= action;
2715
2716        if (qc)
2717                qc->err_mask |= err_mask;
2718        else
2719                ehi->err_mask |= err_mask;
2720
2721        if (err_mask == AC_ERR_DEV) {
2722                /*
2723                 * Cannot do ata_port_freeze() here,
2724                 * because it would kill PIO access,
2725                 * which is needed for further diagnosis.
2726                 */
2727                mv_eh_freeze(ap);
2728                abort = 1;
2729        } else if (edma_err_cause & eh_freeze_mask) {
2730                /*
2731                 * Note to self: ata_port_freeze() calls ata_port_abort()
2732                 */
2733                ata_port_freeze(ap);
2734        } else {
2735                abort = 1;
2736        }
2737
2738        if (abort) {
2739                if (qc)
2740                        ata_link_abort(qc->dev->link);
2741                else
2742                        ata_port_abort(ap);
2743        }
2744}
2745
2746static bool mv_process_crpb_response(struct ata_port *ap,
2747                struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2748{
2749        u8 ata_status;
2750        u16 edma_status = le16_to_cpu(response->flags);
2751
2752        /*
2753         * edma_status from a response queue entry:
2754         *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2755         *   MSB is saved ATA status from command completion.
2756         */
2757        if (!ncq_enabled) {
2758                u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2759                if (err_cause) {
2760                        /*
2761                         * Error will be seen/handled by
2762                         * mv_err_intr().  So do nothing at all here.
2763                         */
2764                        return false;
2765                }
2766        }
2767        ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2768        if (!ac_err_mask(ata_status))
2769                return true;
2770        /* else: leave it for mv_err_intr() */
2771        return false;
2772}
2773
2774static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2775{
2776        void __iomem *port_mmio = mv_ap_base(ap);
2777        struct mv_host_priv *hpriv = ap->host->private_data;
2778        u32 in_index;
2779        bool work_done = false;
2780        u32 done_mask = 0;
2781        int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2782
2783        /* Get the hardware queue position index */
2784        in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2785                        >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2786
2787        /* Process new responses from since the last time we looked */
2788        while (in_index != pp->resp_idx) {
2789                unsigned int tag;
2790                struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2791
2792                pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2793
2794                if (IS_GEN_I(hpriv)) {
2795                        /* 50xx: no NCQ, only one command active at a time */
2796                        tag = ap->link.active_tag;
2797                } else {
2798                        /* Gen II/IIE: get command tag from CRPB entry */
2799                        tag = le16_to_cpu(response->id) & 0x1f;
2800                }
2801                if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2802                        done_mask |= 1 << tag;
2803                work_done = true;
2804        }
2805
2806        if (work_done) {
2807                ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2808
2809                /* Update the software queue position index in hardware */
2810                writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2811                         (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2812                         port_mmio + EDMA_RSP_Q_OUT_PTR);
2813        }
2814}
2815
2816static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2817{
2818        struct mv_port_priv *pp;
2819        int edma_was_enabled;
2820
2821        /*
2822         * Grab a snapshot of the EDMA_EN flag setting,
2823         * so that we have a consistent view for this port,
2824         * even if something we call of our routines changes it.
2825         */
2826        pp = ap->private_data;
2827        edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2828        /*
2829         * Process completed CRPB response(s) before other events.
2830         */
2831        if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2832                mv_process_crpb_entries(ap, pp);
2833                if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2834                        mv_handle_fbs_ncq_dev_err(ap);
2835        }
2836        /*
2837         * Handle chip-reported errors, or continue on to handle PIO.
2838         */
2839        if (unlikely(port_cause & ERR_IRQ)) {
2840                mv_err_intr(ap);
2841        } else if (!edma_was_enabled) {
2842                struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2843                if (qc)
2844                        ata_bmdma_port_intr(ap, qc);
2845                else
2846                        mv_unexpected_intr(ap, edma_was_enabled);
2847        }
2848}
2849
2850/**
2851 *      mv_host_intr - Handle all interrupts on the given host controller
2852 *      @host: host specific structure
2853 *      @main_irq_cause: Main interrupt cause register for the chip.
2854 *
2855 *      LOCKING:
2856 *      Inherited from caller.
2857 */
2858static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2859{
2860        struct mv_host_priv *hpriv = host->private_data;
2861        void __iomem *mmio = hpriv->base, *hc_mmio;
2862        unsigned int handled = 0, port;
2863
2864        /* If asserted, clear the "all ports" IRQ coalescing bit */
2865        if (main_irq_cause & ALL_PORTS_COAL_DONE)
2866                writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2867
2868        for (port = 0; port < hpriv->n_ports; port++) {
2869                struct ata_port *ap = host->ports[port];
2870                unsigned int p, shift, hardport, port_cause;
2871
2872                MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2873                /*
2874                 * Each hc within the host has its own hc_irq_cause register,
2875                 * where the interrupting ports bits get ack'd.
2876                 */
2877                if (hardport == 0) {    /* first port on this hc ? */
2878                        u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2879                        u32 port_mask, ack_irqs;
2880                        /*
2881                         * Skip this entire hc if nothing pending for any ports
2882                         */
2883                        if (!hc_cause) {
2884                                port += MV_PORTS_PER_HC - 1;
2885                                continue;
2886                        }
2887                        /*
2888                         * We don't need/want to read the hc_irq_cause register,
2889                         * because doing so hurts performance, and
2890                         * main_irq_cause already gives us everything we need.
2891                         *
2892                         * But we do have to *write* to the hc_irq_cause to ack
2893                         * the ports that we are handling this time through.
2894                         *
2895                         * This requires that we create a bitmap for those
2896                         * ports which interrupted us, and use that bitmap
2897                         * to ack (only) those ports via hc_irq_cause.
2898                         */
2899                        ack_irqs = 0;
2900                        if (hc_cause & PORTS_0_3_COAL_DONE)
2901                                ack_irqs = HC_COAL_IRQ;
2902                        for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2903                                if ((port + p) >= hpriv->n_ports)
2904                                        break;
2905                                port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2906                                if (hc_cause & port_mask)
2907                                        ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2908                        }
2909                        hc_mmio = mv_hc_base_from_port(mmio, port);
2910                        writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2911                        handled = 1;
2912                }
2913                /*
2914                 * Handle interrupts signalled for this port:
2915                 */
2916                port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2917                if (port_cause)
2918                        mv_port_intr(ap, port_cause);
2919        }
2920        return handled;
2921}
2922
2923static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2924{
2925        struct mv_host_priv *hpriv = host->private_data;
2926        struct ata_port *ap;
2927        struct ata_queued_cmd *qc;
2928        struct ata_eh_info *ehi;
2929        unsigned int i, err_mask, printed = 0;
2930        u32 err_cause;
2931
2932        err_cause = readl(mmio + hpriv->irq_cause_offset);
2933
2934        dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2935                   err_cause);
2936
2937        DPRINTK("All regs @ PCI error\n");
2938        mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2939
2940        writelfl(0, mmio + hpriv->irq_cause_offset);
2941
2942        for (i = 0; i < host->n_ports; i++) {
2943                ap = host->ports[i];
2944                if (!ata_link_offline(&ap->link)) {
2945                        ehi = &ap->link.eh_info;
2946                        ata_ehi_clear_desc(ehi);
2947                        if (!printed++)
2948                                ata_ehi_push_desc(ehi,
2949                                        "PCI err cause 0x%08x", err_cause);
2950                        err_mask = AC_ERR_HOST_BUS;
2951                        ehi->action = ATA_EH_RESET;
2952                        qc = ata_qc_from_tag(ap, ap->link.active_tag);
2953                        if (qc)
2954                                qc->err_mask |= err_mask;
2955                        else
2956                                ehi->err_mask |= err_mask;
2957
2958                        ata_port_freeze(ap);
2959                }
2960        }
2961        return 1;       /* handled */
2962}
2963
2964/**
2965 *      mv_interrupt - Main interrupt event handler
2966 *      @irq: unused
2967 *      @dev_instance: private data; in this case the host structure
2968 *
2969 *      Read the read only register to determine if any host
2970 *      controllers have pending interrupts.  If so, call lower level
2971 *      routine to handle.  Also check for PCI errors which are only
2972 *      reported here.
2973 *
2974 *      LOCKING:
2975 *      This routine holds the host lock while processing pending
2976 *      interrupts.
2977 */
2978static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2979{
2980        struct ata_host *host = dev_instance;
2981        struct mv_host_priv *hpriv = host->private_data;
2982        unsigned int handled = 0;
2983        int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2984        u32 main_irq_cause, pending_irqs;
2985
2986        spin_lock(&host->lock);
2987
2988        /* for MSI:  block new interrupts while in here */
2989        if (using_msi)
2990                mv_write_main_irq_mask(0, hpriv);
2991
2992        main_irq_cause = readl(hpriv->main_irq_cause_addr);
2993        pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2994        /*
2995         * Deal with cases where we either have nothing pending, or have read
2996         * a bogus register value which can indicate HW removal or PCI fault.
2997         */
2998        if (pending_irqs && main_irq_cause != 0xffffffffU) {
2999                if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3000                        handled = mv_pci_error(host, hpriv->base);
3001                else
3002                        handled = mv_host_intr(host, pending_irqs);
3003        }
3004
3005        /* for MSI: unmask; interrupt cause bits will retrigger now */
3006        if (using_msi)
3007                mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3008
3009        spin_unlock(&host->lock);
3010
3011        return IRQ_RETVAL(handled);
3012}
3013
3014static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3015{
3016        unsigned int ofs;
3017
3018        switch (sc_reg_in) {
3019        case SCR_STATUS:
3020        case SCR_ERROR:
3021        case SCR_CONTROL:
3022                ofs = sc_reg_in * sizeof(u32);
3023                break;
3024        default:
3025                ofs = 0xffffffffU;
3026                break;
3027        }
3028        return ofs;
3029}
3030
3031static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3032{
3033        struct mv_host_priv *hpriv = link->ap->host->private_data;
3034        void __iomem *mmio = hpriv->base;
3035        void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3036        unsigned int ofs = mv5_scr_offset(sc_reg_in);
3037
3038        if (ofs != 0xffffffffU) {
3039                *val = readl(addr + ofs);
3040                return 0;
3041        } else
3042                return -EINVAL;
3043}
3044
3045static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3046{
3047        struct mv_host_priv *hpriv = link->ap->host->private_data;
3048        void __iomem *mmio = hpriv->base;
3049        void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3050        unsigned int ofs = mv5_scr_offset(sc_reg_in);
3051
3052        if (ofs != 0xffffffffU) {
3053                writelfl(val, addr + ofs);
3054                return 0;
3055        } else
3056                return -EINVAL;
3057}
3058
3059static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3060{
3061        struct pci_dev *pdev = to_pci_dev(host->dev);
3062        int early_5080;
3063
3064        early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3065
3066        if (!early_5080) {
3067                u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3068                tmp |= (1 << 0);
3069                writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3070        }
3071
3072        mv_reset_pci_bus(host, mmio);
3073}
3074
3075static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3076{
3077        writel(0x0fcfffff, mmio + FLASH_CTL);
3078}
3079
3080static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3081                           void __iomem *mmio)
3082{
3083        void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3084        u32 tmp;
3085
3086        tmp = readl(phy_mmio + MV5_PHY_MODE);
3087
3088        hpriv->signal[idx].pre = tmp & 0x1800;  /* bits 12:11 */
3089        hpriv->signal[idx].amps = tmp & 0xe0;   /* bits 7:5 */
3090}
3091
3092static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3093{
3094        u32 tmp;
3095
3096        writel(0, mmio + GPIO_PORT_CTL);
3097
3098        /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3099
3100        tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3101        tmp |= ~(1 << 0);
3102        writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3103}
3104
3105static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3106                           unsigned int port)
3107{
3108        void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3109        const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3110        u32 tmp;
3111        int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3112
3113        if (fix_apm_sq) {
3114                tmp = readl(phy_mmio + MV5_LTMODE);
3115                tmp |= (1 << 19);
3116                writel(tmp, phy_mmio + MV5_LTMODE);
3117
3118                tmp = readl(phy_mmio + MV5_PHY_CTL);
3119                tmp &= ~0x3;
3120                tmp |= 0x1;
3121                writel(tmp, phy_mmio + MV5_PHY_CTL);
3122        }
3123
3124        tmp = readl(phy_mmio + MV5_PHY_MODE);
3125        tmp &= ~mask;
3126        tmp |= hpriv->signal[port].pre;
3127        tmp |= hpriv->signal[port].amps;
3128        writel(tmp, phy_mmio + MV5_PHY_MODE);
3129}
3130
3131
3132#undef ZERO
3133#define ZERO(reg) writel(0, port_mmio + (reg))
3134static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3135                             unsigned int port)
3136{
3137        void __iomem *port_mmio = mv_port_base(mmio, port);
3138
3139        mv_reset_channel(hpriv, mmio, port);
3140
3141        ZERO(0x028);    /* command */
3142        writel(0x11f, port_mmio + EDMA_CFG);
3143        ZERO(0x004);    /* timer */
3144        ZERO(0x008);    /* irq err cause */
3145        ZERO(0x00c);    /* irq err mask */
3146        ZERO(0x010);    /* rq bah */
3147        ZERO(0x014);    /* rq inp */
3148        ZERO(0x018);    /* rq outp */
3149        ZERO(0x01c);    /* respq bah */
3150        ZERO(0x024);    /* respq outp */
3151        ZERO(0x020);    /* respq inp */
3152        ZERO(0x02c);    /* test control */
3153        writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3154}
3155#undef ZERO
3156
3157#define ZERO(reg) writel(0, hc_mmio + (reg))
3158static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3159                        unsigned int hc)
3160{
3161        void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3162        u32 tmp;
3163
3164        ZERO(0x00c);
3165        ZERO(0x010);
3166        ZERO(0x014);
3167        ZERO(0x018);
3168
3169        tmp = readl(hc_mmio + 0x20);
3170        tmp &= 0x1c1c1c1c;
3171        tmp |= 0x03030303;
3172        writel(tmp, hc_mmio + 0x20);
3173}
3174#undef ZERO
3175
3176static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3177                        unsigned int n_hc)
3178{
3179        unsigned int hc, port;
3180
3181        for (hc = 0; hc < n_hc; hc++) {
3182                for (port = 0; port < MV_PORTS_PER_HC; port++)
3183                        mv5_reset_hc_port(hpriv, mmio,
3184                                          (hc * MV_PORTS_PER_HC) + port);
3185
3186                mv5_reset_one_hc(hpriv, mmio, hc);
3187        }
3188
3189        return 0;
3190}
3191
3192#undef ZERO
3193#define ZERO(reg) writel(0, mmio + (reg))
3194static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3195{
3196        struct mv_host_priv *hpriv = host->private_data;
3197        u32 tmp;
3198
3199        tmp = readl(mmio + MV_PCI_MODE);
3200        tmp &= 0xff00ffff;
3201        writel(tmp, mmio + MV_PCI_MODE);
3202
3203        ZERO(MV_PCI_DISC_TIMER);
3204        ZERO(MV_PCI_MSI_TRIGGER);
3205        writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3206        ZERO(MV_PCI_SERR_MASK);
3207        ZERO(hpriv->irq_cause_offset);
3208        ZERO(hpriv->irq_mask_offset);
3209        ZERO(MV_PCI_ERR_LOW_ADDRESS);
3210        ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3211        ZERO(MV_PCI_ERR_ATTRIBUTE);
3212        ZERO(MV_PCI_ERR_COMMAND);
3213}
3214#undef ZERO
3215
3216static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3217{
3218        u32 tmp;
3219
3220        mv5_reset_flash(hpriv, mmio);
3221
3222        tmp = readl(mmio + GPIO_PORT_CTL);
3223        tmp &= 0x3;
3224        tmp |= (1 << 5) | (1 << 6);
3225        writel(tmp, mmio + GPIO_PORT_CTL);
3226}
3227
3228/**
3229 *      mv6_reset_hc - Perform the 6xxx global soft reset
3230 *      @mmio: base address of the HBA
3231 *
3232 *      This routine only applies to 6xxx parts.
3233 *
3234 *      LOCKING:
3235 *      Inherited from caller.
3236 */
3237static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3238                        unsigned int n_hc)
3239{
3240        void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3241        int i, rc = 0;
3242        u32 t;
3243
3244        /* Following procedure defined in PCI "main command and status
3245         * register" table.
3246         */
3247        t = readl(reg);
3248        writel(t | STOP_PCI_MASTER, reg);
3249
3250        for (i = 0; i < 1000; i++) {
3251                udelay(1);
3252                t = readl(reg);
3253                if (PCI_MASTER_EMPTY & t)
3254                        break;
3255        }
3256        if (!(PCI_MASTER_EMPTY & t)) {
3257                printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3258                rc = 1;
3259                goto done;
3260        }
3261
3262        /* set reset */
3263        i = 5;
3264        do {
3265                writel(t | GLOB_SFT_RST, reg);
3266                t = readl(reg);
3267                udelay(1);
3268        } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3269
3270        if (!(GLOB_SFT_RST & t)) {
3271                printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3272                rc = 1;
3273                goto done;
3274        }
3275
3276        /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3277        i = 5;
3278        do {
3279                writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3280                t = readl(reg);
3281                udelay(1);
3282        } while ((GLOB_SFT_RST & t) && (i-- > 0));
3283
3284        if (GLOB_SFT_RST & t) {
3285                printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3286                rc = 1;
3287        }
3288done:
3289        return rc;
3290}
3291
3292static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3293                           void __iomem *mmio)
3294{
3295        void __iomem *port_mmio;
3296        u32 tmp;
3297
3298        tmp = readl(mmio + RESET_CFG);
3299        if ((tmp & (1 << 0)) == 0) {
3300                hpriv->signal[idx].amps = 0x7 << 8;
3301                hpriv->signal[idx].pre = 0x1 << 5;
3302                return;
3303        }
3304
3305        port_mmio = mv_port_base(mmio, idx);
3306        tmp = readl(port_mmio + PHY_MODE2);
3307
3308        hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3309        hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3310}
3311
3312static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3313{
3314        writel(0x00000060, mmio + GPIO_PORT_CTL);
3315}
3316
3317static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3318                           unsigned int port)
3319{
3320        void __iomem *port_mmio = mv_port_base(mmio, port);
3321
3322        u32 hp_flags = hpriv->hp_flags;
3323        int fix_phy_mode2 =
3324                hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3325        int fix_phy_mode4 =
3326                hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3327        u32 m2, m3;
3328
3329        if (fix_phy_mode2) {
3330                m2 = readl(port_mmio + PHY_MODE2);
3331                m2 &= ~(1 << 16);
3332                m2 |= (1 << 31);
3333                writel(m2, port_mmio + PHY_MODE2);
3334
3335                udelay(200);
3336
3337                m2 = readl(port_mmio + PHY_MODE2);
3338                m2 &= ~((1 << 16) | (1 << 31));
3339                writel(m2, port_mmio + PHY_MODE2);
3340
3341                udelay(200);
3342        }
3343
3344        /*
3345         * Gen-II/IIe PHY_MODE3 errata RM#2:
3346         * Achieves better receiver noise performance than the h/w default:
3347         */
3348        m3 = readl(port_mmio + PHY_MODE3);
3349        m3 = (m3 & 0x1f) | (0x5555601 << 5);
3350
3351        /* Guideline 88F5182 (GL# SATA-S11) */
3352        if (IS_SOC(hpriv))
3353                m3 &= ~0x1c;
3354
3355        if (fix_phy_mode4) {
3356                u32 m4 = readl(port_mmio + PHY_MODE4);
3357                /*
3358                 * Enforce reserved-bit restrictions on GenIIe devices only.
3359                 * For earlier chipsets, force only the internal config field
3360                 *  (workaround for errata FEr SATA#10 part 1).
3361                 */
3362                if (IS_GEN_IIE(hpriv))
3363                        m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3364                else
3365                        m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3366                writel(m4, port_mmio + PHY_MODE4);
3367        }
3368        /*
3369         * Workaround for 60x1-B2 errata SATA#13:
3370         * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3371         * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3372         * Or ensure we use writelfl() when writing PHY_MODE4.
3373         */
3374        writel(m3, port_mmio + PHY_MODE3);
3375
3376        /* Revert values of pre-emphasis and signal amps to the saved ones */
3377        m2 = readl(port_mmio + PHY_MODE2);
3378
3379        m2 &= ~MV_M2_PREAMP_MASK;
3380        m2 |= hpriv->signal[port].amps;
3381        m2 |= hpriv->signal[port].pre;
3382        m2 &= ~(1 << 16);
3383
3384        /* according to mvSata 3.6.1, some IIE values are fixed */
3385        if (IS_GEN_IIE(hpriv)) {
3386                m2 &= ~0xC30FF01F;
3387                m2 |= 0x0000900F;
3388        }
3389
3390        writel(m2, port_mmio + PHY_MODE2);
3391}
3392
3393/* TODO: use the generic LED interface to configure the SATA Presence */
3394/* & Acitivy LEDs on the board */
3395static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3396                                      void __iomem *mmio)
3397{
3398        return;
3399}
3400
3401static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3402                           void __iomem *mmio)
3403{
3404        void __iomem *port_mmio;
3405        u32 tmp;
3406
3407        port_mmio = mv_port_base(mmio, idx);
3408        tmp = readl(port_mmio + PHY_MODE2);
3409
3410        hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3411        hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3412}
3413
3414#undef ZERO
3415#define ZERO(reg) writel(0, port_mmio + (reg))
3416static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3417                                        void __iomem *mmio, unsigned int port)
3418{
3419        void __iomem *port_mmio = mv_port_base(mmio, port);
3420
3421        mv_reset_channel(hpriv, mmio, port);
3422
3423        ZERO(0x028);            /* command */
3424        writel(0x101f, port_mmio + EDMA_CFG);
3425        ZERO(0x004);            /* timer */
3426        ZERO(0x008);            /* irq err cause */
3427        ZERO(0x00c);            /* irq err mask */
3428        ZERO(0x010);            /* rq bah */
3429        ZERO(0x014);            /* rq inp */
3430        ZERO(0x018);            /* rq outp */
3431        ZERO(0x01c);            /* respq bah */
3432        ZERO(0x024);            /* respq outp */
3433        ZERO(0x020);            /* respq inp */
3434        ZERO(0x02c);            /* test control */
3435        writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3436}
3437
3438#undef ZERO
3439
3440#define ZERO(reg) writel(0, hc_mmio + (reg))
3441static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3442                                       void __iomem *mmio)
3443{
3444        void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3445
3446        ZERO(0x00c);
3447        ZERO(0x010);
3448        ZERO(0x014);
3449
3450}
3451
3452#undef ZERO
3453
3454static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3455                                  void __iomem *mmio, unsigned int n_hc)
3456{
3457        unsigned int port;
3458
3459        for (port = 0; port < hpriv->n_ports; port++)
3460                mv_soc_reset_hc_port(hpriv, mmio, port);
3461
3462        mv_soc_reset_one_hc(hpriv, mmio);
3463
3464        return 0;
3465}
3466
3467static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3468                                      void __iomem *mmio)
3469{
3470        return;
3471}
3472
3473static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3474{
3475        return;
3476}
3477
3478static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3479                                  void __iomem *mmio, unsigned int port)
3480{
3481        void __iomem *port_mmio = mv_port_base(mmio, port);
3482        u32     reg;
3483
3484        reg = readl(port_mmio + PHY_MODE3);
3485        reg &= ~(0x3 << 27);    /* SELMUPF (bits 28:27) to 1 */
3486        reg |= (0x1 << 27);
3487        reg &= ~(0x3 << 29);    /* SELMUPI (bits 30:29) to 1 */
3488        reg |= (0x1 << 29);
3489        writel(reg, port_mmio + PHY_MODE3);
3490
3491        reg = readl(port_mmio + PHY_MODE4);
3492        reg &= ~0x1;    /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3493        reg |= (0x1 << 16);
3494        writel(reg, port_mmio + PHY_MODE4);
3495
3496        reg = readl(port_mmio + PHY_MODE9_GEN2);
3497        reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3498        reg |= 0x8;
3499        reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3500        writel(reg, port_mmio + PHY_MODE9_GEN2);
3501
3502        reg = readl(port_mmio + PHY_MODE9_GEN1);
3503        reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3504        reg |= 0x8;
3505        reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3506        writel(reg, port_mmio + PHY_MODE9_GEN1);
3507}
3508
3509/**
3510 *      soc_is_65 - check if the soc is 65 nano device
3511 *
3512 *      Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3513 *      register, this register should contain non-zero value and it exists only
3514 *      in the 65 nano devices, when reading it from older devices we get 0.
3515 */
3516static bool soc_is_65n(struct mv_host_priv *hpriv)
3517{
3518        void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3519
3520        if (readl(port0_mmio + PHYCFG_OFS))
3521                return true;
3522        return false;
3523}
3524
3525static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3526{
3527        u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3528
3529        ifcfg = (ifcfg & 0xf7f) | 0x9b1000;     /* from chip spec */
3530        if (want_gen2i)
3531                ifcfg |= (1 << 7);              /* enable gen2i speed */
3532        writelfl(ifcfg, port_mmio + SATA_IFCFG);
3533}
3534
3535static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3536                             unsigned int port_no)
3537{
3538        void __iomem *port_mmio = mv_port_base(mmio, port_no);
3539
3540        /*
3541         * The datasheet warns against setting EDMA_RESET when EDMA is active
3542         * (but doesn't say what the problem might be).  So we first try
3543         * to disable the EDMA engine before doing the EDMA_RESET operation.
3544         */
3545        mv_stop_edma_engine(port_mmio);
3546        writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3547
3548        if (!IS_GEN_I(hpriv)) {
3549                /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3550                mv_setup_ifcfg(port_mmio, 1);
3551        }
3552        /*
3553         * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3554         * link, and physical layers.  It resets all SATA interface registers
3555         * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3556         */
3557        writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3558        udelay(25);     /* allow reset propagation */
3559        writelfl(0, port_mmio + EDMA_CMD);
3560
3561        hpriv->ops->phy_errata(hpriv, mmio, port_no);
3562
3563        if (IS_GEN_I(hpriv))
3564                mdelay(1);
3565}
3566
3567static void mv_pmp_select(struct ata_port *ap, int pmp)
3568{
3569        if (sata_pmp_supported(ap)) {
3570                void __iomem *port_mmio = mv_ap_base(ap);
3571                u32 reg = readl(port_mmio + SATA_IFCTL);
3572                int old = reg & 0xf;
3573
3574                if (old != pmp) {
3575                        reg = (reg & ~0xf) | pmp;
3576                        writelfl(reg, port_mmio + SATA_IFCTL);
3577                }
3578        }
3579}
3580
3581static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3582                                unsigned long deadline)
3583{
3584        mv_pmp_select(link->ap, sata_srst_pmp(link));
3585        return sata_std_hardreset(link, class, deadline);
3586}
3587
3588static int mv_softreset(struct ata_link *link, unsigned int *class,
3589                                unsigned long deadline)
3590{
3591        mv_pmp_select(link->ap, sata_srst_pmp(link));
3592        return ata_sff_softreset(link, class, deadline);
3593}
3594
3595static int mv_hardreset(struct ata_link *link, unsigned int *class,
3596                        unsigned long deadline)
3597{
3598        struct ata_port *ap = link->ap;
3599        struct mv_host_priv *hpriv = ap->host->private_data;
3600        struct mv_port_priv *pp = ap->private_data;
3601        void __iomem *mmio = hpriv->base;
3602        int rc, attempts = 0, extra = 0;
3603        u32 sstatus;
3604        bool online;
3605
3606        mv_reset_channel(hpriv, mmio, ap->port_no);
3607        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3608        pp->pp_flags &=
3609          ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3610
3611        /* Workaround for errata FEr SATA#10 (part 2) */
3612        do {
3613                const unsigned long *timing =
3614                                sata_ehc_deb_timing(&link->eh_context);
3615
3616                rc = sata_link_hardreset(link, timing, deadline + extra,
3617                                         &online, NULL);
3618                rc = online ? -EAGAIN : rc;
3619                if (rc)
3620                        return rc;
3621                sata_scr_read(link, SCR_STATUS, &sstatus);
3622                if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3623                        /* Force 1.5gb/s link speed and try again */
3624                        mv_setup_ifcfg(mv_ap_base(ap), 0);
3625                        if (time_after(jiffies + HZ, deadline))
3626                                extra = HZ; /* only extend it once, max */
3627                }
3628        } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3629        mv_save_cached_regs(ap);
3630        mv_edma_cfg(ap, 0, 0);
3631
3632        return rc;
3633}
3634
3635static void mv_eh_freeze(struct ata_port *ap)
3636{
3637        mv_stop_edma(ap);
3638        mv_enable_port_irqs(ap, 0);
3639}
3640
3641static void mv_eh_thaw(struct ata_port *ap)
3642{
3643        struct mv_host_priv *hpriv = ap->host->private_data;
3644        unsigned int port = ap->port_no;
3645        unsigned int hardport = mv_hardport_from_port(port);
3646        void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3647        void __iomem *port_mmio = mv_ap_base(ap);
3648        u32 hc_irq_cause;
3649
3650        /* clear EDMA errors on this port */
3651        writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3652
3653        /* clear pending irq events */
3654        hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3655        writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3656
3657        mv_enable_port_irqs(ap, ERR_IRQ);
3658}
3659
3660/**
3661 *      mv_port_init - Perform some early initialization on a single port.
3662 *      @port: libata data structure storing shadow register addresses
3663 *      @port_mmio: base address of the port
3664 *
3665 *      Initialize shadow register mmio addresses, clear outstanding
3666 *      interrupts on the port, and unmask interrupts for the future
3667 *      start of the port.
3668 *
3669 *      LOCKING:
3670 *      Inherited from caller.
3671 */
3672static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3673{
3674        void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3675
3676        /* PIO related setup
3677         */
3678        port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3679        port->error_addr =
3680                port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3681        port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3682        port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3683        port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3684        port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3685        port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3686        port->status_addr =
3687                port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3688        /* special case: control/altstatus doesn't have ATA_REG_ address */
3689        port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3690
3691        /* Clear any currently outstanding port interrupt conditions */
3692        serr = port_mmio + mv_scr_offset(SCR_ERROR);
3693        writelfl(readl(serr), serr);
3694        writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3695
3696        /* unmask all non-transient EDMA error interrupts */
3697        writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3698
3699        VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3700                readl(port_mmio + EDMA_CFG),
3701                readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3702                readl(port_mmio + EDMA_ERR_IRQ_MASK));
3703}
3704
3705static unsigned int mv_in_pcix_mode(struct ata_host *host)
3706{
3707        struct mv_host_priv *hpriv = host->private_data;
3708        void __iomem *mmio = hpriv->base;
3709        u32 reg;
3710
3711        if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3712                return 0;       /* not PCI-X capable */
3713        reg = readl(mmio + MV_PCI_MODE);
3714        if ((reg & MV_PCI_MODE_MASK) == 0)
3715                return 0;       /* conventional PCI mode */
3716        return 1;       /* chip is in PCI-X mode */
3717}
3718
3719static int mv_pci_cut_through_okay(struct ata_host *host)
3720{
3721        struct mv_host_priv *hpriv = host->private_data;
3722        void __iomem *mmio = hpriv->base;
3723        u32 reg;
3724
3725        if (!mv_in_pcix_mode(host)) {
3726                reg = readl(mmio + MV_PCI_COMMAND);
3727                if (reg & MV_PCI_COMMAND_MRDTRIG)
3728                        return 0; /* not okay */
3729        }
3730        return 1; /* okay */
3731}
3732
3733static void mv_60x1b2_errata_pci7(struct ata_host *host)
3734{
3735        struct mv_host_priv *hpriv = host->private_data;
3736        void __iomem *mmio = hpriv->base;
3737
3738        /* workaround for 60x1-B2 errata PCI#7 */
3739        if (mv_in_pcix_mode(host)) {
3740                u32 reg = readl(mmio + MV_PCI_COMMAND);
3741                writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3742        }
3743}
3744
3745static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3746{
3747        struct pci_dev *pdev = to_pci_dev(host->dev);
3748        struct mv_host_priv *hpriv = host->private_data;
3749        u32 hp_flags = hpriv->hp_flags;
3750
3751        switch (board_idx) {
3752        case chip_5080:
3753                hpriv->ops = &mv5xxx_ops;
3754                hp_flags |= MV_HP_GEN_I;
3755
3756                switch (pdev->revision) {
3757                case 0x1:
3758                        hp_flags |= MV_HP_ERRATA_50XXB0;
3759                        break;
3760                case 0x3:
3761                        hp_flags |= MV_HP_ERRATA_50XXB2;
3762                        break;
3763                default:
3764                        dev_printk(KERN_WARNING, &pdev->dev,
3765                           "Applying 50XXB2 workarounds to unknown rev\n");
3766                        hp_flags |= MV_HP_ERRATA_50XXB2;
3767                        break;
3768                }
3769                break;
3770
3771        case chip_504x:
3772        case chip_508x:
3773                hpriv->ops = &mv5xxx_ops;
3774                hp_flags |= MV_HP_GEN_I;
3775
3776                switch (pdev->revision) {
3777                case 0x0:
3778                        hp_flags |= MV_HP_ERRATA_50XXB0;
3779                        break;
3780                case 0x3:
3781                        hp_flags |= MV_HP_ERRATA_50XXB2;
3782                        break;
3783                default:
3784                        dev_printk(KERN_WARNING, &pdev->dev,
3785                           "Applying B2 workarounds to unknown rev\n");
3786                        hp_flags |= MV_HP_ERRATA_50XXB2;
3787                        break;
3788                }
3789                break;
3790
3791        case chip_604x:
3792        case chip_608x:
3793                hpriv->ops = &mv6xxx_ops;
3794                hp_flags |= MV_HP_GEN_II;
3795
3796                switch (pdev->revision) {
3797                case 0x7:
3798                        mv_60x1b2_errata_pci7(host);
3799                        hp_flags |= MV_HP_ERRATA_60X1B2;
3800                        break;
3801                case 0x9:
3802                        hp_flags |= MV_HP_ERRATA_60X1C0;
3803                        break;
3804                default:
3805                        dev_printk(KERN_WARNING, &pdev->dev,
3806                                   "Applying B2 workarounds to unknown rev\n");
3807                        hp_flags |= MV_HP_ERRATA_60X1B2;
3808                        break;
3809                }
3810                break;
3811
3812        case chip_7042:
3813                hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3814                if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3815                    (pdev->device == 0x2300 || pdev->device == 0x2310))
3816                {
3817                        /*
3818                         * Highpoint RocketRAID PCIe 23xx series cards:
3819                         *
3820                         * Unconfigured drives are treated as "Legacy"
3821                         * by the BIOS, and it overwrites sector 8 with
3822                         * a "Lgcy" metadata block prior to Linux boot.
3823                         *
3824                         * Configured drives (RAID or JBOD) leave sector 8
3825                         * alone, but instead overwrite a high numbered
3826                         * sector for the RAID metadata.  This sector can
3827                         * be determined exactly, by truncating the physical
3828                         * drive capacity to a nice even GB value.
3829                         *
3830                         * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3831                         *
3832                         * Warn the user, lest they think we're just buggy.
3833                         */
3834                        printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3835                                " BIOS CORRUPTS DATA on all attached drives,"
3836                                " regardless of if/how they are configured."
3837                                " BEWARE!\n");
3838                        printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3839                                " use sectors 8-9 on \"Legacy\" drives,"
3840                                " and avoid the final two gigabytes on"
3841                                " all RocketRAID BIOS initialized drives.\n");
3842                }
3843                /* drop through */
3844        case chip_6042:
3845                hpriv->ops = &mv6xxx_ops;
3846                hp_flags |= MV_HP_GEN_IIE;
3847                if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3848                        hp_flags |= MV_HP_CUT_THROUGH;
3849
3850                switch (pdev->revision) {
3851                case 0x2: /* Rev.B0: the first/only public release */
3852                        hp_flags |= MV_HP_ERRATA_60X1C0;
3853                        break;
3854                default:
3855                        dev_printk(KERN_WARNING, &pdev->dev,
3856                           "Applying 60X1C0 workarounds to unknown rev\n");
3857                        hp_flags |= MV_HP_ERRATA_60X1C0;
3858                        break;
3859                }
3860                break;
3861        case chip_soc:
3862                if (soc_is_65n(hpriv))
3863                        hpriv->ops = &mv_soc_65n_ops;
3864                else
3865                        hpriv->ops = &mv_soc_ops;
3866                hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3867                        MV_HP_ERRATA_60X1C0;
3868                break;
3869
3870        default:
3871                dev_printk(KERN_ERR, host->dev,
3872                           "BUG: invalid board index %u\n", board_idx);
3873                return 1;
3874        }
3875
3876        hpriv->hp_flags = hp_flags;
3877        if (hp_flags & MV_HP_PCIE) {
3878                hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3879                hpriv->irq_mask_offset  = PCIE_IRQ_MASK;
3880                hpriv->unmask_all_irqs  = PCIE_UNMASK_ALL_IRQS;
3881        } else {
3882                hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3883                hpriv->irq_mask_offset  = PCI_IRQ_MASK;
3884                hpriv->unmask_all_irqs  = PCI_UNMASK_ALL_IRQS;
3885        }
3886
3887        return 0;
3888}
3889
3890/**
3891 *      mv_init_host - Perform some early initialization of the host.
3892 *      @host: ATA host to initialize
3893 *
3894 *      If possible, do an early global reset of the host.  Then do
3895 *      our port init and clear/unmask all/relevant host interrupts.
3896 *
3897 *      LOCKING:
3898 *      Inherited from caller.
3899 */
3900static int mv_init_host(struct ata_host *host)
3901{
3902        int rc = 0, n_hc, port, hc;
3903        struct mv_host_priv *hpriv = host->private_data;
3904        void __iomem *mmio = hpriv->base;
3905
3906        rc = mv_chip_id(host, hpriv->board_idx);
3907        if (rc)
3908                goto done;
3909
3910        if (IS_SOC(hpriv)) {
3911                hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3912                hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3913        } else {
3914                hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3915                hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3916        }
3917
3918        /* initialize shadow irq mask with register's value */
3919        hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3920
3921        /* global interrupt mask: 0 == mask everything */
3922        mv_set_main_irq_mask(host, ~0, 0);
3923
3924        n_hc = mv_get_hc_count(host->ports[0]->flags);
3925
3926        for (port = 0; port < host->n_ports; port++)
3927                if (hpriv->ops->read_preamp)
3928                        hpriv->ops->read_preamp(hpriv, port, mmio);
3929
3930        rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3931        if (rc)
3932                goto done;
3933
3934        hpriv->ops->reset_flash(hpriv, mmio);
3935        hpriv->ops->reset_bus(host, mmio);
3936        hpriv->ops->enable_leds(hpriv, mmio);
3937
3938        for (port = 0; port < host->n_ports; port++) {
3939                struct ata_port *ap = host->ports[port];
3940                void __iomem *port_mmio = mv_port_base(mmio, port);
3941
3942                mv_port_init(&ap->ioaddr, port_mmio);
3943        }
3944
3945        for (hc = 0; hc < n_hc; hc++) {
3946                void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3947
3948                VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3949                        "(before clear)=0x%08x\n", hc,
3950                        readl(hc_mmio + HC_CFG),
3951                        readl(hc_mmio + HC_IRQ_CAUSE));
3952
3953                /* Clear any currently outstanding hc interrupt conditions */
3954                writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3955        }
3956
3957        if (!IS_SOC(hpriv)) {
3958                /* Clear any currently outstanding host interrupt conditions */
3959                writelfl(0, mmio + hpriv->irq_cause_offset);
3960
3961                /* and unmask interrupt generation for host regs */
3962                writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3963        }
3964
3965        /*
3966         * enable only global host interrupts for now.
3967         * The per-port interrupts get done later as ports are set up.
3968         */
3969        mv_set_main_irq_mask(host, 0, PCI_ERR);
3970        mv_set_irq_coalescing(host, irq_coalescing_io_count,
3971                                    irq_coalescing_usecs);
3972done:
3973        return rc;
3974}
3975
3976static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3977{
3978        hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3979                                                             MV_CRQB_Q_SZ, 0);
3980        if (!hpriv->crqb_pool)
3981                return -ENOMEM;
3982
3983        hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3984                                                             MV_CRPB_Q_SZ, 0);
3985        if (!hpriv->crpb_pool)
3986                return -ENOMEM;
3987
3988        hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3989                                                             MV_SG_TBL_SZ, 0);
3990        if (!hpriv->sg_tbl_pool)
3991                return -ENOMEM;
3992
3993        return 0;
3994}
3995
3996static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3997                                 struct mbus_dram_target_info *dram)
3998{
3999        int i;
4000
4001        for (i = 0; i < 4; i++) {
4002                writel(0, hpriv->base + WINDOW_CTRL(i));
4003                writel(0, hpriv->base + WINDOW_BASE(i));
4004        }
4005
4006        for (i = 0; i < dram->num_cs; i++) {
4007                struct mbus_dram_window *cs = dram->cs + i;
4008
4009                writel(((cs->size - 1) & 0xffff0000) |
4010                        (cs->mbus_attr << 8) |
4011                        (dram->mbus_dram_target_id << 4) | 1,
4012                        hpriv->base + WINDOW_CTRL(i));
4013                writel(cs->base, hpriv->base + WINDOW_BASE(i));
4014        }
4015}
4016
4017/**
4018 *      mv_platform_probe - handle a positive probe of an soc Marvell
4019 *      host
4020 *      @pdev: platform device found
4021 *
4022 *      LOCKING:
4023 *      Inherited from caller.
4024 */
4025static int mv_platform_probe(struct platform_device *pdev)
4026{
4027        static int printed_version;
4028        const struct mv_sata_platform_data *mv_platform_data;
4029        const struct ata_port_info *ppi[] =
4030            { &mv_port_info[chip_soc], NULL };
4031        struct ata_host *host;
4032        struct mv_host_priv *hpriv;
4033        struct resource *res;
4034        int n_ports, rc;
4035
4036        if (!printed_version++)
4037                dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4038
4039        /*
4040         * Simple resource validation ..
4041         */
4042        if (unlikely(pdev->num_resources != 2)) {
4043                dev_err(&pdev->dev, "invalid number of resources\n");
4044                return -EINVAL;
4045        }
4046
4047        /*
4048         * Get the register base first
4049         */
4050        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4051        if (res == NULL)
4052                return -EINVAL;
4053
4054        /* allocate host */
4055        mv_platform_data = pdev->dev.platform_data;
4056        n_ports = mv_platform_data->n_ports;
4057
4058        host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4059        hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4060
4061        if (!host || !hpriv)
4062                return -ENOMEM;
4063        host->private_data = hpriv;
4064        hpriv->n_ports = n_ports;
4065        hpriv->board_idx = chip_soc;
4066
4067        host->iomap = NULL;
4068        hpriv->base = devm_ioremap(&pdev->dev, res->start,
4069                                   resource_size(res));
4070        hpriv->base -= SATAHC0_REG_BASE;
4071
4072#if defined(CONFIG_HAVE_CLK)
4073        hpriv->clk = clk_get(&pdev->dev, NULL);
4074        if (IS_ERR(hpriv->clk))
4075                dev_notice(&pdev->dev, "cannot get clkdev\n");
4076        else
4077                clk_enable(hpriv->clk);
4078#endif
4079
4080        /*
4081         * (Re-)program MBUS remapping windows if we are asked to.
4082         */
4083        if (mv_platform_data->dram != NULL)
4084                mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4085
4086        rc = mv_create_dma_pools(hpriv, &pdev->dev);
4087        if (rc)
4088                goto err;
4089
4090        /* initialize adapter */
4091        rc = mv_init_host(host);
4092        if (rc)
4093                goto err;
4094
4095        dev_printk(KERN_INFO, &pdev->dev,
4096                   "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
4097                   host->n_ports);
4098
4099        return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4100                                 IRQF_SHARED, &mv6_sht);
4101err:
4102#if defined(CONFIG_HAVE_CLK)
4103        if (!IS_ERR(hpriv->clk)) {
4104                clk_disable(hpriv->clk);
4105                clk_put(hpriv->clk);
4106        }
4107#endif
4108
4109        return rc;
4110}
4111
4112/*
4113 *
4114 *      mv_platform_remove    -       unplug a platform interface
4115 *      @pdev: platform device
4116 *
4117 *      A platform bus SATA device has been unplugged. Perform the needed
4118 *      cleanup. Also called on module unload for any active devices.
4119 */
4120static int __devexit mv_platform_remove(struct platform_device *pdev)
4121{
4122        struct device *dev = &pdev->dev;
4123        struct ata_host *host = dev_get_drvdata(dev);
4124#if defined(CONFIG_HAVE_CLK)
4125        struct mv_host_priv *hpriv = host->private_data;
4126#endif
4127        ata_host_detach(host);
4128
4129#if defined(CONFIG_HAVE_CLK)
4130        if (!IS_ERR(hpriv->clk)) {
4131                clk_disable(hpriv->clk);
4132                clk_put(hpriv->clk);
4133        }
4134#endif
4135        return 0;
4136}
4137
4138#ifdef CONFIG_PM
4139static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4140{
4141        struct ata_host *host = dev_get_drvdata(&pdev->dev);
4142        if (host)
4143                return ata_host_suspend(host, state);
4144        else
4145                return 0;
4146}
4147
4148static int mv_platform_resume(struct platform_device *pdev)
4149{
4150        struct ata_host *host = dev_get_drvdata(&pdev->dev);
4151        int ret;
4152
4153        if (host) {
4154                struct mv_host_priv *hpriv = host->private_data;
4155                const struct mv_sata_platform_data *mv_platform_data = \
4156                        pdev->dev.platform_data;
4157                /*
4158                 * (Re-)program MBUS remapping windows if we are asked to.
4159                 */
4160                if (mv_platform_data->dram != NULL)
4161                        mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4162
4163                /* initialize adapter */
4164                ret = mv_init_host(host);
4165                if (ret) {
4166                        printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4167                        return ret;
4168                }
4169                ata_host_resume(host);
4170        }
4171
4172        return 0;
4173}
4174#else
4175#define mv_platform_suspend NULL
4176#define mv_platform_resume NULL
4177#endif
4178
4179static struct platform_driver mv_platform_driver = {
4180        .probe                  = mv_platform_probe,
4181        .remove                 = __devexit_p(mv_platform_remove),
4182        .suspend                = mv_platform_suspend,
4183        .resume                 = mv_platform_resume,
4184        .driver                 = {
4185                                   .name = DRV_NAME,
4186                                   .owner = THIS_MODULE,
4187                                  },
4188};
4189
4190
4191#ifdef CONFIG_PCI
4192static int mv_pci_init_one(struct pci_dev *pdev,
4193                           const struct pci_device_id *ent);
4194#ifdef CONFIG_PM
4195static int mv_pci_device_resume(struct pci_dev *pdev);
4196#endif
4197
4198
4199static struct pci_driver mv_pci_driver = {
4200        .name                   = DRV_NAME,
4201        .id_table               = mv_pci_tbl,
4202        .probe                  = mv_pci_init_one,
4203        .remove                 = ata_pci_remove_one,
4204#ifdef CONFIG_PM
4205        .suspend                = ata_pci_device_suspend,
4206        .resume                 = mv_pci_device_resume,
4207#endif
4208
4209};
4210
4211/* move to PCI layer or libata core? */
4212static int pci_go_64(struct pci_dev *pdev)
4213{
4214        int rc;
4215
4216        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4217                rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4218                if (rc) {
4219                        rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4220                        if (rc) {
4221                                dev_printk(KERN_ERR, &pdev->dev,
4222                                           "64-bit DMA enable failed\n");
4223                                return rc;
4224                        }
4225                }
4226        } else {
4227                rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4228                if (rc) {
4229                        dev_printk(KERN_ERR, &pdev->dev,
4230                                   "32-bit DMA enable failed\n");
4231                        return rc;
4232                }
4233                rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4234                if (rc) {
4235                        dev_printk(KERN_ERR, &pdev->dev,
4236                                   "32-bit consistent DMA enable failed\n");
4237                        return rc;
4238                }
4239        }
4240
4241        return rc;
4242}
4243
4244/**
4245 *      mv_print_info - Dump key info to kernel log for perusal.
4246 *      @host: ATA host to print info about
4247 *
4248 *      FIXME: complete this.
4249 *
4250 *      LOCKING:
4251 *      Inherited from caller.
4252 */
4253static void mv_print_info(struct ata_host *host)
4254{
4255        struct pci_dev *pdev = to_pci_dev(host->dev);
4256        struct mv_host_priv *hpriv = host->private_data;
4257        u8 scc;
4258        const char *scc_s, *gen;
4259
4260        /* Use this to determine the HW stepping of the chip so we know
4261         * what errata to workaround
4262         */
4263        pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4264        if (scc == 0)
4265                scc_s = "SCSI";
4266        else if (scc == 0x01)
4267                scc_s = "RAID";
4268        else
4269                scc_s = "?";
4270
4271        if (IS_GEN_I(hpriv))
4272                gen = "I";
4273        else if (IS_GEN_II(hpriv))
4274                gen = "II";
4275        else if (IS_GEN_IIE(hpriv))
4276                gen = "IIE";
4277        else
4278                gen = "?";
4279
4280        dev_printk(KERN_INFO, &pdev->dev,
4281               "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4282               gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4283               scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4284}
4285
4286/**
4287 *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4288 *      @pdev: PCI device found
4289 *      @ent: PCI device ID entry for the matched host
4290 *
4291 *      LOCKING:
4292 *      Inherited from caller.
4293 */
4294static int mv_pci_init_one(struct pci_dev *pdev,
4295                           const struct pci_device_id *ent)
4296{
4297        static int printed_version;
4298        unsigned int board_idx = (unsigned int)ent->driver_data;
4299        const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4300        struct ata_host *host;
4301        struct mv_host_priv *hpriv;
4302        int n_ports, port, rc;
4303
4304        if (!printed_version++)
4305                dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4306
4307        /* allocate host */
4308        n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4309
4310        host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4311        hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4312        if (!host || !hpriv)
4313                return -ENOMEM;
4314        host->private_data = hpriv;
4315        hpriv->n_ports = n_ports;
4316        hpriv->board_idx = board_idx;
4317
4318        /* acquire resources */
4319        rc = pcim_enable_device(pdev);
4320        if (rc)
4321                return rc;
4322
4323        rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4324        if (rc == -EBUSY)
4325                pcim_pin_device(pdev);
4326        if (rc)
4327                return rc;
4328        host->iomap = pcim_iomap_table(pdev);
4329        hpriv->base = host->iomap[MV_PRIMARY_BAR];
4330
4331        rc = pci_go_64(pdev);
4332        if (rc)
4333                return rc;
4334
4335        rc = mv_create_dma_pools(hpriv, &pdev->dev);
4336        if (rc)
4337                return rc;
4338
4339        for (port = 0; port < host->n_ports; port++) {
4340                struct ata_port *ap = host->ports[port];
4341                void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4342                unsigned int offset = port_mmio - hpriv->base;
4343
4344                ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4345                ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4346        }
4347
4348        /* initialize adapter */
4349        rc = mv_init_host(host);
4350        if (rc)
4351                return rc;
4352
4353        /* Enable message-switched interrupts, if requested */
4354        if (msi && pci_enable_msi(pdev) == 0)
4355                hpriv->hp_flags |= MV_HP_FLAG_MSI;
4356
4357        mv_dump_pci_cfg(pdev, 0x68);
4358        mv_print_info(host);
4359
4360        pci_set_master(pdev);
4361        pci_try_set_mwi(pdev);
4362        return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4363                                 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4364}
4365
4366#ifdef CONFIG_PM
4367static int mv_pci_device_resume(struct pci_dev *pdev)
4368{
4369        struct ata_host *host = dev_get_drvdata(&pdev->dev);
4370        int rc;
4371
4372        rc = ata_pci_device_do_resume(pdev);
4373        if (rc)
4374                return rc;
4375
4376        /* initialize adapter */
4377        rc = mv_init_host(host);
4378        if (rc)
4379                return rc;
4380
4381        ata_host_resume(host);
4382
4383        return 0;
4384}
4385#endif
4386#endif
4387
4388static int mv_platform_probe(struct platform_device *pdev);
4389static int __devexit mv_platform_remove(struct platform_device *pdev);
4390
4391static int __init mv_init(void)
4392{
4393        int rc = -ENODEV;
4394#ifdef CONFIG_PCI
4395        rc = pci_register_driver(&mv_pci_driver);
4396        if (rc < 0)
4397                return rc;
4398#endif
4399        rc = platform_driver_register(&mv_platform_driver);
4400
4401#ifdef CONFIG_PCI
4402        if (rc < 0)
4403                pci_unregister_driver(&mv_pci_driver);
4404#endif
4405        return rc;
4406}
4407
4408static void __exit mv_exit(void)
4409{
4410#ifdef CONFIG_PCI
4411        pci_unregister_driver(&mv_pci_driver);
4412#endif
4413        platform_driver_unregister(&mv_platform_driver);
4414}
4415
4416MODULE_AUTHOR("Brett Russ");
4417MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4418MODULE_LICENSE("GPL");
4419MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4420MODULE_VERSION(DRV_VERSION);
4421MODULE_ALIAS("platform:" DRV_NAME);
4422
4423module_init(mv_init);
4424module_exit(mv_exit);
4425