linux/drivers/base/memory.c
<<
>>
Prefs
   1/*
   2 * drivers/base/memory.c - basic Memory class support
   3 *
   4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
   5 *            Dave Hansen <haveblue@us.ibm.com>
   6 *
   7 * This file provides the necessary infrastructure to represent
   8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
   9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
  10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
  11 */
  12
  13#include <linux/sysdev.h>
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/topology.h>
  17#include <linux/capability.h>
  18#include <linux/device.h>
  19#include <linux/memory.h>
  20#include <linux/kobject.h>
  21#include <linux/memory_hotplug.h>
  22#include <linux/mm.h>
  23#include <linux/mutex.h>
  24#include <linux/stat.h>
  25#include <linux/slab.h>
  26
  27#include <asm/atomic.h>
  28#include <asm/uaccess.h>
  29
  30static DEFINE_MUTEX(mem_sysfs_mutex);
  31
  32#define MEMORY_CLASS_NAME       "memory"
  33
  34static struct sysdev_class memory_sysdev_class = {
  35        .name = MEMORY_CLASS_NAME,
  36};
  37
  38static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
  39{
  40        return MEMORY_CLASS_NAME;
  41}
  42
  43static int memory_uevent(struct kset *kset, struct kobject *obj, struct kobj_uevent_env *env)
  44{
  45        int retval = 0;
  46
  47        return retval;
  48}
  49
  50static const struct kset_uevent_ops memory_uevent_ops = {
  51        .name           = memory_uevent_name,
  52        .uevent         = memory_uevent,
  53};
  54
  55static BLOCKING_NOTIFIER_HEAD(memory_chain);
  56
  57int register_memory_notifier(struct notifier_block *nb)
  58{
  59        return blocking_notifier_chain_register(&memory_chain, nb);
  60}
  61EXPORT_SYMBOL(register_memory_notifier);
  62
  63void unregister_memory_notifier(struct notifier_block *nb)
  64{
  65        blocking_notifier_chain_unregister(&memory_chain, nb);
  66}
  67EXPORT_SYMBOL(unregister_memory_notifier);
  68
  69static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
  70
  71int register_memory_isolate_notifier(struct notifier_block *nb)
  72{
  73        return atomic_notifier_chain_register(&memory_isolate_chain, nb);
  74}
  75EXPORT_SYMBOL(register_memory_isolate_notifier);
  76
  77void unregister_memory_isolate_notifier(struct notifier_block *nb)
  78{
  79        atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
  80}
  81EXPORT_SYMBOL(unregister_memory_isolate_notifier);
  82
  83/*
  84 * register_memory - Setup a sysfs device for a memory block
  85 */
  86static
  87int register_memory(struct memory_block *memory, struct mem_section *section)
  88{
  89        int error;
  90
  91        memory->sysdev.cls = &memory_sysdev_class;
  92        memory->sysdev.id = __section_nr(section);
  93
  94        error = sysdev_register(&memory->sysdev);
  95        return error;
  96}
  97
  98static void
  99unregister_memory(struct memory_block *memory, struct mem_section *section)
 100{
 101        BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
 102        BUG_ON(memory->sysdev.id != __section_nr(section));
 103
 104        /* drop the ref. we got in remove_memory_block() */
 105        kobject_put(&memory->sysdev.kobj);
 106        sysdev_unregister(&memory->sysdev);
 107}
 108
 109/*
 110 * use this as the physical section index that this memsection
 111 * uses.
 112 */
 113
 114static ssize_t show_mem_phys_index(struct sys_device *dev,
 115                        struct sysdev_attribute *attr, char *buf)
 116{
 117        struct memory_block *mem =
 118                container_of(dev, struct memory_block, sysdev);
 119        return sprintf(buf, "%08lx\n", mem->phys_index);
 120}
 121
 122/*
 123 * Show whether the section of memory is likely to be hot-removable
 124 */
 125static ssize_t show_mem_removable(struct sys_device *dev,
 126                        struct sysdev_attribute *attr, char *buf)
 127{
 128        unsigned long start_pfn;
 129        int ret;
 130        struct memory_block *mem =
 131                container_of(dev, struct memory_block, sysdev);
 132
 133        start_pfn = section_nr_to_pfn(mem->phys_index);
 134        ret = is_mem_section_removable(start_pfn, PAGES_PER_SECTION);
 135        return sprintf(buf, "%d\n", ret);
 136}
 137
 138/*
 139 * online, offline, going offline, etc.
 140 */
 141static ssize_t show_mem_state(struct sys_device *dev,
 142                        struct sysdev_attribute *attr, char *buf)
 143{
 144        struct memory_block *mem =
 145                container_of(dev, struct memory_block, sysdev);
 146        ssize_t len = 0;
 147
 148        /*
 149         * We can probably put these states in a nice little array
 150         * so that they're not open-coded
 151         */
 152        switch (mem->state) {
 153                case MEM_ONLINE:
 154                        len = sprintf(buf, "online\n");
 155                        break;
 156                case MEM_OFFLINE:
 157                        len = sprintf(buf, "offline\n");
 158                        break;
 159                case MEM_GOING_OFFLINE:
 160                        len = sprintf(buf, "going-offline\n");
 161                        break;
 162                default:
 163                        len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
 164                                        mem->state);
 165                        WARN_ON(1);
 166                        break;
 167        }
 168
 169        return len;
 170}
 171
 172int memory_notify(unsigned long val, void *v)
 173{
 174        return blocking_notifier_call_chain(&memory_chain, val, v);
 175}
 176
 177int memory_isolate_notify(unsigned long val, void *v)
 178{
 179        return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
 180}
 181
 182/*
 183 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 184 * OK to have direct references to sparsemem variables in here.
 185 */
 186static int
 187memory_block_action(struct memory_block *mem, unsigned long action)
 188{
 189        int i;
 190        unsigned long psection;
 191        unsigned long start_pfn, start_paddr;
 192        struct page *first_page;
 193        int ret;
 194        int old_state = mem->state;
 195
 196        psection = mem->phys_index;
 197        first_page = pfn_to_page(psection << PFN_SECTION_SHIFT);
 198
 199        /*
 200         * The probe routines leave the pages reserved, just
 201         * as the bootmem code does.  Make sure they're still
 202         * that way.
 203         */
 204        if (action == MEM_ONLINE) {
 205                for (i = 0; i < PAGES_PER_SECTION; i++) {
 206                        if (PageReserved(first_page+i))
 207                                continue;
 208
 209                        printk(KERN_WARNING "section number %ld page number %d "
 210                                "not reserved, was it already online? \n",
 211                                psection, i);
 212                        return -EBUSY;
 213                }
 214        }
 215
 216        switch (action) {
 217                case MEM_ONLINE:
 218                        start_pfn = page_to_pfn(first_page);
 219                        ret = online_pages(start_pfn, PAGES_PER_SECTION);
 220                        break;
 221                case MEM_OFFLINE:
 222                        mem->state = MEM_GOING_OFFLINE;
 223                        start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
 224                        ret = remove_memory(start_paddr,
 225                                            PAGES_PER_SECTION << PAGE_SHIFT);
 226                        if (ret) {
 227                                mem->state = old_state;
 228                                break;
 229                        }
 230                        break;
 231                default:
 232                        WARN(1, KERN_WARNING "%s(%p, %ld) unknown action: %ld\n",
 233                                        __func__, mem, action, action);
 234                        ret = -EINVAL;
 235        }
 236
 237        return ret;
 238}
 239
 240static int memory_block_change_state(struct memory_block *mem,
 241                unsigned long to_state, unsigned long from_state_req)
 242{
 243        int ret = 0;
 244        mutex_lock(&mem->state_mutex);
 245
 246        if (mem->state != from_state_req) {
 247                ret = -EINVAL;
 248                goto out;
 249        }
 250
 251        ret = memory_block_action(mem, to_state);
 252        if (!ret)
 253                mem->state = to_state;
 254
 255out:
 256        mutex_unlock(&mem->state_mutex);
 257        return ret;
 258}
 259
 260static ssize_t
 261store_mem_state(struct sys_device *dev,
 262                struct sysdev_attribute *attr, const char *buf, size_t count)
 263{
 264        struct memory_block *mem;
 265        unsigned int phys_section_nr;
 266        int ret = -EINVAL;
 267
 268        mem = container_of(dev, struct memory_block, sysdev);
 269        phys_section_nr = mem->phys_index;
 270
 271        if (!present_section_nr(phys_section_nr))
 272                goto out;
 273
 274        if (!strncmp(buf, "online", min((int)count, 6)))
 275                ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
 276        else if(!strncmp(buf, "offline", min((int)count, 7)))
 277                ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
 278out:
 279        if (ret)
 280                return ret;
 281        return count;
 282}
 283
 284/*
 285 * phys_device is a bad name for this.  What I really want
 286 * is a way to differentiate between memory ranges that
 287 * are part of physical devices that constitute
 288 * a complete removable unit or fru.
 289 * i.e. do these ranges belong to the same physical device,
 290 * s.t. if I offline all of these sections I can then
 291 * remove the physical device?
 292 */
 293static ssize_t show_phys_device(struct sys_device *dev,
 294                                struct sysdev_attribute *attr, char *buf)
 295{
 296        struct memory_block *mem =
 297                container_of(dev, struct memory_block, sysdev);
 298        return sprintf(buf, "%d\n", mem->phys_device);
 299}
 300
 301static SYSDEV_ATTR(phys_index, 0444, show_mem_phys_index, NULL);
 302static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
 303static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
 304static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
 305
 306#define mem_create_simple_file(mem, attr_name)  \
 307        sysdev_create_file(&mem->sysdev, &attr_##attr_name)
 308#define mem_remove_simple_file(mem, attr_name)  \
 309        sysdev_remove_file(&mem->sysdev, &attr_##attr_name)
 310
 311/*
 312 * Block size attribute stuff
 313 */
 314static ssize_t
 315print_block_size(struct sysdev_class *class, struct sysdev_class_attribute *attr,
 316                 char *buf)
 317{
 318        return sprintf(buf, "%lx\n", (unsigned long)PAGES_PER_SECTION * PAGE_SIZE);
 319}
 320
 321static SYSDEV_CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);
 322
 323static int block_size_init(void)
 324{
 325        return sysfs_create_file(&memory_sysdev_class.kset.kobj,
 326                                &attr_block_size_bytes.attr);
 327}
 328
 329/*
 330 * Some architectures will have custom drivers to do this, and
 331 * will not need to do it from userspace.  The fake hot-add code
 332 * as well as ppc64 will do all of their discovery in userspace
 333 * and will require this interface.
 334 */
 335#ifdef CONFIG_ARCH_MEMORY_PROBE
 336static ssize_t
 337memory_probe_store(struct class *class, struct class_attribute *attr,
 338                   const char *buf, size_t count)
 339{
 340        u64 phys_addr;
 341        int nid;
 342        int ret;
 343
 344        phys_addr = simple_strtoull(buf, NULL, 0);
 345
 346        nid = memory_add_physaddr_to_nid(phys_addr);
 347        ret = add_memory(nid, phys_addr, PAGES_PER_SECTION << PAGE_SHIFT);
 348
 349        if (ret)
 350                count = ret;
 351
 352        return count;
 353}
 354static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
 355
 356static int memory_probe_init(void)
 357{
 358        return sysfs_create_file(&memory_sysdev_class.kset.kobj,
 359                                &class_attr_probe.attr);
 360}
 361#else
 362static inline int memory_probe_init(void)
 363{
 364        return 0;
 365}
 366#endif
 367
 368#ifdef CONFIG_MEMORY_FAILURE
 369/*
 370 * Support for offlining pages of memory
 371 */
 372
 373/* Soft offline a page */
 374static ssize_t
 375store_soft_offline_page(struct class *class,
 376                        struct class_attribute *attr,
 377                        const char *buf, size_t count)
 378{
 379        int ret;
 380        u64 pfn;
 381        if (!capable(CAP_SYS_ADMIN))
 382                return -EPERM;
 383        if (strict_strtoull(buf, 0, &pfn) < 0)
 384                return -EINVAL;
 385        pfn >>= PAGE_SHIFT;
 386        if (!pfn_valid(pfn))
 387                return -ENXIO;
 388        ret = soft_offline_page(pfn_to_page(pfn), 0);
 389        return ret == 0 ? count : ret;
 390}
 391
 392/* Forcibly offline a page, including killing processes. */
 393static ssize_t
 394store_hard_offline_page(struct class *class,
 395                        struct class_attribute *attr,
 396                        const char *buf, size_t count)
 397{
 398        int ret;
 399        u64 pfn;
 400        if (!capable(CAP_SYS_ADMIN))
 401                return -EPERM;
 402        if (strict_strtoull(buf, 0, &pfn) < 0)
 403                return -EINVAL;
 404        pfn >>= PAGE_SHIFT;
 405        ret = __memory_failure(pfn, 0, 0);
 406        return ret ? ret : count;
 407}
 408
 409static CLASS_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
 410static CLASS_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
 411
 412static __init int memory_fail_init(void)
 413{
 414        int err;
 415
 416        err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
 417                                &class_attr_soft_offline_page.attr);
 418        if (!err)
 419                err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
 420                                &class_attr_hard_offline_page.attr);
 421        return err;
 422}
 423#else
 424static inline int memory_fail_init(void)
 425{
 426        return 0;
 427}
 428#endif
 429
 430/*
 431 * Note that phys_device is optional.  It is here to allow for
 432 * differentiation between which *physical* devices each
 433 * section belongs to...
 434 */
 435int __weak arch_get_memory_phys_device(unsigned long start_pfn)
 436{
 437        return 0;
 438}
 439
 440struct memory_block *find_memory_block_hinted(struct mem_section *section,
 441                                              struct memory_block *hint)
 442{
 443        struct kobject *kobj;
 444        struct sys_device *sysdev;
 445        struct memory_block *mem;
 446        char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];
 447
 448        kobj = hint ? &hint->sysdev.kobj : NULL;
 449
 450        /*
 451         * This only works because we know that section == sysdev->id
 452         * slightly redundant with sysdev_register()
 453         */
 454        sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, __section_nr(section));
 455
 456        kobj = kset_find_obj_hinted(&memory_sysdev_class.kset, name, kobj);
 457        if (!kobj)
 458                return NULL;
 459
 460        sysdev = container_of(kobj, struct sys_device, kobj);
 461        mem = container_of(sysdev, struct memory_block, sysdev);
 462
 463        return mem;
 464}
 465
 466/*
 467 * For now, we have a linear search to go find the appropriate
 468 * memory_block corresponding to a particular phys_index. If
 469 * this gets to be a real problem, we can always use a radix
 470 * tree or something here.
 471 *
 472 * This could be made generic for all sysdev classes.
 473 */
 474struct memory_block *find_memory_block(struct mem_section *section)
 475{
 476        return find_memory_block_hinted(section, NULL);
 477}
 478
 479static int add_memory_block(int nid, struct mem_section *section,
 480                        unsigned long state, enum mem_add_context context)
 481{
 482        struct memory_block *mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 483        unsigned long start_pfn;
 484        int ret = 0;
 485
 486        if (!mem)
 487                return -ENOMEM;
 488
 489        mutex_lock(&mem_sysfs_mutex);
 490
 491        mem->phys_index = __section_nr(section);
 492        mem->state = state;
 493        mem->section_count++;
 494        mutex_init(&mem->state_mutex);
 495        start_pfn = section_nr_to_pfn(mem->phys_index);
 496        mem->phys_device = arch_get_memory_phys_device(start_pfn);
 497
 498        ret = register_memory(mem, section);
 499        if (!ret)
 500                ret = mem_create_simple_file(mem, phys_index);
 501        if (!ret)
 502                ret = mem_create_simple_file(mem, state);
 503        if (!ret)
 504                ret = mem_create_simple_file(mem, phys_device);
 505        if (!ret)
 506                ret = mem_create_simple_file(mem, removable);
 507        if (!ret) {
 508                if (context == HOTPLUG)
 509                        ret = register_mem_sect_under_node(mem, nid);
 510        }
 511
 512        mutex_unlock(&mem_sysfs_mutex);
 513        return ret;
 514}
 515
 516int remove_memory_block(unsigned long node_id, struct mem_section *section,
 517                int phys_device)
 518{
 519        struct memory_block *mem;
 520
 521        mutex_lock(&mem_sysfs_mutex);
 522        mem = find_memory_block(section);
 523
 524        mem->section_count--;
 525        if (mem->section_count == 0) {
 526                unregister_mem_sect_under_nodes(mem);
 527                mem_remove_simple_file(mem, phys_index);
 528                mem_remove_simple_file(mem, state);
 529                mem_remove_simple_file(mem, phys_device);
 530                mem_remove_simple_file(mem, removable);
 531                unregister_memory(mem, section);
 532        }
 533
 534        mutex_unlock(&mem_sysfs_mutex);
 535        return 0;
 536}
 537
 538/*
 539 * need an interface for the VM to add new memory regions,
 540 * but without onlining it.
 541 */
 542int register_new_memory(int nid, struct mem_section *section)
 543{
 544        return add_memory_block(nid, section, MEM_OFFLINE, HOTPLUG);
 545}
 546
 547int unregister_memory_section(struct mem_section *section)
 548{
 549        if (!present_section(section))
 550                return -EINVAL;
 551
 552        return remove_memory_block(0, section, 0);
 553}
 554
 555/*
 556 * Initialize the sysfs support for memory devices...
 557 */
 558int __init memory_dev_init(void)
 559{
 560        unsigned int i;
 561        int ret;
 562        int err;
 563
 564        memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
 565        ret = sysdev_class_register(&memory_sysdev_class);
 566        if (ret)
 567                goto out;
 568
 569        /*
 570         * Create entries for memory sections that were found
 571         * during boot and have been initialized
 572         */
 573        for (i = 0; i < NR_MEM_SECTIONS; i++) {
 574                if (!present_section_nr(i))
 575                        continue;
 576                err = add_memory_block(0, __nr_to_section(i), MEM_ONLINE,
 577                                       BOOT);
 578                if (!ret)
 579                        ret = err;
 580        }
 581
 582        err = memory_probe_init();
 583        if (!ret)
 584                ret = err;
 585        err = memory_fail_init();
 586        if (!ret)
 587                ret = err;
 588        err = block_size_init();
 589        if (!ret)
 590                ret = err;
 591out:
 592        if (ret)
 593                printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
 594        return ret;
 595}
 596