linux/drivers/char/ipmi/ipmi_si_intf.c
<<
>>
Prefs
   1/*
   2 * ipmi_si.c
   3 *
   4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
   5 * BT).
   6 *
   7 * Author: MontaVista Software, Inc.
   8 *         Corey Minyard <minyard@mvista.com>
   9 *         source@mvista.com
  10 *
  11 * Copyright 2002 MontaVista Software Inc.
  12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
  13 *
  14 *  This program is free software; you can redistribute it and/or modify it
  15 *  under the terms of the GNU General Public License as published by the
  16 *  Free Software Foundation; either version 2 of the License, or (at your
  17 *  option) any later version.
  18 *
  19 *
  20 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  21 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  22 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  23 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  24 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  25 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  26 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  27 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  28 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  29 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30 *
  31 *  You should have received a copy of the GNU General Public License along
  32 *  with this program; if not, write to the Free Software Foundation, Inc.,
  33 *  675 Mass Ave, Cambridge, MA 02139, USA.
  34 */
  35
  36/*
  37 * This file holds the "policy" for the interface to the SMI state
  38 * machine.  It does the configuration, handles timers and interrupts,
  39 * and drives the real SMI state machine.
  40 */
  41
  42#include <linux/module.h>
  43#include <linux/moduleparam.h>
  44#include <asm/system.h>
  45#include <linux/sched.h>
  46#include <linux/timer.h>
  47#include <linux/errno.h>
  48#include <linux/spinlock.h>
  49#include <linux/slab.h>
  50#include <linux/delay.h>
  51#include <linux/list.h>
  52#include <linux/pci.h>
  53#include <linux/ioport.h>
  54#include <linux/notifier.h>
  55#include <linux/mutex.h>
  56#include <linux/kthread.h>
  57#include <asm/irq.h>
  58#include <linux/interrupt.h>
  59#include <linux/rcupdate.h>
  60#include <linux/ipmi.h>
  61#include <linux/ipmi_smi.h>
  62#include <asm/io.h>
  63#include "ipmi_si_sm.h"
  64#include <linux/init.h>
  65#include <linux/dmi.h>
  66#include <linux/string.h>
  67#include <linux/ctype.h>
  68#include <linux/pnp.h>
  69
  70#ifdef CONFIG_PPC_OF
  71#include <linux/of_device.h>
  72#include <linux/of_platform.h>
  73#include <linux/of_address.h>
  74#include <linux/of_irq.h>
  75#endif
  76
  77#define PFX "ipmi_si: "
  78
  79/* Measure times between events in the driver. */
  80#undef DEBUG_TIMING
  81
  82/* Call every 10 ms. */
  83#define SI_TIMEOUT_TIME_USEC    10000
  84#define SI_USEC_PER_JIFFY       (1000000/HZ)
  85#define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
  86#define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
  87                                      short timeout */
  88
  89enum si_intf_state {
  90        SI_NORMAL,
  91        SI_GETTING_FLAGS,
  92        SI_GETTING_EVENTS,
  93        SI_CLEARING_FLAGS,
  94        SI_CLEARING_FLAGS_THEN_SET_IRQ,
  95        SI_GETTING_MESSAGES,
  96        SI_ENABLE_INTERRUPTS1,
  97        SI_ENABLE_INTERRUPTS2,
  98        SI_DISABLE_INTERRUPTS1,
  99        SI_DISABLE_INTERRUPTS2
 100        /* FIXME - add watchdog stuff. */
 101};
 102
 103/* Some BT-specific defines we need here. */
 104#define IPMI_BT_INTMASK_REG             2
 105#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
 106#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
 107
 108enum si_type {
 109    SI_KCS, SI_SMIC, SI_BT
 110};
 111static char *si_to_str[] = { "kcs", "smic", "bt" };
 112
 113static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
 114                                        "ACPI", "SMBIOS", "PCI",
 115                                        "device-tree", "default" };
 116
 117#define DEVICE_NAME "ipmi_si"
 118
 119static struct platform_driver ipmi_driver = {
 120        .driver = {
 121                .name = DEVICE_NAME,
 122                .bus = &platform_bus_type
 123        }
 124};
 125
 126
 127/*
 128 * Indexes into stats[] in smi_info below.
 129 */
 130enum si_stat_indexes {
 131        /*
 132         * Number of times the driver requested a timer while an operation
 133         * was in progress.
 134         */
 135        SI_STAT_short_timeouts = 0,
 136
 137        /*
 138         * Number of times the driver requested a timer while nothing was in
 139         * progress.
 140         */
 141        SI_STAT_long_timeouts,
 142
 143        /* Number of times the interface was idle while being polled. */
 144        SI_STAT_idles,
 145
 146        /* Number of interrupts the driver handled. */
 147        SI_STAT_interrupts,
 148
 149        /* Number of time the driver got an ATTN from the hardware. */
 150        SI_STAT_attentions,
 151
 152        /* Number of times the driver requested flags from the hardware. */
 153        SI_STAT_flag_fetches,
 154
 155        /* Number of times the hardware didn't follow the state machine. */
 156        SI_STAT_hosed_count,
 157
 158        /* Number of completed messages. */
 159        SI_STAT_complete_transactions,
 160
 161        /* Number of IPMI events received from the hardware. */
 162        SI_STAT_events,
 163
 164        /* Number of watchdog pretimeouts. */
 165        SI_STAT_watchdog_pretimeouts,
 166
 167        /* Number of asyncronous messages received. */
 168        SI_STAT_incoming_messages,
 169
 170
 171        /* This *must* remain last, add new values above this. */
 172        SI_NUM_STATS
 173};
 174
 175struct smi_info {
 176        int                    intf_num;
 177        ipmi_smi_t             intf;
 178        struct si_sm_data      *si_sm;
 179        struct si_sm_handlers  *handlers;
 180        enum si_type           si_type;
 181        spinlock_t             si_lock;
 182        spinlock_t             msg_lock;
 183        struct list_head       xmit_msgs;
 184        struct list_head       hp_xmit_msgs;
 185        struct ipmi_smi_msg    *curr_msg;
 186        enum si_intf_state     si_state;
 187
 188        /*
 189         * Used to handle the various types of I/O that can occur with
 190         * IPMI
 191         */
 192        struct si_sm_io io;
 193        int (*io_setup)(struct smi_info *info);
 194        void (*io_cleanup)(struct smi_info *info);
 195        int (*irq_setup)(struct smi_info *info);
 196        void (*irq_cleanup)(struct smi_info *info);
 197        unsigned int io_size;
 198        enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
 199        void (*addr_source_cleanup)(struct smi_info *info);
 200        void *addr_source_data;
 201
 202        /*
 203         * Per-OEM handler, called from handle_flags().  Returns 1
 204         * when handle_flags() needs to be re-run or 0 indicating it
 205         * set si_state itself.
 206         */
 207        int (*oem_data_avail_handler)(struct smi_info *smi_info);
 208
 209        /*
 210         * Flags from the last GET_MSG_FLAGS command, used when an ATTN
 211         * is set to hold the flags until we are done handling everything
 212         * from the flags.
 213         */
 214#define RECEIVE_MSG_AVAIL       0x01
 215#define EVENT_MSG_BUFFER_FULL   0x02
 216#define WDT_PRE_TIMEOUT_INT     0x08
 217#define OEM0_DATA_AVAIL     0x20
 218#define OEM1_DATA_AVAIL     0x40
 219#define OEM2_DATA_AVAIL     0x80
 220#define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
 221                             OEM1_DATA_AVAIL | \
 222                             OEM2_DATA_AVAIL)
 223        unsigned char       msg_flags;
 224
 225        /* Does the BMC have an event buffer? */
 226        char                has_event_buffer;
 227
 228        /*
 229         * If set to true, this will request events the next time the
 230         * state machine is idle.
 231         */
 232        atomic_t            req_events;
 233
 234        /*
 235         * If true, run the state machine to completion on every send
 236         * call.  Generally used after a panic to make sure stuff goes
 237         * out.
 238         */
 239        int                 run_to_completion;
 240
 241        /* The I/O port of an SI interface. */
 242        int                 port;
 243
 244        /*
 245         * The space between start addresses of the two ports.  For
 246         * instance, if the first port is 0xca2 and the spacing is 4, then
 247         * the second port is 0xca6.
 248         */
 249        unsigned int        spacing;
 250
 251        /* zero if no irq; */
 252        int                 irq;
 253
 254        /* The timer for this si. */
 255        struct timer_list   si_timer;
 256
 257        /* The time (in jiffies) the last timeout occurred at. */
 258        unsigned long       last_timeout_jiffies;
 259
 260        /* Used to gracefully stop the timer without race conditions. */
 261        atomic_t            stop_operation;
 262
 263        /*
 264         * The driver will disable interrupts when it gets into a
 265         * situation where it cannot handle messages due to lack of
 266         * memory.  Once that situation clears up, it will re-enable
 267         * interrupts.
 268         */
 269        int interrupt_disabled;
 270
 271        /* From the get device id response... */
 272        struct ipmi_device_id device_id;
 273
 274        /* Driver model stuff. */
 275        struct device *dev;
 276        struct platform_device *pdev;
 277
 278        /*
 279         * True if we allocated the device, false if it came from
 280         * someplace else (like PCI).
 281         */
 282        int dev_registered;
 283
 284        /* Slave address, could be reported from DMI. */
 285        unsigned char slave_addr;
 286
 287        /* Counters and things for the proc filesystem. */
 288        atomic_t stats[SI_NUM_STATS];
 289
 290        struct task_struct *thread;
 291
 292        struct list_head link;
 293        union ipmi_smi_info_union addr_info;
 294};
 295
 296#define smi_inc_stat(smi, stat) \
 297        atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
 298#define smi_get_stat(smi, stat) \
 299        ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
 300
 301#define SI_MAX_PARMS 4
 302
 303static int force_kipmid[SI_MAX_PARMS];
 304static int num_force_kipmid;
 305#ifdef CONFIG_PCI
 306static int pci_registered;
 307#endif
 308#ifdef CONFIG_ACPI
 309static int pnp_registered;
 310#endif
 311#ifdef CONFIG_PPC_OF
 312static int of_registered;
 313#endif
 314
 315static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
 316static int num_max_busy_us;
 317
 318static int unload_when_empty = 1;
 319
 320static int add_smi(struct smi_info *smi);
 321static int try_smi_init(struct smi_info *smi);
 322static void cleanup_one_si(struct smi_info *to_clean);
 323static void cleanup_ipmi_si(void);
 324
 325static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
 326static int register_xaction_notifier(struct notifier_block *nb)
 327{
 328        return atomic_notifier_chain_register(&xaction_notifier_list, nb);
 329}
 330
 331static void deliver_recv_msg(struct smi_info *smi_info,
 332                             struct ipmi_smi_msg *msg)
 333{
 334        /* Deliver the message to the upper layer with the lock
 335           released. */
 336
 337        if (smi_info->run_to_completion) {
 338                ipmi_smi_msg_received(smi_info->intf, msg);
 339        } else {
 340                spin_unlock(&(smi_info->si_lock));
 341                ipmi_smi_msg_received(smi_info->intf, msg);
 342                spin_lock(&(smi_info->si_lock));
 343        }
 344}
 345
 346static void return_hosed_msg(struct smi_info *smi_info, int cCode)
 347{
 348        struct ipmi_smi_msg *msg = smi_info->curr_msg;
 349
 350        if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
 351                cCode = IPMI_ERR_UNSPECIFIED;
 352        /* else use it as is */
 353
 354        /* Make it a reponse */
 355        msg->rsp[0] = msg->data[0] | 4;
 356        msg->rsp[1] = msg->data[1];
 357        msg->rsp[2] = cCode;
 358        msg->rsp_size = 3;
 359
 360        smi_info->curr_msg = NULL;
 361        deliver_recv_msg(smi_info, msg);
 362}
 363
 364static enum si_sm_result start_next_msg(struct smi_info *smi_info)
 365{
 366        int              rv;
 367        struct list_head *entry = NULL;
 368#ifdef DEBUG_TIMING
 369        struct timeval t;
 370#endif
 371
 372        /*
 373         * No need to save flags, we aleady have interrupts off and we
 374         * already hold the SMI lock.
 375         */
 376        if (!smi_info->run_to_completion)
 377                spin_lock(&(smi_info->msg_lock));
 378
 379        /* Pick the high priority queue first. */
 380        if (!list_empty(&(smi_info->hp_xmit_msgs))) {
 381                entry = smi_info->hp_xmit_msgs.next;
 382        } else if (!list_empty(&(smi_info->xmit_msgs))) {
 383                entry = smi_info->xmit_msgs.next;
 384        }
 385
 386        if (!entry) {
 387                smi_info->curr_msg = NULL;
 388                rv = SI_SM_IDLE;
 389        } else {
 390                int err;
 391
 392                list_del(entry);
 393                smi_info->curr_msg = list_entry(entry,
 394                                                struct ipmi_smi_msg,
 395                                                link);
 396#ifdef DEBUG_TIMING
 397                do_gettimeofday(&t);
 398                printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 399#endif
 400                err = atomic_notifier_call_chain(&xaction_notifier_list,
 401                                0, smi_info);
 402                if (err & NOTIFY_STOP_MASK) {
 403                        rv = SI_SM_CALL_WITHOUT_DELAY;
 404                        goto out;
 405                }
 406                err = smi_info->handlers->start_transaction(
 407                        smi_info->si_sm,
 408                        smi_info->curr_msg->data,
 409                        smi_info->curr_msg->data_size);
 410                if (err)
 411                        return_hosed_msg(smi_info, err);
 412
 413                rv = SI_SM_CALL_WITHOUT_DELAY;
 414        }
 415 out:
 416        if (!smi_info->run_to_completion)
 417                spin_unlock(&(smi_info->msg_lock));
 418
 419        return rv;
 420}
 421
 422static void start_enable_irq(struct smi_info *smi_info)
 423{
 424        unsigned char msg[2];
 425
 426        /*
 427         * If we are enabling interrupts, we have to tell the
 428         * BMC to use them.
 429         */
 430        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 431        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
 432
 433        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 434        smi_info->si_state = SI_ENABLE_INTERRUPTS1;
 435}
 436
 437static void start_disable_irq(struct smi_info *smi_info)
 438{
 439        unsigned char msg[2];
 440
 441        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 442        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
 443
 444        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 445        smi_info->si_state = SI_DISABLE_INTERRUPTS1;
 446}
 447
 448static void start_clear_flags(struct smi_info *smi_info)
 449{
 450        unsigned char msg[3];
 451
 452        /* Make sure the watchdog pre-timeout flag is not set at startup. */
 453        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 454        msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
 455        msg[2] = WDT_PRE_TIMEOUT_INT;
 456
 457        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
 458        smi_info->si_state = SI_CLEARING_FLAGS;
 459}
 460
 461/*
 462 * When we have a situtaion where we run out of memory and cannot
 463 * allocate messages, we just leave them in the BMC and run the system
 464 * polled until we can allocate some memory.  Once we have some
 465 * memory, we will re-enable the interrupt.
 466 */
 467static inline void disable_si_irq(struct smi_info *smi_info)
 468{
 469        if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
 470                start_disable_irq(smi_info);
 471                smi_info->interrupt_disabled = 1;
 472                if (!atomic_read(&smi_info->stop_operation))
 473                        mod_timer(&smi_info->si_timer,
 474                                  jiffies + SI_TIMEOUT_JIFFIES);
 475        }
 476}
 477
 478static inline void enable_si_irq(struct smi_info *smi_info)
 479{
 480        if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
 481                start_enable_irq(smi_info);
 482                smi_info->interrupt_disabled = 0;
 483        }
 484}
 485
 486static void handle_flags(struct smi_info *smi_info)
 487{
 488 retry:
 489        if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
 490                /* Watchdog pre-timeout */
 491                smi_inc_stat(smi_info, watchdog_pretimeouts);
 492
 493                start_clear_flags(smi_info);
 494                smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
 495                spin_unlock(&(smi_info->si_lock));
 496                ipmi_smi_watchdog_pretimeout(smi_info->intf);
 497                spin_lock(&(smi_info->si_lock));
 498        } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
 499                /* Messages available. */
 500                smi_info->curr_msg = ipmi_alloc_smi_msg();
 501                if (!smi_info->curr_msg) {
 502                        disable_si_irq(smi_info);
 503                        smi_info->si_state = SI_NORMAL;
 504                        return;
 505                }
 506                enable_si_irq(smi_info);
 507
 508                smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 509                smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
 510                smi_info->curr_msg->data_size = 2;
 511
 512                smi_info->handlers->start_transaction(
 513                        smi_info->si_sm,
 514                        smi_info->curr_msg->data,
 515                        smi_info->curr_msg->data_size);
 516                smi_info->si_state = SI_GETTING_MESSAGES;
 517        } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
 518                /* Events available. */
 519                smi_info->curr_msg = ipmi_alloc_smi_msg();
 520                if (!smi_info->curr_msg) {
 521                        disable_si_irq(smi_info);
 522                        smi_info->si_state = SI_NORMAL;
 523                        return;
 524                }
 525                enable_si_irq(smi_info);
 526
 527                smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 528                smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
 529                smi_info->curr_msg->data_size = 2;
 530
 531                smi_info->handlers->start_transaction(
 532                        smi_info->si_sm,
 533                        smi_info->curr_msg->data,
 534                        smi_info->curr_msg->data_size);
 535                smi_info->si_state = SI_GETTING_EVENTS;
 536        } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
 537                   smi_info->oem_data_avail_handler) {
 538                if (smi_info->oem_data_avail_handler(smi_info))
 539                        goto retry;
 540        } else
 541                smi_info->si_state = SI_NORMAL;
 542}
 543
 544static void handle_transaction_done(struct smi_info *smi_info)
 545{
 546        struct ipmi_smi_msg *msg;
 547#ifdef DEBUG_TIMING
 548        struct timeval t;
 549
 550        do_gettimeofday(&t);
 551        printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 552#endif
 553        switch (smi_info->si_state) {
 554        case SI_NORMAL:
 555                if (!smi_info->curr_msg)
 556                        break;
 557
 558                smi_info->curr_msg->rsp_size
 559                        = smi_info->handlers->get_result(
 560                                smi_info->si_sm,
 561                                smi_info->curr_msg->rsp,
 562                                IPMI_MAX_MSG_LENGTH);
 563
 564                /*
 565                 * Do this here becase deliver_recv_msg() releases the
 566                 * lock, and a new message can be put in during the
 567                 * time the lock is released.
 568                 */
 569                msg = smi_info->curr_msg;
 570                smi_info->curr_msg = NULL;
 571                deliver_recv_msg(smi_info, msg);
 572                break;
 573
 574        case SI_GETTING_FLAGS:
 575        {
 576                unsigned char msg[4];
 577                unsigned int  len;
 578
 579                /* We got the flags from the SMI, now handle them. */
 580                len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 581                if (msg[2] != 0) {
 582                        /* Error fetching flags, just give up for now. */
 583                        smi_info->si_state = SI_NORMAL;
 584                } else if (len < 4) {
 585                        /*
 586                         * Hmm, no flags.  That's technically illegal, but
 587                         * don't use uninitialized data.
 588                         */
 589                        smi_info->si_state = SI_NORMAL;
 590                } else {
 591                        smi_info->msg_flags = msg[3];
 592                        handle_flags(smi_info);
 593                }
 594                break;
 595        }
 596
 597        case SI_CLEARING_FLAGS:
 598        case SI_CLEARING_FLAGS_THEN_SET_IRQ:
 599        {
 600                unsigned char msg[3];
 601
 602                /* We cleared the flags. */
 603                smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
 604                if (msg[2] != 0) {
 605                        /* Error clearing flags */
 606                        dev_warn(smi_info->dev,
 607                                 "Error clearing flags: %2.2x\n", msg[2]);
 608                }
 609                if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
 610                        start_enable_irq(smi_info);
 611                else
 612                        smi_info->si_state = SI_NORMAL;
 613                break;
 614        }
 615
 616        case SI_GETTING_EVENTS:
 617        {
 618                smi_info->curr_msg->rsp_size
 619                        = smi_info->handlers->get_result(
 620                                smi_info->si_sm,
 621                                smi_info->curr_msg->rsp,
 622                                IPMI_MAX_MSG_LENGTH);
 623
 624                /*
 625                 * Do this here becase deliver_recv_msg() releases the
 626                 * lock, and a new message can be put in during the
 627                 * time the lock is released.
 628                 */
 629                msg = smi_info->curr_msg;
 630                smi_info->curr_msg = NULL;
 631                if (msg->rsp[2] != 0) {
 632                        /* Error getting event, probably done. */
 633                        msg->done(msg);
 634
 635                        /* Take off the event flag. */
 636                        smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
 637                        handle_flags(smi_info);
 638                } else {
 639                        smi_inc_stat(smi_info, events);
 640
 641                        /*
 642                         * Do this before we deliver the message
 643                         * because delivering the message releases the
 644                         * lock and something else can mess with the
 645                         * state.
 646                         */
 647                        handle_flags(smi_info);
 648
 649                        deliver_recv_msg(smi_info, msg);
 650                }
 651                break;
 652        }
 653
 654        case SI_GETTING_MESSAGES:
 655        {
 656                smi_info->curr_msg->rsp_size
 657                        = smi_info->handlers->get_result(
 658                                smi_info->si_sm,
 659                                smi_info->curr_msg->rsp,
 660                                IPMI_MAX_MSG_LENGTH);
 661
 662                /*
 663                 * Do this here becase deliver_recv_msg() releases the
 664                 * lock, and a new message can be put in during the
 665                 * time the lock is released.
 666                 */
 667                msg = smi_info->curr_msg;
 668                smi_info->curr_msg = NULL;
 669                if (msg->rsp[2] != 0) {
 670                        /* Error getting event, probably done. */
 671                        msg->done(msg);
 672
 673                        /* Take off the msg flag. */
 674                        smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
 675                        handle_flags(smi_info);
 676                } else {
 677                        smi_inc_stat(smi_info, incoming_messages);
 678
 679                        /*
 680                         * Do this before we deliver the message
 681                         * because delivering the message releases the
 682                         * lock and something else can mess with the
 683                         * state.
 684                         */
 685                        handle_flags(smi_info);
 686
 687                        deliver_recv_msg(smi_info, msg);
 688                }
 689                break;
 690        }
 691
 692        case SI_ENABLE_INTERRUPTS1:
 693        {
 694                unsigned char msg[4];
 695
 696                /* We got the flags from the SMI, now handle them. */
 697                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 698                if (msg[2] != 0) {
 699                        dev_warn(smi_info->dev, "Could not enable interrupts"
 700                                 ", failed get, using polled mode.\n");
 701                        smi_info->si_state = SI_NORMAL;
 702                } else {
 703                        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 704                        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
 705                        msg[2] = (msg[3] |
 706                                  IPMI_BMC_RCV_MSG_INTR |
 707                                  IPMI_BMC_EVT_MSG_INTR);
 708                        smi_info->handlers->start_transaction(
 709                                smi_info->si_sm, msg, 3);
 710                        smi_info->si_state = SI_ENABLE_INTERRUPTS2;
 711                }
 712                break;
 713        }
 714
 715        case SI_ENABLE_INTERRUPTS2:
 716        {
 717                unsigned char msg[4];
 718
 719                /* We got the flags from the SMI, now handle them. */
 720                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 721                if (msg[2] != 0)
 722                        dev_warn(smi_info->dev, "Could not enable interrupts"
 723                                 ", failed set, using polled mode.\n");
 724                else
 725                        smi_info->interrupt_disabled = 0;
 726                smi_info->si_state = SI_NORMAL;
 727                break;
 728        }
 729
 730        case SI_DISABLE_INTERRUPTS1:
 731        {
 732                unsigned char msg[4];
 733
 734                /* We got the flags from the SMI, now handle them. */
 735                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 736                if (msg[2] != 0) {
 737                        dev_warn(smi_info->dev, "Could not disable interrupts"
 738                                 ", failed get.\n");
 739                        smi_info->si_state = SI_NORMAL;
 740                } else {
 741                        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 742                        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
 743                        msg[2] = (msg[3] &
 744                                  ~(IPMI_BMC_RCV_MSG_INTR |
 745                                    IPMI_BMC_EVT_MSG_INTR));
 746                        smi_info->handlers->start_transaction(
 747                                smi_info->si_sm, msg, 3);
 748                        smi_info->si_state = SI_DISABLE_INTERRUPTS2;
 749                }
 750                break;
 751        }
 752
 753        case SI_DISABLE_INTERRUPTS2:
 754        {
 755                unsigned char msg[4];
 756
 757                /* We got the flags from the SMI, now handle them. */
 758                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 759                if (msg[2] != 0) {
 760                        dev_warn(smi_info->dev, "Could not disable interrupts"
 761                                 ", failed set.\n");
 762                }
 763                smi_info->si_state = SI_NORMAL;
 764                break;
 765        }
 766        }
 767}
 768
 769/*
 770 * Called on timeouts and events.  Timeouts should pass the elapsed
 771 * time, interrupts should pass in zero.  Must be called with
 772 * si_lock held and interrupts disabled.
 773 */
 774static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
 775                                           int time)
 776{
 777        enum si_sm_result si_sm_result;
 778
 779 restart:
 780        /*
 781         * There used to be a loop here that waited a little while
 782         * (around 25us) before giving up.  That turned out to be
 783         * pointless, the minimum delays I was seeing were in the 300us
 784         * range, which is far too long to wait in an interrupt.  So
 785         * we just run until the state machine tells us something
 786         * happened or it needs a delay.
 787         */
 788        si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
 789        time = 0;
 790        while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
 791                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 792
 793        if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
 794                smi_inc_stat(smi_info, complete_transactions);
 795
 796                handle_transaction_done(smi_info);
 797                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 798        } else if (si_sm_result == SI_SM_HOSED) {
 799                smi_inc_stat(smi_info, hosed_count);
 800
 801                /*
 802                 * Do the before return_hosed_msg, because that
 803                 * releases the lock.
 804                 */
 805                smi_info->si_state = SI_NORMAL;
 806                if (smi_info->curr_msg != NULL) {
 807                        /*
 808                         * If we were handling a user message, format
 809                         * a response to send to the upper layer to
 810                         * tell it about the error.
 811                         */
 812                        return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
 813                }
 814                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 815        }
 816
 817        /*
 818         * We prefer handling attn over new messages.  But don't do
 819         * this if there is not yet an upper layer to handle anything.
 820         */
 821        if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
 822                unsigned char msg[2];
 823
 824                smi_inc_stat(smi_info, attentions);
 825
 826                /*
 827                 * Got a attn, send down a get message flags to see
 828                 * what's causing it.  It would be better to handle
 829                 * this in the upper layer, but due to the way
 830                 * interrupts work with the SMI, that's not really
 831                 * possible.
 832                 */
 833                msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 834                msg[1] = IPMI_GET_MSG_FLAGS_CMD;
 835
 836                smi_info->handlers->start_transaction(
 837                        smi_info->si_sm, msg, 2);
 838                smi_info->si_state = SI_GETTING_FLAGS;
 839                goto restart;
 840        }
 841
 842        /* If we are currently idle, try to start the next message. */
 843        if (si_sm_result == SI_SM_IDLE) {
 844                smi_inc_stat(smi_info, idles);
 845
 846                si_sm_result = start_next_msg(smi_info);
 847                if (si_sm_result != SI_SM_IDLE)
 848                        goto restart;
 849        }
 850
 851        if ((si_sm_result == SI_SM_IDLE)
 852            && (atomic_read(&smi_info->req_events))) {
 853                /*
 854                 * We are idle and the upper layer requested that I fetch
 855                 * events, so do so.
 856                 */
 857                atomic_set(&smi_info->req_events, 0);
 858
 859                smi_info->curr_msg = ipmi_alloc_smi_msg();
 860                if (!smi_info->curr_msg)
 861                        goto out;
 862
 863                smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 864                smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
 865                smi_info->curr_msg->data_size = 2;
 866
 867                smi_info->handlers->start_transaction(
 868                        smi_info->si_sm,
 869                        smi_info->curr_msg->data,
 870                        smi_info->curr_msg->data_size);
 871                smi_info->si_state = SI_GETTING_EVENTS;
 872                goto restart;
 873        }
 874 out:
 875        return si_sm_result;
 876}
 877
 878static void sender(void                *send_info,
 879                   struct ipmi_smi_msg *msg,
 880                   int                 priority)
 881{
 882        struct smi_info   *smi_info = send_info;
 883        enum si_sm_result result;
 884        unsigned long     flags;
 885#ifdef DEBUG_TIMING
 886        struct timeval    t;
 887#endif
 888
 889        if (atomic_read(&smi_info->stop_operation)) {
 890                msg->rsp[0] = msg->data[0] | 4;
 891                msg->rsp[1] = msg->data[1];
 892                msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
 893                msg->rsp_size = 3;
 894                deliver_recv_msg(smi_info, msg);
 895                return;
 896        }
 897
 898#ifdef DEBUG_TIMING
 899        do_gettimeofday(&t);
 900        printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 901#endif
 902
 903        /*
 904         * last_timeout_jiffies is updated here to avoid
 905         * smi_timeout() handler passing very large time_diff
 906         * value to smi_event_handler() that causes
 907         * the send command to abort.
 908         */
 909        smi_info->last_timeout_jiffies = jiffies;
 910
 911        mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
 912
 913        if (smi_info->thread)
 914                wake_up_process(smi_info->thread);
 915
 916        if (smi_info->run_to_completion) {
 917                /*
 918                 * If we are running to completion, then throw it in
 919                 * the list and run transactions until everything is
 920                 * clear.  Priority doesn't matter here.
 921                 */
 922
 923                /*
 924                 * Run to completion means we are single-threaded, no
 925                 * need for locks.
 926                 */
 927                list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
 928
 929                result = smi_event_handler(smi_info, 0);
 930                while (result != SI_SM_IDLE) {
 931                        udelay(SI_SHORT_TIMEOUT_USEC);
 932                        result = smi_event_handler(smi_info,
 933                                                   SI_SHORT_TIMEOUT_USEC);
 934                }
 935                return;
 936        }
 937
 938        spin_lock_irqsave(&smi_info->msg_lock, flags);
 939        if (priority > 0)
 940                list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
 941        else
 942                list_add_tail(&msg->link, &smi_info->xmit_msgs);
 943        spin_unlock_irqrestore(&smi_info->msg_lock, flags);
 944
 945        spin_lock_irqsave(&smi_info->si_lock, flags);
 946        if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
 947                start_next_msg(smi_info);
 948        spin_unlock_irqrestore(&smi_info->si_lock, flags);
 949}
 950
 951static void set_run_to_completion(void *send_info, int i_run_to_completion)
 952{
 953        struct smi_info   *smi_info = send_info;
 954        enum si_sm_result result;
 955
 956        smi_info->run_to_completion = i_run_to_completion;
 957        if (i_run_to_completion) {
 958                result = smi_event_handler(smi_info, 0);
 959                while (result != SI_SM_IDLE) {
 960                        udelay(SI_SHORT_TIMEOUT_USEC);
 961                        result = smi_event_handler(smi_info,
 962                                                   SI_SHORT_TIMEOUT_USEC);
 963                }
 964        }
 965}
 966
 967/*
 968 * Use -1 in the nsec value of the busy waiting timespec to tell that
 969 * we are spinning in kipmid looking for something and not delaying
 970 * between checks
 971 */
 972static inline void ipmi_si_set_not_busy(struct timespec *ts)
 973{
 974        ts->tv_nsec = -1;
 975}
 976static inline int ipmi_si_is_busy(struct timespec *ts)
 977{
 978        return ts->tv_nsec != -1;
 979}
 980
 981static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
 982                                 const struct smi_info *smi_info,
 983                                 struct timespec *busy_until)
 984{
 985        unsigned int max_busy_us = 0;
 986
 987        if (smi_info->intf_num < num_max_busy_us)
 988                max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
 989        if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
 990                ipmi_si_set_not_busy(busy_until);
 991        else if (!ipmi_si_is_busy(busy_until)) {
 992                getnstimeofday(busy_until);
 993                timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
 994        } else {
 995                struct timespec now;
 996                getnstimeofday(&now);
 997                if (unlikely(timespec_compare(&now, busy_until) > 0)) {
 998                        ipmi_si_set_not_busy(busy_until);
 999                        return 0;
1000                }
1001        }
1002        return 1;
1003}
1004
1005
1006/*
1007 * A busy-waiting loop for speeding up IPMI operation.
1008 *
1009 * Lousy hardware makes this hard.  This is only enabled for systems
1010 * that are not BT and do not have interrupts.  It starts spinning
1011 * when an operation is complete or until max_busy tells it to stop
1012 * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1013 * Documentation/IPMI.txt for details.
1014 */
1015static int ipmi_thread(void *data)
1016{
1017        struct smi_info *smi_info = data;
1018        unsigned long flags;
1019        enum si_sm_result smi_result;
1020        struct timespec busy_until;
1021
1022        ipmi_si_set_not_busy(&busy_until);
1023        set_user_nice(current, 19);
1024        while (!kthread_should_stop()) {
1025                int busy_wait;
1026
1027                spin_lock_irqsave(&(smi_info->si_lock), flags);
1028                smi_result = smi_event_handler(smi_info, 0);
1029                spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1030                busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1031                                                  &busy_until);
1032                if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1033                        ; /* do nothing */
1034                else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1035                        schedule();
1036                else if (smi_result == SI_SM_IDLE)
1037                        schedule_timeout_interruptible(100);
1038                else
1039                        schedule_timeout_interruptible(1);
1040        }
1041        return 0;
1042}
1043
1044
1045static void poll(void *send_info)
1046{
1047        struct smi_info *smi_info = send_info;
1048        unsigned long flags;
1049
1050        /*
1051         * Make sure there is some delay in the poll loop so we can
1052         * drive time forward and timeout things.
1053         */
1054        udelay(10);
1055        spin_lock_irqsave(&smi_info->si_lock, flags);
1056        smi_event_handler(smi_info, 10);
1057        spin_unlock_irqrestore(&smi_info->si_lock, flags);
1058}
1059
1060static void request_events(void *send_info)
1061{
1062        struct smi_info *smi_info = send_info;
1063
1064        if (atomic_read(&smi_info->stop_operation) ||
1065                                !smi_info->has_event_buffer)
1066                return;
1067
1068        atomic_set(&smi_info->req_events, 1);
1069}
1070
1071static int initialized;
1072
1073static void smi_timeout(unsigned long data)
1074{
1075        struct smi_info   *smi_info = (struct smi_info *) data;
1076        enum si_sm_result smi_result;
1077        unsigned long     flags;
1078        unsigned long     jiffies_now;
1079        long              time_diff;
1080        long              timeout;
1081#ifdef DEBUG_TIMING
1082        struct timeval    t;
1083#endif
1084
1085        spin_lock_irqsave(&(smi_info->si_lock), flags);
1086#ifdef DEBUG_TIMING
1087        do_gettimeofday(&t);
1088        printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1089#endif
1090        jiffies_now = jiffies;
1091        time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1092                     * SI_USEC_PER_JIFFY);
1093        smi_result = smi_event_handler(smi_info, time_diff);
1094
1095        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1096
1097        smi_info->last_timeout_jiffies = jiffies_now;
1098
1099        if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1100                /* Running with interrupts, only do long timeouts. */
1101                timeout = jiffies + SI_TIMEOUT_JIFFIES;
1102                smi_inc_stat(smi_info, long_timeouts);
1103                goto do_mod_timer;
1104        }
1105
1106        /*
1107         * If the state machine asks for a short delay, then shorten
1108         * the timer timeout.
1109         */
1110        if (smi_result == SI_SM_CALL_WITH_DELAY) {
1111                smi_inc_stat(smi_info, short_timeouts);
1112                timeout = jiffies + 1;
1113        } else {
1114                smi_inc_stat(smi_info, long_timeouts);
1115                timeout = jiffies + SI_TIMEOUT_JIFFIES;
1116        }
1117
1118 do_mod_timer:
1119        if (smi_result != SI_SM_IDLE)
1120                mod_timer(&(smi_info->si_timer), timeout);
1121}
1122
1123static irqreturn_t si_irq_handler(int irq, void *data)
1124{
1125        struct smi_info *smi_info = data;
1126        unsigned long   flags;
1127#ifdef DEBUG_TIMING
1128        struct timeval  t;
1129#endif
1130
1131        spin_lock_irqsave(&(smi_info->si_lock), flags);
1132
1133        smi_inc_stat(smi_info, interrupts);
1134
1135#ifdef DEBUG_TIMING
1136        do_gettimeofday(&t);
1137        printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1138#endif
1139        smi_event_handler(smi_info, 0);
1140        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1141        return IRQ_HANDLED;
1142}
1143
1144static irqreturn_t si_bt_irq_handler(int irq, void *data)
1145{
1146        struct smi_info *smi_info = data;
1147        /* We need to clear the IRQ flag for the BT interface. */
1148        smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1149                             IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1150                             | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1151        return si_irq_handler(irq, data);
1152}
1153
1154static int smi_start_processing(void       *send_info,
1155                                ipmi_smi_t intf)
1156{
1157        struct smi_info *new_smi = send_info;
1158        int             enable = 0;
1159
1160        new_smi->intf = intf;
1161
1162        /* Try to claim any interrupts. */
1163        if (new_smi->irq_setup)
1164                new_smi->irq_setup(new_smi);
1165
1166        /* Set up the timer that drives the interface. */
1167        setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1168        new_smi->last_timeout_jiffies = jiffies;
1169        mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1170
1171        /*
1172         * Check if the user forcefully enabled the daemon.
1173         */
1174        if (new_smi->intf_num < num_force_kipmid)
1175                enable = force_kipmid[new_smi->intf_num];
1176        /*
1177         * The BT interface is efficient enough to not need a thread,
1178         * and there is no need for a thread if we have interrupts.
1179         */
1180        else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1181                enable = 1;
1182
1183        if (enable) {
1184                new_smi->thread = kthread_run(ipmi_thread, new_smi,
1185                                              "kipmi%d", new_smi->intf_num);
1186                if (IS_ERR(new_smi->thread)) {
1187                        dev_notice(new_smi->dev, "Could not start"
1188                                   " kernel thread due to error %ld, only using"
1189                                   " timers to drive the interface\n",
1190                                   PTR_ERR(new_smi->thread));
1191                        new_smi->thread = NULL;
1192                }
1193        }
1194
1195        return 0;
1196}
1197
1198static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1199{
1200        struct smi_info *smi = send_info;
1201
1202        data->addr_src = smi->addr_source;
1203        data->dev = smi->dev;
1204        data->addr_info = smi->addr_info;
1205        get_device(smi->dev);
1206
1207        return 0;
1208}
1209
1210static void set_maintenance_mode(void *send_info, int enable)
1211{
1212        struct smi_info   *smi_info = send_info;
1213
1214        if (!enable)
1215                atomic_set(&smi_info->req_events, 0);
1216}
1217
1218static struct ipmi_smi_handlers handlers = {
1219        .owner                  = THIS_MODULE,
1220        .start_processing       = smi_start_processing,
1221        .get_smi_info           = get_smi_info,
1222        .sender                 = sender,
1223        .request_events         = request_events,
1224        .set_maintenance_mode   = set_maintenance_mode,
1225        .set_run_to_completion  = set_run_to_completion,
1226        .poll                   = poll,
1227};
1228
1229/*
1230 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1231 * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1232 */
1233
1234static LIST_HEAD(smi_infos);
1235static DEFINE_MUTEX(smi_infos_lock);
1236static int smi_num; /* Used to sequence the SMIs */
1237
1238#define DEFAULT_REGSPACING      1
1239#define DEFAULT_REGSIZE         1
1240
1241static int           si_trydefaults = 1;
1242static char          *si_type[SI_MAX_PARMS];
1243#define MAX_SI_TYPE_STR 30
1244static char          si_type_str[MAX_SI_TYPE_STR];
1245static unsigned long addrs[SI_MAX_PARMS];
1246static unsigned int num_addrs;
1247static unsigned int  ports[SI_MAX_PARMS];
1248static unsigned int num_ports;
1249static int           irqs[SI_MAX_PARMS];
1250static unsigned int num_irqs;
1251static int           regspacings[SI_MAX_PARMS];
1252static unsigned int num_regspacings;
1253static int           regsizes[SI_MAX_PARMS];
1254static unsigned int num_regsizes;
1255static int           regshifts[SI_MAX_PARMS];
1256static unsigned int num_regshifts;
1257static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1258static unsigned int num_slave_addrs;
1259
1260#define IPMI_IO_ADDR_SPACE  0
1261#define IPMI_MEM_ADDR_SPACE 1
1262static char *addr_space_to_str[] = { "i/o", "mem" };
1263
1264static int hotmod_handler(const char *val, struct kernel_param *kp);
1265
1266module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1267MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1268                 " Documentation/IPMI.txt in the kernel sources for the"
1269                 " gory details.");
1270
1271module_param_named(trydefaults, si_trydefaults, bool, 0);
1272MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1273                 " default scan of the KCS and SMIC interface at the standard"
1274                 " address");
1275module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1276MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1277                 " interface separated by commas.  The types are 'kcs',"
1278                 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1279                 " the first interface to kcs and the second to bt");
1280module_param_array(addrs, ulong, &num_addrs, 0);
1281MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1282                 " addresses separated by commas.  Only use if an interface"
1283                 " is in memory.  Otherwise, set it to zero or leave"
1284                 " it blank.");
1285module_param_array(ports, uint, &num_ports, 0);
1286MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1287                 " addresses separated by commas.  Only use if an interface"
1288                 " is a port.  Otherwise, set it to zero or leave"
1289                 " it blank.");
1290module_param_array(irqs, int, &num_irqs, 0);
1291MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1292                 " addresses separated by commas.  Only use if an interface"
1293                 " has an interrupt.  Otherwise, set it to zero or leave"
1294                 " it blank.");
1295module_param_array(regspacings, int, &num_regspacings, 0);
1296MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1297                 " and each successive register used by the interface.  For"
1298                 " instance, if the start address is 0xca2 and the spacing"
1299                 " is 2, then the second address is at 0xca4.  Defaults"
1300                 " to 1.");
1301module_param_array(regsizes, int, &num_regsizes, 0);
1302MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1303                 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1304                 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1305                 " the 8-bit IPMI register has to be read from a larger"
1306                 " register.");
1307module_param_array(regshifts, int, &num_regshifts, 0);
1308MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1309                 " IPMI register, in bits.  For instance, if the data"
1310                 " is read from a 32-bit word and the IPMI data is in"
1311                 " bit 8-15, then the shift would be 8");
1312module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1313MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1314                 " the controller.  Normally this is 0x20, but can be"
1315                 " overridden by this parm.  This is an array indexed"
1316                 " by interface number.");
1317module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1318MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1319                 " disabled(0).  Normally the IPMI driver auto-detects"
1320                 " this, but the value may be overridden by this parm.");
1321module_param(unload_when_empty, int, 0);
1322MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1323                 " specified or found, default is 1.  Setting to 0"
1324                 " is useful for hot add of devices using hotmod.");
1325module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1326MODULE_PARM_DESC(kipmid_max_busy_us,
1327                 "Max time (in microseconds) to busy-wait for IPMI data before"
1328                 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1329                 " if kipmid is using up a lot of CPU time.");
1330
1331
1332static void std_irq_cleanup(struct smi_info *info)
1333{
1334        if (info->si_type == SI_BT)
1335                /* Disable the interrupt in the BT interface. */
1336                info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1337        free_irq(info->irq, info);
1338}
1339
1340static int std_irq_setup(struct smi_info *info)
1341{
1342        int rv;
1343
1344        if (!info->irq)
1345                return 0;
1346
1347        if (info->si_type == SI_BT) {
1348                rv = request_irq(info->irq,
1349                                 si_bt_irq_handler,
1350                                 IRQF_SHARED | IRQF_DISABLED,
1351                                 DEVICE_NAME,
1352                                 info);
1353                if (!rv)
1354                        /* Enable the interrupt in the BT interface. */
1355                        info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1356                                         IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1357        } else
1358                rv = request_irq(info->irq,
1359                                 si_irq_handler,
1360                                 IRQF_SHARED | IRQF_DISABLED,
1361                                 DEVICE_NAME,
1362                                 info);
1363        if (rv) {
1364                dev_warn(info->dev, "%s unable to claim interrupt %d,"
1365                         " running polled\n",
1366                         DEVICE_NAME, info->irq);
1367                info->irq = 0;
1368        } else {
1369                info->irq_cleanup = std_irq_cleanup;
1370                dev_info(info->dev, "Using irq %d\n", info->irq);
1371        }
1372
1373        return rv;
1374}
1375
1376static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1377{
1378        unsigned int addr = io->addr_data;
1379
1380        return inb(addr + (offset * io->regspacing));
1381}
1382
1383static void port_outb(struct si_sm_io *io, unsigned int offset,
1384                      unsigned char b)
1385{
1386        unsigned int addr = io->addr_data;
1387
1388        outb(b, addr + (offset * io->regspacing));
1389}
1390
1391static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1392{
1393        unsigned int addr = io->addr_data;
1394
1395        return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1396}
1397
1398static void port_outw(struct si_sm_io *io, unsigned int offset,
1399                      unsigned char b)
1400{
1401        unsigned int addr = io->addr_data;
1402
1403        outw(b << io->regshift, addr + (offset * io->regspacing));
1404}
1405
1406static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1407{
1408        unsigned int addr = io->addr_data;
1409
1410        return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1411}
1412
1413static void port_outl(struct si_sm_io *io, unsigned int offset,
1414                      unsigned char b)
1415{
1416        unsigned int addr = io->addr_data;
1417
1418        outl(b << io->regshift, addr+(offset * io->regspacing));
1419}
1420
1421static void port_cleanup(struct smi_info *info)
1422{
1423        unsigned int addr = info->io.addr_data;
1424        int          idx;
1425
1426        if (addr) {
1427                for (idx = 0; idx < info->io_size; idx++)
1428                        release_region(addr + idx * info->io.regspacing,
1429                                       info->io.regsize);
1430        }
1431}
1432
1433static int port_setup(struct smi_info *info)
1434{
1435        unsigned int addr = info->io.addr_data;
1436        int          idx;
1437
1438        if (!addr)
1439                return -ENODEV;
1440
1441        info->io_cleanup = port_cleanup;
1442
1443        /*
1444         * Figure out the actual inb/inw/inl/etc routine to use based
1445         * upon the register size.
1446         */
1447        switch (info->io.regsize) {
1448        case 1:
1449                info->io.inputb = port_inb;
1450                info->io.outputb = port_outb;
1451                break;
1452        case 2:
1453                info->io.inputb = port_inw;
1454                info->io.outputb = port_outw;
1455                break;
1456        case 4:
1457                info->io.inputb = port_inl;
1458                info->io.outputb = port_outl;
1459                break;
1460        default:
1461                dev_warn(info->dev, "Invalid register size: %d\n",
1462                         info->io.regsize);
1463                return -EINVAL;
1464        }
1465
1466        /*
1467         * Some BIOSes reserve disjoint I/O regions in their ACPI
1468         * tables.  This causes problems when trying to register the
1469         * entire I/O region.  Therefore we must register each I/O
1470         * port separately.
1471         */
1472        for (idx = 0; idx < info->io_size; idx++) {
1473                if (request_region(addr + idx * info->io.regspacing,
1474                                   info->io.regsize, DEVICE_NAME) == NULL) {
1475                        /* Undo allocations */
1476                        while (idx--) {
1477                                release_region(addr + idx * info->io.regspacing,
1478                                               info->io.regsize);
1479                        }
1480                        return -EIO;
1481                }
1482        }
1483        return 0;
1484}
1485
1486static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1487{
1488        return readb((io->addr)+(offset * io->regspacing));
1489}
1490
1491static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1492                     unsigned char b)
1493{
1494        writeb(b, (io->addr)+(offset * io->regspacing));
1495}
1496
1497static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1498{
1499        return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1500                & 0xff;
1501}
1502
1503static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1504                     unsigned char b)
1505{
1506        writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1507}
1508
1509static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1510{
1511        return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1512                & 0xff;
1513}
1514
1515static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1516                     unsigned char b)
1517{
1518        writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1519}
1520
1521#ifdef readq
1522static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1523{
1524        return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1525                & 0xff;
1526}
1527
1528static void mem_outq(struct si_sm_io *io, unsigned int offset,
1529                     unsigned char b)
1530{
1531        writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1532}
1533#endif
1534
1535static void mem_cleanup(struct smi_info *info)
1536{
1537        unsigned long addr = info->io.addr_data;
1538        int           mapsize;
1539
1540        if (info->io.addr) {
1541                iounmap(info->io.addr);
1542
1543                mapsize = ((info->io_size * info->io.regspacing)
1544                           - (info->io.regspacing - info->io.regsize));
1545
1546                release_mem_region(addr, mapsize);
1547        }
1548}
1549
1550static int mem_setup(struct smi_info *info)
1551{
1552        unsigned long addr = info->io.addr_data;
1553        int           mapsize;
1554
1555        if (!addr)
1556                return -ENODEV;
1557
1558        info->io_cleanup = mem_cleanup;
1559
1560        /*
1561         * Figure out the actual readb/readw/readl/etc routine to use based
1562         * upon the register size.
1563         */
1564        switch (info->io.regsize) {
1565        case 1:
1566                info->io.inputb = intf_mem_inb;
1567                info->io.outputb = intf_mem_outb;
1568                break;
1569        case 2:
1570                info->io.inputb = intf_mem_inw;
1571                info->io.outputb = intf_mem_outw;
1572                break;
1573        case 4:
1574                info->io.inputb = intf_mem_inl;
1575                info->io.outputb = intf_mem_outl;
1576                break;
1577#ifdef readq
1578        case 8:
1579                info->io.inputb = mem_inq;
1580                info->io.outputb = mem_outq;
1581                break;
1582#endif
1583        default:
1584                dev_warn(info->dev, "Invalid register size: %d\n",
1585                         info->io.regsize);
1586                return -EINVAL;
1587        }
1588
1589        /*
1590         * Calculate the total amount of memory to claim.  This is an
1591         * unusual looking calculation, but it avoids claiming any
1592         * more memory than it has to.  It will claim everything
1593         * between the first address to the end of the last full
1594         * register.
1595         */
1596        mapsize = ((info->io_size * info->io.regspacing)
1597                   - (info->io.regspacing - info->io.regsize));
1598
1599        if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1600                return -EIO;
1601
1602        info->io.addr = ioremap(addr, mapsize);
1603        if (info->io.addr == NULL) {
1604                release_mem_region(addr, mapsize);
1605                return -EIO;
1606        }
1607        return 0;
1608}
1609
1610/*
1611 * Parms come in as <op1>[:op2[:op3...]].  ops are:
1612 *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1613 * Options are:
1614 *   rsp=<regspacing>
1615 *   rsi=<regsize>
1616 *   rsh=<regshift>
1617 *   irq=<irq>
1618 *   ipmb=<ipmb addr>
1619 */
1620enum hotmod_op { HM_ADD, HM_REMOVE };
1621struct hotmod_vals {
1622        char *name;
1623        int  val;
1624};
1625static struct hotmod_vals hotmod_ops[] = {
1626        { "add",        HM_ADD },
1627        { "remove",     HM_REMOVE },
1628        { NULL }
1629};
1630static struct hotmod_vals hotmod_si[] = {
1631        { "kcs",        SI_KCS },
1632        { "smic",       SI_SMIC },
1633        { "bt",         SI_BT },
1634        { NULL }
1635};
1636static struct hotmod_vals hotmod_as[] = {
1637        { "mem",        IPMI_MEM_ADDR_SPACE },
1638        { "i/o",        IPMI_IO_ADDR_SPACE },
1639        { NULL }
1640};
1641
1642static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1643{
1644        char *s;
1645        int  i;
1646
1647        s = strchr(*curr, ',');
1648        if (!s) {
1649                printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1650                return -EINVAL;
1651        }
1652        *s = '\0';
1653        s++;
1654        for (i = 0; hotmod_ops[i].name; i++) {
1655                if (strcmp(*curr, v[i].name) == 0) {
1656                        *val = v[i].val;
1657                        *curr = s;
1658                        return 0;
1659                }
1660        }
1661
1662        printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1663        return -EINVAL;
1664}
1665
1666static int check_hotmod_int_op(const char *curr, const char *option,
1667                               const char *name, int *val)
1668{
1669        char *n;
1670
1671        if (strcmp(curr, name) == 0) {
1672                if (!option) {
1673                        printk(KERN_WARNING PFX
1674                               "No option given for '%s'\n",
1675                               curr);
1676                        return -EINVAL;
1677                }
1678                *val = simple_strtoul(option, &n, 0);
1679                if ((*n != '\0') || (*option == '\0')) {
1680                        printk(KERN_WARNING PFX
1681                               "Bad option given for '%s'\n",
1682                               curr);
1683                        return -EINVAL;
1684                }
1685                return 1;
1686        }
1687        return 0;
1688}
1689
1690static struct smi_info *smi_info_alloc(void)
1691{
1692        struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1693
1694        if (info) {
1695                spin_lock_init(&info->si_lock);
1696                spin_lock_init(&info->msg_lock);
1697        }
1698        return info;
1699}
1700
1701static int hotmod_handler(const char *val, struct kernel_param *kp)
1702{
1703        char *str = kstrdup(val, GFP_KERNEL);
1704        int  rv;
1705        char *next, *curr, *s, *n, *o;
1706        enum hotmod_op op;
1707        enum si_type si_type;
1708        int  addr_space;
1709        unsigned long addr;
1710        int regspacing;
1711        int regsize;
1712        int regshift;
1713        int irq;
1714        int ipmb;
1715        int ival;
1716        int len;
1717        struct smi_info *info;
1718
1719        if (!str)
1720                return -ENOMEM;
1721
1722        /* Kill any trailing spaces, as we can get a "\n" from echo. */
1723        len = strlen(str);
1724        ival = len - 1;
1725        while ((ival >= 0) && isspace(str[ival])) {
1726                str[ival] = '\0';
1727                ival--;
1728        }
1729
1730        for (curr = str; curr; curr = next) {
1731                regspacing = 1;
1732                regsize = 1;
1733                regshift = 0;
1734                irq = 0;
1735                ipmb = 0; /* Choose the default if not specified */
1736
1737                next = strchr(curr, ':');
1738                if (next) {
1739                        *next = '\0';
1740                        next++;
1741                }
1742
1743                rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1744                if (rv)
1745                        break;
1746                op = ival;
1747
1748                rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1749                if (rv)
1750                        break;
1751                si_type = ival;
1752
1753                rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1754                if (rv)
1755                        break;
1756
1757                s = strchr(curr, ',');
1758                if (s) {
1759                        *s = '\0';
1760                        s++;
1761                }
1762                addr = simple_strtoul(curr, &n, 0);
1763                if ((*n != '\0') || (*curr == '\0')) {
1764                        printk(KERN_WARNING PFX "Invalid hotmod address"
1765                               " '%s'\n", curr);
1766                        break;
1767                }
1768
1769                while (s) {
1770                        curr = s;
1771                        s = strchr(curr, ',');
1772                        if (s) {
1773                                *s = '\0';
1774                                s++;
1775                        }
1776                        o = strchr(curr, '=');
1777                        if (o) {
1778                                *o = '\0';
1779                                o++;
1780                        }
1781                        rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1782                        if (rv < 0)
1783                                goto out;
1784                        else if (rv)
1785                                continue;
1786                        rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1787                        if (rv < 0)
1788                                goto out;
1789                        else if (rv)
1790                                continue;
1791                        rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1792                        if (rv < 0)
1793                                goto out;
1794                        else if (rv)
1795                                continue;
1796                        rv = check_hotmod_int_op(curr, o, "irq", &irq);
1797                        if (rv < 0)
1798                                goto out;
1799                        else if (rv)
1800                                continue;
1801                        rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1802                        if (rv < 0)
1803                                goto out;
1804                        else if (rv)
1805                                continue;
1806
1807                        rv = -EINVAL;
1808                        printk(KERN_WARNING PFX
1809                               "Invalid hotmod option '%s'\n",
1810                               curr);
1811                        goto out;
1812                }
1813
1814                if (op == HM_ADD) {
1815                        info = smi_info_alloc();
1816                        if (!info) {
1817                                rv = -ENOMEM;
1818                                goto out;
1819                        }
1820
1821                        info->addr_source = SI_HOTMOD;
1822                        info->si_type = si_type;
1823                        info->io.addr_data = addr;
1824                        info->io.addr_type = addr_space;
1825                        if (addr_space == IPMI_MEM_ADDR_SPACE)
1826                                info->io_setup = mem_setup;
1827                        else
1828                                info->io_setup = port_setup;
1829
1830                        info->io.addr = NULL;
1831                        info->io.regspacing = regspacing;
1832                        if (!info->io.regspacing)
1833                                info->io.regspacing = DEFAULT_REGSPACING;
1834                        info->io.regsize = regsize;
1835                        if (!info->io.regsize)
1836                                info->io.regsize = DEFAULT_REGSPACING;
1837                        info->io.regshift = regshift;
1838                        info->irq = irq;
1839                        if (info->irq)
1840                                info->irq_setup = std_irq_setup;
1841                        info->slave_addr = ipmb;
1842
1843                        if (!add_smi(info)) {
1844                                if (try_smi_init(info))
1845                                        cleanup_one_si(info);
1846                        } else {
1847                                kfree(info);
1848                        }
1849                } else {
1850                        /* remove */
1851                        struct smi_info *e, *tmp_e;
1852
1853                        mutex_lock(&smi_infos_lock);
1854                        list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1855                                if (e->io.addr_type != addr_space)
1856                                        continue;
1857                                if (e->si_type != si_type)
1858                                        continue;
1859                                if (e->io.addr_data == addr)
1860                                        cleanup_one_si(e);
1861                        }
1862                        mutex_unlock(&smi_infos_lock);
1863                }
1864        }
1865        rv = len;
1866 out:
1867        kfree(str);
1868        return rv;
1869}
1870
1871static void __devinit hardcode_find_bmc(void)
1872{
1873        int             i;
1874        struct smi_info *info;
1875
1876        for (i = 0; i < SI_MAX_PARMS; i++) {
1877                if (!ports[i] && !addrs[i])
1878                        continue;
1879
1880                info = smi_info_alloc();
1881                if (!info)
1882                        return;
1883
1884                info->addr_source = SI_HARDCODED;
1885                printk(KERN_INFO PFX "probing via hardcoded address\n");
1886
1887                if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1888                        info->si_type = SI_KCS;
1889                } else if (strcmp(si_type[i], "smic") == 0) {
1890                        info->si_type = SI_SMIC;
1891                } else if (strcmp(si_type[i], "bt") == 0) {
1892                        info->si_type = SI_BT;
1893                } else {
1894                        printk(KERN_WARNING PFX "Interface type specified "
1895                               "for interface %d, was invalid: %s\n",
1896                               i, si_type[i]);
1897                        kfree(info);
1898                        continue;
1899                }
1900
1901                if (ports[i]) {
1902                        /* An I/O port */
1903                        info->io_setup = port_setup;
1904                        info->io.addr_data = ports[i];
1905                        info->io.addr_type = IPMI_IO_ADDR_SPACE;
1906                } else if (addrs[i]) {
1907                        /* A memory port */
1908                        info->io_setup = mem_setup;
1909                        info->io.addr_data = addrs[i];
1910                        info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1911                } else {
1912                        printk(KERN_WARNING PFX "Interface type specified "
1913                               "for interface %d, but port and address were "
1914                               "not set or set to zero.\n", i);
1915                        kfree(info);
1916                        continue;
1917                }
1918
1919                info->io.addr = NULL;
1920                info->io.regspacing = regspacings[i];
1921                if (!info->io.regspacing)
1922                        info->io.regspacing = DEFAULT_REGSPACING;
1923                info->io.regsize = regsizes[i];
1924                if (!info->io.regsize)
1925                        info->io.regsize = DEFAULT_REGSPACING;
1926                info->io.regshift = regshifts[i];
1927                info->irq = irqs[i];
1928                if (info->irq)
1929                        info->irq_setup = std_irq_setup;
1930                info->slave_addr = slave_addrs[i];
1931
1932                if (!add_smi(info)) {
1933                        if (try_smi_init(info))
1934                                cleanup_one_si(info);
1935                } else {
1936                        kfree(info);
1937                }
1938        }
1939}
1940
1941#ifdef CONFIG_ACPI
1942
1943#include <linux/acpi.h>
1944
1945/*
1946 * Once we get an ACPI failure, we don't try any more, because we go
1947 * through the tables sequentially.  Once we don't find a table, there
1948 * are no more.
1949 */
1950static int acpi_failure;
1951
1952/* For GPE-type interrupts. */
1953static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1954        u32 gpe_number, void *context)
1955{
1956        struct smi_info *smi_info = context;
1957        unsigned long   flags;
1958#ifdef DEBUG_TIMING
1959        struct timeval t;
1960#endif
1961
1962        spin_lock_irqsave(&(smi_info->si_lock), flags);
1963
1964        smi_inc_stat(smi_info, interrupts);
1965
1966#ifdef DEBUG_TIMING
1967        do_gettimeofday(&t);
1968        printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1969#endif
1970        smi_event_handler(smi_info, 0);
1971        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1972
1973        return ACPI_INTERRUPT_HANDLED;
1974}
1975
1976static void acpi_gpe_irq_cleanup(struct smi_info *info)
1977{
1978        if (!info->irq)
1979                return;
1980
1981        acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1982}
1983
1984static int acpi_gpe_irq_setup(struct smi_info *info)
1985{
1986        acpi_status status;
1987
1988        if (!info->irq)
1989                return 0;
1990
1991        /* FIXME - is level triggered right? */
1992        status = acpi_install_gpe_handler(NULL,
1993                                          info->irq,
1994                                          ACPI_GPE_LEVEL_TRIGGERED,
1995                                          &ipmi_acpi_gpe,
1996                                          info);
1997        if (status != AE_OK) {
1998                dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1999                         " running polled\n", DEVICE_NAME, info->irq);
2000                info->irq = 0;
2001                return -EINVAL;
2002        } else {
2003                info->irq_cleanup = acpi_gpe_irq_cleanup;
2004                dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2005                return 0;
2006        }
2007}
2008
2009/*
2010 * Defined at
2011 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2012 */
2013struct SPMITable {
2014        s8      Signature[4];
2015        u32     Length;
2016        u8      Revision;
2017        u8      Checksum;
2018        s8      OEMID[6];
2019        s8      OEMTableID[8];
2020        s8      OEMRevision[4];
2021        s8      CreatorID[4];
2022        s8      CreatorRevision[4];
2023        u8      InterfaceType;
2024        u8      IPMIlegacy;
2025        s16     SpecificationRevision;
2026
2027        /*
2028         * Bit 0 - SCI interrupt supported
2029         * Bit 1 - I/O APIC/SAPIC
2030         */
2031        u8      InterruptType;
2032
2033        /*
2034         * If bit 0 of InterruptType is set, then this is the SCI
2035         * interrupt in the GPEx_STS register.
2036         */
2037        u8      GPE;
2038
2039        s16     Reserved;
2040
2041        /*
2042         * If bit 1 of InterruptType is set, then this is the I/O
2043         * APIC/SAPIC interrupt.
2044         */
2045        u32     GlobalSystemInterrupt;
2046
2047        /* The actual register address. */
2048        struct acpi_generic_address addr;
2049
2050        u8      UID[4];
2051
2052        s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2053};
2054
2055static int __devinit try_init_spmi(struct SPMITable *spmi)
2056{
2057        struct smi_info  *info;
2058
2059        if (spmi->IPMIlegacy != 1) {
2060                printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2061                return -ENODEV;
2062        }
2063
2064        info = smi_info_alloc();
2065        if (!info) {
2066                printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2067                return -ENOMEM;
2068        }
2069
2070        info->addr_source = SI_SPMI;
2071        printk(KERN_INFO PFX "probing via SPMI\n");
2072
2073        /* Figure out the interface type. */
2074        switch (spmi->InterfaceType) {
2075        case 1: /* KCS */
2076                info->si_type = SI_KCS;
2077                break;
2078        case 2: /* SMIC */
2079                info->si_type = SI_SMIC;
2080                break;
2081        case 3: /* BT */
2082                info->si_type = SI_BT;
2083                break;
2084        default:
2085                printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2086                       spmi->InterfaceType);
2087                kfree(info);
2088                return -EIO;
2089        }
2090
2091        if (spmi->InterruptType & 1) {
2092                /* We've got a GPE interrupt. */
2093                info->irq = spmi->GPE;
2094                info->irq_setup = acpi_gpe_irq_setup;
2095        } else if (spmi->InterruptType & 2) {
2096                /* We've got an APIC/SAPIC interrupt. */
2097                info->irq = spmi->GlobalSystemInterrupt;
2098                info->irq_setup = std_irq_setup;
2099        } else {
2100                /* Use the default interrupt setting. */
2101                info->irq = 0;
2102                info->irq_setup = NULL;
2103        }
2104
2105        if (spmi->addr.bit_width) {
2106                /* A (hopefully) properly formed register bit width. */
2107                info->io.regspacing = spmi->addr.bit_width / 8;
2108        } else {
2109                info->io.regspacing = DEFAULT_REGSPACING;
2110        }
2111        info->io.regsize = info->io.regspacing;
2112        info->io.regshift = spmi->addr.bit_offset;
2113
2114        if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2115                info->io_setup = mem_setup;
2116                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2117        } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2118                info->io_setup = port_setup;
2119                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2120        } else {
2121                kfree(info);
2122                printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2123                return -EIO;
2124        }
2125        info->io.addr_data = spmi->addr.address;
2126
2127        pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2128                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2129                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2130                 info->irq);
2131
2132        if (add_smi(info))
2133                kfree(info);
2134
2135        return 0;
2136}
2137
2138static void __devinit spmi_find_bmc(void)
2139{
2140        acpi_status      status;
2141        struct SPMITable *spmi;
2142        int              i;
2143
2144        if (acpi_disabled)
2145                return;
2146
2147        if (acpi_failure)
2148                return;
2149
2150        for (i = 0; ; i++) {
2151                status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2152                                        (struct acpi_table_header **)&spmi);
2153                if (status != AE_OK)
2154                        return;
2155
2156                try_init_spmi(spmi);
2157        }
2158}
2159
2160static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2161                                    const struct pnp_device_id *dev_id)
2162{
2163        struct acpi_device *acpi_dev;
2164        struct smi_info *info;
2165        struct resource *res, *res_second;
2166        acpi_handle handle;
2167        acpi_status status;
2168        unsigned long long tmp;
2169
2170        acpi_dev = pnp_acpi_device(dev);
2171        if (!acpi_dev)
2172                return -ENODEV;
2173
2174        info = smi_info_alloc();
2175        if (!info)
2176                return -ENOMEM;
2177
2178        info->addr_source = SI_ACPI;
2179        printk(KERN_INFO PFX "probing via ACPI\n");
2180
2181        handle = acpi_dev->handle;
2182        info->addr_info.acpi_info.acpi_handle = handle;
2183
2184        /* _IFT tells us the interface type: KCS, BT, etc */
2185        status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2186        if (ACPI_FAILURE(status))
2187                goto err_free;
2188
2189        switch (tmp) {
2190        case 1:
2191                info->si_type = SI_KCS;
2192                break;
2193        case 2:
2194                info->si_type = SI_SMIC;
2195                break;
2196        case 3:
2197                info->si_type = SI_BT;
2198                break;
2199        default:
2200                dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2201                goto err_free;
2202        }
2203
2204        res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2205        if (res) {
2206                info->io_setup = port_setup;
2207                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2208        } else {
2209                res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2210                if (res) {
2211                        info->io_setup = mem_setup;
2212                        info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2213                }
2214        }
2215        if (!res) {
2216                dev_err(&dev->dev, "no I/O or memory address\n");
2217                goto err_free;
2218        }
2219        info->io.addr_data = res->start;
2220
2221        info->io.regspacing = DEFAULT_REGSPACING;
2222        res_second = pnp_get_resource(dev,
2223                               (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2224                                        IORESOURCE_IO : IORESOURCE_MEM,
2225                               1);
2226        if (res_second) {
2227                if (res_second->start > info->io.addr_data)
2228                        info->io.regspacing = res_second->start - info->io.addr_data;
2229        }
2230        info->io.regsize = DEFAULT_REGSPACING;
2231        info->io.regshift = 0;
2232
2233        /* If _GPE exists, use it; otherwise use standard interrupts */
2234        status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2235        if (ACPI_SUCCESS(status)) {
2236                info->irq = tmp;
2237                info->irq_setup = acpi_gpe_irq_setup;
2238        } else if (pnp_irq_valid(dev, 0)) {
2239                info->irq = pnp_irq(dev, 0);
2240                info->irq_setup = std_irq_setup;
2241        }
2242
2243        info->dev = &dev->dev;
2244        pnp_set_drvdata(dev, info);
2245
2246        dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2247                 res, info->io.regsize, info->io.regspacing,
2248                 info->irq);
2249
2250        if (add_smi(info))
2251                goto err_free;
2252
2253        return 0;
2254
2255err_free:
2256        kfree(info);
2257        return -EINVAL;
2258}
2259
2260static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2261{
2262        struct smi_info *info = pnp_get_drvdata(dev);
2263
2264        cleanup_one_si(info);
2265}
2266
2267static const struct pnp_device_id pnp_dev_table[] = {
2268        {"IPI0001", 0},
2269        {"", 0},
2270};
2271
2272static struct pnp_driver ipmi_pnp_driver = {
2273        .name           = DEVICE_NAME,
2274        .probe          = ipmi_pnp_probe,
2275        .remove         = __devexit_p(ipmi_pnp_remove),
2276        .id_table       = pnp_dev_table,
2277};
2278#endif
2279
2280#ifdef CONFIG_DMI
2281struct dmi_ipmi_data {
2282        u8              type;
2283        u8              addr_space;
2284        unsigned long   base_addr;
2285        u8              irq;
2286        u8              offset;
2287        u8              slave_addr;
2288};
2289
2290static int __devinit decode_dmi(const struct dmi_header *dm,
2291                                struct dmi_ipmi_data *dmi)
2292{
2293        const u8        *data = (const u8 *)dm;
2294        unsigned long   base_addr;
2295        u8              reg_spacing;
2296        u8              len = dm->length;
2297
2298        dmi->type = data[4];
2299
2300        memcpy(&base_addr, data+8, sizeof(unsigned long));
2301        if (len >= 0x11) {
2302                if (base_addr & 1) {
2303                        /* I/O */
2304                        base_addr &= 0xFFFE;
2305                        dmi->addr_space = IPMI_IO_ADDR_SPACE;
2306                } else
2307                        /* Memory */
2308                        dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2309
2310                /* If bit 4 of byte 0x10 is set, then the lsb for the address
2311                   is odd. */
2312                dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2313
2314                dmi->irq = data[0x11];
2315
2316                /* The top two bits of byte 0x10 hold the register spacing. */
2317                reg_spacing = (data[0x10] & 0xC0) >> 6;
2318                switch (reg_spacing) {
2319                case 0x00: /* Byte boundaries */
2320                    dmi->offset = 1;
2321                    break;
2322                case 0x01: /* 32-bit boundaries */
2323                    dmi->offset = 4;
2324                    break;
2325                case 0x02: /* 16-byte boundaries */
2326                    dmi->offset = 16;
2327                    break;
2328                default:
2329                    /* Some other interface, just ignore it. */
2330                    return -EIO;
2331                }
2332        } else {
2333                /* Old DMI spec. */
2334                /*
2335                 * Note that technically, the lower bit of the base
2336                 * address should be 1 if the address is I/O and 0 if
2337                 * the address is in memory.  So many systems get that
2338                 * wrong (and all that I have seen are I/O) so we just
2339                 * ignore that bit and assume I/O.  Systems that use
2340                 * memory should use the newer spec, anyway.
2341                 */
2342                dmi->base_addr = base_addr & 0xfffe;
2343                dmi->addr_space = IPMI_IO_ADDR_SPACE;
2344                dmi->offset = 1;
2345        }
2346
2347        dmi->slave_addr = data[6];
2348
2349        return 0;
2350}
2351
2352static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2353{
2354        struct smi_info *info;
2355
2356        info = smi_info_alloc();
2357        if (!info) {
2358                printk(KERN_ERR PFX "Could not allocate SI data\n");
2359                return;
2360        }
2361
2362        info->addr_source = SI_SMBIOS;
2363        printk(KERN_INFO PFX "probing via SMBIOS\n");
2364
2365        switch (ipmi_data->type) {
2366        case 0x01: /* KCS */
2367                info->si_type = SI_KCS;
2368                break;
2369        case 0x02: /* SMIC */
2370                info->si_type = SI_SMIC;
2371                break;
2372        case 0x03: /* BT */
2373                info->si_type = SI_BT;
2374                break;
2375        default:
2376                kfree(info);
2377                return;
2378        }
2379
2380        switch (ipmi_data->addr_space) {
2381        case IPMI_MEM_ADDR_SPACE:
2382                info->io_setup = mem_setup;
2383                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2384                break;
2385
2386        case IPMI_IO_ADDR_SPACE:
2387                info->io_setup = port_setup;
2388                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2389                break;
2390
2391        default:
2392                kfree(info);
2393                printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2394                       ipmi_data->addr_space);
2395                return;
2396        }
2397        info->io.addr_data = ipmi_data->base_addr;
2398
2399        info->io.regspacing = ipmi_data->offset;
2400        if (!info->io.regspacing)
2401                info->io.regspacing = DEFAULT_REGSPACING;
2402        info->io.regsize = DEFAULT_REGSPACING;
2403        info->io.regshift = 0;
2404
2405        info->slave_addr = ipmi_data->slave_addr;
2406
2407        info->irq = ipmi_data->irq;
2408        if (info->irq)
2409                info->irq_setup = std_irq_setup;
2410
2411        pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2412                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2413                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2414                 info->irq);
2415
2416        if (add_smi(info))
2417                kfree(info);
2418}
2419
2420static void __devinit dmi_find_bmc(void)
2421{
2422        const struct dmi_device *dev = NULL;
2423        struct dmi_ipmi_data data;
2424        int                  rv;
2425
2426        while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2427                memset(&data, 0, sizeof(data));
2428                rv = decode_dmi((const struct dmi_header *) dev->device_data,
2429                                &data);
2430                if (!rv)
2431                        try_init_dmi(&data);
2432        }
2433}
2434#endif /* CONFIG_DMI */
2435
2436#ifdef CONFIG_PCI
2437
2438#define PCI_ERMC_CLASSCODE              0x0C0700
2439#define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2440#define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2441#define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2442#define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2443#define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2444
2445#define PCI_HP_VENDOR_ID    0x103C
2446#define PCI_MMC_DEVICE_ID   0x121A
2447#define PCI_MMC_ADDR_CW     0x10
2448
2449static void ipmi_pci_cleanup(struct smi_info *info)
2450{
2451        struct pci_dev *pdev = info->addr_source_data;
2452
2453        pci_disable_device(pdev);
2454}
2455
2456static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2457                                    const struct pci_device_id *ent)
2458{
2459        int rv;
2460        int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2461        struct smi_info *info;
2462
2463        info = smi_info_alloc();
2464        if (!info)
2465                return -ENOMEM;
2466
2467        info->addr_source = SI_PCI;
2468        dev_info(&pdev->dev, "probing via PCI");
2469
2470        switch (class_type) {
2471        case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2472                info->si_type = SI_SMIC;
2473                break;
2474
2475        case PCI_ERMC_CLASSCODE_TYPE_KCS:
2476                info->si_type = SI_KCS;
2477                break;
2478
2479        case PCI_ERMC_CLASSCODE_TYPE_BT:
2480                info->si_type = SI_BT;
2481                break;
2482
2483        default:
2484                kfree(info);
2485                dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2486                return -ENOMEM;
2487        }
2488
2489        rv = pci_enable_device(pdev);
2490        if (rv) {
2491                dev_err(&pdev->dev, "couldn't enable PCI device\n");
2492                kfree(info);
2493                return rv;
2494        }
2495
2496        info->addr_source_cleanup = ipmi_pci_cleanup;
2497        info->addr_source_data = pdev;
2498
2499        if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2500                info->io_setup = port_setup;
2501                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2502        } else {
2503                info->io_setup = mem_setup;
2504                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2505        }
2506        info->io.addr_data = pci_resource_start(pdev, 0);
2507
2508        info->io.regspacing = DEFAULT_REGSPACING;
2509        info->io.regsize = DEFAULT_REGSPACING;
2510        info->io.regshift = 0;
2511
2512        info->irq = pdev->irq;
2513        if (info->irq)
2514                info->irq_setup = std_irq_setup;
2515
2516        info->dev = &pdev->dev;
2517        pci_set_drvdata(pdev, info);
2518
2519        dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2520                &pdev->resource[0], info->io.regsize, info->io.regspacing,
2521                info->irq);
2522
2523        if (add_smi(info))
2524                kfree(info);
2525
2526        return 0;
2527}
2528
2529static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2530{
2531        struct smi_info *info = pci_get_drvdata(pdev);
2532        cleanup_one_si(info);
2533}
2534
2535#ifdef CONFIG_PM
2536static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2537{
2538        return 0;
2539}
2540
2541static int ipmi_pci_resume(struct pci_dev *pdev)
2542{
2543        return 0;
2544}
2545#endif
2546
2547static struct pci_device_id ipmi_pci_devices[] = {
2548        { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2549        { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2550        { 0, }
2551};
2552MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2553
2554static struct pci_driver ipmi_pci_driver = {
2555        .name =         DEVICE_NAME,
2556        .id_table =     ipmi_pci_devices,
2557        .probe =        ipmi_pci_probe,
2558        .remove =       __devexit_p(ipmi_pci_remove),
2559#ifdef CONFIG_PM
2560        .suspend =      ipmi_pci_suspend,
2561        .resume =       ipmi_pci_resume,
2562#endif
2563};
2564#endif /* CONFIG_PCI */
2565
2566
2567#ifdef CONFIG_PPC_OF
2568static int __devinit ipmi_of_probe(struct platform_device *dev,
2569                         const struct of_device_id *match)
2570{
2571        struct smi_info *info;
2572        struct resource resource;
2573        const __be32 *regsize, *regspacing, *regshift;
2574        struct device_node *np = dev->dev.of_node;
2575        int ret;
2576        int proplen;
2577
2578        dev_info(&dev->dev, "probing via device tree\n");
2579
2580        ret = of_address_to_resource(np, 0, &resource);
2581        if (ret) {
2582                dev_warn(&dev->dev, PFX "invalid address from OF\n");
2583                return ret;
2584        }
2585
2586        regsize = of_get_property(np, "reg-size", &proplen);
2587        if (regsize && proplen != 4) {
2588                dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2589                return -EINVAL;
2590        }
2591
2592        regspacing = of_get_property(np, "reg-spacing", &proplen);
2593        if (regspacing && proplen != 4) {
2594                dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2595                return -EINVAL;
2596        }
2597
2598        regshift = of_get_property(np, "reg-shift", &proplen);
2599        if (regshift && proplen != 4) {
2600                dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2601                return -EINVAL;
2602        }
2603
2604        info = smi_info_alloc();
2605
2606        if (!info) {
2607                dev_err(&dev->dev,
2608                        "could not allocate memory for OF probe\n");
2609                return -ENOMEM;
2610        }
2611
2612        info->si_type           = (enum si_type) match->data;
2613        info->addr_source       = SI_DEVICETREE;
2614        info->irq_setup         = std_irq_setup;
2615
2616        if (resource.flags & IORESOURCE_IO) {
2617                info->io_setup          = port_setup;
2618                info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2619        } else {
2620                info->io_setup          = mem_setup;
2621                info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2622        }
2623
2624        info->io.addr_data      = resource.start;
2625
2626        info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2627        info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2628        info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2629
2630        info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2631        info->dev               = &dev->dev;
2632
2633        dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2634                info->io.addr_data, info->io.regsize, info->io.regspacing,
2635                info->irq);
2636
2637        dev_set_drvdata(&dev->dev, info);
2638
2639        if (add_smi(info)) {
2640                kfree(info);
2641                return -EBUSY;
2642        }
2643
2644        return 0;
2645}
2646
2647static int __devexit ipmi_of_remove(struct platform_device *dev)
2648{
2649        cleanup_one_si(dev_get_drvdata(&dev->dev));
2650        return 0;
2651}
2652
2653static struct of_device_id ipmi_match[] =
2654{
2655        { .type = "ipmi", .compatible = "ipmi-kcs",
2656          .data = (void *)(unsigned long) SI_KCS },
2657        { .type = "ipmi", .compatible = "ipmi-smic",
2658          .data = (void *)(unsigned long) SI_SMIC },
2659        { .type = "ipmi", .compatible = "ipmi-bt",
2660          .data = (void *)(unsigned long) SI_BT },
2661        {},
2662};
2663
2664static struct of_platform_driver ipmi_of_platform_driver = {
2665        .driver = {
2666                .name = "ipmi",
2667                .owner = THIS_MODULE,
2668                .of_match_table = ipmi_match,
2669        },
2670        .probe          = ipmi_of_probe,
2671        .remove         = __devexit_p(ipmi_of_remove),
2672};
2673#endif /* CONFIG_PPC_OF */
2674
2675static int wait_for_msg_done(struct smi_info *smi_info)
2676{
2677        enum si_sm_result     smi_result;
2678
2679        smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2680        for (;;) {
2681                if (smi_result == SI_SM_CALL_WITH_DELAY ||
2682                    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2683                        schedule_timeout_uninterruptible(1);
2684                        smi_result = smi_info->handlers->event(
2685                                smi_info->si_sm, 100);
2686                } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2687                        smi_result = smi_info->handlers->event(
2688                                smi_info->si_sm, 0);
2689                } else
2690                        break;
2691        }
2692        if (smi_result == SI_SM_HOSED)
2693                /*
2694                 * We couldn't get the state machine to run, so whatever's at
2695                 * the port is probably not an IPMI SMI interface.
2696                 */
2697                return -ENODEV;
2698
2699        return 0;
2700}
2701
2702static int try_get_dev_id(struct smi_info *smi_info)
2703{
2704        unsigned char         msg[2];
2705        unsigned char         *resp;
2706        unsigned long         resp_len;
2707        int                   rv = 0;
2708
2709        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2710        if (!resp)
2711                return -ENOMEM;
2712
2713        /*
2714         * Do a Get Device ID command, since it comes back with some
2715         * useful info.
2716         */
2717        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2718        msg[1] = IPMI_GET_DEVICE_ID_CMD;
2719        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2720
2721        rv = wait_for_msg_done(smi_info);
2722        if (rv)
2723                goto out;
2724
2725        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2726                                                  resp, IPMI_MAX_MSG_LENGTH);
2727
2728        /* Check and record info from the get device id, in case we need it. */
2729        rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2730
2731 out:
2732        kfree(resp);
2733        return rv;
2734}
2735
2736static int try_enable_event_buffer(struct smi_info *smi_info)
2737{
2738        unsigned char         msg[3];
2739        unsigned char         *resp;
2740        unsigned long         resp_len;
2741        int                   rv = 0;
2742
2743        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2744        if (!resp)
2745                return -ENOMEM;
2746
2747        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2748        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2749        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2750
2751        rv = wait_for_msg_done(smi_info);
2752        if (rv) {
2753                printk(KERN_WARNING PFX "Error getting response from get"
2754                       " global enables command, the event buffer is not"
2755                       " enabled.\n");
2756                goto out;
2757        }
2758
2759        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2760                                                  resp, IPMI_MAX_MSG_LENGTH);
2761
2762        if (resp_len < 4 ||
2763                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2764                        resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2765                        resp[2] != 0) {
2766                printk(KERN_WARNING PFX "Invalid return from get global"
2767                       " enables command, cannot enable the event buffer.\n");
2768                rv = -EINVAL;
2769                goto out;
2770        }
2771
2772        if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2773                /* buffer is already enabled, nothing to do. */
2774                goto out;
2775
2776        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2777        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2778        msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2779        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2780
2781        rv = wait_for_msg_done(smi_info);
2782        if (rv) {
2783                printk(KERN_WARNING PFX "Error getting response from set"
2784                       " global, enables command, the event buffer is not"
2785                       " enabled.\n");
2786                goto out;
2787        }
2788
2789        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2790                                                  resp, IPMI_MAX_MSG_LENGTH);
2791
2792        if (resp_len < 3 ||
2793                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2794                        resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2795                printk(KERN_WARNING PFX "Invalid return from get global,"
2796                       "enables command, not enable the event buffer.\n");
2797                rv = -EINVAL;
2798                goto out;
2799        }
2800
2801        if (resp[2] != 0)
2802                /*
2803                 * An error when setting the event buffer bit means
2804                 * that the event buffer is not supported.
2805                 */
2806                rv = -ENOENT;
2807 out:
2808        kfree(resp);
2809        return rv;
2810}
2811
2812static int type_file_read_proc(char *page, char **start, off_t off,
2813                               int count, int *eof, void *data)
2814{
2815        struct smi_info *smi = data;
2816
2817        return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2818}
2819
2820static int stat_file_read_proc(char *page, char **start, off_t off,
2821                               int count, int *eof, void *data)
2822{
2823        char            *out = (char *) page;
2824        struct smi_info *smi = data;
2825
2826        out += sprintf(out, "interrupts_enabled:    %d\n",
2827                       smi->irq && !smi->interrupt_disabled);
2828        out += sprintf(out, "short_timeouts:        %u\n",
2829                       smi_get_stat(smi, short_timeouts));
2830        out += sprintf(out, "long_timeouts:         %u\n",
2831                       smi_get_stat(smi, long_timeouts));
2832        out += sprintf(out, "idles:                 %u\n",
2833                       smi_get_stat(smi, idles));
2834        out += sprintf(out, "interrupts:            %u\n",
2835                       smi_get_stat(smi, interrupts));
2836        out += sprintf(out, "attentions:            %u\n",
2837                       smi_get_stat(smi, attentions));
2838        out += sprintf(out, "flag_fetches:          %u\n",
2839                       smi_get_stat(smi, flag_fetches));
2840        out += sprintf(out, "hosed_count:           %u\n",
2841                       smi_get_stat(smi, hosed_count));
2842        out += sprintf(out, "complete_transactions: %u\n",
2843                       smi_get_stat(smi, complete_transactions));
2844        out += sprintf(out, "events:                %u\n",
2845                       smi_get_stat(smi, events));
2846        out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2847                       smi_get_stat(smi, watchdog_pretimeouts));
2848        out += sprintf(out, "incoming_messages:     %u\n",
2849                       smi_get_stat(smi, incoming_messages));
2850
2851        return out - page;
2852}
2853
2854static int param_read_proc(char *page, char **start, off_t off,
2855                           int count, int *eof, void *data)
2856{
2857        struct smi_info *smi = data;
2858
2859        return sprintf(page,
2860                       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2861                       si_to_str[smi->si_type],
2862                       addr_space_to_str[smi->io.addr_type],
2863                       smi->io.addr_data,
2864                       smi->io.regspacing,
2865                       smi->io.regsize,
2866                       smi->io.regshift,
2867                       smi->irq,
2868                       smi->slave_addr);
2869}
2870
2871/*
2872 * oem_data_avail_to_receive_msg_avail
2873 * @info - smi_info structure with msg_flags set
2874 *
2875 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2876 * Returns 1 indicating need to re-run handle_flags().
2877 */
2878static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2879{
2880        smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2881                               RECEIVE_MSG_AVAIL);
2882        return 1;
2883}
2884
2885/*
2886 * setup_dell_poweredge_oem_data_handler
2887 * @info - smi_info.device_id must be populated
2888 *
2889 * Systems that match, but have firmware version < 1.40 may assert
2890 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2891 * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2892 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2893 * as RECEIVE_MSG_AVAIL instead.
2894 *
2895 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2896 * assert the OEM[012] bits, and if it did, the driver would have to
2897 * change to handle that properly, we don't actually check for the
2898 * firmware version.
2899 * Device ID = 0x20                BMC on PowerEdge 8G servers
2900 * Device Revision = 0x80
2901 * Firmware Revision1 = 0x01       BMC version 1.40
2902 * Firmware Revision2 = 0x40       BCD encoded
2903 * IPMI Version = 0x51             IPMI 1.5
2904 * Manufacturer ID = A2 02 00      Dell IANA
2905 *
2906 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2907 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2908 *
2909 */
2910#define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2911#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2912#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2913#define DELL_IANA_MFR_ID 0x0002a2
2914static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2915{
2916        struct ipmi_device_id *id = &smi_info->device_id;
2917        if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2918                if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2919                    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2920                    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2921                        smi_info->oem_data_avail_handler =
2922                                oem_data_avail_to_receive_msg_avail;
2923                } else if (ipmi_version_major(id) < 1 ||
2924                           (ipmi_version_major(id) == 1 &&
2925                            ipmi_version_minor(id) < 5)) {
2926                        smi_info->oem_data_avail_handler =
2927                                oem_data_avail_to_receive_msg_avail;
2928                }
2929        }
2930}
2931
2932#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2933static void return_hosed_msg_badsize(struct smi_info *smi_info)
2934{
2935        struct ipmi_smi_msg *msg = smi_info->curr_msg;
2936
2937        /* Make it a reponse */
2938        msg->rsp[0] = msg->data[0] | 4;
2939        msg->rsp[1] = msg->data[1];
2940        msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2941        msg->rsp_size = 3;
2942        smi_info->curr_msg = NULL;
2943        deliver_recv_msg(smi_info, msg);
2944}
2945
2946/*
2947 * dell_poweredge_bt_xaction_handler
2948 * @info - smi_info.device_id must be populated
2949 *
2950 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2951 * not respond to a Get SDR command if the length of the data
2952 * requested is exactly 0x3A, which leads to command timeouts and no
2953 * data returned.  This intercepts such commands, and causes userspace
2954 * callers to try again with a different-sized buffer, which succeeds.
2955 */
2956
2957#define STORAGE_NETFN 0x0A
2958#define STORAGE_CMD_GET_SDR 0x23
2959static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2960                                             unsigned long unused,
2961                                             void *in)
2962{
2963        struct smi_info *smi_info = in;
2964        unsigned char *data = smi_info->curr_msg->data;
2965        unsigned int size   = smi_info->curr_msg->data_size;
2966        if (size >= 8 &&
2967            (data[0]>>2) == STORAGE_NETFN &&
2968            data[1] == STORAGE_CMD_GET_SDR &&
2969            data[7] == 0x3A) {
2970                return_hosed_msg_badsize(smi_info);
2971                return NOTIFY_STOP;
2972        }
2973        return NOTIFY_DONE;
2974}
2975
2976static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2977        .notifier_call  = dell_poweredge_bt_xaction_handler,
2978};
2979
2980/*
2981 * setup_dell_poweredge_bt_xaction_handler
2982 * @info - smi_info.device_id must be filled in already
2983 *
2984 * Fills in smi_info.device_id.start_transaction_pre_hook
2985 * when we know what function to use there.
2986 */
2987static void
2988setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2989{
2990        struct ipmi_device_id *id = &smi_info->device_id;
2991        if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2992            smi_info->si_type == SI_BT)
2993                register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2994}
2995
2996/*
2997 * setup_oem_data_handler
2998 * @info - smi_info.device_id must be filled in already
2999 *
3000 * Fills in smi_info.device_id.oem_data_available_handler
3001 * when we know what function to use there.
3002 */
3003
3004static void setup_oem_data_handler(struct smi_info *smi_info)
3005{
3006        setup_dell_poweredge_oem_data_handler(smi_info);
3007}
3008
3009static void setup_xaction_handlers(struct smi_info *smi_info)
3010{
3011        setup_dell_poweredge_bt_xaction_handler(smi_info);
3012}
3013
3014static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3015{
3016        if (smi_info->intf) {
3017                /*
3018                 * The timer and thread are only running if the
3019                 * interface has been started up and registered.
3020                 */
3021                if (smi_info->thread != NULL)
3022                        kthread_stop(smi_info->thread);
3023                del_timer_sync(&smi_info->si_timer);
3024        }
3025}
3026
3027static __devinitdata struct ipmi_default_vals
3028{
3029        int type;
3030        int port;
3031} ipmi_defaults[] =
3032{
3033        { .type = SI_KCS, .port = 0xca2 },
3034        { .type = SI_SMIC, .port = 0xca9 },
3035        { .type = SI_BT, .port = 0xe4 },
3036        { .port = 0 }
3037};
3038
3039static void __devinit default_find_bmc(void)
3040{
3041        struct smi_info *info;
3042        int             i;
3043
3044        for (i = 0; ; i++) {
3045                if (!ipmi_defaults[i].port)
3046                        break;
3047#ifdef CONFIG_PPC
3048                if (check_legacy_ioport(ipmi_defaults[i].port))
3049                        continue;
3050#endif
3051                info = smi_info_alloc();
3052                if (!info)
3053                        return;
3054
3055                info->addr_source = SI_DEFAULT;
3056
3057                info->si_type = ipmi_defaults[i].type;
3058                info->io_setup = port_setup;
3059                info->io.addr_data = ipmi_defaults[i].port;
3060                info->io.addr_type = IPMI_IO_ADDR_SPACE;
3061
3062                info->io.addr = NULL;
3063                info->io.regspacing = DEFAULT_REGSPACING;
3064                info->io.regsize = DEFAULT_REGSPACING;
3065                info->io.regshift = 0;
3066
3067                if (add_smi(info) == 0) {
3068                        if ((try_smi_init(info)) == 0) {
3069                                /* Found one... */
3070                                printk(KERN_INFO PFX "Found default %s"
3071                                " state machine at %s address 0x%lx\n",
3072                                si_to_str[info->si_type],
3073                                addr_space_to_str[info->io.addr_type],
3074                                info->io.addr_data);
3075                        } else
3076                                cleanup_one_si(info);
3077                } else {
3078                        kfree(info);
3079                }
3080        }
3081}
3082
3083static int is_new_interface(struct smi_info *info)
3084{
3085        struct smi_info *e;
3086
3087        list_for_each_entry(e, &smi_infos, link) {
3088                if (e->io.addr_type != info->io.addr_type)
3089                        continue;
3090                if (e->io.addr_data == info->io.addr_data)
3091                        return 0;
3092        }
3093
3094        return 1;
3095}
3096
3097static int add_smi(struct smi_info *new_smi)
3098{
3099        int rv = 0;
3100
3101        printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3102                        ipmi_addr_src_to_str[new_smi->addr_source],
3103                        si_to_str[new_smi->si_type]);
3104        mutex_lock(&smi_infos_lock);
3105        if (!is_new_interface(new_smi)) {
3106                printk(KERN_CONT " duplicate interface\n");
3107                rv = -EBUSY;
3108                goto out_err;
3109        }
3110
3111        printk(KERN_CONT "\n");
3112
3113        /* So we know not to free it unless we have allocated one. */
3114        new_smi->intf = NULL;
3115        new_smi->si_sm = NULL;
3116        new_smi->handlers = NULL;
3117
3118        list_add_tail(&new_smi->link, &smi_infos);
3119
3120out_err:
3121        mutex_unlock(&smi_infos_lock);
3122        return rv;
3123}
3124
3125static int try_smi_init(struct smi_info *new_smi)
3126{
3127        int rv = 0;
3128        int i;
3129
3130        printk(KERN_INFO PFX "Trying %s-specified %s state"
3131               " machine at %s address 0x%lx, slave address 0x%x,"
3132               " irq %d\n",
3133               ipmi_addr_src_to_str[new_smi->addr_source],
3134               si_to_str[new_smi->si_type],
3135               addr_space_to_str[new_smi->io.addr_type],
3136               new_smi->io.addr_data,
3137               new_smi->slave_addr, new_smi->irq);
3138
3139        switch (new_smi->si_type) {
3140        case SI_KCS:
3141                new_smi->handlers = &kcs_smi_handlers;
3142                break;
3143
3144        case SI_SMIC:
3145                new_smi->handlers = &smic_smi_handlers;
3146                break;
3147
3148        case SI_BT:
3149                new_smi->handlers = &bt_smi_handlers;
3150                break;
3151
3152        default:
3153                /* No support for anything else yet. */
3154                rv = -EIO;
3155                goto out_err;
3156        }
3157
3158        /* Allocate the state machine's data and initialize it. */
3159        new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3160        if (!new_smi->si_sm) {
3161                printk(KERN_ERR PFX
3162                       "Could not allocate state machine memory\n");
3163                rv = -ENOMEM;
3164                goto out_err;
3165        }
3166        new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3167                                                        &new_smi->io);
3168
3169        /* Now that we know the I/O size, we can set up the I/O. */
3170        rv = new_smi->io_setup(new_smi);
3171        if (rv) {
3172                printk(KERN_ERR PFX "Could not set up I/O space\n");
3173                goto out_err;
3174        }
3175
3176        /* Do low-level detection first. */
3177        if (new_smi->handlers->detect(new_smi->si_sm)) {
3178                if (new_smi->addr_source)
3179                        printk(KERN_INFO PFX "Interface detection failed\n");
3180                rv = -ENODEV;
3181                goto out_err;
3182        }
3183
3184        /*
3185         * Attempt a get device id command.  If it fails, we probably
3186         * don't have a BMC here.
3187         */
3188        rv = try_get_dev_id(new_smi);
3189        if (rv) {
3190                if (new_smi->addr_source)
3191                        printk(KERN_INFO PFX "There appears to be no BMC"
3192                               " at this location\n");
3193                goto out_err;
3194        }
3195
3196        setup_oem_data_handler(new_smi);
3197        setup_xaction_handlers(new_smi);
3198
3199        INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3200        INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3201        new_smi->curr_msg = NULL;
3202        atomic_set(&new_smi->req_events, 0);
3203        new_smi->run_to_completion = 0;
3204        for (i = 0; i < SI_NUM_STATS; i++)
3205                atomic_set(&new_smi->stats[i], 0);
3206
3207        new_smi->interrupt_disabled = 1;
3208        atomic_set(&new_smi->stop_operation, 0);
3209        new_smi->intf_num = smi_num;
3210        smi_num++;
3211
3212        rv = try_enable_event_buffer(new_smi);
3213        if (rv == 0)
3214                new_smi->has_event_buffer = 1;
3215
3216        /*
3217         * Start clearing the flags before we enable interrupts or the
3218         * timer to avoid racing with the timer.
3219         */
3220        start_clear_flags(new_smi);
3221        /* IRQ is defined to be set when non-zero. */
3222        if (new_smi->irq)
3223                new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3224
3225        if (!new_smi->dev) {
3226                /*
3227                 * If we don't already have a device from something
3228                 * else (like PCI), then register a new one.
3229                 */
3230                new_smi->pdev = platform_device_alloc("ipmi_si",
3231                                                      new_smi->intf_num);
3232                if (!new_smi->pdev) {
3233                        printk(KERN_ERR PFX
3234                               "Unable to allocate platform device\n");
3235                        goto out_err;
3236                }
3237                new_smi->dev = &new_smi->pdev->dev;
3238                new_smi->dev->driver = &ipmi_driver.driver;
3239
3240                rv = platform_device_add(new_smi->pdev);
3241                if (rv) {
3242                        printk(KERN_ERR PFX
3243                               "Unable to register system interface device:"
3244                               " %d\n",
3245                               rv);
3246                        goto out_err;
3247                }
3248                new_smi->dev_registered = 1;
3249        }
3250
3251        rv = ipmi_register_smi(&handlers,
3252                               new_smi,
3253                               &new_smi->device_id,
3254                               new_smi->dev,
3255                               "bmc",
3256                               new_smi->slave_addr);
3257        if (rv) {
3258                dev_err(new_smi->dev, "Unable to register device: error %d\n",
3259                        rv);
3260                goto out_err_stop_timer;
3261        }
3262
3263        rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3264                                     type_file_read_proc,
3265                                     new_smi);
3266        if (rv) {
3267                dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3268                goto out_err_stop_timer;
3269        }
3270
3271        rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3272                                     stat_file_read_proc,
3273                                     new_smi);
3274        if (rv) {
3275                dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3276                goto out_err_stop_timer;
3277        }
3278
3279        rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3280                                     param_read_proc,
3281                                     new_smi);
3282        if (rv) {
3283                dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3284                goto out_err_stop_timer;
3285        }
3286
3287        dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3288                 si_to_str[new_smi->si_type]);
3289
3290        return 0;
3291
3292 out_err_stop_timer:
3293        atomic_inc(&new_smi->stop_operation);
3294        wait_for_timer_and_thread(new_smi);
3295
3296 out_err:
3297        new_smi->interrupt_disabled = 1;
3298
3299        if (new_smi->intf) {
3300                ipmi_unregister_smi(new_smi->intf);
3301                new_smi->intf = NULL;
3302        }
3303
3304        if (new_smi->irq_cleanup) {
3305                new_smi->irq_cleanup(new_smi);
3306                new_smi->irq_cleanup = NULL;
3307        }
3308
3309        /*
3310         * Wait until we know that we are out of any interrupt
3311         * handlers might have been running before we freed the
3312         * interrupt.
3313         */
3314        synchronize_sched();
3315
3316        if (new_smi->si_sm) {
3317                if (new_smi->handlers)
3318                        new_smi->handlers->cleanup(new_smi->si_sm);
3319                kfree(new_smi->si_sm);
3320                new_smi->si_sm = NULL;
3321        }
3322        if (new_smi->addr_source_cleanup) {
3323                new_smi->addr_source_cleanup(new_smi);
3324                new_smi->addr_source_cleanup = NULL;
3325        }
3326        if (new_smi->io_cleanup) {
3327                new_smi->io_cleanup(new_smi);
3328                new_smi->io_cleanup = NULL;
3329        }
3330
3331        if (new_smi->dev_registered) {
3332                platform_device_unregister(new_smi->pdev);
3333                new_smi->dev_registered = 0;
3334        }
3335
3336        return rv;
3337}
3338
3339static int __devinit init_ipmi_si(void)
3340{
3341        int  i;
3342        char *str;
3343        int  rv;
3344        struct smi_info *e;
3345        enum ipmi_addr_src type = SI_INVALID;
3346
3347        if (initialized)
3348                return 0;
3349        initialized = 1;
3350
3351        /* Register the device drivers. */
3352        rv = driver_register(&ipmi_driver.driver);
3353        if (rv) {
3354                printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3355                return rv;
3356        }
3357
3358
3359        /* Parse out the si_type string into its components. */
3360        str = si_type_str;
3361        if (*str != '\0') {
3362                for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3363                        si_type[i] = str;
3364                        str = strchr(str, ',');
3365                        if (str) {
3366                                *str = '\0';
3367                                str++;
3368                        } else {
3369                                break;
3370                        }
3371                }
3372        }
3373
3374        printk(KERN_INFO "IPMI System Interface driver.\n");
3375
3376        hardcode_find_bmc();
3377
3378        /* If the user gave us a device, they presumably want us to use it */
3379        mutex_lock(&smi_infos_lock);
3380        if (!list_empty(&smi_infos)) {
3381                mutex_unlock(&smi_infos_lock);
3382                return 0;
3383        }
3384        mutex_unlock(&smi_infos_lock);
3385
3386#ifdef CONFIG_PCI
3387        rv = pci_register_driver(&ipmi_pci_driver);
3388        if (rv)
3389                printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3390        else
3391                pci_registered = 1;
3392#endif
3393
3394#ifdef CONFIG_ACPI
3395        pnp_register_driver(&ipmi_pnp_driver);
3396        pnp_registered = 1;
3397#endif
3398
3399#ifdef CONFIG_DMI
3400        dmi_find_bmc();
3401#endif
3402
3403#ifdef CONFIG_ACPI
3404        spmi_find_bmc();
3405#endif
3406
3407#ifdef CONFIG_PPC_OF
3408        of_register_platform_driver(&ipmi_of_platform_driver);
3409        of_registered = 1;
3410#endif
3411
3412        /* We prefer devices with interrupts, but in the case of a machine
3413           with multiple BMCs we assume that there will be several instances
3414           of a given type so if we succeed in registering a type then also
3415           try to register everything else of the same type */
3416
3417        mutex_lock(&smi_infos_lock);
3418        list_for_each_entry(e, &smi_infos, link) {
3419                /* Try to register a device if it has an IRQ and we either
3420                   haven't successfully registered a device yet or this
3421                   device has the same type as one we successfully registered */
3422                if (e->irq && (!type || e->addr_source == type)) {
3423                        if (!try_smi_init(e)) {
3424                                type = e->addr_source;
3425                        }
3426                }
3427        }
3428
3429        /* type will only have been set if we successfully registered an si */
3430        if (type) {
3431                mutex_unlock(&smi_infos_lock);
3432                return 0;
3433        }
3434
3435        /* Fall back to the preferred device */
3436
3437        list_for_each_entry(e, &smi_infos, link) {
3438                if (!e->irq && (!type || e->addr_source == type)) {
3439                        if (!try_smi_init(e)) {
3440                                type = e->addr_source;
3441                        }
3442                }
3443        }
3444        mutex_unlock(&smi_infos_lock);
3445
3446        if (type)
3447                return 0;
3448
3449        if (si_trydefaults) {
3450                mutex_lock(&smi_infos_lock);
3451                if (list_empty(&smi_infos)) {
3452                        /* No BMC was found, try defaults. */
3453                        mutex_unlock(&smi_infos_lock);
3454                        default_find_bmc();
3455                } else
3456                        mutex_unlock(&smi_infos_lock);
3457        }
3458
3459        mutex_lock(&smi_infos_lock);
3460        if (unload_when_empty && list_empty(&smi_infos)) {
3461                mutex_unlock(&smi_infos_lock);
3462                cleanup_ipmi_si();
3463                printk(KERN_WARNING PFX
3464                       "Unable to find any System Interface(s)\n");
3465                return -ENODEV;
3466        } else {
3467                mutex_unlock(&smi_infos_lock);
3468                return 0;
3469        }
3470}
3471module_init(init_ipmi_si);
3472
3473static void cleanup_one_si(struct smi_info *to_clean)
3474{
3475        int           rv = 0;
3476        unsigned long flags;
3477
3478        if (!to_clean)
3479                return;
3480
3481        list_del(&to_clean->link);
3482
3483        /* Tell the driver that we are shutting down. */
3484        atomic_inc(&to_clean->stop_operation);
3485
3486        /*
3487         * Make sure the timer and thread are stopped and will not run
3488         * again.
3489         */
3490        wait_for_timer_and_thread(to_clean);
3491
3492        /*
3493         * Timeouts are stopped, now make sure the interrupts are off
3494         * for the device.  A little tricky with locks to make sure
3495         * there are no races.
3496         */
3497        spin_lock_irqsave(&to_clean->si_lock, flags);
3498        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3499                spin_unlock_irqrestore(&to_clean->si_lock, flags);
3500                poll(to_clean);
3501                schedule_timeout_uninterruptible(1);
3502                spin_lock_irqsave(&to_clean->si_lock, flags);
3503        }
3504        disable_si_irq(to_clean);
3505        spin_unlock_irqrestore(&to_clean->si_lock, flags);
3506        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3507                poll(to_clean);
3508                schedule_timeout_uninterruptible(1);
3509        }
3510
3511        /* Clean up interrupts and make sure that everything is done. */
3512        if (to_clean->irq_cleanup)
3513                to_clean->irq_cleanup(to_clean);
3514        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3515                poll(to_clean);
3516                schedule_timeout_uninterruptible(1);
3517        }
3518
3519        if (to_clean->intf)
3520                rv = ipmi_unregister_smi(to_clean->intf);
3521
3522        if (rv) {
3523                printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3524                       rv);
3525        }
3526
3527        if (to_clean->handlers)
3528                to_clean->handlers->cleanup(to_clean->si_sm);
3529
3530        kfree(to_clean->si_sm);
3531
3532        if (to_clean->addr_source_cleanup)
3533                to_clean->addr_source_cleanup(to_clean);
3534        if (to_clean->io_cleanup)
3535                to_clean->io_cleanup(to_clean);
3536
3537        if (to_clean->dev_registered)
3538                platform_device_unregister(to_clean->pdev);
3539
3540        kfree(to_clean);
3541}
3542
3543static void __exit cleanup_ipmi_si(void)
3544{
3545        struct smi_info *e, *tmp_e;
3546
3547        if (!initialized)
3548                return;
3549
3550#ifdef CONFIG_PCI
3551        if (pci_registered)
3552                pci_unregister_driver(&ipmi_pci_driver);
3553#endif
3554#ifdef CONFIG_ACPI
3555        if (pnp_registered)
3556                pnp_unregister_driver(&ipmi_pnp_driver);
3557#endif
3558
3559#ifdef CONFIG_PPC_OF
3560        if (of_registered)
3561                of_unregister_platform_driver(&ipmi_of_platform_driver);
3562#endif
3563
3564        mutex_lock(&smi_infos_lock);
3565        list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3566                cleanup_one_si(e);
3567        mutex_unlock(&smi_infos_lock);
3568
3569        driver_unregister(&ipmi_driver.driver);
3570}
3571module_exit(cleanup_ipmi_si);
3572
3573MODULE_LICENSE("GPL");
3574MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3575MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3576                   " system interfaces.");
3577