linux/drivers/char/mmtimer.c
<<
>>
Prefs
   1/*
   2 * Timer device implementation for SGI SN platforms.
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (c) 2001-2006 Silicon Graphics, Inc.  All rights reserved.
   9 *
  10 * This driver exports an API that should be supportable by any HPET or IA-PC
  11 * multimedia timer.  The code below is currently specific to the SGI Altix
  12 * SHub RTC, however.
  13 *
  14 * 11/01/01 - jbarnes - initial revision
  15 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
  16 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
  17 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
  18 *              support via the posix timer interface
  19 */
  20
  21#include <linux/types.h>
  22#include <linux/kernel.h>
  23#include <linux/ioctl.h>
  24#include <linux/module.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/mm.h>
  28#include <linux/fs.h>
  29#include <linux/mmtimer.h>
  30#include <linux/miscdevice.h>
  31#include <linux/posix-timers.h>
  32#include <linux/interrupt.h>
  33#include <linux/time.h>
  34#include <linux/math64.h>
  35#include <linux/mutex.h>
  36#include <linux/slab.h>
  37
  38#include <asm/uaccess.h>
  39#include <asm/sn/addrs.h>
  40#include <asm/sn/intr.h>
  41#include <asm/sn/shub_mmr.h>
  42#include <asm/sn/nodepda.h>
  43#include <asm/sn/shubio.h>
  44
  45MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
  46MODULE_DESCRIPTION("SGI Altix RTC Timer");
  47MODULE_LICENSE("GPL");
  48
  49/* name of the device, usually in /dev */
  50#define MMTIMER_NAME "mmtimer"
  51#define MMTIMER_DESC "SGI Altix RTC Timer"
  52#define MMTIMER_VERSION "2.1"
  53
  54#define RTC_BITS 55 /* 55 bits for this implementation */
  55
  56extern unsigned long sn_rtc_cycles_per_second;
  57
  58#define RTC_COUNTER_ADDR        ((long *)LOCAL_MMR_ADDR(SH_RTC))
  59
  60#define rtc_time()              (*RTC_COUNTER_ADDR)
  61
  62static DEFINE_MUTEX(mmtimer_mutex);
  63static long mmtimer_ioctl(struct file *file, unsigned int cmd,
  64                                                unsigned long arg);
  65static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
  66
  67/*
  68 * Period in femtoseconds (10^-15 s)
  69 */
  70static unsigned long mmtimer_femtoperiod = 0;
  71
  72static const struct file_operations mmtimer_fops = {
  73        .owner = THIS_MODULE,
  74        .mmap = mmtimer_mmap,
  75        .unlocked_ioctl = mmtimer_ioctl,
  76        .llseek = noop_llseek,
  77};
  78
  79/*
  80 * We only have comparison registers RTC1-4 currently available per
  81 * node.  RTC0 is used by SAL.
  82 */
  83/* Check for an RTC interrupt pending */
  84static int mmtimer_int_pending(int comparator)
  85{
  86        if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
  87                        SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
  88                return 1;
  89        else
  90                return 0;
  91}
  92
  93/* Clear the RTC interrupt pending bit */
  94static void mmtimer_clr_int_pending(int comparator)
  95{
  96        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
  97                SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
  98}
  99
 100/* Setup timer on comparator RTC1 */
 101static void mmtimer_setup_int_0(int cpu, u64 expires)
 102{
 103        u64 val;
 104
 105        /* Disable interrupt */
 106        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
 107
 108        /* Initialize comparator value */
 109        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
 110
 111        /* Clear pending bit */
 112        mmtimer_clr_int_pending(0);
 113
 114        val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
 115                ((u64)cpu_physical_id(cpu) <<
 116                        SH_RTC1_INT_CONFIG_PID_SHFT);
 117
 118        /* Set configuration */
 119        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
 120
 121        /* Enable RTC interrupts */
 122        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
 123
 124        /* Initialize comparator value */
 125        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
 126
 127
 128}
 129
 130/* Setup timer on comparator RTC2 */
 131static void mmtimer_setup_int_1(int cpu, u64 expires)
 132{
 133        u64 val;
 134
 135        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
 136
 137        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
 138
 139        mmtimer_clr_int_pending(1);
 140
 141        val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
 142                ((u64)cpu_physical_id(cpu) <<
 143                        SH_RTC2_INT_CONFIG_PID_SHFT);
 144
 145        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
 146
 147        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
 148
 149        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
 150}
 151
 152/* Setup timer on comparator RTC3 */
 153static void mmtimer_setup_int_2(int cpu, u64 expires)
 154{
 155        u64 val;
 156
 157        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
 158
 159        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
 160
 161        mmtimer_clr_int_pending(2);
 162
 163        val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
 164                ((u64)cpu_physical_id(cpu) <<
 165                        SH_RTC3_INT_CONFIG_PID_SHFT);
 166
 167        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
 168
 169        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
 170
 171        HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
 172}
 173
 174/*
 175 * This function must be called with interrupts disabled and preemption off
 176 * in order to insure that the setup succeeds in a deterministic time frame.
 177 * It will check if the interrupt setup succeeded.
 178 */
 179static int mmtimer_setup(int cpu, int comparator, unsigned long expires,
 180        u64 *set_completion_time)
 181{
 182        switch (comparator) {
 183        case 0:
 184                mmtimer_setup_int_0(cpu, expires);
 185                break;
 186        case 1:
 187                mmtimer_setup_int_1(cpu, expires);
 188                break;
 189        case 2:
 190                mmtimer_setup_int_2(cpu, expires);
 191                break;
 192        }
 193        /* We might've missed our expiration time */
 194        *set_completion_time = rtc_time();
 195        if (*set_completion_time <= expires)
 196                return 1;
 197
 198        /*
 199         * If an interrupt is already pending then its okay
 200         * if not then we failed
 201         */
 202        return mmtimer_int_pending(comparator);
 203}
 204
 205static int mmtimer_disable_int(long nasid, int comparator)
 206{
 207        switch (comparator) {
 208        case 0:
 209                nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
 210                        0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
 211                break;
 212        case 1:
 213                nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
 214                        0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
 215                break;
 216        case 2:
 217                nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
 218                        0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
 219                break;
 220        default:
 221                return -EFAULT;
 222        }
 223        return 0;
 224}
 225
 226#define COMPARATOR      1               /* The comparator to use */
 227
 228#define TIMER_OFF       0xbadcabLL      /* Timer is not setup */
 229#define TIMER_SET       0               /* Comparator is set for this timer */
 230
 231#define MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT 40
 232
 233/* There is one of these for each timer */
 234struct mmtimer {
 235        struct rb_node list;
 236        struct k_itimer *timer;
 237        int cpu;
 238};
 239
 240struct mmtimer_node {
 241        spinlock_t lock ____cacheline_aligned;
 242        struct rb_root timer_head;
 243        struct rb_node *next;
 244        struct tasklet_struct tasklet;
 245};
 246static struct mmtimer_node *timers;
 247
 248static unsigned mmtimer_interval_retry_increment =
 249        MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT;
 250module_param(mmtimer_interval_retry_increment, uint, 0644);
 251MODULE_PARM_DESC(mmtimer_interval_retry_increment,
 252        "RTC ticks to add to expiration on interval retry (default 40)");
 253
 254/*
 255 * Add a new mmtimer struct to the node's mmtimer list.
 256 * This function assumes the struct mmtimer_node is locked.
 257 */
 258static void mmtimer_add_list(struct mmtimer *n)
 259{
 260        int nodeid = n->timer->it.mmtimer.node;
 261        unsigned long expires = n->timer->it.mmtimer.expires;
 262        struct rb_node **link = &timers[nodeid].timer_head.rb_node;
 263        struct rb_node *parent = NULL;
 264        struct mmtimer *x;
 265
 266        /*
 267         * Find the right place in the rbtree:
 268         */
 269        while (*link) {
 270                parent = *link;
 271                x = rb_entry(parent, struct mmtimer, list);
 272
 273                if (expires < x->timer->it.mmtimer.expires)
 274                        link = &(*link)->rb_left;
 275                else
 276                        link = &(*link)->rb_right;
 277        }
 278
 279        /*
 280         * Insert the timer to the rbtree and check whether it
 281         * replaces the first pending timer
 282         */
 283        rb_link_node(&n->list, parent, link);
 284        rb_insert_color(&n->list, &timers[nodeid].timer_head);
 285
 286        if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next,
 287                        struct mmtimer, list)->timer->it.mmtimer.expires)
 288                timers[nodeid].next = &n->list;
 289}
 290
 291/*
 292 * Set the comparator for the next timer.
 293 * This function assumes the struct mmtimer_node is locked.
 294 */
 295static void mmtimer_set_next_timer(int nodeid)
 296{
 297        struct mmtimer_node *n = &timers[nodeid];
 298        struct mmtimer *x;
 299        struct k_itimer *t;
 300        u64 expires, exp, set_completion_time;
 301        int i;
 302
 303restart:
 304        if (n->next == NULL)
 305                return;
 306
 307        x = rb_entry(n->next, struct mmtimer, list);
 308        t = x->timer;
 309        if (!t->it.mmtimer.incr) {
 310                /* Not an interval timer */
 311                if (!mmtimer_setup(x->cpu, COMPARATOR,
 312                                        t->it.mmtimer.expires,
 313                                        &set_completion_time)) {
 314                        /* Late setup, fire now */
 315                        tasklet_schedule(&n->tasklet);
 316                }
 317                return;
 318        }
 319
 320        /* Interval timer */
 321        i = 0;
 322        expires = exp = t->it.mmtimer.expires;
 323        while (!mmtimer_setup(x->cpu, COMPARATOR, expires,
 324                                &set_completion_time)) {
 325                int to;
 326
 327                i++;
 328                expires = set_completion_time +
 329                                mmtimer_interval_retry_increment + (1 << i);
 330                /* Calculate overruns as we go. */
 331                to = ((u64)(expires - exp) / t->it.mmtimer.incr);
 332                if (to) {
 333                        t->it_overrun += to;
 334                        t->it.mmtimer.expires += t->it.mmtimer.incr * to;
 335                        exp = t->it.mmtimer.expires;
 336                }
 337                if (i > 20) {
 338                        printk(KERN_ALERT "mmtimer: cannot reschedule timer\n");
 339                        t->it.mmtimer.clock = TIMER_OFF;
 340                        n->next = rb_next(&x->list);
 341                        rb_erase(&x->list, &n->timer_head);
 342                        kfree(x);
 343                        goto restart;
 344                }
 345        }
 346}
 347
 348/**
 349 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
 350 * @file: file structure for the device
 351 * @cmd: command to execute
 352 * @arg: optional argument to command
 353 *
 354 * Executes the command specified by @cmd.  Returns 0 for success, < 0 for
 355 * failure.
 356 *
 357 * Valid commands:
 358 *
 359 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
 360 * of the page where the registers are mapped) for the counter in question.
 361 *
 362 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
 363 * seconds
 364 *
 365 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
 366 * specified by @arg
 367 *
 368 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
 369 *
 370 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
 371 *
 372 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
 373 * in the address specified by @arg.
 374 */
 375static long mmtimer_ioctl(struct file *file, unsigned int cmd,
 376                                                unsigned long arg)
 377{
 378        int ret = 0;
 379
 380        mutex_lock(&mmtimer_mutex);
 381
 382        switch (cmd) {
 383        case MMTIMER_GETOFFSET: /* offset of the counter */
 384                /*
 385                 * SN RTC registers are on their own 64k page
 386                 */
 387                if(PAGE_SIZE <= (1 << 16))
 388                        ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
 389                else
 390                        ret = -ENOSYS;
 391                break;
 392
 393        case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
 394                if(copy_to_user((unsigned long __user *)arg,
 395                                &mmtimer_femtoperiod, sizeof(unsigned long)))
 396                        ret = -EFAULT;
 397                break;
 398
 399        case MMTIMER_GETFREQ: /* frequency in Hz */
 400                if(copy_to_user((unsigned long __user *)arg,
 401                                &sn_rtc_cycles_per_second,
 402                                sizeof(unsigned long)))
 403                        ret = -EFAULT;
 404                break;
 405
 406        case MMTIMER_GETBITS: /* number of bits in the clock */
 407                ret = RTC_BITS;
 408                break;
 409
 410        case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
 411                ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
 412                break;
 413
 414        case MMTIMER_GETCOUNTER:
 415                if(copy_to_user((unsigned long __user *)arg,
 416                                RTC_COUNTER_ADDR, sizeof(unsigned long)))
 417                        ret = -EFAULT;
 418                break;
 419        default:
 420                ret = -ENOTTY;
 421                break;
 422        }
 423        mutex_unlock(&mmtimer_mutex);
 424        return ret;
 425}
 426
 427/**
 428 * mmtimer_mmap - maps the clock's registers into userspace
 429 * @file: file structure for the device
 430 * @vma: VMA to map the registers into
 431 *
 432 * Calls remap_pfn_range() to map the clock's registers into
 433 * the calling process' address space.
 434 */
 435static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
 436{
 437        unsigned long mmtimer_addr;
 438
 439        if (vma->vm_end - vma->vm_start != PAGE_SIZE)
 440                return -EINVAL;
 441
 442        if (vma->vm_flags & VM_WRITE)
 443                return -EPERM;
 444
 445        if (PAGE_SIZE > (1 << 16))
 446                return -ENOSYS;
 447
 448        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 449
 450        mmtimer_addr = __pa(RTC_COUNTER_ADDR);
 451        mmtimer_addr &= ~(PAGE_SIZE - 1);
 452        mmtimer_addr &= 0xfffffffffffffffUL;
 453
 454        if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
 455                                        PAGE_SIZE, vma->vm_page_prot)) {
 456                printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
 457                return -EAGAIN;
 458        }
 459
 460        return 0;
 461}
 462
 463static struct miscdevice mmtimer_miscdev = {
 464        SGI_MMTIMER,
 465        MMTIMER_NAME,
 466        &mmtimer_fops
 467};
 468
 469static struct timespec sgi_clock_offset;
 470static int sgi_clock_period;
 471
 472/*
 473 * Posix Timer Interface
 474 */
 475
 476static struct timespec sgi_clock_offset;
 477static int sgi_clock_period;
 478
 479static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
 480{
 481        u64 nsec;
 482
 483        nsec = rtc_time() * sgi_clock_period
 484                        + sgi_clock_offset.tv_nsec;
 485        *tp = ns_to_timespec(nsec);
 486        tp->tv_sec += sgi_clock_offset.tv_sec;
 487        return 0;
 488};
 489
 490static int sgi_clock_set(clockid_t clockid, struct timespec *tp)
 491{
 492
 493        u64 nsec;
 494        u32 rem;
 495
 496        nsec = rtc_time() * sgi_clock_period;
 497
 498        sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem);
 499
 500        if (rem <= tp->tv_nsec)
 501                sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
 502        else {
 503                sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
 504                sgi_clock_offset.tv_sec--;
 505        }
 506        return 0;
 507}
 508
 509/**
 510 * mmtimer_interrupt - timer interrupt handler
 511 * @irq: irq received
 512 * @dev_id: device the irq came from
 513 *
 514 * Called when one of the comarators matches the counter, This
 515 * routine will send signals to processes that have requested
 516 * them.
 517 *
 518 * This interrupt is run in an interrupt context
 519 * by the SHUB. It is therefore safe to locally access SHub
 520 * registers.
 521 */
 522static irqreturn_t
 523mmtimer_interrupt(int irq, void *dev_id)
 524{
 525        unsigned long expires = 0;
 526        int result = IRQ_NONE;
 527        unsigned indx = cpu_to_node(smp_processor_id());
 528        struct mmtimer *base;
 529
 530        spin_lock(&timers[indx].lock);
 531        base = rb_entry(timers[indx].next, struct mmtimer, list);
 532        if (base == NULL) {
 533                spin_unlock(&timers[indx].lock);
 534                return result;
 535        }
 536
 537        if (base->cpu == smp_processor_id()) {
 538                if (base->timer)
 539                        expires = base->timer->it.mmtimer.expires;
 540                /* expires test won't work with shared irqs */
 541                if ((mmtimer_int_pending(COMPARATOR) > 0) ||
 542                        (expires && (expires <= rtc_time()))) {
 543                        mmtimer_clr_int_pending(COMPARATOR);
 544                        tasklet_schedule(&timers[indx].tasklet);
 545                        result = IRQ_HANDLED;
 546                }
 547        }
 548        spin_unlock(&timers[indx].lock);
 549        return result;
 550}
 551
 552static void mmtimer_tasklet(unsigned long data)
 553{
 554        int nodeid = data;
 555        struct mmtimer_node *mn = &timers[nodeid];
 556        struct mmtimer *x;
 557        struct k_itimer *t;
 558        unsigned long flags;
 559
 560        /* Send signal and deal with periodic signals */
 561        spin_lock_irqsave(&mn->lock, flags);
 562        if (!mn->next)
 563                goto out;
 564
 565        x = rb_entry(mn->next, struct mmtimer, list);
 566        t = x->timer;
 567
 568        if (t->it.mmtimer.clock == TIMER_OFF)
 569                goto out;
 570
 571        t->it_overrun = 0;
 572
 573        mn->next = rb_next(&x->list);
 574        rb_erase(&x->list, &mn->timer_head);
 575
 576        if (posix_timer_event(t, 0) != 0)
 577                t->it_overrun++;
 578
 579        if(t->it.mmtimer.incr) {
 580                t->it.mmtimer.expires += t->it.mmtimer.incr;
 581                mmtimer_add_list(x);
 582        } else {
 583                /* Ensure we don't false trigger in mmtimer_interrupt */
 584                t->it.mmtimer.clock = TIMER_OFF;
 585                t->it.mmtimer.expires = 0;
 586                kfree(x);
 587        }
 588        /* Set comparator for next timer, if there is one */
 589        mmtimer_set_next_timer(nodeid);
 590
 591        t->it_overrun_last = t->it_overrun;
 592out:
 593        spin_unlock_irqrestore(&mn->lock, flags);
 594}
 595
 596static int sgi_timer_create(struct k_itimer *timer)
 597{
 598        /* Insure that a newly created timer is off */
 599        timer->it.mmtimer.clock = TIMER_OFF;
 600        return 0;
 601}
 602
 603/* This does not really delete a timer. It just insures
 604 * that the timer is not active
 605 *
 606 * Assumption: it_lock is already held with irq's disabled
 607 */
 608static int sgi_timer_del(struct k_itimer *timr)
 609{
 610        cnodeid_t nodeid = timr->it.mmtimer.node;
 611        unsigned long irqflags;
 612
 613        spin_lock_irqsave(&timers[nodeid].lock, irqflags);
 614        if (timr->it.mmtimer.clock != TIMER_OFF) {
 615                unsigned long expires = timr->it.mmtimer.expires;
 616                struct rb_node *n = timers[nodeid].timer_head.rb_node;
 617                struct mmtimer *uninitialized_var(t);
 618                int r = 0;
 619
 620                timr->it.mmtimer.clock = TIMER_OFF;
 621                timr->it.mmtimer.expires = 0;
 622
 623                while (n) {
 624                        t = rb_entry(n, struct mmtimer, list);
 625                        if (t->timer == timr)
 626                                break;
 627
 628                        if (expires < t->timer->it.mmtimer.expires)
 629                                n = n->rb_left;
 630                        else
 631                                n = n->rb_right;
 632                }
 633
 634                if (!n) {
 635                        spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
 636                        return 0;
 637                }
 638
 639                if (timers[nodeid].next == n) {
 640                        timers[nodeid].next = rb_next(n);
 641                        r = 1;
 642                }
 643
 644                rb_erase(n, &timers[nodeid].timer_head);
 645                kfree(t);
 646
 647                if (r) {
 648                        mmtimer_disable_int(cnodeid_to_nasid(nodeid),
 649                                COMPARATOR);
 650                        mmtimer_set_next_timer(nodeid);
 651                }
 652        }
 653        spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
 654        return 0;
 655}
 656
 657/* Assumption: it_lock is already held with irq's disabled */
 658static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
 659{
 660
 661        if (timr->it.mmtimer.clock == TIMER_OFF) {
 662                cur_setting->it_interval.tv_nsec = 0;
 663                cur_setting->it_interval.tv_sec = 0;
 664                cur_setting->it_value.tv_nsec = 0;
 665                cur_setting->it_value.tv_sec =0;
 666                return;
 667        }
 668
 669        cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period);
 670        cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period);
 671}
 672
 673
 674static int sgi_timer_set(struct k_itimer *timr, int flags,
 675        struct itimerspec * new_setting,
 676        struct itimerspec * old_setting)
 677{
 678        unsigned long when, period, irqflags;
 679        int err = 0;
 680        cnodeid_t nodeid;
 681        struct mmtimer *base;
 682        struct rb_node *n;
 683
 684        if (old_setting)
 685                sgi_timer_get(timr, old_setting);
 686
 687        sgi_timer_del(timr);
 688        when = timespec_to_ns(&new_setting->it_value);
 689        period = timespec_to_ns(&new_setting->it_interval);
 690
 691        if (when == 0)
 692                /* Clear timer */
 693                return 0;
 694
 695        base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL);
 696        if (base == NULL)
 697                return -ENOMEM;
 698
 699        if (flags & TIMER_ABSTIME) {
 700                struct timespec n;
 701                unsigned long now;
 702
 703                getnstimeofday(&n);
 704                now = timespec_to_ns(&n);
 705                if (when > now)
 706                        when -= now;
 707                else
 708                        /* Fire the timer immediately */
 709                        when = 0;
 710        }
 711
 712        /*
 713         * Convert to sgi clock period. Need to keep rtc_time() as near as possible
 714         * to getnstimeofday() in order to be as faithful as possible to the time
 715         * specified.
 716         */
 717        when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
 718        period = (period + sgi_clock_period - 1)  / sgi_clock_period;
 719
 720        /*
 721         * We are allocating a local SHub comparator. If we would be moved to another
 722         * cpu then another SHub may be local to us. Prohibit that by switching off
 723         * preemption.
 724         */
 725        preempt_disable();
 726
 727        nodeid =  cpu_to_node(smp_processor_id());
 728
 729        /* Lock the node timer structure */
 730        spin_lock_irqsave(&timers[nodeid].lock, irqflags);
 731
 732        base->timer = timr;
 733        base->cpu = smp_processor_id();
 734
 735        timr->it.mmtimer.clock = TIMER_SET;
 736        timr->it.mmtimer.node = nodeid;
 737        timr->it.mmtimer.incr = period;
 738        timr->it.mmtimer.expires = when;
 739
 740        n = timers[nodeid].next;
 741
 742        /* Add the new struct mmtimer to node's timer list */
 743        mmtimer_add_list(base);
 744
 745        if (timers[nodeid].next == n) {
 746                /* No need to reprogram comparator for now */
 747                spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
 748                preempt_enable();
 749                return err;
 750        }
 751
 752        /* We need to reprogram the comparator */
 753        if (n)
 754                mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR);
 755
 756        mmtimer_set_next_timer(nodeid);
 757
 758        /* Unlock the node timer structure */
 759        spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
 760
 761        preempt_enable();
 762
 763        return err;
 764}
 765
 766static struct k_clock sgi_clock = {
 767        .res = 0,
 768        .clock_set = sgi_clock_set,
 769        .clock_get = sgi_clock_get,
 770        .timer_create = sgi_timer_create,
 771        .nsleep = do_posix_clock_nonanosleep,
 772        .timer_set = sgi_timer_set,
 773        .timer_del = sgi_timer_del,
 774        .timer_get = sgi_timer_get
 775};
 776
 777/**
 778 * mmtimer_init - device initialization routine
 779 *
 780 * Does initial setup for the mmtimer device.
 781 */
 782static int __init mmtimer_init(void)
 783{
 784        cnodeid_t node, maxn = -1;
 785
 786        if (!ia64_platform_is("sn2"))
 787                return 0;
 788
 789        /*
 790         * Sanity check the cycles/sec variable
 791         */
 792        if (sn_rtc_cycles_per_second < 100000) {
 793                printk(KERN_ERR "%s: unable to determine clock frequency\n",
 794                       MMTIMER_NAME);
 795                goto out1;
 796        }
 797
 798        mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
 799                               2) / sn_rtc_cycles_per_second;
 800
 801        if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
 802                printk(KERN_WARNING "%s: unable to allocate interrupt.",
 803                        MMTIMER_NAME);
 804                goto out1;
 805        }
 806
 807        if (misc_register(&mmtimer_miscdev)) {
 808                printk(KERN_ERR "%s: failed to register device\n",
 809                       MMTIMER_NAME);
 810                goto out2;
 811        }
 812
 813        /* Get max numbered node, calculate slots needed */
 814        for_each_online_node(node) {
 815                maxn = node;
 816        }
 817        maxn++;
 818
 819        /* Allocate list of node ptrs to mmtimer_t's */
 820        timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL);
 821        if (timers == NULL) {
 822                printk(KERN_ERR "%s: failed to allocate memory for device\n",
 823                                MMTIMER_NAME);
 824                goto out3;
 825        }
 826
 827        /* Initialize struct mmtimer's for each online node */
 828        for_each_online_node(node) {
 829                spin_lock_init(&timers[node].lock);
 830                tasklet_init(&timers[node].tasklet, mmtimer_tasklet,
 831                        (unsigned long) node);
 832        }
 833
 834        sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second;
 835        register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock);
 836
 837        printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
 838               sn_rtc_cycles_per_second/(unsigned long)1E6);
 839
 840        return 0;
 841
 842out3:
 843        kfree(timers);
 844        misc_deregister(&mmtimer_miscdev);
 845out2:
 846        free_irq(SGI_MMTIMER_VECTOR, NULL);
 847out1:
 848        return -1;
 849}
 850
 851module_init(mmtimer_init);
 852