linux/drivers/char/random.c
<<
>>
Prefs
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 *
   6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
   7 * rights reserved.
   8 *
   9 * Redistribution and use in source and binary forms, with or without
  10 * modification, are permitted provided that the following conditions
  11 * are met:
  12 * 1. Redistributions of source code must retain the above copyright
  13 *    notice, and the entire permission notice in its entirety,
  14 *    including the disclaimer of warranties.
  15 * 2. Redistributions in binary form must reproduce the above copyright
  16 *    notice, this list of conditions and the following disclaimer in the
  17 *    documentation and/or other materials provided with the distribution.
  18 * 3. The name of the author may not be used to endorse or promote
  19 *    products derived from this software without specific prior
  20 *    written permission.
  21 *
  22 * ALTERNATIVELY, this product may be distributed under the terms of
  23 * the GNU General Public License, in which case the provisions of the GPL are
  24 * required INSTEAD OF the above restrictions.  (This clause is
  25 * necessary due to a potential bad interaction between the GPL and
  26 * the restrictions contained in a BSD-style copyright.)
  27 *
  28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39 * DAMAGE.
  40 */
  41
  42/*
  43 * (now, with legal B.S. out of the way.....)
  44 *
  45 * This routine gathers environmental noise from device drivers, etc.,
  46 * and returns good random numbers, suitable for cryptographic use.
  47 * Besides the obvious cryptographic uses, these numbers are also good
  48 * for seeding TCP sequence numbers, and other places where it is
  49 * desirable to have numbers which are not only random, but hard to
  50 * predict by an attacker.
  51 *
  52 * Theory of operation
  53 * ===================
  54 *
  55 * Computers are very predictable devices.  Hence it is extremely hard
  56 * to produce truly random numbers on a computer --- as opposed to
  57 * pseudo-random numbers, which can easily generated by using a
  58 * algorithm.  Unfortunately, it is very easy for attackers to guess
  59 * the sequence of pseudo-random number generators, and for some
  60 * applications this is not acceptable.  So instead, we must try to
  61 * gather "environmental noise" from the computer's environment, which
  62 * must be hard for outside attackers to observe, and use that to
  63 * generate random numbers.  In a Unix environment, this is best done
  64 * from inside the kernel.
  65 *
  66 * Sources of randomness from the environment include inter-keyboard
  67 * timings, inter-interrupt timings from some interrupts, and other
  68 * events which are both (a) non-deterministic and (b) hard for an
  69 * outside observer to measure.  Randomness from these sources are
  70 * added to an "entropy pool", which is mixed using a CRC-like function.
  71 * This is not cryptographically strong, but it is adequate assuming
  72 * the randomness is not chosen maliciously, and it is fast enough that
  73 * the overhead of doing it on every interrupt is very reasonable.
  74 * As random bytes are mixed into the entropy pool, the routines keep
  75 * an *estimate* of how many bits of randomness have been stored into
  76 * the random number generator's internal state.
  77 *
  78 * When random bytes are desired, they are obtained by taking the SHA
  79 * hash of the contents of the "entropy pool".  The SHA hash avoids
  80 * exposing the internal state of the entropy pool.  It is believed to
  81 * be computationally infeasible to derive any useful information
  82 * about the input of SHA from its output.  Even if it is possible to
  83 * analyze SHA in some clever way, as long as the amount of data
  84 * returned from the generator is less than the inherent entropy in
  85 * the pool, the output data is totally unpredictable.  For this
  86 * reason, the routine decreases its internal estimate of how many
  87 * bits of "true randomness" are contained in the entropy pool as it
  88 * outputs random numbers.
  89 *
  90 * If this estimate goes to zero, the routine can still generate
  91 * random numbers; however, an attacker may (at least in theory) be
  92 * able to infer the future output of the generator from prior
  93 * outputs.  This requires successful cryptanalysis of SHA, which is
  94 * not believed to be feasible, but there is a remote possibility.
  95 * Nonetheless, these numbers should be useful for the vast majority
  96 * of purposes.
  97 *
  98 * Exported interfaces ---- output
  99 * ===============================
 100 *
 101 * There are three exported interfaces; the first is one designed to
 102 * be used from within the kernel:
 103 *
 104 *      void get_random_bytes(void *buf, int nbytes);
 105 *
 106 * This interface will return the requested number of random bytes,
 107 * and place it in the requested buffer.
 108 *
 109 * The two other interfaces are two character devices /dev/random and
 110 * /dev/urandom.  /dev/random is suitable for use when very high
 111 * quality randomness is desired (for example, for key generation or
 112 * one-time pads), as it will only return a maximum of the number of
 113 * bits of randomness (as estimated by the random number generator)
 114 * contained in the entropy pool.
 115 *
 116 * The /dev/urandom device does not have this limit, and will return
 117 * as many bytes as are requested.  As more and more random bytes are
 118 * requested without giving time for the entropy pool to recharge,
 119 * this will result in random numbers that are merely cryptographically
 120 * strong.  For many applications, however, this is acceptable.
 121 *
 122 * Exported interfaces ---- input
 123 * ==============================
 124 *
 125 * The current exported interfaces for gathering environmental noise
 126 * from the devices are:
 127 *
 128 *      void add_input_randomness(unsigned int type, unsigned int code,
 129 *                                unsigned int value);
 130 *      void add_interrupt_randomness(int irq);
 131 *
 132 * add_input_randomness() uses the input layer interrupt timing, as well as
 133 * the event type information from the hardware.
 134 *
 135 * add_interrupt_randomness() uses the inter-interrupt timing as random
 136 * inputs to the entropy pool.  Note that not all interrupts are good
 137 * sources of randomness!  For example, the timer interrupts is not a
 138 * good choice, because the periodicity of the interrupts is too
 139 * regular, and hence predictable to an attacker.  Disk interrupts are
 140 * a better measure, since the timing of the disk interrupts are more
 141 * unpredictable.
 142 *
 143 * All of these routines try to estimate how many bits of randomness a
 144 * particular randomness source.  They do this by keeping track of the
 145 * first and second order deltas of the event timings.
 146 *
 147 * Ensuring unpredictability at system startup
 148 * ============================================
 149 *
 150 * When any operating system starts up, it will go through a sequence
 151 * of actions that are fairly predictable by an adversary, especially
 152 * if the start-up does not involve interaction with a human operator.
 153 * This reduces the actual number of bits of unpredictability in the
 154 * entropy pool below the value in entropy_count.  In order to
 155 * counteract this effect, it helps to carry information in the
 156 * entropy pool across shut-downs and start-ups.  To do this, put the
 157 * following lines an appropriate script which is run during the boot
 158 * sequence:
 159 *
 160 *      echo "Initializing random number generator..."
 161 *      random_seed=/var/run/random-seed
 162 *      # Carry a random seed from start-up to start-up
 163 *      # Load and then save the whole entropy pool
 164 *      if [ -f $random_seed ]; then
 165 *              cat $random_seed >/dev/urandom
 166 *      else
 167 *              touch $random_seed
 168 *      fi
 169 *      chmod 600 $random_seed
 170 *      dd if=/dev/urandom of=$random_seed count=1 bs=512
 171 *
 172 * and the following lines in an appropriate script which is run as
 173 * the system is shutdown:
 174 *
 175 *      # Carry a random seed from shut-down to start-up
 176 *      # Save the whole entropy pool
 177 *      echo "Saving random seed..."
 178 *      random_seed=/var/run/random-seed
 179 *      touch $random_seed
 180 *      chmod 600 $random_seed
 181 *      dd if=/dev/urandom of=$random_seed count=1 bs=512
 182 *
 183 * For example, on most modern systems using the System V init
 184 * scripts, such code fragments would be found in
 185 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 187 *
 188 * Effectively, these commands cause the contents of the entropy pool
 189 * to be saved at shut-down time and reloaded into the entropy pool at
 190 * start-up.  (The 'dd' in the addition to the bootup script is to
 191 * make sure that /etc/random-seed is different for every start-up,
 192 * even if the system crashes without executing rc.0.)  Even with
 193 * complete knowledge of the start-up activities, predicting the state
 194 * of the entropy pool requires knowledge of the previous history of
 195 * the system.
 196 *
 197 * Configuring the /dev/random driver under Linux
 198 * ==============================================
 199 *
 200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 201 * the /dev/mem major number (#1).  So if your system does not have
 202 * /dev/random and /dev/urandom created already, they can be created
 203 * by using the commands:
 204 *
 205 *      mknod /dev/random c 1 8
 206 *      mknod /dev/urandom c 1 9
 207 *
 208 * Acknowledgements:
 209 * =================
 210 *
 211 * Ideas for constructing this random number generator were derived
 212 * from Pretty Good Privacy's random number generator, and from private
 213 * discussions with Phil Karn.  Colin Plumb provided a faster random
 214 * number generator, which speed up the mixing function of the entropy
 215 * pool, taken from PGPfone.  Dale Worley has also contributed many
 216 * useful ideas and suggestions to improve this driver.
 217 *
 218 * Any flaws in the design are solely my responsibility, and should
 219 * not be attributed to the Phil, Colin, or any of authors of PGP.
 220 *
 221 * Further background information on this topic may be obtained from
 222 * RFC 1750, "Randomness Recommendations for Security", by Donald
 223 * Eastlake, Steve Crocker, and Jeff Schiller.
 224 */
 225
 226#include <linux/utsname.h>
 227#include <linux/module.h>
 228#include <linux/kernel.h>
 229#include <linux/major.h>
 230#include <linux/string.h>
 231#include <linux/fcntl.h>
 232#include <linux/slab.h>
 233#include <linux/random.h>
 234#include <linux/poll.h>
 235#include <linux/init.h>
 236#include <linux/fs.h>
 237#include <linux/genhd.h>
 238#include <linux/interrupt.h>
 239#include <linux/mm.h>
 240#include <linux/spinlock.h>
 241#include <linux/percpu.h>
 242#include <linux/cryptohash.h>
 243#include <linux/fips.h>
 244
 245#ifdef CONFIG_GENERIC_HARDIRQS
 246# include <linux/irq.h>
 247#endif
 248
 249#include <asm/processor.h>
 250#include <asm/uaccess.h>
 251#include <asm/irq.h>
 252#include <asm/io.h>
 253
 254/*
 255 * Configuration information
 256 */
 257#define INPUT_POOL_WORDS 128
 258#define OUTPUT_POOL_WORDS 32
 259#define SEC_XFER_SIZE 512
 260#define EXTRACT_SIZE 10
 261
 262/*
 263 * The minimum number of bits of entropy before we wake up a read on
 264 * /dev/random.  Should be enough to do a significant reseed.
 265 */
 266static int random_read_wakeup_thresh = 64;
 267
 268/*
 269 * If the entropy count falls under this number of bits, then we
 270 * should wake up processes which are selecting or polling on write
 271 * access to /dev/random.
 272 */
 273static int random_write_wakeup_thresh = 128;
 274
 275/*
 276 * When the input pool goes over trickle_thresh, start dropping most
 277 * samples to avoid wasting CPU time and reduce lock contention.
 278 */
 279
 280static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
 281
 282static DEFINE_PER_CPU(int, trickle_count);
 283
 284/*
 285 * A pool of size .poolwords is stirred with a primitive polynomial
 286 * of degree .poolwords over GF(2).  The taps for various sizes are
 287 * defined below.  They are chosen to be evenly spaced (minimum RMS
 288 * distance from evenly spaced; the numbers in the comments are a
 289 * scaled squared error sum) except for the last tap, which is 1 to
 290 * get the twisting happening as fast as possible.
 291 */
 292static struct poolinfo {
 293        int poolwords;
 294        int tap1, tap2, tap3, tap4, tap5;
 295} poolinfo_table[] = {
 296        /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
 297        { 128,  103,    76,     51,     25,     1 },
 298        /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
 299        { 32,   26,     20,     14,     7,      1 },
 300#if 0
 301        /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 302        { 2048, 1638,   1231,   819,    411,    1 },
 303
 304        /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 305        { 1024, 817,    615,    412,    204,    1 },
 306
 307        /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 308        { 1024, 819,    616,    410,    207,    2 },
 309
 310        /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 311        { 512,  411,    308,    208,    104,    1 },
 312
 313        /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 314        { 512,  409,    307,    206,    102,    2 },
 315        /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 316        { 512,  409,    309,    205,    103,    2 },
 317
 318        /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 319        { 256,  205,    155,    101,    52,     1 },
 320
 321        /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 322        { 128,  103,    78,     51,     27,     2 },
 323
 324        /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 325        { 64,   52,     39,     26,     14,     1 },
 326#endif
 327};
 328
 329#define POOLBITS        poolwords*32
 330#define POOLBYTES       poolwords*4
 331
 332/*
 333 * For the purposes of better mixing, we use the CRC-32 polynomial as
 334 * well to make a twisted Generalized Feedback Shift Reigster
 335 *
 336 * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
 337 * Transactions on Modeling and Computer Simulation 2(3):179-194.
 338 * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
 339 * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
 340 *
 341 * Thanks to Colin Plumb for suggesting this.
 342 *
 343 * We have not analyzed the resultant polynomial to prove it primitive;
 344 * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
 345 * of a random large-degree polynomial over GF(2) are more than large enough
 346 * that periodicity is not a concern.
 347 *
 348 * The input hash is much less sensitive than the output hash.  All
 349 * that we want of it is that it be a good non-cryptographic hash;
 350 * i.e. it not produce collisions when fed "random" data of the sort
 351 * we expect to see.  As long as the pool state differs for different
 352 * inputs, we have preserved the input entropy and done a good job.
 353 * The fact that an intelligent attacker can construct inputs that
 354 * will produce controlled alterations to the pool's state is not
 355 * important because we don't consider such inputs to contribute any
 356 * randomness.  The only property we need with respect to them is that
 357 * the attacker can't increase his/her knowledge of the pool's state.
 358 * Since all additions are reversible (knowing the final state and the
 359 * input, you can reconstruct the initial state), if an attacker has
 360 * any uncertainty about the initial state, he/she can only shuffle
 361 * that uncertainty about, but never cause any collisions (which would
 362 * decrease the uncertainty).
 363 *
 364 * The chosen system lets the state of the pool be (essentially) the input
 365 * modulo the generator polymnomial.  Now, for random primitive polynomials,
 366 * this is a universal class of hash functions, meaning that the chance
 367 * of a collision is limited by the attacker's knowledge of the generator
 368 * polynomail, so if it is chosen at random, an attacker can never force
 369 * a collision.  Here, we use a fixed polynomial, but we *can* assume that
 370 * ###--> it is unknown to the processes generating the input entropy. <-###
 371 * Because of this important property, this is a good, collision-resistant
 372 * hash; hash collisions will occur no more often than chance.
 373 */
 374
 375/*
 376 * Static global variables
 377 */
 378static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 379static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 380static struct fasync_struct *fasync;
 381
 382#if 0
 383static int debug;
 384module_param(debug, bool, 0644);
 385#define DEBUG_ENT(fmt, arg...) do { \
 386        if (debug) \
 387                printk(KERN_DEBUG "random %04d %04d %04d: " \
 388                fmt,\
 389                input_pool.entropy_count,\
 390                blocking_pool.entropy_count,\
 391                nonblocking_pool.entropy_count,\
 392                ## arg); } while (0)
 393#else
 394#define DEBUG_ENT(fmt, arg...) do {} while (0)
 395#endif
 396
 397/**********************************************************************
 398 *
 399 * OS independent entropy store.   Here are the functions which handle
 400 * storing entropy in an entropy pool.
 401 *
 402 **********************************************************************/
 403
 404struct entropy_store;
 405struct entropy_store {
 406        /* read-only data: */
 407        struct poolinfo *poolinfo;
 408        __u32 *pool;
 409        const char *name;
 410        struct entropy_store *pull;
 411        int limit;
 412
 413        /* read-write data: */
 414        spinlock_t lock;
 415        unsigned add_ptr;
 416        int entropy_count;
 417        int input_rotate;
 418        __u8 last_data[EXTRACT_SIZE];
 419};
 420
 421static __u32 input_pool_data[INPUT_POOL_WORDS];
 422static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
 423static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
 424
 425static struct entropy_store input_pool = {
 426        .poolinfo = &poolinfo_table[0],
 427        .name = "input",
 428        .limit = 1,
 429        .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
 430        .pool = input_pool_data
 431};
 432
 433static struct entropy_store blocking_pool = {
 434        .poolinfo = &poolinfo_table[1],
 435        .name = "blocking",
 436        .limit = 1,
 437        .pull = &input_pool,
 438        .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
 439        .pool = blocking_pool_data
 440};
 441
 442static struct entropy_store nonblocking_pool = {
 443        .poolinfo = &poolinfo_table[1],
 444        .name = "nonblocking",
 445        .pull = &input_pool,
 446        .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
 447        .pool = nonblocking_pool_data
 448};
 449
 450/*
 451 * This function adds bytes into the entropy "pool".  It does not
 452 * update the entropy estimate.  The caller should call
 453 * credit_entropy_bits if this is appropriate.
 454 *
 455 * The pool is stirred with a primitive polynomial of the appropriate
 456 * degree, and then twisted.  We twist by three bits at a time because
 457 * it's cheap to do so and helps slightly in the expected case where
 458 * the entropy is concentrated in the low-order bits.
 459 */
 460static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
 461                                   int nbytes, __u8 out[64])
 462{
 463        static __u32 const twist_table[8] = {
 464                0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 465                0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 466        unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
 467        int input_rotate;
 468        int wordmask = r->poolinfo->poolwords - 1;
 469        const char *bytes = in;
 470        __u32 w;
 471        unsigned long flags;
 472
 473        /* Taps are constant, so we can load them without holding r->lock.  */
 474        tap1 = r->poolinfo->tap1;
 475        tap2 = r->poolinfo->tap2;
 476        tap3 = r->poolinfo->tap3;
 477        tap4 = r->poolinfo->tap4;
 478        tap5 = r->poolinfo->tap5;
 479
 480        spin_lock_irqsave(&r->lock, flags);
 481        input_rotate = r->input_rotate;
 482        i = r->add_ptr;
 483
 484        /* mix one byte at a time to simplify size handling and churn faster */
 485        while (nbytes--) {
 486                w = rol32(*bytes++, input_rotate & 31);
 487                i = (i - 1) & wordmask;
 488
 489                /* XOR in the various taps */
 490                w ^= r->pool[i];
 491                w ^= r->pool[(i + tap1) & wordmask];
 492                w ^= r->pool[(i + tap2) & wordmask];
 493                w ^= r->pool[(i + tap3) & wordmask];
 494                w ^= r->pool[(i + tap4) & wordmask];
 495                w ^= r->pool[(i + tap5) & wordmask];
 496
 497                /* Mix the result back in with a twist */
 498                r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 499
 500                /*
 501                 * Normally, we add 7 bits of rotation to the pool.
 502                 * At the beginning of the pool, add an extra 7 bits
 503                 * rotation, so that successive passes spread the
 504                 * input bits across the pool evenly.
 505                 */
 506                input_rotate += i ? 7 : 14;
 507        }
 508
 509        r->input_rotate = input_rotate;
 510        r->add_ptr = i;
 511
 512        if (out)
 513                for (j = 0; j < 16; j++)
 514                        ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
 515
 516        spin_unlock_irqrestore(&r->lock, flags);
 517}
 518
 519static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
 520{
 521       mix_pool_bytes_extract(r, in, bytes, NULL);
 522}
 523
 524/*
 525 * Credit (or debit) the entropy store with n bits of entropy
 526 */
 527static void credit_entropy_bits(struct entropy_store *r, int nbits)
 528{
 529        unsigned long flags;
 530        int entropy_count;
 531
 532        if (!nbits)
 533                return;
 534
 535        spin_lock_irqsave(&r->lock, flags);
 536
 537        DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
 538        entropy_count = r->entropy_count;
 539        entropy_count += nbits;
 540        if (entropy_count < 0) {
 541                DEBUG_ENT("negative entropy/overflow\n");
 542                entropy_count = 0;
 543        } else if (entropy_count > r->poolinfo->POOLBITS)
 544                entropy_count = r->poolinfo->POOLBITS;
 545        r->entropy_count = entropy_count;
 546
 547        /* should we wake readers? */
 548        if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
 549                wake_up_interruptible(&random_read_wait);
 550                kill_fasync(&fasync, SIGIO, POLL_IN);
 551        }
 552        spin_unlock_irqrestore(&r->lock, flags);
 553}
 554
 555/*********************************************************************
 556 *
 557 * Entropy input management
 558 *
 559 *********************************************************************/
 560
 561/* There is one of these per entropy source */
 562struct timer_rand_state {
 563        cycles_t last_time;
 564        long last_delta, last_delta2;
 565        unsigned dont_count_entropy:1;
 566};
 567
 568#ifndef CONFIG_GENERIC_HARDIRQS
 569
 570static struct timer_rand_state *irq_timer_state[NR_IRQS];
 571
 572static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
 573{
 574        return irq_timer_state[irq];
 575}
 576
 577static void set_timer_rand_state(unsigned int irq,
 578                                 struct timer_rand_state *state)
 579{
 580        irq_timer_state[irq] = state;
 581}
 582
 583#else
 584
 585static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
 586{
 587        struct irq_desc *desc;
 588
 589        desc = irq_to_desc(irq);
 590
 591        return desc->timer_rand_state;
 592}
 593
 594static void set_timer_rand_state(unsigned int irq,
 595                                 struct timer_rand_state *state)
 596{
 597        struct irq_desc *desc;
 598
 599        desc = irq_to_desc(irq);
 600
 601        desc->timer_rand_state = state;
 602}
 603#endif
 604
 605static struct timer_rand_state input_timer_state;
 606
 607/*
 608 * This function adds entropy to the entropy "pool" by using timing
 609 * delays.  It uses the timer_rand_state structure to make an estimate
 610 * of how many bits of entropy this call has added to the pool.
 611 *
 612 * The number "num" is also added to the pool - it should somehow describe
 613 * the type of event which just happened.  This is currently 0-255 for
 614 * keyboard scan codes, and 256 upwards for interrupts.
 615 *
 616 */
 617static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 618{
 619        struct {
 620                cycles_t cycles;
 621                long jiffies;
 622                unsigned num;
 623        } sample;
 624        long delta, delta2, delta3;
 625
 626        preempt_disable();
 627        /* if over the trickle threshold, use only 1 in 4096 samples */
 628        if (input_pool.entropy_count > trickle_thresh &&
 629            ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
 630                goto out;
 631
 632        sample.jiffies = jiffies;
 633        sample.cycles = get_cycles();
 634        sample.num = num;
 635        mix_pool_bytes(&input_pool, &sample, sizeof(sample));
 636
 637        /*
 638         * Calculate number of bits of randomness we probably added.
 639         * We take into account the first, second and third-order deltas
 640         * in order to make our estimate.
 641         */
 642
 643        if (!state->dont_count_entropy) {
 644                delta = sample.jiffies - state->last_time;
 645                state->last_time = sample.jiffies;
 646
 647                delta2 = delta - state->last_delta;
 648                state->last_delta = delta;
 649
 650                delta3 = delta2 - state->last_delta2;
 651                state->last_delta2 = delta2;
 652
 653                if (delta < 0)
 654                        delta = -delta;
 655                if (delta2 < 0)
 656                        delta2 = -delta2;
 657                if (delta3 < 0)
 658                        delta3 = -delta3;
 659                if (delta > delta2)
 660                        delta = delta2;
 661                if (delta > delta3)
 662                        delta = delta3;
 663
 664                /*
 665                 * delta is now minimum absolute delta.
 666                 * Round down by 1 bit on general principles,
 667                 * and limit entropy entimate to 12 bits.
 668                 */
 669                credit_entropy_bits(&input_pool,
 670                                    min_t(int, fls(delta>>1), 11));
 671        }
 672out:
 673        preempt_enable();
 674}
 675
 676void add_input_randomness(unsigned int type, unsigned int code,
 677                                 unsigned int value)
 678{
 679        static unsigned char last_value;
 680
 681        /* ignore autorepeat and the like */
 682        if (value == last_value)
 683                return;
 684
 685        DEBUG_ENT("input event\n");
 686        last_value = value;
 687        add_timer_randomness(&input_timer_state,
 688                             (type << 4) ^ code ^ (code >> 4) ^ value);
 689}
 690EXPORT_SYMBOL_GPL(add_input_randomness);
 691
 692void add_interrupt_randomness(int irq)
 693{
 694        struct timer_rand_state *state;
 695
 696        state = get_timer_rand_state(irq);
 697
 698        if (state == NULL)
 699                return;
 700
 701        DEBUG_ENT("irq event %d\n", irq);
 702        add_timer_randomness(state, 0x100 + irq);
 703}
 704
 705#ifdef CONFIG_BLOCK
 706void add_disk_randomness(struct gendisk *disk)
 707{
 708        if (!disk || !disk->random)
 709                return;
 710        /* first major is 1, so we get >= 0x200 here */
 711        DEBUG_ENT("disk event %d:%d\n",
 712                  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
 713
 714        add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 715}
 716#endif
 717
 718/*********************************************************************
 719 *
 720 * Entropy extraction routines
 721 *
 722 *********************************************************************/
 723
 724static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 725                               size_t nbytes, int min, int rsvd);
 726
 727/*
 728 * This utility inline function is responsible for transfering entropy
 729 * from the primary pool to the secondary extraction pool. We make
 730 * sure we pull enough for a 'catastrophic reseed'.
 731 */
 732static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 733{
 734        __u32 tmp[OUTPUT_POOL_WORDS];
 735
 736        if (r->pull && r->entropy_count < nbytes * 8 &&
 737            r->entropy_count < r->poolinfo->POOLBITS) {
 738                /* If we're limited, always leave two wakeup worth's BITS */
 739                int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
 740                int bytes = nbytes;
 741
 742                /* pull at least as many as BYTES as wakeup BITS */
 743                bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
 744                /* but never more than the buffer size */
 745                bytes = min_t(int, bytes, sizeof(tmp));
 746
 747                DEBUG_ENT("going to reseed %s with %d bits "
 748                          "(%d of %d requested)\n",
 749                          r->name, bytes * 8, nbytes * 8, r->entropy_count);
 750
 751                bytes = extract_entropy(r->pull, tmp, bytes,
 752                                        random_read_wakeup_thresh / 8, rsvd);
 753                mix_pool_bytes(r, tmp, bytes);
 754                credit_entropy_bits(r, bytes*8);
 755        }
 756}
 757
 758/*
 759 * These functions extracts randomness from the "entropy pool", and
 760 * returns it in a buffer.
 761 *
 762 * The min parameter specifies the minimum amount we can pull before
 763 * failing to avoid races that defeat catastrophic reseeding while the
 764 * reserved parameter indicates how much entropy we must leave in the
 765 * pool after each pull to avoid starving other readers.
 766 *
 767 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
 768 */
 769
 770static size_t account(struct entropy_store *r, size_t nbytes, int min,
 771                      int reserved)
 772{
 773        unsigned long flags;
 774
 775        /* Hold lock while accounting */
 776        spin_lock_irqsave(&r->lock, flags);
 777
 778        BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
 779        DEBUG_ENT("trying to extract %d bits from %s\n",
 780                  nbytes * 8, r->name);
 781
 782        /* Can we pull enough? */
 783        if (r->entropy_count / 8 < min + reserved) {
 784                nbytes = 0;
 785        } else {
 786                /* If limited, never pull more than available */
 787                if (r->limit && nbytes + reserved >= r->entropy_count / 8)
 788                        nbytes = r->entropy_count/8 - reserved;
 789
 790                if (r->entropy_count / 8 >= nbytes + reserved)
 791                        r->entropy_count -= nbytes*8;
 792                else
 793                        r->entropy_count = reserved;
 794
 795                if (r->entropy_count < random_write_wakeup_thresh) {
 796                        wake_up_interruptible(&random_write_wait);
 797                        kill_fasync(&fasync, SIGIO, POLL_OUT);
 798                }
 799        }
 800
 801        DEBUG_ENT("debiting %d entropy credits from %s%s\n",
 802                  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
 803
 804        spin_unlock_irqrestore(&r->lock, flags);
 805
 806        return nbytes;
 807}
 808
 809static void extract_buf(struct entropy_store *r, __u8 *out)
 810{
 811        int i;
 812        __u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
 813        __u8 extract[64];
 814
 815        /* Generate a hash across the pool, 16 words (512 bits) at a time */
 816        sha_init(hash);
 817        for (i = 0; i < r->poolinfo->poolwords; i += 16)
 818                sha_transform(hash, (__u8 *)(r->pool + i), workspace);
 819
 820        /*
 821         * We mix the hash back into the pool to prevent backtracking
 822         * attacks (where the attacker knows the state of the pool
 823         * plus the current outputs, and attempts to find previous
 824         * ouputs), unless the hash function can be inverted. By
 825         * mixing at least a SHA1 worth of hash data back, we make
 826         * brute-forcing the feedback as hard as brute-forcing the
 827         * hash.
 828         */
 829        mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
 830
 831        /*
 832         * To avoid duplicates, we atomically extract a portion of the
 833         * pool while mixing, and hash one final time.
 834         */
 835        sha_transform(hash, extract, workspace);
 836        memset(extract, 0, sizeof(extract));
 837        memset(workspace, 0, sizeof(workspace));
 838
 839        /*
 840         * In case the hash function has some recognizable output
 841         * pattern, we fold it in half. Thus, we always feed back
 842         * twice as much data as we output.
 843         */
 844        hash[0] ^= hash[3];
 845        hash[1] ^= hash[4];
 846        hash[2] ^= rol32(hash[2], 16);
 847        memcpy(out, hash, EXTRACT_SIZE);
 848        memset(hash, 0, sizeof(hash));
 849}
 850
 851static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 852                               size_t nbytes, int min, int reserved)
 853{
 854        ssize_t ret = 0, i;
 855        __u8 tmp[EXTRACT_SIZE];
 856        unsigned long flags;
 857
 858        xfer_secondary_pool(r, nbytes);
 859        nbytes = account(r, nbytes, min, reserved);
 860
 861        while (nbytes) {
 862                extract_buf(r, tmp);
 863
 864                if (fips_enabled) {
 865                        spin_lock_irqsave(&r->lock, flags);
 866                        if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
 867                                panic("Hardware RNG duplicated output!\n");
 868                        memcpy(r->last_data, tmp, EXTRACT_SIZE);
 869                        spin_unlock_irqrestore(&r->lock, flags);
 870                }
 871                i = min_t(int, nbytes, EXTRACT_SIZE);
 872                memcpy(buf, tmp, i);
 873                nbytes -= i;
 874                buf += i;
 875                ret += i;
 876        }
 877
 878        /* Wipe data just returned from memory */
 879        memset(tmp, 0, sizeof(tmp));
 880
 881        return ret;
 882}
 883
 884static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
 885                                    size_t nbytes)
 886{
 887        ssize_t ret = 0, i;
 888        __u8 tmp[EXTRACT_SIZE];
 889
 890        xfer_secondary_pool(r, nbytes);
 891        nbytes = account(r, nbytes, 0, 0);
 892
 893        while (nbytes) {
 894                if (need_resched()) {
 895                        if (signal_pending(current)) {
 896                                if (ret == 0)
 897                                        ret = -ERESTARTSYS;
 898                                break;
 899                        }
 900                        schedule();
 901                }
 902
 903                extract_buf(r, tmp);
 904                i = min_t(int, nbytes, EXTRACT_SIZE);
 905                if (copy_to_user(buf, tmp, i)) {
 906                        ret = -EFAULT;
 907                        break;
 908                }
 909
 910                nbytes -= i;
 911                buf += i;
 912                ret += i;
 913        }
 914
 915        /* Wipe data just returned from memory */
 916        memset(tmp, 0, sizeof(tmp));
 917
 918        return ret;
 919}
 920
 921/*
 922 * This function is the exported kernel interface.  It returns some
 923 * number of good random numbers, suitable for seeding TCP sequence
 924 * numbers, etc.
 925 */
 926void get_random_bytes(void *buf, int nbytes)
 927{
 928        extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
 929}
 930EXPORT_SYMBOL(get_random_bytes);
 931
 932/*
 933 * init_std_data - initialize pool with system data
 934 *
 935 * @r: pool to initialize
 936 *
 937 * This function clears the pool's entropy count and mixes some system
 938 * data into the pool to prepare it for use. The pool is not cleared
 939 * as that can only decrease the entropy in the pool.
 940 */
 941static void init_std_data(struct entropy_store *r)
 942{
 943        ktime_t now;
 944        unsigned long flags;
 945
 946        spin_lock_irqsave(&r->lock, flags);
 947        r->entropy_count = 0;
 948        spin_unlock_irqrestore(&r->lock, flags);
 949
 950        now = ktime_get_real();
 951        mix_pool_bytes(r, &now, sizeof(now));
 952        mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
 953}
 954
 955static int rand_initialize(void)
 956{
 957        init_std_data(&input_pool);
 958        init_std_data(&blocking_pool);
 959        init_std_data(&nonblocking_pool);
 960        return 0;
 961}
 962module_init(rand_initialize);
 963
 964void rand_initialize_irq(int irq)
 965{
 966        struct timer_rand_state *state;
 967
 968        state = get_timer_rand_state(irq);
 969
 970        if (state)
 971                return;
 972
 973        /*
 974         * If kzalloc returns null, we just won't use that entropy
 975         * source.
 976         */
 977        state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
 978        if (state)
 979                set_timer_rand_state(irq, state);
 980}
 981
 982#ifdef CONFIG_BLOCK
 983void rand_initialize_disk(struct gendisk *disk)
 984{
 985        struct timer_rand_state *state;
 986
 987        /*
 988         * If kzalloc returns null, we just won't use that entropy
 989         * source.
 990         */
 991        state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
 992        if (state)
 993                disk->random = state;
 994}
 995#endif
 996
 997static ssize_t
 998random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
 999{
1000        ssize_t n, retval = 0, count = 0;
1001
1002        if (nbytes == 0)
1003                return 0;
1004
1005        while (nbytes > 0) {
1006                n = nbytes;
1007                if (n > SEC_XFER_SIZE)
1008                        n = SEC_XFER_SIZE;
1009
1010                DEBUG_ENT("reading %d bits\n", n*8);
1011
1012                n = extract_entropy_user(&blocking_pool, buf, n);
1013
1014                DEBUG_ENT("read got %d bits (%d still needed)\n",
1015                          n*8, (nbytes-n)*8);
1016
1017                if (n == 0) {
1018                        if (file->f_flags & O_NONBLOCK) {
1019                                retval = -EAGAIN;
1020                                break;
1021                        }
1022
1023                        DEBUG_ENT("sleeping?\n");
1024
1025                        wait_event_interruptible(random_read_wait,
1026                                input_pool.entropy_count >=
1027                                                 random_read_wakeup_thresh);
1028
1029                        DEBUG_ENT("awake\n");
1030
1031                        if (signal_pending(current)) {
1032                                retval = -ERESTARTSYS;
1033                                break;
1034                        }
1035
1036                        continue;
1037                }
1038
1039                if (n < 0) {
1040                        retval = n;
1041                        break;
1042                }
1043                count += n;
1044                buf += n;
1045                nbytes -= n;
1046                break;          /* This break makes the device work */
1047                                /* like a named pipe */
1048        }
1049
1050        return (count ? count : retval);
1051}
1052
1053static ssize_t
1054urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1055{
1056        return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1057}
1058
1059static unsigned int
1060random_poll(struct file *file, poll_table * wait)
1061{
1062        unsigned int mask;
1063
1064        poll_wait(file, &random_read_wait, wait);
1065        poll_wait(file, &random_write_wait, wait);
1066        mask = 0;
1067        if (input_pool.entropy_count >= random_read_wakeup_thresh)
1068                mask |= POLLIN | POLLRDNORM;
1069        if (input_pool.entropy_count < random_write_wakeup_thresh)
1070                mask |= POLLOUT | POLLWRNORM;
1071        return mask;
1072}
1073
1074static int
1075write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1076{
1077        size_t bytes;
1078        __u32 buf[16];
1079        const char __user *p = buffer;
1080
1081        while (count > 0) {
1082                bytes = min(count, sizeof(buf));
1083                if (copy_from_user(&buf, p, bytes))
1084                        return -EFAULT;
1085
1086                count -= bytes;
1087                p += bytes;
1088
1089                mix_pool_bytes(r, buf, bytes);
1090                cond_resched();
1091        }
1092
1093        return 0;
1094}
1095
1096static ssize_t random_write(struct file *file, const char __user *buffer,
1097                            size_t count, loff_t *ppos)
1098{
1099        size_t ret;
1100
1101        ret = write_pool(&blocking_pool, buffer, count);
1102        if (ret)
1103                return ret;
1104        ret = write_pool(&nonblocking_pool, buffer, count);
1105        if (ret)
1106                return ret;
1107
1108        return (ssize_t)count;
1109}
1110
1111static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1112{
1113        int size, ent_count;
1114        int __user *p = (int __user *)arg;
1115        int retval;
1116
1117        switch (cmd) {
1118        case RNDGETENTCNT:
1119                /* inherently racy, no point locking */
1120                if (put_user(input_pool.entropy_count, p))
1121                        return -EFAULT;
1122                return 0;
1123        case RNDADDTOENTCNT:
1124                if (!capable(CAP_SYS_ADMIN))
1125                        return -EPERM;
1126                if (get_user(ent_count, p))
1127                        return -EFAULT;
1128                credit_entropy_bits(&input_pool, ent_count);
1129                return 0;
1130        case RNDADDENTROPY:
1131                if (!capable(CAP_SYS_ADMIN))
1132                        return -EPERM;
1133                if (get_user(ent_count, p++))
1134                        return -EFAULT;
1135                if (ent_count < 0)
1136                        return -EINVAL;
1137                if (get_user(size, p++))
1138                        return -EFAULT;
1139                retval = write_pool(&input_pool, (const char __user *)p,
1140                                    size);
1141                if (retval < 0)
1142                        return retval;
1143                credit_entropy_bits(&input_pool, ent_count);
1144                return 0;
1145        case RNDZAPENTCNT:
1146        case RNDCLEARPOOL:
1147                /* Clear the entropy pool counters. */
1148                if (!capable(CAP_SYS_ADMIN))
1149                        return -EPERM;
1150                rand_initialize();
1151                return 0;
1152        default:
1153                return -EINVAL;
1154        }
1155}
1156
1157static int random_fasync(int fd, struct file *filp, int on)
1158{
1159        return fasync_helper(fd, filp, on, &fasync);
1160}
1161
1162const struct file_operations random_fops = {
1163        .read  = random_read,
1164        .write = random_write,
1165        .poll  = random_poll,
1166        .unlocked_ioctl = random_ioctl,
1167        .fasync = random_fasync,
1168        .llseek = noop_llseek,
1169};
1170
1171const struct file_operations urandom_fops = {
1172        .read  = urandom_read,
1173        .write = random_write,
1174        .unlocked_ioctl = random_ioctl,
1175        .fasync = random_fasync,
1176        .llseek = noop_llseek,
1177};
1178
1179/***************************************************************
1180 * Random UUID interface
1181 *
1182 * Used here for a Boot ID, but can be useful for other kernel
1183 * drivers.
1184 ***************************************************************/
1185
1186/*
1187 * Generate random UUID
1188 */
1189void generate_random_uuid(unsigned char uuid_out[16])
1190{
1191        get_random_bytes(uuid_out, 16);
1192        /* Set UUID version to 4 --- truly random generation */
1193        uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1194        /* Set the UUID variant to DCE */
1195        uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1196}
1197EXPORT_SYMBOL(generate_random_uuid);
1198
1199/********************************************************************
1200 *
1201 * Sysctl interface
1202 *
1203 ********************************************************************/
1204
1205#ifdef CONFIG_SYSCTL
1206
1207#include <linux/sysctl.h>
1208
1209static int min_read_thresh = 8, min_write_thresh;
1210static int max_read_thresh = INPUT_POOL_WORDS * 32;
1211static int max_write_thresh = INPUT_POOL_WORDS * 32;
1212static char sysctl_bootid[16];
1213
1214/*
1215 * These functions is used to return both the bootid UUID, and random
1216 * UUID.  The difference is in whether table->data is NULL; if it is,
1217 * then a new UUID is generated and returned to the user.
1218 *
1219 * If the user accesses this via the proc interface, it will be returned
1220 * as an ASCII string in the standard UUID format.  If accesses via the
1221 * sysctl system call, it is returned as 16 bytes of binary data.
1222 */
1223static int proc_do_uuid(ctl_table *table, int write,
1224                        void __user *buffer, size_t *lenp, loff_t *ppos)
1225{
1226        ctl_table fake_table;
1227        unsigned char buf[64], tmp_uuid[16], *uuid;
1228
1229        uuid = table->data;
1230        if (!uuid) {
1231                uuid = tmp_uuid;
1232                uuid[8] = 0;
1233        }
1234        if (uuid[8] == 0)
1235                generate_random_uuid(uuid);
1236
1237        sprintf(buf, "%pU", uuid);
1238
1239        fake_table.data = buf;
1240        fake_table.maxlen = sizeof(buf);
1241
1242        return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1243}
1244
1245static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1246ctl_table random_table[] = {
1247        {
1248                .procname       = "poolsize",
1249                .data           = &sysctl_poolsize,
1250                .maxlen         = sizeof(int),
1251                .mode           = 0444,
1252                .proc_handler   = proc_dointvec,
1253        },
1254        {
1255                .procname       = "entropy_avail",
1256                .maxlen         = sizeof(int),
1257                .mode           = 0444,
1258                .proc_handler   = proc_dointvec,
1259                .data           = &input_pool.entropy_count,
1260        },
1261        {
1262                .procname       = "read_wakeup_threshold",
1263                .data           = &random_read_wakeup_thresh,
1264                .maxlen         = sizeof(int),
1265                .mode           = 0644,
1266                .proc_handler   = proc_dointvec_minmax,
1267                .extra1         = &min_read_thresh,
1268                .extra2         = &max_read_thresh,
1269        },
1270        {
1271                .procname       = "write_wakeup_threshold",
1272                .data           = &random_write_wakeup_thresh,
1273                .maxlen         = sizeof(int),
1274                .mode           = 0644,
1275                .proc_handler   = proc_dointvec_minmax,
1276                .extra1         = &min_write_thresh,
1277                .extra2         = &max_write_thresh,
1278        },
1279        {
1280                .procname       = "boot_id",
1281                .data           = &sysctl_bootid,
1282                .maxlen         = 16,
1283                .mode           = 0444,
1284                .proc_handler   = proc_do_uuid,
1285        },
1286        {
1287                .procname       = "uuid",
1288                .maxlen         = 16,
1289                .mode           = 0444,
1290                .proc_handler   = proc_do_uuid,
1291        },
1292        { }
1293};
1294#endif  /* CONFIG_SYSCTL */
1295
1296/********************************************************************
1297 *
1298 * Random functions for networking
1299 *
1300 ********************************************************************/
1301
1302/*
1303 * TCP initial sequence number picking.  This uses the random number
1304 * generator to pick an initial secret value.  This value is hashed
1305 * along with the TCP endpoint information to provide a unique
1306 * starting point for each pair of TCP endpoints.  This defeats
1307 * attacks which rely on guessing the initial TCP sequence number.
1308 * This algorithm was suggested by Steve Bellovin.
1309 *
1310 * Using a very strong hash was taking an appreciable amount of the total
1311 * TCP connection establishment time, so this is a weaker hash,
1312 * compensated for by changing the secret periodically.
1313 */
1314
1315/* F, G and H are basic MD4 functions: selection, majority, parity */
1316#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1317#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1318#define H(x, y, z) ((x) ^ (y) ^ (z))
1319
1320/*
1321 * The generic round function.  The application is so specific that
1322 * we don't bother protecting all the arguments with parens, as is generally
1323 * good macro practice, in favor of extra legibility.
1324 * Rotation is separate from addition to prevent recomputation
1325 */
1326#define ROUND(f, a, b, c, d, x, s)      \
1327        (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1328#define K1 0
1329#define K2 013240474631UL
1330#define K3 015666365641UL
1331
1332#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1333
1334static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1335{
1336        __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1337
1338        /* Round 1 */
1339        ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1340        ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1341        ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1342        ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1343        ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1344        ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1345        ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1346        ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1347        ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1348        ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1349        ROUND(F, c, d, a, b, in[10] + K1, 11);
1350        ROUND(F, b, c, d, a, in[11] + K1, 19);
1351
1352        /* Round 2 */
1353        ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1354        ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1355        ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1356        ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1357        ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1358        ROUND(G, d, a, b, c, in[11] + K2,  5);
1359        ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1360        ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1361        ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1362        ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1363        ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1364        ROUND(G, b, c, d, a, in[10] + K2, 13);
1365
1366        /* Round 3 */
1367        ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1368        ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1369        ROUND(H, c, d, a, b, in[11] + K3, 11);
1370        ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1371        ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1372        ROUND(H, d, a, b, c, in[10] + K3,  9);
1373        ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1374        ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1375        ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1376        ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1377        ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1378        ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1379
1380        return buf[1] + b; /* "most hashed" word */
1381        /* Alternative: return sum of all words? */
1382}
1383#endif
1384
1385#undef ROUND
1386#undef F
1387#undef G
1388#undef H
1389#undef K1
1390#undef K2
1391#undef K3
1392
1393/* This should not be decreased so low that ISNs wrap too fast. */
1394#define REKEY_INTERVAL (300 * HZ)
1395/*
1396 * Bit layout of the tcp sequence numbers (before adding current time):
1397 * bit 24-31: increased after every key exchange
1398 * bit 0-23: hash(source,dest)
1399 *
1400 * The implementation is similar to the algorithm described
1401 * in the Appendix of RFC 1185, except that
1402 * - it uses a 1 MHz clock instead of a 250 kHz clock
1403 * - it performs a rekey every 5 minutes, which is equivalent
1404 *      to a (source,dest) tulple dependent forward jump of the
1405 *      clock by 0..2^(HASH_BITS+1)
1406 *
1407 * Thus the average ISN wraparound time is 68 minutes instead of
1408 * 4.55 hours.
1409 *
1410 * SMP cleanup and lock avoidance with poor man's RCU.
1411 *                      Manfred Spraul <manfred@colorfullife.com>
1412 *
1413 */
1414#define COUNT_BITS 8
1415#define COUNT_MASK ((1 << COUNT_BITS) - 1)
1416#define HASH_BITS 24
1417#define HASH_MASK ((1 << HASH_BITS) - 1)
1418
1419static struct keydata {
1420        __u32 count; /* already shifted to the final position */
1421        __u32 secret[12];
1422} ____cacheline_aligned ip_keydata[2];
1423
1424static unsigned int ip_cnt;
1425
1426static void rekey_seq_generator(struct work_struct *work);
1427
1428static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1429
1430/*
1431 * Lock avoidance:
1432 * The ISN generation runs lockless - it's just a hash over random data.
1433 * State changes happen every 5 minutes when the random key is replaced.
1434 * Synchronization is performed by having two copies of the hash function
1435 * state and rekey_seq_generator always updates the inactive copy.
1436 * The copy is then activated by updating ip_cnt.
1437 * The implementation breaks down if someone blocks the thread
1438 * that processes SYN requests for more than 5 minutes. Should never
1439 * happen, and even if that happens only a not perfectly compliant
1440 * ISN is generated, nothing fatal.
1441 */
1442static void rekey_seq_generator(struct work_struct *work)
1443{
1444        struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1445
1446        get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1447        keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1448        smp_wmb();
1449        ip_cnt++;
1450        schedule_delayed_work(&rekey_work,
1451                              round_jiffies_relative(REKEY_INTERVAL));
1452}
1453
1454static inline struct keydata *get_keyptr(void)
1455{
1456        struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1457
1458        smp_rmb();
1459
1460        return keyptr;
1461}
1462
1463static __init int seqgen_init(void)
1464{
1465        rekey_seq_generator(NULL);
1466        return 0;
1467}
1468late_initcall(seqgen_init);
1469
1470#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1471__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1472                                   __be16 sport, __be16 dport)
1473{
1474        __u32 seq;
1475        __u32 hash[12];
1476        struct keydata *keyptr = get_keyptr();
1477
1478        /* The procedure is the same as for IPv4, but addresses are longer.
1479         * Thus we must use twothirdsMD4Transform.
1480         */
1481
1482        memcpy(hash, saddr, 16);
1483        hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1484        memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1485
1486        seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1487        seq += keyptr->count;
1488
1489        seq += ktime_to_ns(ktime_get_real());
1490
1491        return seq;
1492}
1493EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1494#endif
1495
1496/*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1497 *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1498 */
1499__u32 secure_ip_id(__be32 daddr)
1500{
1501        struct keydata *keyptr;
1502        __u32 hash[4];
1503
1504        keyptr = get_keyptr();
1505
1506        /*
1507         *  Pick a unique starting offset for each IP destination.
1508         *  The dest ip address is placed in the starting vector,
1509         *  which is then hashed with random data.
1510         */
1511        hash[0] = (__force __u32)daddr;
1512        hash[1] = keyptr->secret[9];
1513        hash[2] = keyptr->secret[10];
1514        hash[3] = keyptr->secret[11];
1515
1516        return half_md4_transform(hash, keyptr->secret);
1517}
1518
1519#ifdef CONFIG_INET
1520
1521__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1522                                 __be16 sport, __be16 dport)
1523{
1524        __u32 seq;
1525        __u32 hash[4];
1526        struct keydata *keyptr = get_keyptr();
1527
1528        /*
1529         *  Pick a unique starting offset for each TCP connection endpoints
1530         *  (saddr, daddr, sport, dport).
1531         *  Note that the words are placed into the starting vector, which is
1532         *  then mixed with a partial MD4 over random data.
1533         */
1534        hash[0] = (__force u32)saddr;
1535        hash[1] = (__force u32)daddr;
1536        hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1537        hash[3] = keyptr->secret[11];
1538
1539        seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1540        seq += keyptr->count;
1541        /*
1542         *      As close as possible to RFC 793, which
1543         *      suggests using a 250 kHz clock.
1544         *      Further reading shows this assumes 2 Mb/s networks.
1545         *      For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1546         *      For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1547         *      we also need to limit the resolution so that the u32 seq
1548         *      overlaps less than one time per MSL (2 minutes).
1549         *      Choosing a clock of 64 ns period is OK. (period of 274 s)
1550         */
1551        seq += ktime_to_ns(ktime_get_real()) >> 6;
1552
1553        return seq;
1554}
1555
1556/* Generate secure starting point for ephemeral IPV4 transport port search */
1557u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1558{
1559        struct keydata *keyptr = get_keyptr();
1560        u32 hash[4];
1561
1562        /*
1563         *  Pick a unique starting offset for each ephemeral port search
1564         *  (saddr, daddr, dport) and 48bits of random data.
1565         */
1566        hash[0] = (__force u32)saddr;
1567        hash[1] = (__force u32)daddr;
1568        hash[2] = (__force u32)dport ^ keyptr->secret[10];
1569        hash[3] = keyptr->secret[11];
1570
1571        return half_md4_transform(hash, keyptr->secret);
1572}
1573EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
1574
1575#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1576u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1577                               __be16 dport)
1578{
1579        struct keydata *keyptr = get_keyptr();
1580        u32 hash[12];
1581
1582        memcpy(hash, saddr, 16);
1583        hash[4] = (__force u32)dport;
1584        memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1585
1586        return twothirdsMD4Transform((const __u32 *)daddr, hash);
1587}
1588#endif
1589
1590#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1591/* Similar to secure_tcp_sequence_number but generate a 48 bit value
1592 * bit's 32-47 increase every key exchange
1593 *       0-31  hash(source, dest)
1594 */
1595u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1596                                __be16 sport, __be16 dport)
1597{
1598        u64 seq;
1599        __u32 hash[4];
1600        struct keydata *keyptr = get_keyptr();
1601
1602        hash[0] = (__force u32)saddr;
1603        hash[1] = (__force u32)daddr;
1604        hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1605        hash[3] = keyptr->secret[11];
1606
1607        seq = half_md4_transform(hash, keyptr->secret);
1608        seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1609
1610        seq += ktime_to_ns(ktime_get_real());
1611        seq &= (1ull << 48) - 1;
1612
1613        return seq;
1614}
1615EXPORT_SYMBOL(secure_dccp_sequence_number);
1616#endif
1617
1618#endif /* CONFIG_INET */
1619
1620
1621/*
1622 * Get a random word for internal kernel use only. Similar to urandom but
1623 * with the goal of minimal entropy pool depletion. As a result, the random
1624 * value is not cryptographically secure but for several uses the cost of
1625 * depleting entropy is too high
1626 */
1627DEFINE_PER_CPU(__u32 [4], get_random_int_hash);
1628unsigned int get_random_int(void)
1629{
1630        struct keydata *keyptr;
1631        __u32 *hash = get_cpu_var(get_random_int_hash);
1632        int ret;
1633
1634        keyptr = get_keyptr();
1635        hash[0] += current->pid + jiffies + get_cycles();
1636
1637        ret = half_md4_transform(hash, keyptr->secret);
1638        put_cpu_var(get_random_int_hash);
1639
1640        return ret;
1641}
1642
1643/*
1644 * randomize_range() returns a start address such that
1645 *
1646 *    [...... <range> .....]
1647 *  start                  end
1648 *
1649 * a <range> with size "len" starting at the return value is inside in the
1650 * area defined by [start, end], but is otherwise randomized.
1651 */
1652unsigned long
1653randomize_range(unsigned long start, unsigned long end, unsigned long len)
1654{
1655        unsigned long range = end - len - start;
1656
1657        if (end <= start + len)
1658                return 0;
1659        return PAGE_ALIGN(get_random_int() % range + start);
1660}
1661