linux/drivers/dma/intel_mid_dma.c
<<
>>
Prefs
   1/*
   2 *  intel_mid_dma.c - Intel Langwell DMA Drivers
   3 *
   4 *  Copyright (C) 2008-10 Intel Corp
   5 *  Author: Vinod Koul <vinod.koul@intel.com>
   6 *  The driver design is based on dw_dmac driver
   7 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   8 *
   9 *  This program is free software; you can redistribute it and/or modify
  10 *  it under the terms of the GNU General Public License as published by
  11 *  the Free Software Foundation; version 2 of the License.
  12 *
  13 *  This program is distributed in the hope that it will be useful, but
  14 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 *  General Public License for more details.
  17 *
  18 *  You should have received a copy of the GNU General Public License along
  19 *  with this program; if not, write to the Free Software Foundation, Inc.,
  20 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  21 *
  22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  23 *
  24 *
  25 */
  26#include <linux/pci.h>
  27#include <linux/interrupt.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/intel_mid_dma.h>
  30
  31#define MAX_CHAN        4 /*max ch across controllers*/
  32#include "intel_mid_dma_regs.h"
  33
  34#define INTEL_MID_DMAC1_ID              0x0814
  35#define INTEL_MID_DMAC2_ID              0x0813
  36#define INTEL_MID_GP_DMAC2_ID           0x0827
  37#define INTEL_MFLD_DMAC1_ID             0x0830
  38#define LNW_PERIPHRAL_MASK_BASE         0xFFAE8008
  39#define LNW_PERIPHRAL_MASK_SIZE         0x10
  40#define LNW_PERIPHRAL_STATUS            0x0
  41#define LNW_PERIPHRAL_MASK              0x8
  42
  43struct intel_mid_dma_probe_info {
  44        u8 max_chan;
  45        u8 ch_base;
  46        u16 block_size;
  47        u32 pimr_mask;
  48};
  49
  50#define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
  51        ((kernel_ulong_t)&(struct intel_mid_dma_probe_info) {   \
  52                .max_chan = (_max_chan),                        \
  53                .ch_base = (_ch_base),                          \
  54                .block_size = (_block_size),                    \
  55                .pimr_mask = (_pimr_mask),                      \
  56        })
  57
  58/*****************************************************************************
  59Utility Functions*/
  60/**
  61 * get_ch_index -       convert status to channel
  62 * @status: status mask
  63 * @base: dma ch base value
  64 *
  65 * Modify the status mask and return the channel index needing
  66 * attention (or -1 if neither)
  67 */
  68static int get_ch_index(int *status, unsigned int base)
  69{
  70        int i;
  71        for (i = 0; i < MAX_CHAN; i++) {
  72                if (*status & (1 << (i + base))) {
  73                        *status = *status & ~(1 << (i + base));
  74                        pr_debug("MDMA: index %d New status %x\n", i, *status);
  75                        return i;
  76                }
  77        }
  78        return -1;
  79}
  80
  81/**
  82 * get_block_ts -       calculates dma transaction length
  83 * @len: dma transfer length
  84 * @tx_width: dma transfer src width
  85 * @block_size: dma controller max block size
  86 *
  87 * Based on src width calculate the DMA trsaction length in data items
  88 * return data items or FFFF if exceeds max length for block
  89 */
  90static int get_block_ts(int len, int tx_width, int block_size)
  91{
  92        int byte_width = 0, block_ts = 0;
  93
  94        switch (tx_width) {
  95        case DMA_SLAVE_BUSWIDTH_1_BYTE:
  96                byte_width = 1;
  97                break;
  98        case DMA_SLAVE_BUSWIDTH_2_BYTES:
  99                byte_width = 2;
 100                break;
 101        case DMA_SLAVE_BUSWIDTH_4_BYTES:
 102        default:
 103                byte_width = 4;
 104                break;
 105        }
 106
 107        block_ts = len/byte_width;
 108        if (block_ts > block_size)
 109                block_ts = 0xFFFF;
 110        return block_ts;
 111}
 112
 113/*****************************************************************************
 114DMAC1 interrupt Functions*/
 115
 116/**
 117 * dmac1_mask_periphral_intr -  mask the periphral interrupt
 118 * @midc: dma channel for which masking is required
 119 *
 120 * Masks the DMA periphral interrupt
 121 * this is valid for DMAC1 family controllers only
 122 * This controller should have periphral mask registers already mapped
 123 */
 124static void dmac1_mask_periphral_intr(struct intel_mid_dma_chan *midc)
 125{
 126        u32 pimr;
 127        struct middma_device *mid = to_middma_device(midc->chan.device);
 128
 129        if (mid->pimr_mask) {
 130                pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
 131                pimr |= mid->pimr_mask;
 132                writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
 133        }
 134        return;
 135}
 136
 137/**
 138 * dmac1_unmask_periphral_intr -        unmask the periphral interrupt
 139 * @midc: dma channel for which masking is required
 140 *
 141 * UnMasks the DMA periphral interrupt,
 142 * this is valid for DMAC1 family controllers only
 143 * This controller should have periphral mask registers already mapped
 144 */
 145static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
 146{
 147        u32 pimr;
 148        struct middma_device *mid = to_middma_device(midc->chan.device);
 149
 150        if (mid->pimr_mask) {
 151                pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
 152                pimr &= ~mid->pimr_mask;
 153                writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
 154        }
 155        return;
 156}
 157
 158/**
 159 * enable_dma_interrupt -       enable the periphral interrupt
 160 * @midc: dma channel for which enable interrupt is required
 161 *
 162 * Enable the DMA periphral interrupt,
 163 * this is valid for DMAC1 family controllers only
 164 * This controller should have periphral mask registers already mapped
 165 */
 166static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
 167{
 168        dmac1_unmask_periphral_intr(midc);
 169
 170        /*en ch interrupts*/
 171        iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
 172        iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
 173        return;
 174}
 175
 176/**
 177 * disable_dma_interrupt -      disable the periphral interrupt
 178 * @midc: dma channel for which disable interrupt is required
 179 *
 180 * Disable the DMA periphral interrupt,
 181 * this is valid for DMAC1 family controllers only
 182 * This controller should have periphral mask registers already mapped
 183 */
 184static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
 185{
 186        /*Check LPE PISR, make sure fwd is disabled*/
 187        dmac1_mask_periphral_intr(midc);
 188        iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
 189        iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
 190        iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
 191        return;
 192}
 193
 194/*****************************************************************************
 195DMA channel helper Functions*/
 196/**
 197 * mid_desc_get         -       get a descriptor
 198 * @midc: dma channel for which descriptor is required
 199 *
 200 * Obtain a descriptor for the channel. Returns NULL if none are free.
 201 * Once the descriptor is returned it is private until put on another
 202 * list or freed
 203 */
 204static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
 205{
 206        struct intel_mid_dma_desc *desc, *_desc;
 207        struct intel_mid_dma_desc *ret = NULL;
 208
 209        spin_lock_bh(&midc->lock);
 210        list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
 211                if (async_tx_test_ack(&desc->txd)) {
 212                        list_del(&desc->desc_node);
 213                        ret = desc;
 214                        break;
 215                }
 216        }
 217        spin_unlock_bh(&midc->lock);
 218        return ret;
 219}
 220
 221/**
 222 * mid_desc_put         -       put a descriptor
 223 * @midc: dma channel for which descriptor is required
 224 * @desc: descriptor to put
 225 *
 226 * Return a descriptor from lwn_desc_get back to the free pool
 227 */
 228static void midc_desc_put(struct intel_mid_dma_chan *midc,
 229                        struct intel_mid_dma_desc *desc)
 230{
 231        if (desc) {
 232                spin_lock_bh(&midc->lock);
 233                list_add_tail(&desc->desc_node, &midc->free_list);
 234                spin_unlock_bh(&midc->lock);
 235        }
 236}
 237/**
 238 * midc_dostart         -               begin a DMA transaction
 239 * @midc: channel for which txn is to be started
 240 * @first: first descriptor of series
 241 *
 242 * Load a transaction into the engine. This must be called with midc->lock
 243 * held and bh disabled.
 244 */
 245static void midc_dostart(struct intel_mid_dma_chan *midc,
 246                        struct intel_mid_dma_desc *first)
 247{
 248        struct middma_device *mid = to_middma_device(midc->chan.device);
 249
 250        /*  channel is idle */
 251        if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
 252                /*error*/
 253                pr_err("ERR_MDMA: channel is busy in start\n");
 254                /* The tasklet will hopefully advance the queue... */
 255                return;
 256        }
 257        midc->busy = true;
 258        /*write registers and en*/
 259        iowrite32(first->sar, midc->ch_regs + SAR);
 260        iowrite32(first->dar, midc->ch_regs + DAR);
 261        iowrite32(first->lli_phys, midc->ch_regs + LLP);
 262        iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
 263        iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
 264        iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
 265        iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
 266        pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
 267                (int)first->sar, (int)first->dar, first->cfg_hi,
 268                first->cfg_lo, first->ctl_hi, first->ctl_lo);
 269        first->status = DMA_IN_PROGRESS;
 270
 271        iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
 272}
 273
 274/**
 275 * midc_descriptor_complete     -       process completed descriptor
 276 * @midc: channel owning the descriptor
 277 * @desc: the descriptor itself
 278 *
 279 * Process a completed descriptor and perform any callbacks upon
 280 * the completion. The completion handling drops the lock during the
 281 * callbacks but must be called with the lock held.
 282 */
 283static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
 284               struct intel_mid_dma_desc *desc)
 285{
 286        struct dma_async_tx_descriptor  *txd = &desc->txd;
 287        dma_async_tx_callback callback_txd = NULL;
 288        struct intel_mid_dma_lli        *llitem;
 289        void *param_txd = NULL;
 290
 291        midc->completed = txd->cookie;
 292        callback_txd = txd->callback;
 293        param_txd = txd->callback_param;
 294
 295        if (desc->lli != NULL) {
 296                /*clear the DONE bit of completed LLI in memory*/
 297                llitem = desc->lli + desc->current_lli;
 298                llitem->ctl_hi &= CLEAR_DONE;
 299                if (desc->current_lli < desc->lli_length-1)
 300                        (desc->current_lli)++;
 301                else
 302                        desc->current_lli = 0;
 303        }
 304        spin_unlock_bh(&midc->lock);
 305        if (callback_txd) {
 306                pr_debug("MDMA: TXD callback set ... calling\n");
 307                callback_txd(param_txd);
 308        }
 309        if (midc->raw_tfr) {
 310                desc->status = DMA_SUCCESS;
 311                if (desc->lli != NULL) {
 312                        pci_pool_free(desc->lli_pool, desc->lli,
 313                                                desc->lli_phys);
 314                        pci_pool_destroy(desc->lli_pool);
 315                }
 316                list_move(&desc->desc_node, &midc->free_list);
 317                midc->busy = false;
 318        }
 319        spin_lock_bh(&midc->lock);
 320
 321}
 322/**
 323 * midc_scan_descriptors -              check the descriptors in channel
 324 *                                      mark completed when tx is completete
 325 * @mid: device
 326 * @midc: channel to scan
 327 *
 328 * Walk the descriptor chain for the device and process any entries
 329 * that are complete.
 330 */
 331static void midc_scan_descriptors(struct middma_device *mid,
 332                                struct intel_mid_dma_chan *midc)
 333{
 334        struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
 335
 336        /*tx is complete*/
 337        list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
 338                if (desc->status == DMA_IN_PROGRESS)
 339                        midc_descriptor_complete(midc, desc);
 340        }
 341        return;
 342        }
 343/**
 344 * midc_lli_fill_sg -           Helper function to convert
 345 *                              SG list to Linked List Items.
 346 *@midc: Channel
 347 *@desc: DMA descriptor
 348 *@sglist: Pointer to SG list
 349 *@sglen: SG list length
 350 *@flags: DMA transaction flags
 351 *
 352 * Walk through the SG list and convert the SG list into Linked
 353 * List Items (LLI).
 354 */
 355static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
 356                                struct intel_mid_dma_desc *desc,
 357                                struct scatterlist *sglist,
 358                                unsigned int sglen,
 359                                unsigned int flags)
 360{
 361        struct intel_mid_dma_slave *mids;
 362        struct scatterlist  *sg;
 363        dma_addr_t lli_next, sg_phy_addr;
 364        struct intel_mid_dma_lli *lli_bloc_desc;
 365        union intel_mid_dma_ctl_lo ctl_lo;
 366        union intel_mid_dma_ctl_hi ctl_hi;
 367        int i;
 368
 369        pr_debug("MDMA: Entered midc_lli_fill_sg\n");
 370        mids = midc->mid_slave;
 371
 372        lli_bloc_desc = desc->lli;
 373        lli_next = desc->lli_phys;
 374
 375        ctl_lo.ctl_lo = desc->ctl_lo;
 376        ctl_hi.ctl_hi = desc->ctl_hi;
 377        for_each_sg(sglist, sg, sglen, i) {
 378                /*Populate CTL_LOW and LLI values*/
 379                if (i != sglen - 1) {
 380                        lli_next = lli_next +
 381                                sizeof(struct intel_mid_dma_lli);
 382                } else {
 383                /*Check for circular list, otherwise terminate LLI to ZERO*/
 384                        if (flags & DMA_PREP_CIRCULAR_LIST) {
 385                                pr_debug("MDMA: LLI is configured in circular mode\n");
 386                                lli_next = desc->lli_phys;
 387                        } else {
 388                                lli_next = 0;
 389                                ctl_lo.ctlx.llp_dst_en = 0;
 390                                ctl_lo.ctlx.llp_src_en = 0;
 391                        }
 392                }
 393                /*Populate CTL_HI values*/
 394                ctl_hi.ctlx.block_ts = get_block_ts(sg->length,
 395                                                        desc->width,
 396                                                        midc->dma->block_size);
 397                /*Populate SAR and DAR values*/
 398                sg_phy_addr = sg_phys(sg);
 399                if (desc->dirn ==  DMA_TO_DEVICE) {
 400                        lli_bloc_desc->sar  = sg_phy_addr;
 401                        lli_bloc_desc->dar  = mids->dma_slave.dst_addr;
 402                } else if (desc->dirn ==  DMA_FROM_DEVICE) {
 403                        lli_bloc_desc->sar  = mids->dma_slave.src_addr;
 404                        lli_bloc_desc->dar  = sg_phy_addr;
 405                }
 406                /*Copy values into block descriptor in system memroy*/
 407                lli_bloc_desc->llp = lli_next;
 408                lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
 409                lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
 410
 411                lli_bloc_desc++;
 412        }
 413        /*Copy very first LLI values to descriptor*/
 414        desc->ctl_lo = desc->lli->ctl_lo;
 415        desc->ctl_hi = desc->lli->ctl_hi;
 416        desc->sar = desc->lli->sar;
 417        desc->dar = desc->lli->dar;
 418
 419        return 0;
 420}
 421/*****************************************************************************
 422DMA engine callback Functions*/
 423/**
 424 * intel_mid_dma_tx_submit -    callback to submit DMA transaction
 425 * @tx: dma engine descriptor
 426 *
 427 * Submit the DMA trasaction for this descriptor, start if ch idle
 428 */
 429static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 430{
 431        struct intel_mid_dma_desc       *desc = to_intel_mid_dma_desc(tx);
 432        struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(tx->chan);
 433        dma_cookie_t            cookie;
 434
 435        spin_lock_bh(&midc->lock);
 436        cookie = midc->chan.cookie;
 437
 438        if (++cookie < 0)
 439                cookie = 1;
 440
 441        midc->chan.cookie = cookie;
 442        desc->txd.cookie = cookie;
 443
 444
 445        if (list_empty(&midc->active_list))
 446                list_add_tail(&desc->desc_node, &midc->active_list);
 447        else
 448                list_add_tail(&desc->desc_node, &midc->queue);
 449
 450        midc_dostart(midc, desc);
 451        spin_unlock_bh(&midc->lock);
 452
 453        return cookie;
 454}
 455
 456/**
 457 * intel_mid_dma_issue_pending -        callback to issue pending txn
 458 * @chan: chan where pending trascation needs to be checked and submitted
 459 *
 460 * Call for scan to issue pending descriptors
 461 */
 462static void intel_mid_dma_issue_pending(struct dma_chan *chan)
 463{
 464        struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
 465
 466        spin_lock_bh(&midc->lock);
 467        if (!list_empty(&midc->queue))
 468                midc_scan_descriptors(to_middma_device(chan->device), midc);
 469        spin_unlock_bh(&midc->lock);
 470}
 471
 472/**
 473 * intel_mid_dma_tx_status -    Return status of txn
 474 * @chan: chan for where status needs to be checked
 475 * @cookie: cookie for txn
 476 * @txstate: DMA txn state
 477 *
 478 * Return status of DMA txn
 479 */
 480static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
 481                                                dma_cookie_t cookie,
 482                                                struct dma_tx_state *txstate)
 483{
 484        struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
 485        dma_cookie_t            last_used;
 486        dma_cookie_t            last_complete;
 487        int                             ret;
 488
 489        last_complete = midc->completed;
 490        last_used = chan->cookie;
 491
 492        ret = dma_async_is_complete(cookie, last_complete, last_used);
 493        if (ret != DMA_SUCCESS) {
 494                midc_scan_descriptors(to_middma_device(chan->device), midc);
 495
 496                last_complete = midc->completed;
 497                last_used = chan->cookie;
 498
 499                ret = dma_async_is_complete(cookie, last_complete, last_used);
 500        }
 501
 502        if (txstate) {
 503                txstate->last = last_complete;
 504                txstate->used = last_used;
 505                txstate->residue = 0;
 506        }
 507        return ret;
 508}
 509
 510static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
 511{
 512        struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
 513        struct dma_slave_config  *slave = (struct dma_slave_config *)arg;
 514        struct intel_mid_dma_slave *mid_slave;
 515
 516        BUG_ON(!midc);
 517        BUG_ON(!slave);
 518        pr_debug("MDMA: slave control called\n");
 519
 520        mid_slave = to_intel_mid_dma_slave(slave);
 521
 522        BUG_ON(!mid_slave);
 523
 524        midc->mid_slave = mid_slave;
 525        return 0;
 526}
 527/**
 528 * intel_mid_dma_device_control -       DMA device control
 529 * @chan: chan for DMA control
 530 * @cmd: control cmd
 531 * @arg: cmd arg value
 532 *
 533 * Perform DMA control command
 534 */
 535static int intel_mid_dma_device_control(struct dma_chan *chan,
 536                        enum dma_ctrl_cmd cmd, unsigned long arg)
 537{
 538        struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
 539        struct middma_device    *mid = to_middma_device(chan->device);
 540        struct intel_mid_dma_desc       *desc, *_desc;
 541        union intel_mid_dma_cfg_lo cfg_lo;
 542
 543        if (cmd == DMA_SLAVE_CONFIG)
 544                return dma_slave_control(chan, arg);
 545
 546        if (cmd != DMA_TERMINATE_ALL)
 547                return -ENXIO;
 548
 549        spin_lock_bh(&midc->lock);
 550        if (midc->busy == false) {
 551                spin_unlock_bh(&midc->lock);
 552                return 0;
 553        }
 554        /*Suspend and disable the channel*/
 555        cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
 556        cfg_lo.cfgx.ch_susp = 1;
 557        iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
 558        iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
 559        midc->busy = false;
 560        /* Disable interrupts */
 561        disable_dma_interrupt(midc);
 562        midc->descs_allocated = 0;
 563
 564        spin_unlock_bh(&midc->lock);
 565        list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
 566                if (desc->lli != NULL) {
 567                        pci_pool_free(desc->lli_pool, desc->lli,
 568                                                desc->lli_phys);
 569                        pci_pool_destroy(desc->lli_pool);
 570                }
 571                list_move(&desc->desc_node, &midc->free_list);
 572        }
 573        return 0;
 574}
 575
 576
 577/**
 578 * intel_mid_dma_prep_memcpy -  Prep memcpy txn
 579 * @chan: chan for DMA transfer
 580 * @dest: destn address
 581 * @src: src address
 582 * @len: DMA transfer len
 583 * @flags: DMA flags
 584 *
 585 * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
 586 * The periphral txn details should be filled in slave structure properly
 587 * Returns the descriptor for this txn
 588 */
 589static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
 590                        struct dma_chan *chan, dma_addr_t dest,
 591                        dma_addr_t src, size_t len, unsigned long flags)
 592{
 593        struct intel_mid_dma_chan *midc;
 594        struct intel_mid_dma_desc *desc = NULL;
 595        struct intel_mid_dma_slave *mids;
 596        union intel_mid_dma_ctl_lo ctl_lo;
 597        union intel_mid_dma_ctl_hi ctl_hi;
 598        union intel_mid_dma_cfg_lo cfg_lo;
 599        union intel_mid_dma_cfg_hi cfg_hi;
 600        enum dma_slave_buswidth width;
 601
 602        pr_debug("MDMA: Prep for memcpy\n");
 603        BUG_ON(!chan);
 604        if (!len)
 605                return NULL;
 606
 607        midc = to_intel_mid_dma_chan(chan);
 608        BUG_ON(!midc);
 609
 610        mids = midc->mid_slave;
 611        BUG_ON(!mids);
 612
 613        pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
 614                                midc->dma->pci_id, midc->ch_id, len);
 615        pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
 616                        mids->cfg_mode, mids->dma_slave.direction,
 617                        mids->hs_mode, mids->dma_slave.src_addr_width);
 618
 619        /*calculate CFG_LO*/
 620        if (mids->hs_mode == LNW_DMA_SW_HS) {
 621                cfg_lo.cfg_lo = 0;
 622                cfg_lo.cfgx.hs_sel_dst = 1;
 623                cfg_lo.cfgx.hs_sel_src = 1;
 624        } else if (mids->hs_mode == LNW_DMA_HW_HS)
 625                cfg_lo.cfg_lo = 0x00000;
 626
 627        /*calculate CFG_HI*/
 628        if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
 629                /*SW HS only*/
 630                cfg_hi.cfg_hi = 0;
 631        } else {
 632                cfg_hi.cfg_hi = 0;
 633                if (midc->dma->pimr_mask) {
 634                        cfg_hi.cfgx.protctl = 0x0; /*default value*/
 635                        cfg_hi.cfgx.fifo_mode = 1;
 636                        if (mids->dma_slave.direction == DMA_TO_DEVICE) {
 637                                cfg_hi.cfgx.src_per = 0;
 638                                if (mids->device_instance == 0)
 639                                        cfg_hi.cfgx.dst_per = 3;
 640                                if (mids->device_instance == 1)
 641                                        cfg_hi.cfgx.dst_per = 1;
 642                        } else if (mids->dma_slave.direction == DMA_FROM_DEVICE) {
 643                                if (mids->device_instance == 0)
 644                                        cfg_hi.cfgx.src_per = 2;
 645                                if (mids->device_instance == 1)
 646                                        cfg_hi.cfgx.src_per = 0;
 647                                cfg_hi.cfgx.dst_per = 0;
 648                        }
 649                } else {
 650                        cfg_hi.cfgx.protctl = 0x1; /*default value*/
 651                        cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
 652                                        midc->ch_id - midc->dma->chan_base;
 653                }
 654        }
 655
 656        /*calculate CTL_HI*/
 657        ctl_hi.ctlx.reser = 0;
 658        ctl_hi.ctlx.done  = 0;
 659        width = mids->dma_slave.src_addr_width;
 660
 661        ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
 662        pr_debug("MDMA:calc len %d for block size %d\n",
 663                                ctl_hi.ctlx.block_ts, midc->dma->block_size);
 664        /*calculate CTL_LO*/
 665        ctl_lo.ctl_lo = 0;
 666        ctl_lo.ctlx.int_en = 1;
 667        ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
 668        ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
 669
 670        /*
 671         * Here we need some translation from "enum dma_slave_buswidth"
 672         * to the format for our dma controller
 673         *              standard        intel_mid_dmac's format
 674         *               1 Byte                 0b000
 675         *               2 Bytes                0b001
 676         *               4 Bytes                0b010
 677         */
 678        ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
 679        ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
 680
 681        if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
 682                ctl_lo.ctlx.tt_fc = 0;
 683                ctl_lo.ctlx.sinc = 0;
 684                ctl_lo.ctlx.dinc = 0;
 685        } else {
 686                if (mids->dma_slave.direction == DMA_TO_DEVICE) {
 687                        ctl_lo.ctlx.sinc = 0;
 688                        ctl_lo.ctlx.dinc = 2;
 689                        ctl_lo.ctlx.tt_fc = 1;
 690                } else if (mids->dma_slave.direction == DMA_FROM_DEVICE) {
 691                        ctl_lo.ctlx.sinc = 2;
 692                        ctl_lo.ctlx.dinc = 0;
 693                        ctl_lo.ctlx.tt_fc = 2;
 694                }
 695        }
 696
 697        pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
 698                ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
 699
 700        enable_dma_interrupt(midc);
 701
 702        desc = midc_desc_get(midc);
 703        if (desc == NULL)
 704                goto err_desc_get;
 705        desc->sar = src;
 706        desc->dar = dest ;
 707        desc->len = len;
 708        desc->cfg_hi = cfg_hi.cfg_hi;
 709        desc->cfg_lo = cfg_lo.cfg_lo;
 710        desc->ctl_lo = ctl_lo.ctl_lo;
 711        desc->ctl_hi = ctl_hi.ctl_hi;
 712        desc->width = width;
 713        desc->dirn = mids->dma_slave.direction;
 714        desc->lli_phys = 0;
 715        desc->lli = NULL;
 716        desc->lli_pool = NULL;
 717        return &desc->txd;
 718
 719err_desc_get:
 720        pr_err("ERR_MDMA: Failed to get desc\n");
 721        midc_desc_put(midc, desc);
 722        return NULL;
 723}
 724/**
 725 * intel_mid_dma_prep_slave_sg -        Prep slave sg txn
 726 * @chan: chan for DMA transfer
 727 * @sgl: scatter gather list
 728 * @sg_len: length of sg txn
 729 * @direction: DMA transfer dirtn
 730 * @flags: DMA flags
 731 *
 732 * Prepares LLI based periphral transfer
 733 */
 734static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
 735                        struct dma_chan *chan, struct scatterlist *sgl,
 736                        unsigned int sg_len, enum dma_data_direction direction,
 737                        unsigned long flags)
 738{
 739        struct intel_mid_dma_chan *midc = NULL;
 740        struct intel_mid_dma_slave *mids = NULL;
 741        struct intel_mid_dma_desc *desc = NULL;
 742        struct dma_async_tx_descriptor *txd = NULL;
 743        union intel_mid_dma_ctl_lo ctl_lo;
 744
 745        pr_debug("MDMA: Prep for slave SG\n");
 746
 747        if (!sg_len) {
 748                pr_err("MDMA: Invalid SG length\n");
 749                return NULL;
 750        }
 751        midc = to_intel_mid_dma_chan(chan);
 752        BUG_ON(!midc);
 753
 754        mids = midc->mid_slave;
 755        BUG_ON(!mids);
 756
 757        if (!midc->dma->pimr_mask) {
 758                /* We can still handle sg list with only one item */
 759                if (sg_len == 1) {
 760                        txd = intel_mid_dma_prep_memcpy(chan,
 761                                                mids->dma_slave.dst_addr,
 762                                                mids->dma_slave.src_addr,
 763                                                sgl->length,
 764                                                flags);
 765                        return txd;
 766                } else {
 767                        pr_warn("MDMA: SG list is not supported by this controller\n");
 768                        return  NULL;
 769                }
 770        }
 771
 772        pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
 773                        sg_len, direction, flags);
 774
 775        txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sgl->length, flags);
 776        if (NULL == txd) {
 777                pr_err("MDMA: Prep memcpy failed\n");
 778                return NULL;
 779        }
 780
 781        desc = to_intel_mid_dma_desc(txd);
 782        desc->dirn = direction;
 783        ctl_lo.ctl_lo = desc->ctl_lo;
 784        ctl_lo.ctlx.llp_dst_en = 1;
 785        ctl_lo.ctlx.llp_src_en = 1;
 786        desc->ctl_lo = ctl_lo.ctl_lo;
 787        desc->lli_length = sg_len;
 788        desc->current_lli = 0;
 789        /* DMA coherent memory pool for LLI descriptors*/
 790        desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
 791                                midc->dma->pdev,
 792                                (sizeof(struct intel_mid_dma_lli)*sg_len),
 793                                32, 0);
 794        if (NULL == desc->lli_pool) {
 795                pr_err("MID_DMA:LLI pool create failed\n");
 796                return NULL;
 797        }
 798
 799        desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
 800        if (!desc->lli) {
 801                pr_err("MID_DMA: LLI alloc failed\n");
 802                pci_pool_destroy(desc->lli_pool);
 803                return NULL;
 804        }
 805
 806        midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
 807        if (flags & DMA_PREP_INTERRUPT) {
 808                iowrite32(UNMASK_INTR_REG(midc->ch_id),
 809                                midc->dma_base + MASK_BLOCK);
 810                pr_debug("MDMA:Enabled Block interrupt\n");
 811        }
 812        return &desc->txd;
 813}
 814
 815/**
 816 * intel_mid_dma_free_chan_resources -  Frees dma resources
 817 * @chan: chan requiring attention
 818 *
 819 * Frees the allocated resources on this DMA chan
 820 */
 821static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
 822{
 823        struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
 824        struct middma_device    *mid = to_middma_device(chan->device);
 825        struct intel_mid_dma_desc       *desc, *_desc;
 826
 827        if (true == midc->busy) {
 828                /*trying to free ch in use!!!!!*/
 829                pr_err("ERR_MDMA: trying to free ch in use\n");
 830        }
 831        pm_runtime_put(&mid->pdev->dev);
 832        spin_lock_bh(&midc->lock);
 833        midc->descs_allocated = 0;
 834        list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
 835                list_del(&desc->desc_node);
 836                pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
 837        }
 838        list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
 839                list_del(&desc->desc_node);
 840                pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
 841        }
 842        list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
 843                list_del(&desc->desc_node);
 844                pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
 845        }
 846        spin_unlock_bh(&midc->lock);
 847        midc->in_use = false;
 848        midc->busy = false;
 849        /* Disable CH interrupts */
 850        iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
 851        iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
 852}
 853
 854/**
 855 * intel_mid_dma_alloc_chan_resources - Allocate dma resources
 856 * @chan: chan requiring attention
 857 *
 858 * Allocates DMA resources on this chan
 859 * Return the descriptors allocated
 860 */
 861static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
 862{
 863        struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
 864        struct middma_device    *mid = to_middma_device(chan->device);
 865        struct intel_mid_dma_desc       *desc;
 866        dma_addr_t              phys;
 867        int     i = 0;
 868
 869        pm_runtime_get_sync(&mid->pdev->dev);
 870
 871        if (mid->state == SUSPENDED) {
 872                if (dma_resume(mid->pdev)) {
 873                        pr_err("ERR_MDMA: resume failed");
 874                        return -EFAULT;
 875                }
 876        }
 877
 878        /* ASSERT:  channel is idle */
 879        if (test_ch_en(mid->dma_base, midc->ch_id)) {
 880                /*ch is not idle*/
 881                pr_err("ERR_MDMA: ch not idle\n");
 882                pm_runtime_put(&mid->pdev->dev);
 883                return -EIO;
 884        }
 885        midc->completed = chan->cookie = 1;
 886
 887        spin_lock_bh(&midc->lock);
 888        while (midc->descs_allocated < DESCS_PER_CHANNEL) {
 889                spin_unlock_bh(&midc->lock);
 890                desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
 891                if (!desc) {
 892                        pr_err("ERR_MDMA: desc failed\n");
 893                        pm_runtime_put(&mid->pdev->dev);
 894                        return -ENOMEM;
 895                        /*check*/
 896                }
 897                dma_async_tx_descriptor_init(&desc->txd, chan);
 898                desc->txd.tx_submit = intel_mid_dma_tx_submit;
 899                desc->txd.flags = DMA_CTRL_ACK;
 900                desc->txd.phys = phys;
 901                spin_lock_bh(&midc->lock);
 902                i = ++midc->descs_allocated;
 903                list_add_tail(&desc->desc_node, &midc->free_list);
 904        }
 905        spin_unlock_bh(&midc->lock);
 906        midc->in_use = true;
 907        midc->busy = false;
 908        pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
 909        return i;
 910}
 911
 912/**
 913 * midc_handle_error -  Handle DMA txn error
 914 * @mid: controller where error occured
 915 * @midc: chan where error occured
 916 *
 917 * Scan the descriptor for error
 918 */
 919static void midc_handle_error(struct middma_device *mid,
 920                struct intel_mid_dma_chan *midc)
 921{
 922        midc_scan_descriptors(mid, midc);
 923}
 924
 925/**
 926 * dma_tasklet -        DMA interrupt tasklet
 927 * @data: tasklet arg (the controller structure)
 928 *
 929 * Scan the controller for interrupts for completion/error
 930 * Clear the interrupt and call for handling completion/error
 931 */
 932static void dma_tasklet(unsigned long data)
 933{
 934        struct middma_device *mid = NULL;
 935        struct intel_mid_dma_chan *midc = NULL;
 936        u32 status, raw_tfr, raw_block;
 937        int i;
 938
 939        mid = (struct middma_device *)data;
 940        if (mid == NULL) {
 941                pr_err("ERR_MDMA: tasklet Null param\n");
 942                return;
 943        }
 944        pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
 945        raw_tfr = ioread32(mid->dma_base + RAW_TFR);
 946        raw_block = ioread32(mid->dma_base + RAW_BLOCK);
 947        status = raw_tfr | raw_block;
 948        status &= mid->intr_mask;
 949        while (status) {
 950                /*txn interrupt*/
 951                i = get_ch_index(&status, mid->chan_base);
 952                if (i < 0) {
 953                        pr_err("ERR_MDMA:Invalid ch index %x\n", i);
 954                        return;
 955                }
 956                midc = &mid->ch[i];
 957                if (midc == NULL) {
 958                        pr_err("ERR_MDMA:Null param midc\n");
 959                        return;
 960                }
 961                pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
 962                                status, midc->ch_id, i);
 963                midc->raw_tfr = raw_tfr;
 964                midc->raw_block = raw_block;
 965                spin_lock_bh(&midc->lock);
 966                /*clearing this interrupts first*/
 967                iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
 968                if (raw_block) {
 969                        iowrite32((1 << midc->ch_id),
 970                                mid->dma_base + CLEAR_BLOCK);
 971                }
 972                midc_scan_descriptors(mid, midc);
 973                pr_debug("MDMA:Scan of desc... complete, unmasking\n");
 974                iowrite32(UNMASK_INTR_REG(midc->ch_id),
 975                                mid->dma_base + MASK_TFR);
 976                if (raw_block) {
 977                        iowrite32(UNMASK_INTR_REG(midc->ch_id),
 978                                mid->dma_base + MASK_BLOCK);
 979                }
 980                spin_unlock_bh(&midc->lock);
 981        }
 982
 983        status = ioread32(mid->dma_base + RAW_ERR);
 984        status &= mid->intr_mask;
 985        while (status) {
 986                /*err interrupt*/
 987                i = get_ch_index(&status, mid->chan_base);
 988                if (i < 0) {
 989                        pr_err("ERR_MDMA:Invalid ch index %x\n", i);
 990                        return;
 991                }
 992                midc = &mid->ch[i];
 993                if (midc == NULL) {
 994                        pr_err("ERR_MDMA:Null param midc\n");
 995                        return;
 996                }
 997                pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
 998                                status, midc->ch_id, i);
 999
1000                iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
1001                spin_lock_bh(&midc->lock);
1002                midc_handle_error(mid, midc);
1003                iowrite32(UNMASK_INTR_REG(midc->ch_id),
1004                                mid->dma_base + MASK_ERR);
1005                spin_unlock_bh(&midc->lock);
1006        }
1007        pr_debug("MDMA:Exiting takslet...\n");
1008        return;
1009}
1010
1011static void dma_tasklet1(unsigned long data)
1012{
1013        pr_debug("MDMA:in takslet1...\n");
1014        return dma_tasklet(data);
1015}
1016
1017static void dma_tasklet2(unsigned long data)
1018{
1019        pr_debug("MDMA:in takslet2...\n");
1020        return dma_tasklet(data);
1021}
1022
1023/**
1024 * intel_mid_dma_interrupt -    DMA ISR
1025 * @irq: IRQ where interrupt occurred
1026 * @data: ISR cllback data (the controller structure)
1027 *
1028 * See if this is our interrupt if so then schedule the tasklet
1029 * otherwise ignore
1030 */
1031static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1032{
1033        struct middma_device *mid = data;
1034        u32 tfr_status, err_status;
1035        int call_tasklet = 0;
1036
1037        tfr_status = ioread32(mid->dma_base + RAW_TFR);
1038        err_status = ioread32(mid->dma_base + RAW_ERR);
1039        if (!tfr_status && !err_status)
1040                return IRQ_NONE;
1041
1042        /*DMA Interrupt*/
1043        pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1044        pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1045        tfr_status &= mid->intr_mask;
1046        if (tfr_status) {
1047                /*need to disable intr*/
1048                iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1049                iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1050                pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1051                call_tasklet = 1;
1052        }
1053        err_status &= mid->intr_mask;
1054        if (err_status) {
1055                iowrite32(MASK_INTR_REG(err_status), mid->dma_base + MASK_ERR);
1056                call_tasklet = 1;
1057        }
1058        if (call_tasklet)
1059                tasklet_schedule(&mid->tasklet);
1060
1061        return IRQ_HANDLED;
1062}
1063
1064static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1065{
1066        return intel_mid_dma_interrupt(irq, data);
1067}
1068
1069static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1070{
1071        return intel_mid_dma_interrupt(irq, data);
1072}
1073
1074/**
1075 * mid_setup_dma -      Setup the DMA controller
1076 * @pdev: Controller PCI device structure
1077 *
1078 * Initialize the DMA controller, channels, registers with DMA engine,
1079 * ISR. Initialize DMA controller channels.
1080 */
1081static int mid_setup_dma(struct pci_dev *pdev)
1082{
1083        struct middma_device *dma = pci_get_drvdata(pdev);
1084        int err, i;
1085
1086        /* DMA coherent memory pool for DMA descriptor allocations */
1087        dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1088                                        sizeof(struct intel_mid_dma_desc),
1089                                        32, 0);
1090        if (NULL == dma->dma_pool) {
1091                pr_err("ERR_MDMA:pci_pool_create failed\n");
1092                err = -ENOMEM;
1093                goto err_dma_pool;
1094        }
1095
1096        INIT_LIST_HEAD(&dma->common.channels);
1097        dma->pci_id = pdev->device;
1098        if (dma->pimr_mask) {
1099                dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
1100                                        LNW_PERIPHRAL_MASK_SIZE);
1101                if (dma->mask_reg == NULL) {
1102                        pr_err("ERR_MDMA:Cant map periphral intr space !!\n");
1103                        return -ENOMEM;
1104                }
1105        } else
1106                dma->mask_reg = NULL;
1107
1108        pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1109        /*init CH structures*/
1110        dma->intr_mask = 0;
1111        dma->state = RUNNING;
1112        for (i = 0; i < dma->max_chan; i++) {
1113                struct intel_mid_dma_chan *midch = &dma->ch[i];
1114
1115                midch->chan.device = &dma->common;
1116                midch->chan.cookie =  1;
1117                midch->chan.chan_id = i;
1118                midch->ch_id = dma->chan_base + i;
1119                pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1120
1121                midch->dma_base = dma->dma_base;
1122                midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1123                midch->dma = dma;
1124                dma->intr_mask |= 1 << (dma->chan_base + i);
1125                spin_lock_init(&midch->lock);
1126
1127                INIT_LIST_HEAD(&midch->active_list);
1128                INIT_LIST_HEAD(&midch->queue);
1129                INIT_LIST_HEAD(&midch->free_list);
1130                /*mask interrupts*/
1131                iowrite32(MASK_INTR_REG(midch->ch_id),
1132                        dma->dma_base + MASK_BLOCK);
1133                iowrite32(MASK_INTR_REG(midch->ch_id),
1134                        dma->dma_base + MASK_SRC_TRAN);
1135                iowrite32(MASK_INTR_REG(midch->ch_id),
1136                        dma->dma_base + MASK_DST_TRAN);
1137                iowrite32(MASK_INTR_REG(midch->ch_id),
1138                        dma->dma_base + MASK_ERR);
1139                iowrite32(MASK_INTR_REG(midch->ch_id),
1140                        dma->dma_base + MASK_TFR);
1141
1142                disable_dma_interrupt(midch);
1143                list_add_tail(&midch->chan.device_node, &dma->common.channels);
1144        }
1145        pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1146
1147        /*init dma structure*/
1148        dma_cap_zero(dma->common.cap_mask);
1149        dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1150        dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1151        dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1152        dma->common.dev = &pdev->dev;
1153        dma->common.chancnt = dma->max_chan;
1154
1155        dma->common.device_alloc_chan_resources =
1156                                        intel_mid_dma_alloc_chan_resources;
1157        dma->common.device_free_chan_resources =
1158                                        intel_mid_dma_free_chan_resources;
1159
1160        dma->common.device_tx_status = intel_mid_dma_tx_status;
1161        dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1162        dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1163        dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1164        dma->common.device_control = intel_mid_dma_device_control;
1165
1166        /*enable dma cntrl*/
1167        iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
1168
1169        /*register irq */
1170        if (dma->pimr_mask) {
1171                pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1172                err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1173                        IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1174                if (0 != err)
1175                        goto err_irq;
1176        } else {
1177                dma->intr_mask = 0x03;
1178                pr_debug("MDMA:Requesting irq for DMAC2\n");
1179                err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1180                        IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1181                if (0 != err)
1182                        goto err_irq;
1183        }
1184        /*register device w/ engine*/
1185        err = dma_async_device_register(&dma->common);
1186        if (0 != err) {
1187                pr_err("ERR_MDMA:device_register failed: %d\n", err);
1188                goto err_engine;
1189        }
1190        if (dma->pimr_mask) {
1191                pr_debug("setting up tasklet1 for DMAC1\n");
1192                tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1193        } else {
1194                pr_debug("setting up tasklet2 for DMAC2\n");
1195                tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1196        }
1197        return 0;
1198
1199err_engine:
1200        free_irq(pdev->irq, dma);
1201err_irq:
1202        pci_pool_destroy(dma->dma_pool);
1203err_dma_pool:
1204        pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1205        return err;
1206
1207}
1208
1209/**
1210 * middma_shutdown -    Shutdown the DMA controller
1211 * @pdev: Controller PCI device structure
1212 *
1213 * Called by remove
1214 * Unregister DMa controller, clear all structures and free interrupt
1215 */
1216static void middma_shutdown(struct pci_dev *pdev)
1217{
1218        struct middma_device *device = pci_get_drvdata(pdev);
1219
1220        dma_async_device_unregister(&device->common);
1221        pci_pool_destroy(device->dma_pool);
1222        if (device->mask_reg)
1223                iounmap(device->mask_reg);
1224        if (device->dma_base)
1225                iounmap(device->dma_base);
1226        free_irq(pdev->irq, device);
1227        return;
1228}
1229
1230/**
1231 * intel_mid_dma_probe -        PCI Probe
1232 * @pdev: Controller PCI device structure
1233 * @id: pci device id structure
1234 *
1235 * Initialize the PCI device, map BARs, query driver data.
1236 * Call setup_dma to complete contoller and chan initilzation
1237 */
1238static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
1239                                        const struct pci_device_id *id)
1240{
1241        struct middma_device *device;
1242        u32 base_addr, bar_size;
1243        struct intel_mid_dma_probe_info *info;
1244        int err;
1245
1246        pr_debug("MDMA: probe for %x\n", pdev->device);
1247        info = (void *)id->driver_data;
1248        pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1249                                info->max_chan, info->ch_base,
1250                                info->block_size, info->pimr_mask);
1251
1252        err = pci_enable_device(pdev);
1253        if (err)
1254                goto err_enable_device;
1255
1256        err = pci_request_regions(pdev, "intel_mid_dmac");
1257        if (err)
1258                goto err_request_regions;
1259
1260        err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1261        if (err)
1262                goto err_set_dma_mask;
1263
1264        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1265        if (err)
1266                goto err_set_dma_mask;
1267
1268        device = kzalloc(sizeof(*device), GFP_KERNEL);
1269        if (!device) {
1270                pr_err("ERR_MDMA:kzalloc failed probe\n");
1271                err = -ENOMEM;
1272                goto err_kzalloc;
1273        }
1274        device->pdev = pci_dev_get(pdev);
1275
1276        base_addr = pci_resource_start(pdev, 0);
1277        bar_size  = pci_resource_len(pdev, 0);
1278        device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1279        if (!device->dma_base) {
1280                pr_err("ERR_MDMA:ioremap failed\n");
1281                err = -ENOMEM;
1282                goto err_ioremap;
1283        }
1284        pci_set_drvdata(pdev, device);
1285        pci_set_master(pdev);
1286        device->max_chan = info->max_chan;
1287        device->chan_base = info->ch_base;
1288        device->block_size = info->block_size;
1289        device->pimr_mask = info->pimr_mask;
1290
1291        err = mid_setup_dma(pdev);
1292        if (err)
1293                goto err_dma;
1294
1295        pm_runtime_set_active(&pdev->dev);
1296        pm_runtime_enable(&pdev->dev);
1297        pm_runtime_allow(&pdev->dev);
1298        return 0;
1299
1300err_dma:
1301        iounmap(device->dma_base);
1302err_ioremap:
1303        pci_dev_put(pdev);
1304        kfree(device);
1305err_kzalloc:
1306err_set_dma_mask:
1307        pci_release_regions(pdev);
1308        pci_disable_device(pdev);
1309err_request_regions:
1310err_enable_device:
1311        pr_err("ERR_MDMA:Probe failed %d\n", err);
1312        return err;
1313}
1314
1315/**
1316 * intel_mid_dma_remove -       PCI remove
1317 * @pdev: Controller PCI device structure
1318 *
1319 * Free up all resources and data
1320 * Call shutdown_dma to complete contoller and chan cleanup
1321 */
1322static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
1323{
1324        struct middma_device *device = pci_get_drvdata(pdev);
1325        middma_shutdown(pdev);
1326        pci_dev_put(pdev);
1327        kfree(device);
1328        pci_release_regions(pdev);
1329        pci_disable_device(pdev);
1330}
1331
1332/* Power Management */
1333/*
1334* dma_suspend - PCI suspend function
1335*
1336* @pci: PCI device structure
1337* @state: PM message
1338*
1339* This function is called by OS when a power event occurs
1340*/
1341int dma_suspend(struct pci_dev *pci, pm_message_t state)
1342{
1343        int i;
1344        struct middma_device *device = pci_get_drvdata(pci);
1345        pr_debug("MDMA: dma_suspend called\n");
1346
1347        for (i = 0; i < device->max_chan; i++) {
1348                if (device->ch[i].in_use)
1349                        return -EAGAIN;
1350        }
1351        device->state = SUSPENDED;
1352        pci_set_drvdata(pci, device);
1353        pci_save_state(pci);
1354        pci_disable_device(pci);
1355        pci_set_power_state(pci, PCI_D3hot);
1356        return 0;
1357}
1358
1359/**
1360* dma_resume - PCI resume function
1361*
1362* @pci: PCI device structure
1363*
1364* This function is called by OS when a power event occurs
1365*/
1366int dma_resume(struct pci_dev *pci)
1367{
1368        int ret;
1369        struct middma_device *device = pci_get_drvdata(pci);
1370
1371        pr_debug("MDMA: dma_resume called\n");
1372        pci_set_power_state(pci, PCI_D0);
1373        pci_restore_state(pci);
1374        ret = pci_enable_device(pci);
1375        if (ret) {
1376                pr_err("MDMA: device cant be enabled for %x\n", pci->device);
1377                return ret;
1378        }
1379        device->state = RUNNING;
1380        iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1381        pci_set_drvdata(pci, device);
1382        return 0;
1383}
1384
1385static int dma_runtime_suspend(struct device *dev)
1386{
1387        struct pci_dev *pci_dev = to_pci_dev(dev);
1388        return dma_suspend(pci_dev, PMSG_SUSPEND);
1389}
1390
1391static int dma_runtime_resume(struct device *dev)
1392{
1393        struct pci_dev *pci_dev = to_pci_dev(dev);
1394        return dma_resume(pci_dev);
1395}
1396
1397static int dma_runtime_idle(struct device *dev)
1398{
1399        struct pci_dev *pdev = to_pci_dev(dev);
1400        struct middma_device *device = pci_get_drvdata(pdev);
1401        int i;
1402
1403        for (i = 0; i < device->max_chan; i++) {
1404                if (device->ch[i].in_use)
1405                        return -EAGAIN;
1406        }
1407
1408        return pm_schedule_suspend(dev, 0);
1409}
1410
1411/******************************************************************************
1412* PCI stuff
1413*/
1414static struct pci_device_id intel_mid_dma_ids[] = {
1415        { PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID),       INFO(2, 6, 4095, 0x200020)},
1416        { PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID),       INFO(2, 0, 2047, 0)},
1417        { PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID),    INFO(2, 0, 2047, 0)},
1418        { PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID),      INFO(4, 0, 4095, 0x400040)},
1419        { 0, }
1420};
1421MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1422
1423static const struct dev_pm_ops intel_mid_dma_pm = {
1424        .runtime_suspend = dma_runtime_suspend,
1425        .runtime_resume = dma_runtime_resume,
1426        .runtime_idle = dma_runtime_idle,
1427};
1428
1429static struct pci_driver intel_mid_dma_pci_driver = {
1430        .name           =       "Intel MID DMA",
1431        .id_table       =       intel_mid_dma_ids,
1432        .probe          =       intel_mid_dma_probe,
1433        .remove         =       __devexit_p(intel_mid_dma_remove),
1434#ifdef CONFIG_PM
1435        .suspend = dma_suspend,
1436        .resume = dma_resume,
1437        .driver = {
1438                .pm = &intel_mid_dma_pm,
1439        },
1440#endif
1441};
1442
1443static int __init intel_mid_dma_init(void)
1444{
1445        pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1446                        INTEL_MID_DMA_DRIVER_VERSION);
1447        return pci_register_driver(&intel_mid_dma_pci_driver);
1448}
1449fs_initcall(intel_mid_dma_init);
1450
1451static void __exit intel_mid_dma_exit(void)
1452{
1453        pci_unregister_driver(&intel_mid_dma_pci_driver);
1454}
1455module_exit(intel_mid_dma_exit);
1456
1457MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
1458MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1459MODULE_LICENSE("GPL v2");
1460MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);
1461