linux/drivers/firewire/core-iso.c
<<
>>
Prefs
   1/*
   2 * Isochronous I/O functionality:
   3 *   - Isochronous DMA context management
   4 *   - Isochronous bus resource management (channels, bandwidth), client side
   5 *
   6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21 */
  22
  23#include <linux/dma-mapping.h>
  24#include <linux/errno.h>
  25#include <linux/firewire.h>
  26#include <linux/firewire-constants.h>
  27#include <linux/kernel.h>
  28#include <linux/mm.h>
  29#include <linux/slab.h>
  30#include <linux/spinlock.h>
  31#include <linux/vmalloc.h>
  32
  33#include <asm/byteorder.h>
  34
  35#include "core.h"
  36
  37/*
  38 * Isochronous DMA context management
  39 */
  40
  41int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
  42                       int page_count, enum dma_data_direction direction)
  43{
  44        int i, j;
  45        dma_addr_t address;
  46
  47        buffer->page_count = page_count;
  48        buffer->direction = direction;
  49
  50        buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
  51                                GFP_KERNEL);
  52        if (buffer->pages == NULL)
  53                goto out;
  54
  55        for (i = 0; i < buffer->page_count; i++) {
  56                buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  57                if (buffer->pages[i] == NULL)
  58                        goto out_pages;
  59
  60                address = dma_map_page(card->device, buffer->pages[i],
  61                                       0, PAGE_SIZE, direction);
  62                if (dma_mapping_error(card->device, address)) {
  63                        __free_page(buffer->pages[i]);
  64                        goto out_pages;
  65                }
  66                set_page_private(buffer->pages[i], address);
  67        }
  68
  69        return 0;
  70
  71 out_pages:
  72        for (j = 0; j < i; j++) {
  73                address = page_private(buffer->pages[j]);
  74                dma_unmap_page(card->device, address,
  75                               PAGE_SIZE, direction);
  76                __free_page(buffer->pages[j]);
  77        }
  78        kfree(buffer->pages);
  79 out:
  80        buffer->pages = NULL;
  81
  82        return -ENOMEM;
  83}
  84EXPORT_SYMBOL(fw_iso_buffer_init);
  85
  86int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
  87{
  88        unsigned long uaddr;
  89        int i, err;
  90
  91        uaddr = vma->vm_start;
  92        for (i = 0; i < buffer->page_count; i++) {
  93                err = vm_insert_page(vma, uaddr, buffer->pages[i]);
  94                if (err)
  95                        return err;
  96
  97                uaddr += PAGE_SIZE;
  98        }
  99
 100        return 0;
 101}
 102
 103void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
 104                           struct fw_card *card)
 105{
 106        int i;
 107        dma_addr_t address;
 108
 109        for (i = 0; i < buffer->page_count; i++) {
 110                address = page_private(buffer->pages[i]);
 111                dma_unmap_page(card->device, address,
 112                               PAGE_SIZE, buffer->direction);
 113                __free_page(buffer->pages[i]);
 114        }
 115
 116        kfree(buffer->pages);
 117        buffer->pages = NULL;
 118}
 119EXPORT_SYMBOL(fw_iso_buffer_destroy);
 120
 121/* Convert DMA address to offset into virtually contiguous buffer. */
 122size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
 123{
 124        int i;
 125        dma_addr_t address;
 126        ssize_t offset;
 127
 128        for (i = 0; i < buffer->page_count; i++) {
 129                address = page_private(buffer->pages[i]);
 130                offset = (ssize_t)completed - (ssize_t)address;
 131                if (offset > 0 && offset <= PAGE_SIZE)
 132                        return (i << PAGE_SHIFT) + offset;
 133        }
 134
 135        return 0;
 136}
 137
 138struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
 139                int type, int channel, int speed, size_t header_size,
 140                fw_iso_callback_t callback, void *callback_data)
 141{
 142        struct fw_iso_context *ctx;
 143
 144        ctx = card->driver->allocate_iso_context(card,
 145                                                 type, channel, header_size);
 146        if (IS_ERR(ctx))
 147                return ctx;
 148
 149        ctx->card = card;
 150        ctx->type = type;
 151        ctx->channel = channel;
 152        ctx->speed = speed;
 153        ctx->header_size = header_size;
 154        ctx->callback.sc = callback;
 155        ctx->callback_data = callback_data;
 156
 157        return ctx;
 158}
 159EXPORT_SYMBOL(fw_iso_context_create);
 160
 161void fw_iso_context_destroy(struct fw_iso_context *ctx)
 162{
 163        ctx->card->driver->free_iso_context(ctx);
 164}
 165EXPORT_SYMBOL(fw_iso_context_destroy);
 166
 167int fw_iso_context_start(struct fw_iso_context *ctx,
 168                         int cycle, int sync, int tags)
 169{
 170        return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
 171}
 172EXPORT_SYMBOL(fw_iso_context_start);
 173
 174int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
 175{
 176        return ctx->card->driver->set_iso_channels(ctx, channels);
 177}
 178
 179int fw_iso_context_queue(struct fw_iso_context *ctx,
 180                         struct fw_iso_packet *packet,
 181                         struct fw_iso_buffer *buffer,
 182                         unsigned long payload)
 183{
 184        return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
 185}
 186EXPORT_SYMBOL(fw_iso_context_queue);
 187
 188int fw_iso_context_stop(struct fw_iso_context *ctx)
 189{
 190        return ctx->card->driver->stop_iso(ctx);
 191}
 192EXPORT_SYMBOL(fw_iso_context_stop);
 193
 194/*
 195 * Isochronous bus resource management (channels, bandwidth), client side
 196 */
 197
 198static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
 199                            int bandwidth, bool allocate, __be32 data[2])
 200{
 201        int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
 202
 203        /*
 204         * On a 1394a IRM with low contention, try < 1 is enough.
 205         * On a 1394-1995 IRM, we need at least try < 2.
 206         * Let's just do try < 5.
 207         */
 208        for (try = 0; try < 5; try++) {
 209                new = allocate ? old - bandwidth : old + bandwidth;
 210                if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
 211                        return -EBUSY;
 212
 213                data[0] = cpu_to_be32(old);
 214                data[1] = cpu_to_be32(new);
 215                switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
 216                                irm_id, generation, SCODE_100,
 217                                CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
 218                                data, 8)) {
 219                case RCODE_GENERATION:
 220                        /* A generation change frees all bandwidth. */
 221                        return allocate ? -EAGAIN : bandwidth;
 222
 223                case RCODE_COMPLETE:
 224                        if (be32_to_cpup(data) == old)
 225                                return bandwidth;
 226
 227                        old = be32_to_cpup(data);
 228                        /* Fall through. */
 229                }
 230        }
 231
 232        return -EIO;
 233}
 234
 235static int manage_channel(struct fw_card *card, int irm_id, int generation,
 236                u32 channels_mask, u64 offset, bool allocate, __be32 data[2])
 237{
 238        __be32 c, all, old;
 239        int i, ret = -EIO, retry = 5;
 240
 241        old = all = allocate ? cpu_to_be32(~0) : 0;
 242
 243        for (i = 0; i < 32; i++) {
 244                if (!(channels_mask & 1 << i))
 245                        continue;
 246
 247                ret = -EBUSY;
 248
 249                c = cpu_to_be32(1 << (31 - i));
 250                if ((old & c) != (all & c))
 251                        continue;
 252
 253                data[0] = old;
 254                data[1] = old ^ c;
 255                switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
 256                                           irm_id, generation, SCODE_100,
 257                                           offset, data, 8)) {
 258                case RCODE_GENERATION:
 259                        /* A generation change frees all channels. */
 260                        return allocate ? -EAGAIN : i;
 261
 262                case RCODE_COMPLETE:
 263                        if (data[0] == old)
 264                                return i;
 265
 266                        old = data[0];
 267
 268                        /* Is the IRM 1394a-2000 compliant? */
 269                        if ((data[0] & c) == (data[1] & c))
 270                                continue;
 271
 272                        /* 1394-1995 IRM, fall through to retry. */
 273                default:
 274                        if (retry) {
 275                                retry--;
 276                                i--;
 277                        } else {
 278                                ret = -EIO;
 279                        }
 280                }
 281        }
 282
 283        return ret;
 284}
 285
 286static void deallocate_channel(struct fw_card *card, int irm_id,
 287                               int generation, int channel, __be32 buffer[2])
 288{
 289        u32 mask;
 290        u64 offset;
 291
 292        mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
 293        offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
 294                                CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
 295
 296        manage_channel(card, irm_id, generation, mask, offset, false, buffer);
 297}
 298
 299/**
 300 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
 301 *
 302 * In parameters: card, generation, channels_mask, bandwidth, allocate
 303 * Out parameters: channel, bandwidth
 304 * This function blocks (sleeps) during communication with the IRM.
 305 *
 306 * Allocates or deallocates at most one channel out of channels_mask.
 307 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
 308 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
 309 * channel 0 and LSB for channel 63.)
 310 * Allocates or deallocates as many bandwidth allocation units as specified.
 311 *
 312 * Returns channel < 0 if no channel was allocated or deallocated.
 313 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
 314 *
 315 * If generation is stale, deallocations succeed but allocations fail with
 316 * channel = -EAGAIN.
 317 *
 318 * If channel allocation fails, no bandwidth will be allocated either.
 319 * If bandwidth allocation fails, no channel will be allocated either.
 320 * But deallocations of channel and bandwidth are tried independently
 321 * of each other's success.
 322 */
 323void fw_iso_resource_manage(struct fw_card *card, int generation,
 324                            u64 channels_mask, int *channel, int *bandwidth,
 325                            bool allocate, __be32 buffer[2])
 326{
 327        u32 channels_hi = channels_mask;        /* channels 31...0 */
 328        u32 channels_lo = channels_mask >> 32;  /* channels 63...32 */
 329        int irm_id, ret, c = -EINVAL;
 330
 331        spin_lock_irq(&card->lock);
 332        irm_id = card->irm_node->node_id;
 333        spin_unlock_irq(&card->lock);
 334
 335        if (channels_hi)
 336                c = manage_channel(card, irm_id, generation, channels_hi,
 337                                CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
 338                                allocate, buffer);
 339        if (channels_lo && c < 0) {
 340                c = manage_channel(card, irm_id, generation, channels_lo,
 341                                CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
 342                                allocate, buffer);
 343                if (c >= 0)
 344                        c += 32;
 345        }
 346        *channel = c;
 347
 348        if (allocate && channels_mask != 0 && c < 0)
 349                *bandwidth = 0;
 350
 351        if (*bandwidth == 0)
 352                return;
 353
 354        ret = manage_bandwidth(card, irm_id, generation, *bandwidth,
 355                               allocate, buffer);
 356        if (ret < 0)
 357                *bandwidth = 0;
 358
 359        if (allocate && ret < 0) {
 360                if (c >= 0)
 361                        deallocate_channel(card, irm_id, generation, c, buffer);
 362                *channel = ret;
 363        }
 364}
 365