linux/drivers/firewire/ohci.c
<<
>>
Prefs
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bitops.h>
  22#include <linux/bug.h>
  23#include <linux/compiler.h>
  24#include <linux/delay.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firewire.h>
  28#include <linux/firewire-constants.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/kernel.h>
  33#include <linux/list.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mutex.h>
  38#include <linux/pci.h>
  39#include <linux/pci_ids.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/time.h>
  44#include <linux/vmalloc.h>
  45
  46#include <asm/byteorder.h>
  47#include <asm/page.h>
  48#include <asm/system.h>
  49
  50#ifdef CONFIG_PPC_PMAC
  51#include <asm/pmac_feature.h>
  52#endif
  53
  54#include "core.h"
  55#include "ohci.h"
  56
  57#define DESCRIPTOR_OUTPUT_MORE          0
  58#define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
  59#define DESCRIPTOR_INPUT_MORE           (2 << 12)
  60#define DESCRIPTOR_INPUT_LAST           (3 << 12)
  61#define DESCRIPTOR_STATUS               (1 << 11)
  62#define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
  63#define DESCRIPTOR_PING                 (1 << 7)
  64#define DESCRIPTOR_YY                   (1 << 6)
  65#define DESCRIPTOR_NO_IRQ               (0 << 4)
  66#define DESCRIPTOR_IRQ_ERROR            (1 << 4)
  67#define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
  68#define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
  69#define DESCRIPTOR_WAIT                 (3 << 0)
  70
  71struct descriptor {
  72        __le16 req_count;
  73        __le16 control;
  74        __le32 data_address;
  75        __le32 branch_address;
  76        __le16 res_count;
  77        __le16 transfer_status;
  78} __attribute__((aligned(16)));
  79
  80#define CONTROL_SET(regs)       (regs)
  81#define CONTROL_CLEAR(regs)     ((regs) + 4)
  82#define COMMAND_PTR(regs)       ((regs) + 12)
  83#define CONTEXT_MATCH(regs)     ((regs) + 16)
  84
  85#define AR_BUFFER_SIZE  (32*1024)
  86#define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  87/* we need at least two pages for proper list management */
  88#define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  89
  90#define MAX_ASYNC_PAYLOAD       4096
  91#define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
  92#define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  93
  94struct ar_context {
  95        struct fw_ohci *ohci;
  96        struct page *pages[AR_BUFFERS];
  97        void *buffer;
  98        struct descriptor *descriptors;
  99        dma_addr_t descriptors_bus;
 100        void *pointer;
 101        unsigned int last_buffer_index;
 102        u32 regs;
 103        struct tasklet_struct tasklet;
 104};
 105
 106struct context;
 107
 108typedef int (*descriptor_callback_t)(struct context *ctx,
 109                                     struct descriptor *d,
 110                                     struct descriptor *last);
 111
 112/*
 113 * A buffer that contains a block of DMA-able coherent memory used for
 114 * storing a portion of a DMA descriptor program.
 115 */
 116struct descriptor_buffer {
 117        struct list_head list;
 118        dma_addr_t buffer_bus;
 119        size_t buffer_size;
 120        size_t used;
 121        struct descriptor buffer[0];
 122};
 123
 124struct context {
 125        struct fw_ohci *ohci;
 126        u32 regs;
 127        int total_allocation;
 128        bool running;
 129        bool flushing;
 130
 131        /*
 132         * List of page-sized buffers for storing DMA descriptors.
 133         * Head of list contains buffers in use and tail of list contains
 134         * free buffers.
 135         */
 136        struct list_head buffer_list;
 137
 138        /*
 139         * Pointer to a buffer inside buffer_list that contains the tail
 140         * end of the current DMA program.
 141         */
 142        struct descriptor_buffer *buffer_tail;
 143
 144        /*
 145         * The descriptor containing the branch address of the first
 146         * descriptor that has not yet been filled by the device.
 147         */
 148        struct descriptor *last;
 149
 150        /*
 151         * The last descriptor in the DMA program.  It contains the branch
 152         * address that must be updated upon appending a new descriptor.
 153         */
 154        struct descriptor *prev;
 155
 156        descriptor_callback_t callback;
 157
 158        struct tasklet_struct tasklet;
 159};
 160
 161#define IT_HEADER_SY(v)          ((v) <<  0)
 162#define IT_HEADER_TCODE(v)       ((v) <<  4)
 163#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 164#define IT_HEADER_TAG(v)         ((v) << 14)
 165#define IT_HEADER_SPEED(v)       ((v) << 16)
 166#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 167
 168struct iso_context {
 169        struct fw_iso_context base;
 170        struct context context;
 171        int excess_bytes;
 172        void *header;
 173        size_t header_length;
 174
 175        u8 sync;
 176        u8 tags;
 177};
 178
 179#define CONFIG_ROM_SIZE 1024
 180
 181struct fw_ohci {
 182        struct fw_card card;
 183
 184        __iomem char *registers;
 185        int node_id;
 186        int generation;
 187        int request_generation; /* for timestamping incoming requests */
 188        unsigned quirks;
 189        unsigned int pri_req_max;
 190        u32 bus_time;
 191        bool is_root;
 192        bool csr_state_setclear_abdicate;
 193        int n_ir;
 194        int n_it;
 195        /*
 196         * Spinlock for accessing fw_ohci data.  Never call out of
 197         * this driver with this lock held.
 198         */
 199        spinlock_t lock;
 200
 201        struct mutex phy_reg_mutex;
 202
 203        void *misc_buffer;
 204        dma_addr_t misc_buffer_bus;
 205
 206        struct ar_context ar_request_ctx;
 207        struct ar_context ar_response_ctx;
 208        struct context at_request_ctx;
 209        struct context at_response_ctx;
 210
 211        u32 it_context_mask;     /* unoccupied IT contexts */
 212        struct iso_context *it_context_list;
 213        u64 ir_context_channels; /* unoccupied channels */
 214        u32 ir_context_mask;     /* unoccupied IR contexts */
 215        struct iso_context *ir_context_list;
 216        u64 mc_channels; /* channels in use by the multichannel IR context */
 217        bool mc_allocated;
 218
 219        __be32    *config_rom;
 220        dma_addr_t config_rom_bus;
 221        __be32    *next_config_rom;
 222        dma_addr_t next_config_rom_bus;
 223        __be32     next_header;
 224
 225        __le32    *self_id_cpu;
 226        dma_addr_t self_id_bus;
 227        struct tasklet_struct bus_reset_tasklet;
 228
 229        u32 self_id_buffer[512];
 230};
 231
 232static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 233{
 234        return container_of(card, struct fw_ohci, card);
 235}
 236
 237#define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
 238#define IR_CONTEXT_BUFFER_FILL          0x80000000
 239#define IR_CONTEXT_ISOCH_HEADER         0x40000000
 240#define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
 241#define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
 242#define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
 243
 244#define CONTEXT_RUN     0x8000
 245#define CONTEXT_WAKE    0x1000
 246#define CONTEXT_DEAD    0x0800
 247#define CONTEXT_ACTIVE  0x0400
 248
 249#define OHCI1394_MAX_AT_REQ_RETRIES     0xf
 250#define OHCI1394_MAX_AT_RESP_RETRIES    0x2
 251#define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
 252
 253#define OHCI1394_REGISTER_SIZE          0x800
 254#define OHCI_LOOP_COUNT                 500
 255#define OHCI1394_PCI_HCI_Control        0x40
 256#define SELF_ID_BUF_SIZE                0x800
 257#define OHCI_TCODE_PHY_PACKET           0x0e
 258#define OHCI_VERSION_1_1                0x010010
 259
 260static char ohci_driver_name[] = KBUILD_MODNAME;
 261
 262#define PCI_DEVICE_ID_AGERE_FW643       0x5901
 263#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
 264#define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
 265
 266#define QUIRK_CYCLE_TIMER               1
 267#define QUIRK_RESET_PACKET              2
 268#define QUIRK_BE_HEADERS                4
 269#define QUIRK_NO_1394A                  8
 270#define QUIRK_NO_MSI                    16
 271
 272/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 273static const struct {
 274        unsigned short vendor, device, revision, flags;
 275} ohci_quirks[] = {
 276        {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 277                QUIRK_CYCLE_TIMER},
 278
 279        {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 280                QUIRK_BE_HEADERS},
 281
 282        {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 283                QUIRK_NO_MSI},
 284
 285        {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 286                QUIRK_NO_MSI},
 287
 288        {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 289                QUIRK_CYCLE_TIMER},
 290
 291        {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 292                QUIRK_CYCLE_TIMER},
 293
 294        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 295                QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 296
 297        {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 298                QUIRK_RESET_PACKET},
 299
 300        {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 301                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 302};
 303
 304/* This overrides anything that was found in ohci_quirks[]. */
 305static int param_quirks;
 306module_param_named(quirks, param_quirks, int, 0644);
 307MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 308        ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
 309        ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
 310        ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
 311        ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
 312        ", disable MSI = "              __stringify(QUIRK_NO_MSI)
 313        ")");
 314
 315#define OHCI_PARAM_DEBUG_AT_AR          1
 316#define OHCI_PARAM_DEBUG_SELFIDS        2
 317#define OHCI_PARAM_DEBUG_IRQS           4
 318#define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
 319
 320#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
 321
 322static int param_debug;
 323module_param_named(debug, param_debug, int, 0644);
 324MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 325        ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
 326        ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
 327        ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
 328        ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 329        ", or a combination, or all = -1)");
 330
 331static void log_irqs(u32 evt)
 332{
 333        if (likely(!(param_debug &
 334                        (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 335                return;
 336
 337        if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 338            !(evt & OHCI1394_busReset))
 339                return;
 340
 341        fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 342            evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
 343            evt & OHCI1394_RQPkt                ? " AR_req"             : "",
 344            evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
 345            evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
 346            evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
 347            evt & OHCI1394_isochRx              ? " IR"                 : "",
 348            evt & OHCI1394_isochTx              ? " IT"                 : "",
 349            evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
 350            evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
 351            evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
 352            evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
 353            evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
 354            evt & OHCI1394_busReset             ? " busReset"           : "",
 355            evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 356                    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 357                    OHCI1394_respTxComplete | OHCI1394_isochRx |
 358                    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 359                    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 360                    OHCI1394_cycleInconsistent |
 361                    OHCI1394_regAccessFail | OHCI1394_busReset)
 362                                                ? " ?"                  : "");
 363}
 364
 365static const char *speed[] = {
 366        [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 367};
 368static const char *power[] = {
 369        [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 370        [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 371};
 372static const char port[] = { '.', '-', 'p', 'c', };
 373
 374static char _p(u32 *s, int shift)
 375{
 376        return port[*s >> shift & 3];
 377}
 378
 379static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
 380{
 381        if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 382                return;
 383
 384        fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
 385                  self_id_count, generation, node_id);
 386
 387        for (; self_id_count--; ++s)
 388                if ((*s & 1 << 23) == 0)
 389                        fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
 390                            "%s gc=%d %s %s%s%s\n",
 391                            *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 392                            speed[*s >> 14 & 3], *s >> 16 & 63,
 393                            power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 394                            *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 395                else
 396                        fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 397                            *s, *s >> 24 & 63,
 398                            _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 399                            _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 400}
 401
 402static const char *evts[] = {
 403        [0x00] = "evt_no_status",       [0x01] = "-reserved-",
 404        [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
 405        [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
 406        [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
 407        [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
 408        [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
 409        [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
 410        [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
 411        [0x10] = "-reserved-",          [0x11] = "ack_complete",
 412        [0x12] = "ack_pending ",        [0x13] = "-reserved-",
 413        [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
 414        [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
 415        [0x18] = "-reserved-",          [0x19] = "-reserved-",
 416        [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
 417        [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
 418        [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
 419        [0x20] = "pending/cancelled",
 420};
 421static const char *tcodes[] = {
 422        [0x0] = "QW req",               [0x1] = "BW req",
 423        [0x2] = "W resp",               [0x3] = "-reserved-",
 424        [0x4] = "QR req",               [0x5] = "BR req",
 425        [0x6] = "QR resp",              [0x7] = "BR resp",
 426        [0x8] = "cycle start",          [0x9] = "Lk req",
 427        [0xa] = "async stream packet",  [0xb] = "Lk resp",
 428        [0xc] = "-reserved-",           [0xd] = "-reserved-",
 429        [0xe] = "link internal",        [0xf] = "-reserved-",
 430};
 431
 432static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
 433{
 434        int tcode = header[0] >> 4 & 0xf;
 435        char specific[12];
 436
 437        if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 438                return;
 439
 440        if (unlikely(evt >= ARRAY_SIZE(evts)))
 441                        evt = 0x1f;
 442
 443        if (evt == OHCI1394_evt_bus_reset) {
 444                fw_notify("A%c evt_bus_reset, generation %d\n",
 445                    dir, (header[2] >> 16) & 0xff);
 446                return;
 447        }
 448
 449        switch (tcode) {
 450        case 0x0: case 0x6: case 0x8:
 451                snprintf(specific, sizeof(specific), " = %08x",
 452                         be32_to_cpu((__force __be32)header[3]));
 453                break;
 454        case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 455                snprintf(specific, sizeof(specific), " %x,%x",
 456                         header[3] >> 16, header[3] & 0xffff);
 457                break;
 458        default:
 459                specific[0] = '\0';
 460        }
 461
 462        switch (tcode) {
 463        case 0xa:
 464                fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
 465                break;
 466        case 0xe:
 467                fw_notify("A%c %s, PHY %08x %08x\n",
 468                          dir, evts[evt], header[1], header[2]);
 469                break;
 470        case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 471                fw_notify("A%c spd %x tl %02x, "
 472                    "%04x -> %04x, %s, "
 473                    "%s, %04x%08x%s\n",
 474                    dir, speed, header[0] >> 10 & 0x3f,
 475                    header[1] >> 16, header[0] >> 16, evts[evt],
 476                    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 477                break;
 478        default:
 479                fw_notify("A%c spd %x tl %02x, "
 480                    "%04x -> %04x, %s, "
 481                    "%s%s\n",
 482                    dir, speed, header[0] >> 10 & 0x3f,
 483                    header[1] >> 16, header[0] >> 16, evts[evt],
 484                    tcodes[tcode], specific);
 485        }
 486}
 487
 488#else
 489
 490#define param_debug 0
 491static inline void log_irqs(u32 evt) {}
 492static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
 493static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
 494
 495#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
 496
 497static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 498{
 499        writel(data, ohci->registers + offset);
 500}
 501
 502static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 503{
 504        return readl(ohci->registers + offset);
 505}
 506
 507static inline void flush_writes(const struct fw_ohci *ohci)
 508{
 509        /* Do a dummy read to flush writes. */
 510        reg_read(ohci, OHCI1394_Version);
 511}
 512
 513static int read_phy_reg(struct fw_ohci *ohci, int addr)
 514{
 515        u32 val;
 516        int i;
 517
 518        reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 519        for (i = 0; i < 3 + 100; i++) {
 520                val = reg_read(ohci, OHCI1394_PhyControl);
 521                if (val & OHCI1394_PhyControl_ReadDone)
 522                        return OHCI1394_PhyControl_ReadData(val);
 523
 524                /*
 525                 * Try a few times without waiting.  Sleeping is necessary
 526                 * only when the link/PHY interface is busy.
 527                 */
 528                if (i >= 3)
 529                        msleep(1);
 530        }
 531        fw_error("failed to read phy reg\n");
 532
 533        return -EBUSY;
 534}
 535
 536static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 537{
 538        int i;
 539
 540        reg_write(ohci, OHCI1394_PhyControl,
 541                  OHCI1394_PhyControl_Write(addr, val));
 542        for (i = 0; i < 3 + 100; i++) {
 543                val = reg_read(ohci, OHCI1394_PhyControl);
 544                if (!(val & OHCI1394_PhyControl_WritePending))
 545                        return 0;
 546
 547                if (i >= 3)
 548                        msleep(1);
 549        }
 550        fw_error("failed to write phy reg\n");
 551
 552        return -EBUSY;
 553}
 554
 555static int update_phy_reg(struct fw_ohci *ohci, int addr,
 556                          int clear_bits, int set_bits)
 557{
 558        int ret = read_phy_reg(ohci, addr);
 559        if (ret < 0)
 560                return ret;
 561
 562        /*
 563         * The interrupt status bits are cleared by writing a one bit.
 564         * Avoid clearing them unless explicitly requested in set_bits.
 565         */
 566        if (addr == 5)
 567                clear_bits |= PHY_INT_STATUS_BITS;
 568
 569        return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 570}
 571
 572static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 573{
 574        int ret;
 575
 576        ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 577        if (ret < 0)
 578                return ret;
 579
 580        return read_phy_reg(ohci, addr);
 581}
 582
 583static int ohci_read_phy_reg(struct fw_card *card, int addr)
 584{
 585        struct fw_ohci *ohci = fw_ohci(card);
 586        int ret;
 587
 588        mutex_lock(&ohci->phy_reg_mutex);
 589        ret = read_phy_reg(ohci, addr);
 590        mutex_unlock(&ohci->phy_reg_mutex);
 591
 592        return ret;
 593}
 594
 595static int ohci_update_phy_reg(struct fw_card *card, int addr,
 596                               int clear_bits, int set_bits)
 597{
 598        struct fw_ohci *ohci = fw_ohci(card);
 599        int ret;
 600
 601        mutex_lock(&ohci->phy_reg_mutex);
 602        ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 603        mutex_unlock(&ohci->phy_reg_mutex);
 604
 605        return ret;
 606}
 607
 608static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 609{
 610        return page_private(ctx->pages[i]);
 611}
 612
 613static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 614{
 615        struct descriptor *d;
 616
 617        d = &ctx->descriptors[index];
 618        d->branch_address  &= cpu_to_le32(~0xf);
 619        d->res_count       =  cpu_to_le16(PAGE_SIZE);
 620        d->transfer_status =  0;
 621
 622        wmb(); /* finish init of new descriptors before branch_address update */
 623        d = &ctx->descriptors[ctx->last_buffer_index];
 624        d->branch_address  |= cpu_to_le32(1);
 625
 626        ctx->last_buffer_index = index;
 627
 628        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 629        flush_writes(ctx->ohci);
 630}
 631
 632static void ar_context_release(struct ar_context *ctx)
 633{
 634        unsigned int i;
 635
 636        if (ctx->buffer)
 637                vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
 638
 639        for (i = 0; i < AR_BUFFERS; i++)
 640                if (ctx->pages[i]) {
 641                        dma_unmap_page(ctx->ohci->card.device,
 642                                       ar_buffer_bus(ctx, i),
 643                                       PAGE_SIZE, DMA_FROM_DEVICE);
 644                        __free_page(ctx->pages[i]);
 645                }
 646}
 647
 648static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 649{
 650        if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 651                reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 652                flush_writes(ctx->ohci);
 653
 654                fw_error("AR error: %s; DMA stopped\n", error_msg);
 655        }
 656        /* FIXME: restart? */
 657}
 658
 659static inline unsigned int ar_next_buffer_index(unsigned int index)
 660{
 661        return (index + 1) % AR_BUFFERS;
 662}
 663
 664static inline unsigned int ar_prev_buffer_index(unsigned int index)
 665{
 666        return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
 667}
 668
 669static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 670{
 671        return ar_next_buffer_index(ctx->last_buffer_index);
 672}
 673
 674/*
 675 * We search for the buffer that contains the last AR packet DMA data written
 676 * by the controller.
 677 */
 678static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 679                                                 unsigned int *buffer_offset)
 680{
 681        unsigned int i, next_i, last = ctx->last_buffer_index;
 682        __le16 res_count, next_res_count;
 683
 684        i = ar_first_buffer_index(ctx);
 685        res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
 686
 687        /* A buffer that is not yet completely filled must be the last one. */
 688        while (i != last && res_count == 0) {
 689
 690                /* Peek at the next descriptor. */
 691                next_i = ar_next_buffer_index(i);
 692                rmb(); /* read descriptors in order */
 693                next_res_count = ACCESS_ONCE(
 694                                ctx->descriptors[next_i].res_count);
 695                /*
 696                 * If the next descriptor is still empty, we must stop at this
 697                 * descriptor.
 698                 */
 699                if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 700                        /*
 701                         * The exception is when the DMA data for one packet is
 702                         * split over three buffers; in this case, the middle
 703                         * buffer's descriptor might be never updated by the
 704                         * controller and look still empty, and we have to peek
 705                         * at the third one.
 706                         */
 707                        if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 708                                next_i = ar_next_buffer_index(next_i);
 709                                rmb();
 710                                next_res_count = ACCESS_ONCE(
 711                                        ctx->descriptors[next_i].res_count);
 712                                if (next_res_count != cpu_to_le16(PAGE_SIZE))
 713                                        goto next_buffer_is_active;
 714                        }
 715
 716                        break;
 717                }
 718
 719next_buffer_is_active:
 720                i = next_i;
 721                res_count = next_res_count;
 722        }
 723
 724        rmb(); /* read res_count before the DMA data */
 725
 726        *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 727        if (*buffer_offset > PAGE_SIZE) {
 728                *buffer_offset = 0;
 729                ar_context_abort(ctx, "corrupted descriptor");
 730        }
 731
 732        return i;
 733}
 734
 735static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 736                                    unsigned int end_buffer_index,
 737                                    unsigned int end_buffer_offset)
 738{
 739        unsigned int i;
 740
 741        i = ar_first_buffer_index(ctx);
 742        while (i != end_buffer_index) {
 743                dma_sync_single_for_cpu(ctx->ohci->card.device,
 744                                        ar_buffer_bus(ctx, i),
 745                                        PAGE_SIZE, DMA_FROM_DEVICE);
 746                i = ar_next_buffer_index(i);
 747        }
 748        if (end_buffer_offset > 0)
 749                dma_sync_single_for_cpu(ctx->ohci->card.device,
 750                                        ar_buffer_bus(ctx, i),
 751                                        end_buffer_offset, DMA_FROM_DEVICE);
 752}
 753
 754#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 755#define cond_le32_to_cpu(v) \
 756        (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 757#else
 758#define cond_le32_to_cpu(v) le32_to_cpu(v)
 759#endif
 760
 761static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 762{
 763        struct fw_ohci *ohci = ctx->ohci;
 764        struct fw_packet p;
 765        u32 status, length, tcode;
 766        int evt;
 767
 768        p.header[0] = cond_le32_to_cpu(buffer[0]);
 769        p.header[1] = cond_le32_to_cpu(buffer[1]);
 770        p.header[2] = cond_le32_to_cpu(buffer[2]);
 771
 772        tcode = (p.header[0] >> 4) & 0x0f;
 773        switch (tcode) {
 774        case TCODE_WRITE_QUADLET_REQUEST:
 775        case TCODE_READ_QUADLET_RESPONSE:
 776                p.header[3] = (__force __u32) buffer[3];
 777                p.header_length = 16;
 778                p.payload_length = 0;
 779                break;
 780
 781        case TCODE_READ_BLOCK_REQUEST :
 782                p.header[3] = cond_le32_to_cpu(buffer[3]);
 783                p.header_length = 16;
 784                p.payload_length = 0;
 785                break;
 786
 787        case TCODE_WRITE_BLOCK_REQUEST:
 788        case TCODE_READ_BLOCK_RESPONSE:
 789        case TCODE_LOCK_REQUEST:
 790        case TCODE_LOCK_RESPONSE:
 791                p.header[3] = cond_le32_to_cpu(buffer[3]);
 792                p.header_length = 16;
 793                p.payload_length = p.header[3] >> 16;
 794                if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 795                        ar_context_abort(ctx, "invalid packet length");
 796                        return NULL;
 797                }
 798                break;
 799
 800        case TCODE_WRITE_RESPONSE:
 801        case TCODE_READ_QUADLET_REQUEST:
 802        case OHCI_TCODE_PHY_PACKET:
 803                p.header_length = 12;
 804                p.payload_length = 0;
 805                break;
 806
 807        default:
 808                ar_context_abort(ctx, "invalid tcode");
 809                return NULL;
 810        }
 811
 812        p.payload = (void *) buffer + p.header_length;
 813
 814        /* FIXME: What to do about evt_* errors? */
 815        length = (p.header_length + p.payload_length + 3) / 4;
 816        status = cond_le32_to_cpu(buffer[length]);
 817        evt    = (status >> 16) & 0x1f;
 818
 819        p.ack        = evt - 16;
 820        p.speed      = (status >> 21) & 0x7;
 821        p.timestamp  = status & 0xffff;
 822        p.generation = ohci->request_generation;
 823
 824        log_ar_at_event('R', p.speed, p.header, evt);
 825
 826        /*
 827         * Several controllers, notably from NEC and VIA, forget to
 828         * write ack_complete status at PHY packet reception.
 829         */
 830        if (evt == OHCI1394_evt_no_status &&
 831            (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 832                p.ack = ACK_COMPLETE;
 833
 834        /*
 835         * The OHCI bus reset handler synthesizes a PHY packet with
 836         * the new generation number when a bus reset happens (see
 837         * section 8.4.2.3).  This helps us determine when a request
 838         * was received and make sure we send the response in the same
 839         * generation.  We only need this for requests; for responses
 840         * we use the unique tlabel for finding the matching
 841         * request.
 842         *
 843         * Alas some chips sometimes emit bus reset packets with a
 844         * wrong generation.  We set the correct generation for these
 845         * at a slightly incorrect time (in bus_reset_tasklet).
 846         */
 847        if (evt == OHCI1394_evt_bus_reset) {
 848                if (!(ohci->quirks & QUIRK_RESET_PACKET))
 849                        ohci->request_generation = (p.header[2] >> 16) & 0xff;
 850        } else if (ctx == &ohci->ar_request_ctx) {
 851                fw_core_handle_request(&ohci->card, &p);
 852        } else {
 853                fw_core_handle_response(&ohci->card, &p);
 854        }
 855
 856        return buffer + length + 1;
 857}
 858
 859static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 860{
 861        void *next;
 862
 863        while (p < end) {
 864                next = handle_ar_packet(ctx, p);
 865                if (!next)
 866                        return p;
 867                p = next;
 868        }
 869
 870        return p;
 871}
 872
 873static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 874{
 875        unsigned int i;
 876
 877        i = ar_first_buffer_index(ctx);
 878        while (i != end_buffer) {
 879                dma_sync_single_for_device(ctx->ohci->card.device,
 880                                           ar_buffer_bus(ctx, i),
 881                                           PAGE_SIZE, DMA_FROM_DEVICE);
 882                ar_context_link_page(ctx, i);
 883                i = ar_next_buffer_index(i);
 884        }
 885}
 886
 887static void ar_context_tasklet(unsigned long data)
 888{
 889        struct ar_context *ctx = (struct ar_context *)data;
 890        unsigned int end_buffer_index, end_buffer_offset;
 891        void *p, *end;
 892
 893        p = ctx->pointer;
 894        if (!p)
 895                return;
 896
 897        end_buffer_index = ar_search_last_active_buffer(ctx,
 898                                                        &end_buffer_offset);
 899        ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 900        end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 901
 902        if (end_buffer_index < ar_first_buffer_index(ctx)) {
 903                /*
 904                 * The filled part of the overall buffer wraps around; handle
 905                 * all packets up to the buffer end here.  If the last packet
 906                 * wraps around, its tail will be visible after the buffer end
 907                 * because the buffer start pages are mapped there again.
 908                 */
 909                void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 910                p = handle_ar_packets(ctx, p, buffer_end);
 911                if (p < buffer_end)
 912                        goto error;
 913                /* adjust p to point back into the actual buffer */
 914                p -= AR_BUFFERS * PAGE_SIZE;
 915        }
 916
 917        p = handle_ar_packets(ctx, p, end);
 918        if (p != end) {
 919                if (p > end)
 920                        ar_context_abort(ctx, "inconsistent descriptor");
 921                goto error;
 922        }
 923
 924        ctx->pointer = p;
 925        ar_recycle_buffers(ctx, end_buffer_index);
 926
 927        return;
 928
 929error:
 930        ctx->pointer = NULL;
 931}
 932
 933static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 934                           unsigned int descriptors_offset, u32 regs)
 935{
 936        unsigned int i;
 937        dma_addr_t dma_addr;
 938        struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 939        struct descriptor *d;
 940
 941        ctx->regs        = regs;
 942        ctx->ohci        = ohci;
 943        tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 944
 945        for (i = 0; i < AR_BUFFERS; i++) {
 946                ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
 947                if (!ctx->pages[i])
 948                        goto out_of_memory;
 949                dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
 950                                        0, PAGE_SIZE, DMA_FROM_DEVICE);
 951                if (dma_mapping_error(ohci->card.device, dma_addr)) {
 952                        __free_page(ctx->pages[i]);
 953                        ctx->pages[i] = NULL;
 954                        goto out_of_memory;
 955                }
 956                set_page_private(ctx->pages[i], dma_addr);
 957        }
 958
 959        for (i = 0; i < AR_BUFFERS; i++)
 960                pages[i]              = ctx->pages[i];
 961        for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
 962                pages[AR_BUFFERS + i] = ctx->pages[i];
 963        ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
 964                                 -1, PAGE_KERNEL);
 965        if (!ctx->buffer)
 966                goto out_of_memory;
 967
 968        ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
 969        ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
 970
 971        for (i = 0; i < AR_BUFFERS; i++) {
 972                d = &ctx->descriptors[i];
 973                d->req_count      = cpu_to_le16(PAGE_SIZE);
 974                d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
 975                                                DESCRIPTOR_STATUS |
 976                                                DESCRIPTOR_BRANCH_ALWAYS);
 977                d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
 978                d->branch_address = cpu_to_le32(ctx->descriptors_bus +
 979                        ar_next_buffer_index(i) * sizeof(struct descriptor));
 980        }
 981
 982        return 0;
 983
 984out_of_memory:
 985        ar_context_release(ctx);
 986
 987        return -ENOMEM;
 988}
 989
 990static void ar_context_run(struct ar_context *ctx)
 991{
 992        unsigned int i;
 993
 994        for (i = 0; i < AR_BUFFERS; i++)
 995                ar_context_link_page(ctx, i);
 996
 997        ctx->pointer = ctx->buffer;
 998
 999        reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1000        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1001        flush_writes(ctx->ohci);
1002}
1003
1004static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1005{
1006        int b, key;
1007
1008        b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
1009        key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
1010
1011        /* figure out which descriptor the branch address goes in */
1012        if (z == 2 && (b == 3 || key == 2))
1013                return d;
1014        else
1015                return d + z - 1;
1016}
1017
1018static void context_tasklet(unsigned long data)
1019{
1020        struct context *ctx = (struct context *) data;
1021        struct descriptor *d, *last;
1022        u32 address;
1023        int z;
1024        struct descriptor_buffer *desc;
1025
1026        desc = list_entry(ctx->buffer_list.next,
1027                        struct descriptor_buffer, list);
1028        last = ctx->last;
1029        while (last->branch_address != 0) {
1030                struct descriptor_buffer *old_desc = desc;
1031                address = le32_to_cpu(last->branch_address);
1032                z = address & 0xf;
1033                address &= ~0xf;
1034
1035                /* If the branch address points to a buffer outside of the
1036                 * current buffer, advance to the next buffer. */
1037                if (address < desc->buffer_bus ||
1038                                address >= desc->buffer_bus + desc->used)
1039                        desc = list_entry(desc->list.next,
1040                                        struct descriptor_buffer, list);
1041                d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1042                last = find_branch_descriptor(d, z);
1043
1044                if (!ctx->callback(ctx, d, last))
1045                        break;
1046
1047                if (old_desc != desc) {
1048                        /* If we've advanced to the next buffer, move the
1049                         * previous buffer to the free list. */
1050                        unsigned long flags;
1051                        old_desc->used = 0;
1052                        spin_lock_irqsave(&ctx->ohci->lock, flags);
1053                        list_move_tail(&old_desc->list, &ctx->buffer_list);
1054                        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1055                }
1056                ctx->last = last;
1057        }
1058}
1059
1060/*
1061 * Allocate a new buffer and add it to the list of free buffers for this
1062 * context.  Must be called with ohci->lock held.
1063 */
1064static int context_add_buffer(struct context *ctx)
1065{
1066        struct descriptor_buffer *desc;
1067        dma_addr_t uninitialized_var(bus_addr);
1068        int offset;
1069
1070        /*
1071         * 16MB of descriptors should be far more than enough for any DMA
1072         * program.  This will catch run-away userspace or DoS attacks.
1073         */
1074        if (ctx->total_allocation >= 16*1024*1024)
1075                return -ENOMEM;
1076
1077        desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1078                        &bus_addr, GFP_ATOMIC);
1079        if (!desc)
1080                return -ENOMEM;
1081
1082        offset = (void *)&desc->buffer - (void *)desc;
1083        desc->buffer_size = PAGE_SIZE - offset;
1084        desc->buffer_bus = bus_addr + offset;
1085        desc->used = 0;
1086
1087        list_add_tail(&desc->list, &ctx->buffer_list);
1088        ctx->total_allocation += PAGE_SIZE;
1089
1090        return 0;
1091}
1092
1093static int context_init(struct context *ctx, struct fw_ohci *ohci,
1094                        u32 regs, descriptor_callback_t callback)
1095{
1096        ctx->ohci = ohci;
1097        ctx->regs = regs;
1098        ctx->total_allocation = 0;
1099
1100        INIT_LIST_HEAD(&ctx->buffer_list);
1101        if (context_add_buffer(ctx) < 0)
1102                return -ENOMEM;
1103
1104        ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1105                        struct descriptor_buffer, list);
1106
1107        tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1108        ctx->callback = callback;
1109
1110        /*
1111         * We put a dummy descriptor in the buffer that has a NULL
1112         * branch address and looks like it's been sent.  That way we
1113         * have a descriptor to append DMA programs to.
1114         */
1115        memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1116        ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1117        ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1118        ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1119        ctx->last = ctx->buffer_tail->buffer;
1120        ctx->prev = ctx->buffer_tail->buffer;
1121
1122        return 0;
1123}
1124
1125static void context_release(struct context *ctx)
1126{
1127        struct fw_card *card = &ctx->ohci->card;
1128        struct descriptor_buffer *desc, *tmp;
1129
1130        list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1131                dma_free_coherent(card->device, PAGE_SIZE, desc,
1132                        desc->buffer_bus -
1133                        ((void *)&desc->buffer - (void *)desc));
1134}
1135
1136/* Must be called with ohci->lock held */
1137static struct descriptor *context_get_descriptors(struct context *ctx,
1138                                                  int z, dma_addr_t *d_bus)
1139{
1140        struct descriptor *d = NULL;
1141        struct descriptor_buffer *desc = ctx->buffer_tail;
1142
1143        if (z * sizeof(*d) > desc->buffer_size)
1144                return NULL;
1145
1146        if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1147                /* No room for the descriptor in this buffer, so advance to the
1148                 * next one. */
1149
1150                if (desc->list.next == &ctx->buffer_list) {
1151                        /* If there is no free buffer next in the list,
1152                         * allocate one. */
1153                        if (context_add_buffer(ctx) < 0)
1154                                return NULL;
1155                }
1156                desc = list_entry(desc->list.next,
1157                                struct descriptor_buffer, list);
1158                ctx->buffer_tail = desc;
1159        }
1160
1161        d = desc->buffer + desc->used / sizeof(*d);
1162        memset(d, 0, z * sizeof(*d));
1163        *d_bus = desc->buffer_bus + desc->used;
1164
1165        return d;
1166}
1167
1168static void context_run(struct context *ctx, u32 extra)
1169{
1170        struct fw_ohci *ohci = ctx->ohci;
1171
1172        reg_write(ohci, COMMAND_PTR(ctx->regs),
1173                  le32_to_cpu(ctx->last->branch_address));
1174        reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1175        reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1176        ctx->running = true;
1177        flush_writes(ohci);
1178}
1179
1180static void context_append(struct context *ctx,
1181                           struct descriptor *d, int z, int extra)
1182{
1183        dma_addr_t d_bus;
1184        struct descriptor_buffer *desc = ctx->buffer_tail;
1185
1186        d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1187
1188        desc->used += (z + extra) * sizeof(*d);
1189
1190        wmb(); /* finish init of new descriptors before branch_address update */
1191        ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1192        ctx->prev = find_branch_descriptor(d, z);
1193
1194        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1195        flush_writes(ctx->ohci);
1196}
1197
1198static void context_stop(struct context *ctx)
1199{
1200        u32 reg;
1201        int i;
1202
1203        reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1204        ctx->running = false;
1205        flush_writes(ctx->ohci);
1206
1207        for (i = 0; i < 10; i++) {
1208                reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1209                if ((reg & CONTEXT_ACTIVE) == 0)
1210                        return;
1211
1212                mdelay(1);
1213        }
1214        fw_error("Error: DMA context still active (0x%08x)\n", reg);
1215}
1216
1217struct driver_data {
1218        struct fw_packet *packet;
1219};
1220
1221/*
1222 * This function apppends a packet to the DMA queue for transmission.
1223 * Must always be called with the ochi->lock held to ensure proper
1224 * generation handling and locking around packet queue manipulation.
1225 */
1226static int at_context_queue_packet(struct context *ctx,
1227                                   struct fw_packet *packet)
1228{
1229        struct fw_ohci *ohci = ctx->ohci;
1230        dma_addr_t d_bus, uninitialized_var(payload_bus);
1231        struct driver_data *driver_data;
1232        struct descriptor *d, *last;
1233        __le32 *header;
1234        int z, tcode;
1235
1236        d = context_get_descriptors(ctx, 4, &d_bus);
1237        if (d == NULL) {
1238                packet->ack = RCODE_SEND_ERROR;
1239                return -1;
1240        }
1241
1242        d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1243        d[0].res_count = cpu_to_le16(packet->timestamp);
1244
1245        /*
1246         * The DMA format for asyncronous link packets is different
1247         * from the IEEE1394 layout, so shift the fields around
1248         * accordingly.
1249         */
1250
1251        tcode = (packet->header[0] >> 4) & 0x0f;
1252        header = (__le32 *) &d[1];
1253        switch (tcode) {
1254        case TCODE_WRITE_QUADLET_REQUEST:
1255        case TCODE_WRITE_BLOCK_REQUEST:
1256        case TCODE_WRITE_RESPONSE:
1257        case TCODE_READ_QUADLET_REQUEST:
1258        case TCODE_READ_BLOCK_REQUEST:
1259        case TCODE_READ_QUADLET_RESPONSE:
1260        case TCODE_READ_BLOCK_RESPONSE:
1261        case TCODE_LOCK_REQUEST:
1262        case TCODE_LOCK_RESPONSE:
1263                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1264                                        (packet->speed << 16));
1265                header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1266                                        (packet->header[0] & 0xffff0000));
1267                header[2] = cpu_to_le32(packet->header[2]);
1268
1269                if (TCODE_IS_BLOCK_PACKET(tcode))
1270                        header[3] = cpu_to_le32(packet->header[3]);
1271                else
1272                        header[3] = (__force __le32) packet->header[3];
1273
1274                d[0].req_count = cpu_to_le16(packet->header_length);
1275                break;
1276
1277        case TCODE_LINK_INTERNAL:
1278                header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1279                                        (packet->speed << 16));
1280                header[1] = cpu_to_le32(packet->header[1]);
1281                header[2] = cpu_to_le32(packet->header[2]);
1282                d[0].req_count = cpu_to_le16(12);
1283
1284                if (is_ping_packet(&packet->header[1]))
1285                        d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1286                break;
1287
1288        case TCODE_STREAM_DATA:
1289                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1290                                        (packet->speed << 16));
1291                header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1292                d[0].req_count = cpu_to_le16(8);
1293                break;
1294
1295        default:
1296                /* BUG(); */
1297                packet->ack = RCODE_SEND_ERROR;
1298                return -1;
1299        }
1300
1301        driver_data = (struct driver_data *) &d[3];
1302        driver_data->packet = packet;
1303        packet->driver_data = driver_data;
1304
1305        if (packet->payload_length > 0) {
1306                payload_bus =
1307                        dma_map_single(ohci->card.device, packet->payload,
1308                                       packet->payload_length, DMA_TO_DEVICE);
1309                if (dma_mapping_error(ohci->card.device, payload_bus)) {
1310                        packet->ack = RCODE_SEND_ERROR;
1311                        return -1;
1312                }
1313                packet->payload_bus     = payload_bus;
1314                packet->payload_mapped  = true;
1315
1316                d[2].req_count    = cpu_to_le16(packet->payload_length);
1317                d[2].data_address = cpu_to_le32(payload_bus);
1318                last = &d[2];
1319                z = 3;
1320        } else {
1321                last = &d[0];
1322                z = 2;
1323        }
1324
1325        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1326                                     DESCRIPTOR_IRQ_ALWAYS |
1327                                     DESCRIPTOR_BRANCH_ALWAYS);
1328
1329        /*
1330         * If the controller and packet generations don't match, we need to
1331         * bail out and try again.  If IntEvent.busReset is set, the AT context
1332         * is halted, so appending to the context and trying to run it is
1333         * futile.  Most controllers do the right thing and just flush the AT
1334         * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1335         * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1336         * up stalling out.  So we just bail out in software and try again
1337         * later, and everyone is happy.
1338         * FIXME: Test of IntEvent.busReset may no longer be necessary since we
1339         *        flush AT queues in bus_reset_tasklet.
1340         * FIXME: Document how the locking works.
1341         */
1342        if (ohci->generation != packet->generation ||
1343            reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1344                if (packet->payload_mapped)
1345                        dma_unmap_single(ohci->card.device, payload_bus,
1346                                         packet->payload_length, DMA_TO_DEVICE);
1347                packet->ack = RCODE_GENERATION;
1348                return -1;
1349        }
1350
1351        context_append(ctx, d, z, 4 - z);
1352
1353        if (!ctx->running)
1354                context_run(ctx, 0);
1355
1356        return 0;
1357}
1358
1359static void at_context_flush(struct context *ctx)
1360{
1361        tasklet_disable(&ctx->tasklet);
1362
1363        ctx->flushing = true;
1364        context_tasklet((unsigned long)ctx);
1365        ctx->flushing = false;
1366
1367        tasklet_enable(&ctx->tasklet);
1368}
1369
1370static int handle_at_packet(struct context *context,
1371                            struct descriptor *d,
1372                            struct descriptor *last)
1373{
1374        struct driver_data *driver_data;
1375        struct fw_packet *packet;
1376        struct fw_ohci *ohci = context->ohci;
1377        int evt;
1378
1379        if (last->transfer_status == 0 && !context->flushing)
1380                /* This descriptor isn't done yet, stop iteration. */
1381                return 0;
1382
1383        driver_data = (struct driver_data *) &d[3];
1384        packet = driver_data->packet;
1385        if (packet == NULL)
1386                /* This packet was cancelled, just continue. */
1387                return 1;
1388
1389        if (packet->payload_mapped)
1390                dma_unmap_single(ohci->card.device, packet->payload_bus,
1391                                 packet->payload_length, DMA_TO_DEVICE);
1392
1393        evt = le16_to_cpu(last->transfer_status) & 0x1f;
1394        packet->timestamp = le16_to_cpu(last->res_count);
1395
1396        log_ar_at_event('T', packet->speed, packet->header, evt);
1397
1398        switch (evt) {
1399        case OHCI1394_evt_timeout:
1400                /* Async response transmit timed out. */
1401                packet->ack = RCODE_CANCELLED;
1402                break;
1403
1404        case OHCI1394_evt_flushed:
1405                /*
1406                 * The packet was flushed should give same error as
1407                 * when we try to use a stale generation count.
1408                 */
1409                packet->ack = RCODE_GENERATION;
1410                break;
1411
1412        case OHCI1394_evt_missing_ack:
1413                if (context->flushing)
1414                        packet->ack = RCODE_GENERATION;
1415                else {
1416                        /*
1417                         * Using a valid (current) generation count, but the
1418                         * node is not on the bus or not sending acks.
1419                         */
1420                        packet->ack = RCODE_NO_ACK;
1421                }
1422                break;
1423
1424        case ACK_COMPLETE + 0x10:
1425        case ACK_PENDING + 0x10:
1426        case ACK_BUSY_X + 0x10:
1427        case ACK_BUSY_A + 0x10:
1428        case ACK_BUSY_B + 0x10:
1429        case ACK_DATA_ERROR + 0x10:
1430        case ACK_TYPE_ERROR + 0x10:
1431                packet->ack = evt - 0x10;
1432                break;
1433
1434        case OHCI1394_evt_no_status:
1435                if (context->flushing) {
1436                        packet->ack = RCODE_GENERATION;
1437                        break;
1438                }
1439                /* fall through */
1440
1441        default:
1442                packet->ack = RCODE_SEND_ERROR;
1443                break;
1444        }
1445
1446        packet->callback(packet, &ohci->card, packet->ack);
1447
1448        return 1;
1449}
1450
1451#define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1452#define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1453#define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1454#define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1455#define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1456
1457static void handle_local_rom(struct fw_ohci *ohci,
1458                             struct fw_packet *packet, u32 csr)
1459{
1460        struct fw_packet response;
1461        int tcode, length, i;
1462
1463        tcode = HEADER_GET_TCODE(packet->header[0]);
1464        if (TCODE_IS_BLOCK_PACKET(tcode))
1465                length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1466        else
1467                length = 4;
1468
1469        i = csr - CSR_CONFIG_ROM;
1470        if (i + length > CONFIG_ROM_SIZE) {
1471                fw_fill_response(&response, packet->header,
1472                                 RCODE_ADDRESS_ERROR, NULL, 0);
1473        } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1474                fw_fill_response(&response, packet->header,
1475                                 RCODE_TYPE_ERROR, NULL, 0);
1476        } else {
1477                fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1478                                 (void *) ohci->config_rom + i, length);
1479        }
1480
1481        fw_core_handle_response(&ohci->card, &response);
1482}
1483
1484static void handle_local_lock(struct fw_ohci *ohci,
1485                              struct fw_packet *packet, u32 csr)
1486{
1487        struct fw_packet response;
1488        int tcode, length, ext_tcode, sel, try;
1489        __be32 *payload, lock_old;
1490        u32 lock_arg, lock_data;
1491
1492        tcode = HEADER_GET_TCODE(packet->header[0]);
1493        length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1494        payload = packet->payload;
1495        ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1496
1497        if (tcode == TCODE_LOCK_REQUEST &&
1498            ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1499                lock_arg = be32_to_cpu(payload[0]);
1500                lock_data = be32_to_cpu(payload[1]);
1501        } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1502                lock_arg = 0;
1503                lock_data = 0;
1504        } else {
1505                fw_fill_response(&response, packet->header,
1506                                 RCODE_TYPE_ERROR, NULL, 0);
1507                goto out;
1508        }
1509
1510        sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1511        reg_write(ohci, OHCI1394_CSRData, lock_data);
1512        reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1513        reg_write(ohci, OHCI1394_CSRControl, sel);
1514
1515        for (try = 0; try < 20; try++)
1516                if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1517                        lock_old = cpu_to_be32(reg_read(ohci,
1518                                                        OHCI1394_CSRData));
1519                        fw_fill_response(&response, packet->header,
1520                                         RCODE_COMPLETE,
1521                                         &lock_old, sizeof(lock_old));
1522                        goto out;
1523                }
1524
1525        fw_error("swap not done (CSR lock timeout)\n");
1526        fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1527
1528 out:
1529        fw_core_handle_response(&ohci->card, &response);
1530}
1531
1532static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1533{
1534        u64 offset, csr;
1535
1536        if (ctx == &ctx->ohci->at_request_ctx) {
1537                packet->ack = ACK_PENDING;
1538                packet->callback(packet, &ctx->ohci->card, packet->ack);
1539        }
1540
1541        offset =
1542                ((unsigned long long)
1543                 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1544                packet->header[2];
1545        csr = offset - CSR_REGISTER_BASE;
1546
1547        /* Handle config rom reads. */
1548        if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1549                handle_local_rom(ctx->ohci, packet, csr);
1550        else switch (csr) {
1551        case CSR_BUS_MANAGER_ID:
1552        case CSR_BANDWIDTH_AVAILABLE:
1553        case CSR_CHANNELS_AVAILABLE_HI:
1554        case CSR_CHANNELS_AVAILABLE_LO:
1555                handle_local_lock(ctx->ohci, packet, csr);
1556                break;
1557        default:
1558                if (ctx == &ctx->ohci->at_request_ctx)
1559                        fw_core_handle_request(&ctx->ohci->card, packet);
1560                else
1561                        fw_core_handle_response(&ctx->ohci->card, packet);
1562                break;
1563        }
1564
1565        if (ctx == &ctx->ohci->at_response_ctx) {
1566                packet->ack = ACK_COMPLETE;
1567                packet->callback(packet, &ctx->ohci->card, packet->ack);
1568        }
1569}
1570
1571static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1572{
1573        unsigned long flags;
1574        int ret;
1575
1576        spin_lock_irqsave(&ctx->ohci->lock, flags);
1577
1578        if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1579            ctx->ohci->generation == packet->generation) {
1580                spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1581                handle_local_request(ctx, packet);
1582                return;
1583        }
1584
1585        ret = at_context_queue_packet(ctx, packet);
1586        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1587
1588        if (ret < 0)
1589                packet->callback(packet, &ctx->ohci->card, packet->ack);
1590
1591}
1592
1593static u32 cycle_timer_ticks(u32 cycle_timer)
1594{
1595        u32 ticks;
1596
1597        ticks = cycle_timer & 0xfff;
1598        ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1599        ticks += (3072 * 8000) * (cycle_timer >> 25);
1600
1601        return ticks;
1602}
1603
1604/*
1605 * Some controllers exhibit one or more of the following bugs when updating the
1606 * iso cycle timer register:
1607 *  - When the lowest six bits are wrapping around to zero, a read that happens
1608 *    at the same time will return garbage in the lowest ten bits.
1609 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1610 *    not incremented for about 60 ns.
1611 *  - Occasionally, the entire register reads zero.
1612 *
1613 * To catch these, we read the register three times and ensure that the
1614 * difference between each two consecutive reads is approximately the same, i.e.
1615 * less than twice the other.  Furthermore, any negative difference indicates an
1616 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1617 * execute, so we have enough precision to compute the ratio of the differences.)
1618 */
1619static u32 get_cycle_time(struct fw_ohci *ohci)
1620{
1621        u32 c0, c1, c2;
1622        u32 t0, t1, t2;
1623        s32 diff01, diff12;
1624        int i;
1625
1626        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1627
1628        if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1629                i = 0;
1630                c1 = c2;
1631                c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1632                do {
1633                        c0 = c1;
1634                        c1 = c2;
1635                        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1636                        t0 = cycle_timer_ticks(c0);
1637                        t1 = cycle_timer_ticks(c1);
1638                        t2 = cycle_timer_ticks(c2);
1639                        diff01 = t1 - t0;
1640                        diff12 = t2 - t1;
1641                } while ((diff01 <= 0 || diff12 <= 0 ||
1642                          diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1643                         && i++ < 20);
1644        }
1645
1646        return c2;
1647}
1648
1649/*
1650 * This function has to be called at least every 64 seconds.  The bus_time
1651 * field stores not only the upper 25 bits of the BUS_TIME register but also
1652 * the most significant bit of the cycle timer in bit 6 so that we can detect
1653 * changes in this bit.
1654 */
1655static u32 update_bus_time(struct fw_ohci *ohci)
1656{
1657        u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1658
1659        if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1660                ohci->bus_time += 0x40;
1661
1662        return ohci->bus_time | cycle_time_seconds;
1663}
1664
1665static void bus_reset_tasklet(unsigned long data)
1666{
1667        struct fw_ohci *ohci = (struct fw_ohci *)data;
1668        int self_id_count, i, j, reg;
1669        int generation, new_generation;
1670        unsigned long flags;
1671        void *free_rom = NULL;
1672        dma_addr_t free_rom_bus = 0;
1673        bool is_new_root;
1674
1675        reg = reg_read(ohci, OHCI1394_NodeID);
1676        if (!(reg & OHCI1394_NodeID_idValid)) {
1677                fw_notify("node ID not valid, new bus reset in progress\n");
1678                return;
1679        }
1680        if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1681                fw_notify("malconfigured bus\n");
1682                return;
1683        }
1684        ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1685                               OHCI1394_NodeID_nodeNumber);
1686
1687        is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1688        if (!(ohci->is_root && is_new_root))
1689                reg_write(ohci, OHCI1394_LinkControlSet,
1690                          OHCI1394_LinkControl_cycleMaster);
1691        ohci->is_root = is_new_root;
1692
1693        reg = reg_read(ohci, OHCI1394_SelfIDCount);
1694        if (reg & OHCI1394_SelfIDCount_selfIDError) {
1695                fw_notify("inconsistent self IDs\n");
1696                return;
1697        }
1698        /*
1699         * The count in the SelfIDCount register is the number of
1700         * bytes in the self ID receive buffer.  Since we also receive
1701         * the inverted quadlets and a header quadlet, we shift one
1702         * bit extra to get the actual number of self IDs.
1703         */
1704        self_id_count = (reg >> 3) & 0xff;
1705        if (self_id_count == 0 || self_id_count > 252) {
1706                fw_notify("inconsistent self IDs\n");
1707                return;
1708        }
1709        generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1710        rmb();
1711
1712        for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1713                if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1714                        fw_notify("inconsistent self IDs\n");
1715                        return;
1716                }
1717                ohci->self_id_buffer[j] =
1718                                cond_le32_to_cpu(ohci->self_id_cpu[i]);
1719        }
1720        rmb();
1721
1722        /*
1723         * Check the consistency of the self IDs we just read.  The
1724         * problem we face is that a new bus reset can start while we
1725         * read out the self IDs from the DMA buffer. If this happens,
1726         * the DMA buffer will be overwritten with new self IDs and we
1727         * will read out inconsistent data.  The OHCI specification
1728         * (section 11.2) recommends a technique similar to
1729         * linux/seqlock.h, where we remember the generation of the
1730         * self IDs in the buffer before reading them out and compare
1731         * it to the current generation after reading them out.  If
1732         * the two generations match we know we have a consistent set
1733         * of self IDs.
1734         */
1735
1736        new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1737        if (new_generation != generation) {
1738                fw_notify("recursive bus reset detected, "
1739                          "discarding self ids\n");
1740                return;
1741        }
1742
1743        /* FIXME: Document how the locking works. */
1744        spin_lock_irqsave(&ohci->lock, flags);
1745
1746        ohci->generation = -1; /* prevent AT packet queueing */
1747        context_stop(&ohci->at_request_ctx);
1748        context_stop(&ohci->at_response_ctx);
1749
1750        spin_unlock_irqrestore(&ohci->lock, flags);
1751
1752        /*
1753         * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1754         * packets in the AT queues and software needs to drain them.
1755         * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1756         */
1757        at_context_flush(&ohci->at_request_ctx);
1758        at_context_flush(&ohci->at_response_ctx);
1759
1760        spin_lock_irqsave(&ohci->lock, flags);
1761
1762        ohci->generation = generation;
1763        reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1764
1765        if (ohci->quirks & QUIRK_RESET_PACKET)
1766                ohci->request_generation = generation;
1767
1768        /*
1769         * This next bit is unrelated to the AT context stuff but we
1770         * have to do it under the spinlock also.  If a new config rom
1771         * was set up before this reset, the old one is now no longer
1772         * in use and we can free it. Update the config rom pointers
1773         * to point to the current config rom and clear the
1774         * next_config_rom pointer so a new update can take place.
1775         */
1776
1777        if (ohci->next_config_rom != NULL) {
1778                if (ohci->next_config_rom != ohci->config_rom) {
1779                        free_rom      = ohci->config_rom;
1780                        free_rom_bus  = ohci->config_rom_bus;
1781                }
1782                ohci->config_rom      = ohci->next_config_rom;
1783                ohci->config_rom_bus  = ohci->next_config_rom_bus;
1784                ohci->next_config_rom = NULL;
1785
1786                /*
1787                 * Restore config_rom image and manually update
1788                 * config_rom registers.  Writing the header quadlet
1789                 * will indicate that the config rom is ready, so we
1790                 * do that last.
1791                 */
1792                reg_write(ohci, OHCI1394_BusOptions,
1793                          be32_to_cpu(ohci->config_rom[2]));
1794                ohci->config_rom[0] = ohci->next_header;
1795                reg_write(ohci, OHCI1394_ConfigROMhdr,
1796                          be32_to_cpu(ohci->next_header));
1797        }
1798
1799#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1800        reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1801        reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1802#endif
1803
1804        spin_unlock_irqrestore(&ohci->lock, flags);
1805
1806        if (free_rom)
1807                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1808                                  free_rom, free_rom_bus);
1809
1810        log_selfids(ohci->node_id, generation,
1811                    self_id_count, ohci->self_id_buffer);
1812
1813        fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1814                                 self_id_count, ohci->self_id_buffer,
1815                                 ohci->csr_state_setclear_abdicate);
1816        ohci->csr_state_setclear_abdicate = false;
1817}
1818
1819static irqreturn_t irq_handler(int irq, void *data)
1820{
1821        struct fw_ohci *ohci = data;
1822        u32 event, iso_event;
1823        int i;
1824
1825        event = reg_read(ohci, OHCI1394_IntEventClear);
1826
1827        if (!event || !~event)
1828                return IRQ_NONE;
1829
1830        /*
1831         * busReset and postedWriteErr must not be cleared yet
1832         * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1833         */
1834        reg_write(ohci, OHCI1394_IntEventClear,
1835                  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1836        log_irqs(event);
1837
1838        if (event & OHCI1394_selfIDComplete)
1839                tasklet_schedule(&ohci->bus_reset_tasklet);
1840
1841        if (event & OHCI1394_RQPkt)
1842                tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1843
1844        if (event & OHCI1394_RSPkt)
1845                tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1846
1847        if (event & OHCI1394_reqTxComplete)
1848                tasklet_schedule(&ohci->at_request_ctx.tasklet);
1849
1850        if (event & OHCI1394_respTxComplete)
1851                tasklet_schedule(&ohci->at_response_ctx.tasklet);
1852
1853        if (event & OHCI1394_isochRx) {
1854                iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1855                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1856
1857                while (iso_event) {
1858                        i = ffs(iso_event) - 1;
1859                        tasklet_schedule(
1860                                &ohci->ir_context_list[i].context.tasklet);
1861                        iso_event &= ~(1 << i);
1862                }
1863        }
1864
1865        if (event & OHCI1394_isochTx) {
1866                iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1867                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1868
1869                while (iso_event) {
1870                        i = ffs(iso_event) - 1;
1871                        tasklet_schedule(
1872                                &ohci->it_context_list[i].context.tasklet);
1873                        iso_event &= ~(1 << i);
1874                }
1875        }
1876
1877        if (unlikely(event & OHCI1394_regAccessFail))
1878                fw_error("Register access failure - "
1879                         "please notify linux1394-devel@lists.sf.net\n");
1880
1881        if (unlikely(event & OHCI1394_postedWriteErr)) {
1882                reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1883                reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1884                reg_write(ohci, OHCI1394_IntEventClear,
1885                          OHCI1394_postedWriteErr);
1886                fw_error("PCI posted write error\n");
1887        }
1888
1889        if (unlikely(event & OHCI1394_cycleTooLong)) {
1890                if (printk_ratelimit())
1891                        fw_notify("isochronous cycle too long\n");
1892                reg_write(ohci, OHCI1394_LinkControlSet,
1893                          OHCI1394_LinkControl_cycleMaster);
1894        }
1895
1896        if (unlikely(event & OHCI1394_cycleInconsistent)) {
1897                /*
1898                 * We need to clear this event bit in order to make
1899                 * cycleMatch isochronous I/O work.  In theory we should
1900                 * stop active cycleMatch iso contexts now and restart
1901                 * them at least two cycles later.  (FIXME?)
1902                 */
1903                if (printk_ratelimit())
1904                        fw_notify("isochronous cycle inconsistent\n");
1905        }
1906
1907        if (event & OHCI1394_cycle64Seconds) {
1908                spin_lock(&ohci->lock);
1909                update_bus_time(ohci);
1910                spin_unlock(&ohci->lock);
1911        } else
1912                flush_writes(ohci);
1913
1914        return IRQ_HANDLED;
1915}
1916
1917static int software_reset(struct fw_ohci *ohci)
1918{
1919        int i;
1920
1921        reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1922
1923        for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1924                if ((reg_read(ohci, OHCI1394_HCControlSet) &
1925                     OHCI1394_HCControl_softReset) == 0)
1926                        return 0;
1927                msleep(1);
1928        }
1929
1930        return -EBUSY;
1931}
1932
1933static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1934{
1935        size_t size = length * 4;
1936
1937        memcpy(dest, src, size);
1938        if (size < CONFIG_ROM_SIZE)
1939                memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1940}
1941
1942static int configure_1394a_enhancements(struct fw_ohci *ohci)
1943{
1944        bool enable_1394a;
1945        int ret, clear, set, offset;
1946
1947        /* Check if the driver should configure link and PHY. */
1948        if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1949              OHCI1394_HCControl_programPhyEnable))
1950                return 0;
1951
1952        /* Paranoia: check whether the PHY supports 1394a, too. */
1953        enable_1394a = false;
1954        ret = read_phy_reg(ohci, 2);
1955        if (ret < 0)
1956                return ret;
1957        if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1958                ret = read_paged_phy_reg(ohci, 1, 8);
1959                if (ret < 0)
1960                        return ret;
1961                if (ret >= 1)
1962                        enable_1394a = true;
1963        }
1964
1965        if (ohci->quirks & QUIRK_NO_1394A)
1966                enable_1394a = false;
1967
1968        /* Configure PHY and link consistently. */
1969        if (enable_1394a) {
1970                clear = 0;
1971                set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1972        } else {
1973                clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1974                set = 0;
1975        }
1976        ret = update_phy_reg(ohci, 5, clear, set);
1977        if (ret < 0)
1978                return ret;
1979
1980        if (enable_1394a)
1981                offset = OHCI1394_HCControlSet;
1982        else
1983                offset = OHCI1394_HCControlClear;
1984        reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1985
1986        /* Clean up: configuration has been taken care of. */
1987        reg_write(ohci, OHCI1394_HCControlClear,
1988                  OHCI1394_HCControl_programPhyEnable);
1989
1990        return 0;
1991}
1992
1993static int ohci_enable(struct fw_card *card,
1994                       const __be32 *config_rom, size_t length)
1995{
1996        struct fw_ohci *ohci = fw_ohci(card);
1997        struct pci_dev *dev = to_pci_dev(card->device);
1998        u32 lps, seconds, version, irqs;
1999        int i, ret;
2000
2001        if (software_reset(ohci)) {
2002                fw_error("Failed to reset ohci card.\n");
2003                return -EBUSY;
2004        }
2005
2006        /*
2007         * Now enable LPS, which we need in order to start accessing
2008         * most of the registers.  In fact, on some cards (ALI M5251),
2009         * accessing registers in the SClk domain without LPS enabled
2010         * will lock up the machine.  Wait 50msec to make sure we have
2011         * full link enabled.  However, with some cards (well, at least
2012         * a JMicron PCIe card), we have to try again sometimes.
2013         */
2014        reg_write(ohci, OHCI1394_HCControlSet,
2015                  OHCI1394_HCControl_LPS |
2016                  OHCI1394_HCControl_postedWriteEnable);
2017        flush_writes(ohci);
2018
2019        for (lps = 0, i = 0; !lps && i < 3; i++) {
2020                msleep(50);
2021                lps = reg_read(ohci, OHCI1394_HCControlSet) &
2022                      OHCI1394_HCControl_LPS;
2023        }
2024
2025        if (!lps) {
2026                fw_error("Failed to set Link Power Status\n");
2027                return -EIO;
2028        }
2029
2030        reg_write(ohci, OHCI1394_HCControlClear,
2031                  OHCI1394_HCControl_noByteSwapData);
2032
2033        reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2034        reg_write(ohci, OHCI1394_LinkControlSet,
2035                  OHCI1394_LinkControl_rcvSelfID |
2036                  OHCI1394_LinkControl_rcvPhyPkt |
2037                  OHCI1394_LinkControl_cycleTimerEnable |
2038                  OHCI1394_LinkControl_cycleMaster);
2039
2040        reg_write(ohci, OHCI1394_ATRetries,
2041                  OHCI1394_MAX_AT_REQ_RETRIES |
2042                  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2043                  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2044                  (200 << 16));
2045
2046        seconds = lower_32_bits(get_seconds());
2047        reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2048        ohci->bus_time = seconds & ~0x3f;
2049
2050        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2051        if (version >= OHCI_VERSION_1_1) {
2052                reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2053                          0xfffffffe);
2054                card->broadcast_channel_auto_allocated = true;
2055        }
2056
2057        /* Get implemented bits of the priority arbitration request counter. */
2058        reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2059        ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2060        reg_write(ohci, OHCI1394_FairnessControl, 0);
2061        card->priority_budget_implemented = ohci->pri_req_max != 0;
2062
2063        ar_context_run(&ohci->ar_request_ctx);
2064        ar_context_run(&ohci->ar_response_ctx);
2065
2066        reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2067        reg_write(ohci, OHCI1394_IntEventClear, ~0);
2068        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2069
2070        ret = configure_1394a_enhancements(ohci);
2071        if (ret < 0)
2072                return ret;
2073
2074        /* Activate link_on bit and contender bit in our self ID packets.*/
2075        ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2076        if (ret < 0)
2077                return ret;
2078
2079        /*
2080         * When the link is not yet enabled, the atomic config rom
2081         * update mechanism described below in ohci_set_config_rom()
2082         * is not active.  We have to update ConfigRomHeader and
2083         * BusOptions manually, and the write to ConfigROMmap takes
2084         * effect immediately.  We tie this to the enabling of the
2085         * link, so we have a valid config rom before enabling - the
2086         * OHCI requires that ConfigROMhdr and BusOptions have valid
2087         * values before enabling.
2088         *
2089         * However, when the ConfigROMmap is written, some controllers
2090         * always read back quadlets 0 and 2 from the config rom to
2091         * the ConfigRomHeader and BusOptions registers on bus reset.
2092         * They shouldn't do that in this initial case where the link
2093         * isn't enabled.  This means we have to use the same
2094         * workaround here, setting the bus header to 0 and then write
2095         * the right values in the bus reset tasklet.
2096         */
2097
2098        if (config_rom) {
2099                ohci->next_config_rom =
2100                        dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2101                                           &ohci->next_config_rom_bus,
2102                                           GFP_KERNEL);
2103                if (ohci->next_config_rom == NULL)
2104                        return -ENOMEM;
2105
2106                copy_config_rom(ohci->next_config_rom, config_rom, length);
2107        } else {
2108                /*
2109                 * In the suspend case, config_rom is NULL, which
2110                 * means that we just reuse the old config rom.
2111                 */
2112                ohci->next_config_rom = ohci->config_rom;
2113                ohci->next_config_rom_bus = ohci->config_rom_bus;
2114        }
2115
2116        ohci->next_header = ohci->next_config_rom[0];
2117        ohci->next_config_rom[0] = 0;
2118        reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2119        reg_write(ohci, OHCI1394_BusOptions,
2120                  be32_to_cpu(ohci->next_config_rom[2]));
2121        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2122
2123        reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2124
2125        if (!(ohci->quirks & QUIRK_NO_MSI))
2126                pci_enable_msi(dev);
2127        if (request_irq(dev->irq, irq_handler,
2128                        pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2129                        ohci_driver_name, ohci)) {
2130                fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2131                pci_disable_msi(dev);
2132                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2133                                  ohci->config_rom, ohci->config_rom_bus);
2134                return -EIO;
2135        }
2136
2137        irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2138                OHCI1394_RQPkt | OHCI1394_RSPkt |
2139                OHCI1394_isochTx | OHCI1394_isochRx |
2140                OHCI1394_postedWriteErr |
2141                OHCI1394_selfIDComplete |
2142                OHCI1394_regAccessFail |
2143                OHCI1394_cycle64Seconds |
2144                OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
2145                OHCI1394_masterIntEnable;
2146        if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2147                irqs |= OHCI1394_busReset;
2148        reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2149
2150        reg_write(ohci, OHCI1394_HCControlSet,
2151                  OHCI1394_HCControl_linkEnable |
2152                  OHCI1394_HCControl_BIBimageValid);
2153        flush_writes(ohci);
2154
2155        /* We are ready to go, reset bus to finish initialization. */
2156        fw_schedule_bus_reset(&ohci->card, false, true);
2157
2158        return 0;
2159}
2160
2161static int ohci_set_config_rom(struct fw_card *card,
2162                               const __be32 *config_rom, size_t length)
2163{
2164        struct fw_ohci *ohci;
2165        unsigned long flags;
2166        int ret = -EBUSY;
2167        __be32 *next_config_rom;
2168        dma_addr_t uninitialized_var(next_config_rom_bus);
2169
2170        ohci = fw_ohci(card);
2171
2172        /*
2173         * When the OHCI controller is enabled, the config rom update
2174         * mechanism is a bit tricky, but easy enough to use.  See
2175         * section 5.5.6 in the OHCI specification.
2176         *
2177         * The OHCI controller caches the new config rom address in a
2178         * shadow register (ConfigROMmapNext) and needs a bus reset
2179         * for the changes to take place.  When the bus reset is
2180         * detected, the controller loads the new values for the
2181         * ConfigRomHeader and BusOptions registers from the specified
2182         * config rom and loads ConfigROMmap from the ConfigROMmapNext
2183         * shadow register. All automatically and atomically.
2184         *
2185         * Now, there's a twist to this story.  The automatic load of
2186         * ConfigRomHeader and BusOptions doesn't honor the
2187         * noByteSwapData bit, so with a be32 config rom, the
2188         * controller will load be32 values in to these registers
2189         * during the atomic update, even on litte endian
2190         * architectures.  The workaround we use is to put a 0 in the
2191         * header quadlet; 0 is endian agnostic and means that the
2192         * config rom isn't ready yet.  In the bus reset tasklet we
2193         * then set up the real values for the two registers.
2194         *
2195         * We use ohci->lock to avoid racing with the code that sets
2196         * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2197         */
2198
2199        next_config_rom =
2200                dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2201                                   &next_config_rom_bus, GFP_KERNEL);
2202        if (next_config_rom == NULL)
2203                return -ENOMEM;
2204
2205        spin_lock_irqsave(&ohci->lock, flags);
2206
2207        if (ohci->next_config_rom == NULL) {
2208                ohci->next_config_rom = next_config_rom;
2209                ohci->next_config_rom_bus = next_config_rom_bus;
2210
2211                copy_config_rom(ohci->next_config_rom, config_rom, length);
2212
2213                ohci->next_header = config_rom[0];
2214                ohci->next_config_rom[0] = 0;
2215
2216                reg_write(ohci, OHCI1394_ConfigROMmap,
2217                          ohci->next_config_rom_bus);
2218                ret = 0;
2219        }
2220
2221        spin_unlock_irqrestore(&ohci->lock, flags);
2222
2223        /*
2224         * Now initiate a bus reset to have the changes take
2225         * effect. We clean up the old config rom memory and DMA
2226         * mappings in the bus reset tasklet, since the OHCI
2227         * controller could need to access it before the bus reset
2228         * takes effect.
2229         */
2230        if (ret == 0)
2231                fw_schedule_bus_reset(&ohci->card, true, true);
2232        else
2233                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2234                                  next_config_rom, next_config_rom_bus);
2235
2236        return ret;
2237}
2238
2239static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2240{
2241        struct fw_ohci *ohci = fw_ohci(card);
2242
2243        at_context_transmit(&ohci->at_request_ctx, packet);
2244}
2245
2246static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2247{
2248        struct fw_ohci *ohci = fw_ohci(card);
2249
2250        at_context_transmit(&ohci->at_response_ctx, packet);
2251}
2252
2253static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2254{
2255        struct fw_ohci *ohci = fw_ohci(card);
2256        struct context *ctx = &ohci->at_request_ctx;
2257        struct driver_data *driver_data = packet->driver_data;
2258        int ret = -ENOENT;
2259
2260        tasklet_disable(&ctx->tasklet);
2261
2262        if (packet->ack != 0)
2263                goto out;
2264
2265        if (packet->payload_mapped)
2266                dma_unmap_single(ohci->card.device, packet->payload_bus,
2267                                 packet->payload_length, DMA_TO_DEVICE);
2268
2269        log_ar_at_event('T', packet->speed, packet->header, 0x20);
2270        driver_data->packet = NULL;
2271        packet->ack = RCODE_CANCELLED;
2272        packet->callback(packet, &ohci->card, packet->ack);
2273        ret = 0;
2274 out:
2275        tasklet_enable(&ctx->tasklet);
2276
2277        return ret;
2278}
2279
2280static int ohci_enable_phys_dma(struct fw_card *card,
2281                                int node_id, int generation)
2282{
2283#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2284        return 0;
2285#else
2286        struct fw_ohci *ohci = fw_ohci(card);
2287        unsigned long flags;
2288        int n, ret = 0;
2289
2290        /*
2291         * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2292         * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2293         */
2294
2295        spin_lock_irqsave(&ohci->lock, flags);
2296
2297        if (ohci->generation != generation) {
2298                ret = -ESTALE;
2299                goto out;
2300        }
2301
2302        /*
2303         * Note, if the node ID contains a non-local bus ID, physical DMA is
2304         * enabled for _all_ nodes on remote buses.
2305         */
2306
2307        n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2308        if (n < 32)
2309                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2310        else
2311                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2312
2313        flush_writes(ohci);
2314 out:
2315        spin_unlock_irqrestore(&ohci->lock, flags);
2316
2317        return ret;
2318#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2319}
2320
2321static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2322{
2323        struct fw_ohci *ohci = fw_ohci(card);
2324        unsigned long flags;
2325        u32 value;
2326
2327        switch (csr_offset) {
2328        case CSR_STATE_CLEAR:
2329        case CSR_STATE_SET:
2330                if (ohci->is_root &&
2331                    (reg_read(ohci, OHCI1394_LinkControlSet) &
2332                     OHCI1394_LinkControl_cycleMaster))
2333                        value = CSR_STATE_BIT_CMSTR;
2334                else
2335                        value = 0;
2336                if (ohci->csr_state_setclear_abdicate)
2337                        value |= CSR_STATE_BIT_ABDICATE;
2338
2339                return value;
2340
2341        case CSR_NODE_IDS:
2342                return reg_read(ohci, OHCI1394_NodeID) << 16;
2343
2344        case CSR_CYCLE_TIME:
2345                return get_cycle_time(ohci);
2346
2347        case CSR_BUS_TIME:
2348                /*
2349                 * We might be called just after the cycle timer has wrapped
2350                 * around but just before the cycle64Seconds handler, so we
2351                 * better check here, too, if the bus time needs to be updated.
2352                 */
2353                spin_lock_irqsave(&ohci->lock, flags);
2354                value = update_bus_time(ohci);
2355                spin_unlock_irqrestore(&ohci->lock, flags);
2356                return value;
2357
2358        case CSR_BUSY_TIMEOUT:
2359                value = reg_read(ohci, OHCI1394_ATRetries);
2360                return (value >> 4) & 0x0ffff00f;
2361
2362        case CSR_PRIORITY_BUDGET:
2363                return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2364                        (ohci->pri_req_max << 8);
2365
2366        default:
2367                WARN_ON(1);
2368                return 0;
2369        }
2370}
2371
2372static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2373{
2374        struct fw_ohci *ohci = fw_ohci(card);
2375        unsigned long flags;
2376
2377        switch (csr_offset) {
2378        case CSR_STATE_CLEAR:
2379                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2380                        reg_write(ohci, OHCI1394_LinkControlClear,
2381                                  OHCI1394_LinkControl_cycleMaster);
2382                        flush_writes(ohci);
2383                }
2384                if (value & CSR_STATE_BIT_ABDICATE)
2385                        ohci->csr_state_setclear_abdicate = false;
2386                break;
2387
2388        case CSR_STATE_SET:
2389                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2390                        reg_write(ohci, OHCI1394_LinkControlSet,
2391                                  OHCI1394_LinkControl_cycleMaster);
2392                        flush_writes(ohci);
2393                }
2394                if (value & CSR_STATE_BIT_ABDICATE)
2395                        ohci->csr_state_setclear_abdicate = true;
2396                break;
2397
2398        case CSR_NODE_IDS:
2399                reg_write(ohci, OHCI1394_NodeID, value >> 16);
2400                flush_writes(ohci);
2401                break;
2402
2403        case CSR_CYCLE_TIME:
2404                reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2405                reg_write(ohci, OHCI1394_IntEventSet,
2406                          OHCI1394_cycleInconsistent);
2407                flush_writes(ohci);
2408                break;
2409
2410        case CSR_BUS_TIME:
2411                spin_lock_irqsave(&ohci->lock, flags);
2412                ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2413                spin_unlock_irqrestore(&ohci->lock, flags);
2414                break;
2415
2416        case CSR_BUSY_TIMEOUT:
2417                value = (value & 0xf) | ((value & 0xf) << 4) |
2418                        ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2419                reg_write(ohci, OHCI1394_ATRetries, value);
2420                flush_writes(ohci);
2421                break;
2422
2423        case CSR_PRIORITY_BUDGET:
2424                reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2425                flush_writes(ohci);
2426                break;
2427
2428        default:
2429                WARN_ON(1);
2430                break;
2431        }
2432}
2433
2434static void copy_iso_headers(struct iso_context *ctx, void *p)
2435{
2436        int i = ctx->header_length;
2437
2438        if (i + ctx->base.header_size > PAGE_SIZE)
2439                return;
2440
2441        /*
2442         * The iso header is byteswapped to little endian by
2443         * the controller, but the remaining header quadlets
2444         * are big endian.  We want to present all the headers
2445         * as big endian, so we have to swap the first quadlet.
2446         */
2447        if (ctx->base.header_size > 0)
2448                *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2449        if (ctx->base.header_size > 4)
2450                *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2451        if (ctx->base.header_size > 8)
2452                memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2453        ctx->header_length += ctx->base.header_size;
2454}
2455
2456static int handle_ir_packet_per_buffer(struct context *context,
2457                                       struct descriptor *d,
2458                                       struct descriptor *last)
2459{
2460        struct iso_context *ctx =
2461                container_of(context, struct iso_context, context);
2462        struct descriptor *pd;
2463        __le32 *ir_header;
2464        void *p;
2465
2466        for (pd = d; pd <= last; pd++)
2467                if (pd->transfer_status)
2468                        break;
2469        if (pd > last)
2470                /* Descriptor(s) not done yet, stop iteration */
2471                return 0;
2472
2473        p = last + 1;
2474        copy_iso_headers(ctx, p);
2475
2476        if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2477                ir_header = (__le32 *) p;
2478                ctx->base.callback.sc(&ctx->base,
2479                                      le32_to_cpu(ir_header[0]) & 0xffff,
2480                                      ctx->header_length, ctx->header,
2481                                      ctx->base.callback_data);
2482                ctx->header_length = 0;
2483        }
2484
2485        return 1;
2486}
2487
2488/* d == last because each descriptor block is only a single descriptor. */
2489static int handle_ir_buffer_fill(struct context *context,
2490                                 struct descriptor *d,
2491                                 struct descriptor *last)
2492{
2493        struct iso_context *ctx =
2494                container_of(context, struct iso_context, context);
2495
2496        if (!last->transfer_status)
2497                /* Descriptor(s) not done yet, stop iteration */
2498                return 0;
2499
2500        if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2501                ctx->base.callback.mc(&ctx->base,
2502                                      le32_to_cpu(last->data_address) +
2503                                      le16_to_cpu(last->req_count) -
2504                                      le16_to_cpu(last->res_count),
2505                                      ctx->base.callback_data);
2506
2507        return 1;
2508}
2509
2510static int handle_it_packet(struct context *context,
2511                            struct descriptor *d,
2512                            struct descriptor *last)
2513{
2514        struct iso_context *ctx =
2515                container_of(context, struct iso_context, context);
2516        int i;
2517        struct descriptor *pd;
2518
2519        for (pd = d; pd <= last; pd++)
2520                if (pd->transfer_status)
2521                        break;
2522        if (pd > last)
2523                /* Descriptor(s) not done yet, stop iteration */
2524                return 0;
2525
2526        i = ctx->header_length;
2527        if (i + 4 < PAGE_SIZE) {
2528                /* Present this value as big-endian to match the receive code */
2529                *(__be32 *)(ctx->header + i) = cpu_to_be32(
2530                                ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2531                                le16_to_cpu(pd->res_count));
2532                ctx->header_length += 4;
2533        }
2534        if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2535                ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2536                                      ctx->header_length, ctx->header,
2537                                      ctx->base.callback_data);
2538                ctx->header_length = 0;
2539        }
2540        return 1;
2541}
2542
2543static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2544{
2545        u32 hi = channels >> 32, lo = channels;
2546
2547        reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2548        reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2549        reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2550        reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2551        mmiowb();
2552        ohci->mc_channels = channels;
2553}
2554
2555static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2556                                int type, int channel, size_t header_size)
2557{
2558        struct fw_ohci *ohci = fw_ohci(card);
2559        struct iso_context *uninitialized_var(ctx);
2560        descriptor_callback_t uninitialized_var(callback);
2561        u64 *uninitialized_var(channels);
2562        u32 *uninitialized_var(mask), uninitialized_var(regs);
2563        unsigned long flags;
2564        int index, ret = -EBUSY;
2565
2566        spin_lock_irqsave(&ohci->lock, flags);
2567
2568        switch (type) {
2569        case FW_ISO_CONTEXT_TRANSMIT:
2570                mask     = &ohci->it_context_mask;
2571                callback = handle_it_packet;
2572                index    = ffs(*mask) - 1;
2573                if (index >= 0) {
2574                        *mask &= ~(1 << index);
2575                        regs = OHCI1394_IsoXmitContextBase(index);
2576                        ctx  = &ohci->it_context_list[index];
2577                }
2578                break;
2579
2580        case FW_ISO_CONTEXT_RECEIVE:
2581                channels = &ohci->ir_context_channels;
2582                mask     = &ohci->ir_context_mask;
2583                callback = handle_ir_packet_per_buffer;
2584                index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2585                if (index >= 0) {
2586                        *channels &= ~(1ULL << channel);
2587                        *mask     &= ~(1 << index);
2588                        regs = OHCI1394_IsoRcvContextBase(index);
2589                        ctx  = &ohci->ir_context_list[index];
2590                }
2591                break;
2592
2593        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2594                mask     = &ohci->ir_context_mask;
2595                callback = handle_ir_buffer_fill;
2596                index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2597                if (index >= 0) {
2598                        ohci->mc_allocated = true;
2599                        *mask &= ~(1 << index);
2600                        regs = OHCI1394_IsoRcvContextBase(index);
2601                        ctx  = &ohci->ir_context_list[index];
2602                }
2603                break;
2604
2605        default:
2606                index = -1;
2607                ret = -ENOSYS;
2608        }
2609
2610        spin_unlock_irqrestore(&ohci->lock, flags);
2611
2612        if (index < 0)
2613                return ERR_PTR(ret);
2614
2615        memset(ctx, 0, sizeof(*ctx));
2616        ctx->header_length = 0;
2617        ctx->header = (void *) __get_free_page(GFP_KERNEL);
2618        if (ctx->header == NULL) {
2619                ret = -ENOMEM;
2620                goto out;
2621        }
2622        ret = context_init(&ctx->context, ohci, regs, callback);
2623        if (ret < 0)
2624                goto out_with_header;
2625
2626        if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2627                set_multichannel_mask(ohci, 0);
2628
2629        return &ctx->base;
2630
2631 out_with_header:
2632        free_page((unsigned long)ctx->header);
2633 out:
2634        spin_lock_irqsave(&ohci->lock, flags);
2635
2636        switch (type) {
2637        case FW_ISO_CONTEXT_RECEIVE:
2638                *channels |= 1ULL << channel;
2639                break;
2640
2641        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2642                ohci->mc_allocated = false;
2643                break;
2644        }
2645        *mask |= 1 << index;
2646
2647        spin_unlock_irqrestore(&ohci->lock, flags);
2648
2649        return ERR_PTR(ret);
2650}
2651
2652static int ohci_start_iso(struct fw_iso_context *base,
2653                          s32 cycle, u32 sync, u32 tags)
2654{
2655        struct iso_context *ctx = container_of(base, struct iso_context, base);
2656        struct fw_ohci *ohci = ctx->context.ohci;
2657        u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2658        int index;
2659
2660        switch (ctx->base.type) {
2661        case FW_ISO_CONTEXT_TRANSMIT:
2662                index = ctx - ohci->it_context_list;
2663                match = 0;
2664                if (cycle >= 0)
2665                        match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2666                                (cycle & 0x7fff) << 16;
2667
2668                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2669                reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2670                context_run(&ctx->context, match);
2671                break;
2672
2673        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2674                control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2675                /* fall through */
2676        case FW_ISO_CONTEXT_RECEIVE:
2677                index = ctx - ohci->ir_context_list;
2678                match = (tags << 28) | (sync << 8) | ctx->base.channel;
2679                if (cycle >= 0) {
2680                        match |= (cycle & 0x07fff) << 12;
2681                        control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2682                }
2683
2684                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2685                reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2686                reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2687                context_run(&ctx->context, control);
2688
2689                ctx->sync = sync;
2690                ctx->tags = tags;
2691
2692                break;
2693        }
2694
2695        return 0;
2696}
2697
2698static int ohci_stop_iso(struct fw_iso_context *base)
2699{
2700        struct fw_ohci *ohci = fw_ohci(base->card);
2701        struct iso_context *ctx = container_of(base, struct iso_context, base);
2702        int index;
2703
2704        switch (ctx->base.type) {
2705        case FW_ISO_CONTEXT_TRANSMIT:
2706                index = ctx - ohci->it_context_list;
2707                reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2708                break;
2709
2710        case FW_ISO_CONTEXT_RECEIVE:
2711        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2712                index = ctx - ohci->ir_context_list;
2713                reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2714                break;
2715        }
2716        flush_writes(ohci);
2717        context_stop(&ctx->context);
2718
2719        return 0;
2720}
2721
2722static void ohci_free_iso_context(struct fw_iso_context *base)
2723{
2724        struct fw_ohci *ohci = fw_ohci(base->card);
2725        struct iso_context *ctx = container_of(base, struct iso_context, base);
2726        unsigned long flags;
2727        int index;
2728
2729        ohci_stop_iso(base);
2730        context_release(&ctx->context);
2731        free_page((unsigned long)ctx->header);
2732
2733        spin_lock_irqsave(&ohci->lock, flags);
2734
2735        switch (base->type) {
2736        case FW_ISO_CONTEXT_TRANSMIT:
2737                index = ctx - ohci->it_context_list;
2738                ohci->it_context_mask |= 1 << index;
2739                break;
2740
2741        case FW_ISO_CONTEXT_RECEIVE:
2742                index = ctx - ohci->ir_context_list;
2743                ohci->ir_context_mask |= 1 << index;
2744                ohci->ir_context_channels |= 1ULL << base->channel;
2745                break;
2746
2747        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2748                index = ctx - ohci->ir_context_list;
2749                ohci->ir_context_mask |= 1 << index;
2750                ohci->ir_context_channels |= ohci->mc_channels;
2751                ohci->mc_channels = 0;
2752                ohci->mc_allocated = false;
2753                break;
2754        }
2755
2756        spin_unlock_irqrestore(&ohci->lock, flags);
2757}
2758
2759static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2760{
2761        struct fw_ohci *ohci = fw_ohci(base->card);
2762        unsigned long flags;
2763        int ret;
2764
2765        switch (base->type) {
2766        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2767
2768                spin_lock_irqsave(&ohci->lock, flags);
2769
2770                /* Don't allow multichannel to grab other contexts' channels. */
2771                if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2772                        *channels = ohci->ir_context_channels;
2773                        ret = -EBUSY;
2774                } else {
2775                        set_multichannel_mask(ohci, *channels);
2776                        ret = 0;
2777                }
2778
2779                spin_unlock_irqrestore(&ohci->lock, flags);
2780
2781                break;
2782        default:
2783                ret = -EINVAL;
2784        }
2785
2786        return ret;
2787}
2788
2789#ifdef CONFIG_PM
2790static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2791{
2792        int i;
2793        struct iso_context *ctx;
2794
2795        for (i = 0 ; i < ohci->n_ir ; i++) {
2796                ctx = &ohci->ir_context_list[i];
2797                if (ctx->context.running)
2798                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2799        }
2800
2801        for (i = 0 ; i < ohci->n_it ; i++) {
2802                ctx = &ohci->it_context_list[i];
2803                if (ctx->context.running)
2804                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2805        }
2806}
2807#endif
2808
2809static int queue_iso_transmit(struct iso_context *ctx,
2810                              struct fw_iso_packet *packet,
2811                              struct fw_iso_buffer *buffer,
2812                              unsigned long payload)
2813{
2814        struct descriptor *d, *last, *pd;
2815        struct fw_iso_packet *p;
2816        __le32 *header;
2817        dma_addr_t d_bus, page_bus;
2818        u32 z, header_z, payload_z, irq;
2819        u32 payload_index, payload_end_index, next_page_index;
2820        int page, end_page, i, length, offset;
2821
2822        p = packet;
2823        payload_index = payload;
2824
2825        if (p->skip)
2826                z = 1;
2827        else
2828                z = 2;
2829        if (p->header_length > 0)
2830                z++;
2831
2832        /* Determine the first page the payload isn't contained in. */
2833        end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2834        if (p->payload_length > 0)
2835                payload_z = end_page - (payload_index >> PAGE_SHIFT);
2836        else
2837                payload_z = 0;
2838
2839        z += payload_z;
2840
2841        /* Get header size in number of descriptors. */
2842        header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2843
2844        d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2845        if (d == NULL)
2846                return -ENOMEM;
2847
2848        if (!p->skip) {
2849                d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2850                d[0].req_count = cpu_to_le16(8);
2851                /*
2852                 * Link the skip address to this descriptor itself.  This causes
2853                 * a context to skip a cycle whenever lost cycles or FIFO
2854                 * overruns occur, without dropping the data.  The application
2855                 * should then decide whether this is an error condition or not.
2856                 * FIXME:  Make the context's cycle-lost behaviour configurable?
2857                 */
2858                d[0].branch_address = cpu_to_le32(d_bus | z);
2859
2860                header = (__le32 *) &d[1];
2861                header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2862                                        IT_HEADER_TAG(p->tag) |
2863                                        IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2864                                        IT_HEADER_CHANNEL(ctx->base.channel) |
2865                                        IT_HEADER_SPEED(ctx->base.speed));
2866                header[1] =
2867                        cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2868                                                          p->payload_length));
2869        }
2870
2871        if (p->header_length > 0) {
2872                d[2].req_count    = cpu_to_le16(p->header_length);
2873                d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2874                memcpy(&d[z], p->header, p->header_length);
2875        }
2876
2877        pd = d + z - payload_z;
2878        payload_end_index = payload_index + p->payload_length;
2879        for (i = 0; i < payload_z; i++) {
2880                page               = payload_index >> PAGE_SHIFT;
2881                offset             = payload_index & ~PAGE_MASK;
2882                next_page_index    = (page + 1) << PAGE_SHIFT;
2883                length             =
2884                        min(next_page_index, payload_end_index) - payload_index;
2885                pd[i].req_count    = cpu_to_le16(length);
2886
2887                page_bus = page_private(buffer->pages[page]);
2888                pd[i].data_address = cpu_to_le32(page_bus + offset);
2889
2890                payload_index += length;
2891        }
2892
2893        if (p->interrupt)
2894                irq = DESCRIPTOR_IRQ_ALWAYS;
2895        else
2896                irq = DESCRIPTOR_NO_IRQ;
2897
2898        last = z == 2 ? d : d + z - 1;
2899        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2900                                     DESCRIPTOR_STATUS |
2901                                     DESCRIPTOR_BRANCH_ALWAYS |
2902                                     irq);
2903
2904        context_append(&ctx->context, d, z, header_z);
2905
2906        return 0;
2907}
2908
2909static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2910                                       struct fw_iso_packet *packet,
2911                                       struct fw_iso_buffer *buffer,
2912                                       unsigned long payload)
2913{
2914        struct descriptor *d, *pd;
2915        dma_addr_t d_bus, page_bus;
2916        u32 z, header_z, rest;
2917        int i, j, length;
2918        int page, offset, packet_count, header_size, payload_per_buffer;
2919
2920        /*
2921         * The OHCI controller puts the isochronous header and trailer in the
2922         * buffer, so we need at least 8 bytes.
2923         */
2924        packet_count = packet->header_length / ctx->base.header_size;
2925        header_size  = max(ctx->base.header_size, (size_t)8);
2926
2927        /* Get header size in number of descriptors. */
2928        header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2929        page     = payload >> PAGE_SHIFT;
2930        offset   = payload & ~PAGE_MASK;
2931        payload_per_buffer = packet->payload_length / packet_count;
2932
2933        for (i = 0; i < packet_count; i++) {
2934                /* d points to the header descriptor */
2935                z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2936                d = context_get_descriptors(&ctx->context,
2937                                z + header_z, &d_bus);
2938                if (d == NULL)
2939                        return -ENOMEM;
2940
2941                d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2942                                              DESCRIPTOR_INPUT_MORE);
2943                if (packet->skip && i == 0)
2944                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2945                d->req_count    = cpu_to_le16(header_size);
2946                d->res_count    = d->req_count;
2947                d->transfer_status = 0;
2948                d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2949
2950                rest = payload_per_buffer;
2951                pd = d;
2952                for (j = 1; j < z; j++) {
2953                        pd++;
2954                        pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2955                                                  DESCRIPTOR_INPUT_MORE);
2956
2957                        if (offset + rest < PAGE_SIZE)
2958                                length = rest;
2959                        else
2960                                length = PAGE_SIZE - offset;
2961                        pd->req_count = cpu_to_le16(length);
2962                        pd->res_count = pd->req_count;
2963                        pd->transfer_status = 0;
2964
2965                        page_bus = page_private(buffer->pages[page]);
2966                        pd->data_address = cpu_to_le32(page_bus + offset);
2967
2968                        offset = (offset + length) & ~PAGE_MASK;
2969                        rest -= length;
2970                        if (offset == 0)
2971                                page++;
2972                }
2973                pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2974                                          DESCRIPTOR_INPUT_LAST |
2975                                          DESCRIPTOR_BRANCH_ALWAYS);
2976                if (packet->interrupt && i == packet_count - 1)
2977                        pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2978
2979                context_append(&ctx->context, d, z, header_z);
2980        }
2981
2982        return 0;
2983}
2984
2985static int queue_iso_buffer_fill(struct iso_context *ctx,
2986                                 struct fw_iso_packet *packet,
2987                                 struct fw_iso_buffer *buffer,
2988                                 unsigned long payload)
2989{
2990        struct descriptor *d;
2991        dma_addr_t d_bus, page_bus;
2992        int page, offset, rest, z, i, length;
2993
2994        page   = payload >> PAGE_SHIFT;
2995        offset = payload & ~PAGE_MASK;
2996        rest   = packet->payload_length;
2997
2998        /* We need one descriptor for each page in the buffer. */
2999        z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3000
3001        if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3002                return -EFAULT;
3003
3004        for (i = 0; i < z; i++) {
3005                d = context_get_descriptors(&ctx->context, 1, &d_bus);
3006                if (d == NULL)
3007                        return -ENOMEM;
3008
3009                d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3010                                         DESCRIPTOR_BRANCH_ALWAYS);
3011                if (packet->skip && i == 0)
3012                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3013                if (packet->interrupt && i == z - 1)
3014                        d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3015
3016                if (offset + rest < PAGE_SIZE)
3017                        length = rest;
3018                else
3019                        length = PAGE_SIZE - offset;
3020                d->req_count = cpu_to_le16(length);
3021                d->res_count = d->req_count;
3022                d->transfer_status = 0;
3023
3024                page_bus = page_private(buffer->pages[page]);
3025                d->data_address = cpu_to_le32(page_bus + offset);
3026
3027                rest -= length;
3028                offset = 0;
3029                page++;
3030
3031                context_append(&ctx->context, d, 1, 0);
3032        }
3033
3034        return 0;
3035}
3036
3037static int ohci_queue_iso(struct fw_iso_context *base,
3038                          struct fw_iso_packet *packet,
3039                          struct fw_iso_buffer *buffer,
3040                          unsigned long payload)
3041{
3042        struct iso_context *ctx = container_of(base, struct iso_context, base);
3043        unsigned long flags;
3044        int ret = -ENOSYS;
3045
3046        spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3047        switch (base->type) {
3048        case FW_ISO_CONTEXT_TRANSMIT:
3049                ret = queue_iso_transmit(ctx, packet, buffer, payload);
3050                break;
3051        case FW_ISO_CONTEXT_RECEIVE:
3052                ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3053                break;
3054        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3055                ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3056                break;
3057        }
3058        spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3059
3060        return ret;
3061}
3062
3063static const struct fw_card_driver ohci_driver = {
3064        .enable                 = ohci_enable,
3065        .read_phy_reg           = ohci_read_phy_reg,
3066        .update_phy_reg         = ohci_update_phy_reg,
3067        .set_config_rom         = ohci_set_config_rom,
3068        .send_request           = ohci_send_request,
3069        .send_response          = ohci_send_response,
3070        .cancel_packet          = ohci_cancel_packet,
3071        .enable_phys_dma        = ohci_enable_phys_dma,
3072        .read_csr               = ohci_read_csr,
3073        .write_csr              = ohci_write_csr,
3074
3075        .allocate_iso_context   = ohci_allocate_iso_context,
3076        .free_iso_context       = ohci_free_iso_context,
3077        .set_iso_channels       = ohci_set_iso_channels,
3078        .queue_iso              = ohci_queue_iso,
3079        .start_iso              = ohci_start_iso,
3080        .stop_iso               = ohci_stop_iso,
3081};
3082
3083#ifdef CONFIG_PPC_PMAC
3084static void pmac_ohci_on(struct pci_dev *dev)
3085{
3086        if (machine_is(powermac)) {
3087                struct device_node *ofn = pci_device_to_OF_node(dev);
3088
3089                if (ofn) {
3090                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3091                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3092                }
3093        }
3094}
3095
3096static void pmac_ohci_off(struct pci_dev *dev)
3097{
3098        if (machine_is(powermac)) {
3099                struct device_node *ofn = pci_device_to_OF_node(dev);
3100
3101                if (ofn) {
3102                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3103                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3104                }
3105        }
3106}
3107#else
3108static inline void pmac_ohci_on(struct pci_dev *dev) {}
3109static inline void pmac_ohci_off(struct pci_dev *dev) {}
3110#endif /* CONFIG_PPC_PMAC */
3111
3112static int __devinit pci_probe(struct pci_dev *dev,
3113                               const struct pci_device_id *ent)
3114{
3115        struct fw_ohci *ohci;
3116        u32 bus_options, max_receive, link_speed, version;
3117        u64 guid;
3118        int i, err;
3119        size_t size;
3120
3121        ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3122        if (ohci == NULL) {
3123                err = -ENOMEM;
3124                goto fail;
3125        }
3126
3127        fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3128
3129        pmac_ohci_on(dev);
3130
3131        err = pci_enable_device(dev);
3132        if (err) {
3133                fw_error("Failed to enable OHCI hardware\n");
3134                goto fail_free;
3135        }
3136
3137        pci_set_master(dev);
3138        pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3139        pci_set_drvdata(dev, ohci);
3140
3141        spin_lock_init(&ohci->lock);
3142        mutex_init(&ohci->phy_reg_mutex);
3143
3144        tasklet_init(&ohci->bus_reset_tasklet,
3145                     bus_reset_tasklet, (unsigned long)ohci);
3146
3147        err = pci_request_region(dev, 0, ohci_driver_name);
3148        if (err) {
3149                fw_error("MMIO resource unavailable\n");
3150                goto fail_disable;
3151        }
3152
3153        ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3154        if (ohci->registers == NULL) {
3155                fw_error("Failed to remap registers\n");
3156                err = -ENXIO;
3157                goto fail_iomem;
3158        }
3159
3160        for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3161                if ((ohci_quirks[i].vendor == dev->vendor) &&
3162                    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3163                     ohci_quirks[i].device == dev->device) &&
3164                    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3165                     ohci_quirks[i].revision >= dev->revision)) {
3166                        ohci->quirks = ohci_quirks[i].flags;
3167                        break;
3168                }
3169        if (param_quirks)
3170                ohci->quirks = param_quirks;
3171
3172        /*
3173         * Because dma_alloc_coherent() allocates at least one page,
3174         * we save space by using a common buffer for the AR request/
3175         * response descriptors and the self IDs buffer.
3176         */
3177        BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3178        BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3179        ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3180                                               PAGE_SIZE,
3181                                               &ohci->misc_buffer_bus,
3182                                               GFP_KERNEL);
3183        if (!ohci->misc_buffer) {
3184                err = -ENOMEM;
3185                goto fail_iounmap;
3186        }
3187
3188        err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3189                              OHCI1394_AsReqRcvContextControlSet);
3190        if (err < 0)
3191                goto fail_misc_buf;
3192
3193        err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3194                              OHCI1394_AsRspRcvContextControlSet);
3195        if (err < 0)
3196                goto fail_arreq_ctx;
3197
3198        err = context_init(&ohci->at_request_ctx, ohci,
3199                           OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3200        if (err < 0)
3201                goto fail_arrsp_ctx;
3202
3203        err = context_init(&ohci->at_response_ctx, ohci,
3204                           OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3205        if (err < 0)
3206                goto fail_atreq_ctx;
3207
3208        reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3209        ohci->ir_context_channels = ~0ULL;
3210        ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3211        reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3212        ohci->n_ir = hweight32(ohci->ir_context_mask);
3213        size = sizeof(struct iso_context) * ohci->n_ir;
3214        ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3215
3216        reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3217        ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3218        reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3219        ohci->n_it = hweight32(ohci->it_context_mask);
3220        size = sizeof(struct iso_context) * ohci->n_it;
3221        ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3222
3223        if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3224                err = -ENOMEM;
3225                goto fail_contexts;
3226        }
3227
3228        ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
3229        ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3230
3231        bus_options = reg_read(ohci, OHCI1394_BusOptions);
3232        max_receive = (bus_options >> 12) & 0xf;
3233        link_speed = bus_options & 0x7;
3234        guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3235                reg_read(ohci, OHCI1394_GUIDLo);
3236
3237        err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3238        if (err)
3239                goto fail_contexts;
3240
3241        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3242        fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3243                  "%d IR + %d IT contexts, quirks 0x%x\n",
3244                  dev_name(&dev->dev), version >> 16, version & 0xff,
3245                  ohci->n_ir, ohci->n_it, ohci->quirks);
3246
3247        return 0;
3248
3249 fail_contexts:
3250        kfree(ohci->ir_context_list);
3251        kfree(ohci->it_context_list);
3252        context_release(&ohci->at_response_ctx);
3253 fail_atreq_ctx:
3254        context_release(&ohci->at_request_ctx);
3255 fail_arrsp_ctx:
3256        ar_context_release(&ohci->ar_response_ctx);
3257 fail_arreq_ctx:
3258        ar_context_release(&ohci->ar_request_ctx);
3259 fail_misc_buf:
3260        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3261                          ohci->misc_buffer, ohci->misc_buffer_bus);
3262 fail_iounmap:
3263        pci_iounmap(dev, ohci->registers);
3264 fail_iomem:
3265        pci_release_region(dev, 0);
3266 fail_disable:
3267        pci_disable_device(dev);
3268 fail_free:
3269        kfree(&ohci->card);
3270        pmac_ohci_off(dev);
3271 fail:
3272        if (err == -ENOMEM)
3273                fw_error("Out of memory\n");
3274
3275        return err;
3276}
3277
3278static void pci_remove(struct pci_dev *dev)
3279{
3280        struct fw_ohci *ohci;
3281
3282        ohci = pci_get_drvdata(dev);
3283        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3284        flush_writes(ohci);
3285        fw_core_remove_card(&ohci->card);
3286
3287        /*
3288         * FIXME: Fail all pending packets here, now that the upper
3289         * layers can't queue any more.
3290         */
3291
3292        software_reset(ohci);
3293        free_irq(dev->irq, ohci);
3294
3295        if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3296                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3297                                  ohci->next_config_rom, ohci->next_config_rom_bus);
3298        if (ohci->config_rom)
3299                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3300                                  ohci->config_rom, ohci->config_rom_bus);
3301        ar_context_release(&ohci->ar_request_ctx);
3302        ar_context_release(&ohci->ar_response_ctx);
3303        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3304                          ohci->misc_buffer, ohci->misc_buffer_bus);
3305        context_release(&ohci->at_request_ctx);
3306        context_release(&ohci->at_response_ctx);
3307        kfree(ohci->it_context_list);
3308        kfree(ohci->ir_context_list);
3309        pci_disable_msi(dev);
3310        pci_iounmap(dev, ohci->registers);
3311        pci_release_region(dev, 0);
3312        pci_disable_device(dev);
3313        kfree(&ohci->card);
3314        pmac_ohci_off(dev);
3315
3316        fw_notify("Removed fw-ohci device.\n");
3317}
3318
3319#ifdef CONFIG_PM
3320static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3321{
3322        struct fw_ohci *ohci = pci_get_drvdata(dev);
3323        int err;
3324
3325        software_reset(ohci);
3326        free_irq(dev->irq, ohci);
3327        pci_disable_msi(dev);
3328        err = pci_save_state(dev);
3329        if (err) {
3330                fw_error("pci_save_state failed\n");
3331                return err;
3332        }
3333        err = pci_set_power_state(dev, pci_choose_state(dev, state));
3334        if (err)
3335                fw_error("pci_set_power_state failed with %d\n", err);
3336        pmac_ohci_off(dev);
3337
3338        return 0;
3339}
3340
3341static int pci_resume(struct pci_dev *dev)
3342{
3343        struct fw_ohci *ohci = pci_get_drvdata(dev);
3344        int err;
3345
3346        pmac_ohci_on(dev);
3347        pci_set_power_state(dev, PCI_D0);
3348        pci_restore_state(dev);
3349        err = pci_enable_device(dev);
3350        if (err) {
3351                fw_error("pci_enable_device failed\n");
3352                return err;
3353        }
3354
3355        /* Some systems don't setup GUID register on resume from ram  */
3356        if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3357                                        !reg_read(ohci, OHCI1394_GUIDHi)) {
3358                reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3359                reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3360        }
3361
3362        err = ohci_enable(&ohci->card, NULL, 0);
3363        if (err)
3364                return err;
3365
3366        ohci_resume_iso_dma(ohci);
3367
3368        return 0;
3369}
3370#endif
3371
3372static const struct pci_device_id pci_table[] = {
3373        { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3374        { }
3375};
3376
3377MODULE_DEVICE_TABLE(pci, pci_table);
3378
3379static struct pci_driver fw_ohci_pci_driver = {
3380        .name           = ohci_driver_name,
3381        .id_table       = pci_table,
3382        .probe          = pci_probe,
3383        .remove         = pci_remove,
3384#ifdef CONFIG_PM
3385        .resume         = pci_resume,
3386        .suspend        = pci_suspend,
3387#endif
3388};
3389
3390MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3391MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3392MODULE_LICENSE("GPL");
3393
3394/* Provide a module alias so root-on-sbp2 initrds don't break. */
3395#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3396MODULE_ALIAS("ohci1394");
3397#endif
3398
3399static int __init fw_ohci_init(void)
3400{
3401        return pci_register_driver(&fw_ohci_pci_driver);
3402}
3403
3404static void __exit fw_ohci_cleanup(void)
3405{
3406        pci_unregister_driver(&fw_ohci_pci_driver);
3407}
3408
3409module_init(fw_ohci_init);
3410module_exit(fw_ohci_cleanup);
3411