linux/drivers/firewire/sbp2.c
<<
>>
Prefs
   1/*
   2 * SBP2 driver (SCSI over IEEE1394)
   3 *
   4 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22 * The basic structure of this driver is based on the old storage driver,
  23 * drivers/ieee1394/sbp2.c, originally written by
  24 *     James Goodwin <jamesg@filanet.com>
  25 * with later contributions and ongoing maintenance from
  26 *     Ben Collins <bcollins@debian.org>,
  27 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
  28 * and many others.
  29 */
  30
  31#include <linux/blkdev.h>
  32#include <linux/bug.h>
  33#include <linux/completion.h>
  34#include <linux/delay.h>
  35#include <linux/device.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/firewire.h>
  38#include <linux/firewire-constants.h>
  39#include <linux/init.h>
  40#include <linux/jiffies.h>
  41#include <linux/kernel.h>
  42#include <linux/kref.h>
  43#include <linux/list.h>
  44#include <linux/mod_devicetable.h>
  45#include <linux/module.h>
  46#include <linux/moduleparam.h>
  47#include <linux/scatterlist.h>
  48#include <linux/slab.h>
  49#include <linux/spinlock.h>
  50#include <linux/string.h>
  51#include <linux/stringify.h>
  52#include <linux/workqueue.h>
  53
  54#include <asm/byteorder.h>
  55#include <asm/system.h>
  56
  57#include <scsi/scsi.h>
  58#include <scsi/scsi_cmnd.h>
  59#include <scsi/scsi_device.h>
  60#include <scsi/scsi_host.h>
  61
  62/*
  63 * So far only bridges from Oxford Semiconductor are known to support
  64 * concurrent logins. Depending on firmware, four or two concurrent logins
  65 * are possible on OXFW911 and newer Oxsemi bridges.
  66 *
  67 * Concurrent logins are useful together with cluster filesystems.
  68 */
  69static int sbp2_param_exclusive_login = 1;
  70module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
  71MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
  72                 "(default = Y, use N for concurrent initiators)");
  73
  74/*
  75 * Flags for firmware oddities
  76 *
  77 * - 128kB max transfer
  78 *   Limit transfer size. Necessary for some old bridges.
  79 *
  80 * - 36 byte inquiry
  81 *   When scsi_mod probes the device, let the inquiry command look like that
  82 *   from MS Windows.
  83 *
  84 * - skip mode page 8
  85 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
  86 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
  87 *
  88 * - fix capacity
  89 *   Tell sd_mod to correct the last sector number reported by read_capacity.
  90 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
  91 *   Don't use this with devices which don't have this bug.
  92 *
  93 * - delay inquiry
  94 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
  95 *
  96 * - power condition
  97 *   Set the power condition field in the START STOP UNIT commands sent by
  98 *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
  99 *   Some disks need this to spin down or to resume properly.
 100 *
 101 * - override internal blacklist
 102 *   Instead of adding to the built-in blacklist, use only the workarounds
 103 *   specified in the module load parameter.
 104 *   Useful if a blacklist entry interfered with a non-broken device.
 105 */
 106#define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
 107#define SBP2_WORKAROUND_INQUIRY_36      0x2
 108#define SBP2_WORKAROUND_MODE_SENSE_8    0x4
 109#define SBP2_WORKAROUND_FIX_CAPACITY    0x8
 110#define SBP2_WORKAROUND_DELAY_INQUIRY   0x10
 111#define SBP2_INQUIRY_DELAY              12
 112#define SBP2_WORKAROUND_POWER_CONDITION 0x20
 113#define SBP2_WORKAROUND_OVERRIDE        0x100
 114
 115static int sbp2_param_workarounds;
 116module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
 117MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
 118        ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
 119        ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
 120        ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
 121        ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
 122        ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
 123        ", set power condition in start stop unit = "
 124                                  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
 125        ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
 126        ", or a combination)");
 127
 128/* I don't know why the SCSI stack doesn't define something like this... */
 129typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
 130
 131static const char sbp2_driver_name[] = "sbp2";
 132
 133/*
 134 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 135 * and one struct scsi_device per sbp2_logical_unit.
 136 */
 137struct sbp2_logical_unit {
 138        struct sbp2_target *tgt;
 139        struct list_head link;
 140        struct fw_address_handler address_handler;
 141        struct list_head orb_list;
 142
 143        u64 command_block_agent_address;
 144        u16 lun;
 145        int login_id;
 146
 147        /*
 148         * The generation is updated once we've logged in or reconnected
 149         * to the logical unit.  Thus, I/O to the device will automatically
 150         * fail and get retried if it happens in a window where the device
 151         * is not ready, e.g. after a bus reset but before we reconnect.
 152         */
 153        int generation;
 154        int retries;
 155        struct delayed_work work;
 156        bool has_sdev;
 157        bool blocked;
 158};
 159
 160/*
 161 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 162 * and one struct Scsi_Host per sbp2_target.
 163 */
 164struct sbp2_target {
 165        struct kref kref;
 166        struct fw_unit *unit;
 167        const char *bus_id;
 168        struct list_head lu_list;
 169
 170        u64 management_agent_address;
 171        u64 guid;
 172        int directory_id;
 173        int node_id;
 174        int address_high;
 175        unsigned int workarounds;
 176        unsigned int mgt_orb_timeout;
 177        unsigned int max_payload;
 178
 179        int dont_block; /* counter for each logical unit */
 180        int blocked;    /* ditto */
 181};
 182
 183static struct fw_device *target_device(struct sbp2_target *tgt)
 184{
 185        return fw_parent_device(tgt->unit);
 186}
 187
 188/* Impossible login_id, to detect logout attempt before successful login */
 189#define INVALID_LOGIN_ID 0x10000
 190
 191#define SBP2_ORB_TIMEOUT                2000U           /* Timeout in ms */
 192#define SBP2_ORB_NULL                   0x80000000
 193#define SBP2_RETRY_LIMIT                0xf             /* 15 retries */
 194#define SBP2_CYCLE_LIMIT                (0xc8 << 12)    /* 200 125us cycles */
 195
 196/*
 197 * There is no transport protocol limit to the CDB length,  but we implement
 198 * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
 199 */
 200#define SBP2_MAX_CDB_SIZE               16
 201
 202/*
 203 * The default maximum s/g segment size of a FireWire controller is
 204 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
 205 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
 206 */
 207#define SBP2_MAX_SEG_SIZE               0xfffc
 208
 209/* Unit directory keys */
 210#define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
 211#define SBP2_CSR_FIRMWARE_REVISION      0x3c
 212#define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
 213#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
 214
 215/* Management orb opcodes */
 216#define SBP2_LOGIN_REQUEST              0x0
 217#define SBP2_QUERY_LOGINS_REQUEST       0x1
 218#define SBP2_RECONNECT_REQUEST          0x3
 219#define SBP2_SET_PASSWORD_REQUEST       0x4
 220#define SBP2_LOGOUT_REQUEST             0x7
 221#define SBP2_ABORT_TASK_REQUEST         0xb
 222#define SBP2_ABORT_TASK_SET             0xc
 223#define SBP2_LOGICAL_UNIT_RESET         0xe
 224#define SBP2_TARGET_RESET_REQUEST       0xf
 225
 226/* Offsets for command block agent registers */
 227#define SBP2_AGENT_STATE                0x00
 228#define SBP2_AGENT_RESET                0x04
 229#define SBP2_ORB_POINTER                0x08
 230#define SBP2_DOORBELL                   0x10
 231#define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
 232
 233/* Status write response codes */
 234#define SBP2_STATUS_REQUEST_COMPLETE    0x0
 235#define SBP2_STATUS_TRANSPORT_FAILURE   0x1
 236#define SBP2_STATUS_ILLEGAL_REQUEST     0x2
 237#define SBP2_STATUS_VENDOR_DEPENDENT    0x3
 238
 239#define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
 240#define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
 241#define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
 242#define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
 243#define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
 244#define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
 245#define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
 246#define STATUS_GET_DATA(v)              ((v).data)
 247
 248struct sbp2_status {
 249        u32 status;
 250        u32 orb_low;
 251        u8 data[24];
 252};
 253
 254struct sbp2_pointer {
 255        __be32 high;
 256        __be32 low;
 257};
 258
 259struct sbp2_orb {
 260        struct fw_transaction t;
 261        struct kref kref;
 262        dma_addr_t request_bus;
 263        int rcode;
 264        struct sbp2_pointer pointer;
 265        void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
 266        struct list_head link;
 267};
 268
 269#define MANAGEMENT_ORB_LUN(v)                   ((v))
 270#define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
 271#define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
 272#define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
 273#define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
 274#define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
 275
 276#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
 277#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
 278
 279struct sbp2_management_orb {
 280        struct sbp2_orb base;
 281        struct {
 282                struct sbp2_pointer password;
 283                struct sbp2_pointer response;
 284                __be32 misc;
 285                __be32 length;
 286                struct sbp2_pointer status_fifo;
 287        } request;
 288        __be32 response[4];
 289        dma_addr_t response_bus;
 290        struct completion done;
 291        struct sbp2_status status;
 292};
 293
 294struct sbp2_login_response {
 295        __be32 misc;
 296        struct sbp2_pointer command_block_agent;
 297        __be32 reconnect_hold;
 298};
 299#define COMMAND_ORB_DATA_SIZE(v)        ((v))
 300#define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
 301#define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
 302#define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
 303#define COMMAND_ORB_SPEED(v)            ((v) << 24)
 304#define COMMAND_ORB_DIRECTION           ((1) << 27)
 305#define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
 306#define COMMAND_ORB_NOTIFY              ((1) << 31)
 307
 308struct sbp2_command_orb {
 309        struct sbp2_orb base;
 310        struct {
 311                struct sbp2_pointer next;
 312                struct sbp2_pointer data_descriptor;
 313                __be32 misc;
 314                u8 command_block[SBP2_MAX_CDB_SIZE];
 315        } request;
 316        struct scsi_cmnd *cmd;
 317        scsi_done_fn_t done;
 318        struct sbp2_logical_unit *lu;
 319
 320        struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
 321        dma_addr_t page_table_bus;
 322};
 323
 324#define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
 325#define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
 326
 327/*
 328 * List of devices with known bugs.
 329 *
 330 * The firmware_revision field, masked with 0xffff00, is the best
 331 * indicator for the type of bridge chip of a device.  It yields a few
 332 * false positives but this did not break correctly behaving devices
 333 * so far.
 334 */
 335static const struct {
 336        u32 firmware_revision;
 337        u32 model;
 338        unsigned int workarounds;
 339} sbp2_workarounds_table[] = {
 340        /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
 341                .firmware_revision      = 0x002800,
 342                .model                  = 0x001010,
 343                .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
 344                                          SBP2_WORKAROUND_MODE_SENSE_8 |
 345                                          SBP2_WORKAROUND_POWER_CONDITION,
 346        },
 347        /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
 348                .firmware_revision      = 0x002800,
 349                .model                  = 0x000000,
 350                .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
 351        },
 352        /* Initio bridges, actually only needed for some older ones */ {
 353                .firmware_revision      = 0x000200,
 354                .model                  = SBP2_ROM_VALUE_WILDCARD,
 355                .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
 356        },
 357        /* PL-3507 bridge with Prolific firmware */ {
 358                .firmware_revision      = 0x012800,
 359                .model                  = SBP2_ROM_VALUE_WILDCARD,
 360                .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
 361        },
 362        /* Symbios bridge */ {
 363                .firmware_revision      = 0xa0b800,
 364                .model                  = SBP2_ROM_VALUE_WILDCARD,
 365                .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
 366        },
 367        /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
 368                .firmware_revision      = 0x002600,
 369                .model                  = SBP2_ROM_VALUE_WILDCARD,
 370                .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
 371        },
 372        /*
 373         * iPod 2nd generation: needs 128k max transfer size workaround
 374         * iPod 3rd generation: needs fix capacity workaround
 375         */
 376        {
 377                .firmware_revision      = 0x0a2700,
 378                .model                  = 0x000000,
 379                .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS |
 380                                          SBP2_WORKAROUND_FIX_CAPACITY,
 381        },
 382        /* iPod 4th generation */ {
 383                .firmware_revision      = 0x0a2700,
 384                .model                  = 0x000021,
 385                .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
 386        },
 387        /* iPod mini */ {
 388                .firmware_revision      = 0x0a2700,
 389                .model                  = 0x000022,
 390                .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
 391        },
 392        /* iPod mini */ {
 393                .firmware_revision      = 0x0a2700,
 394                .model                  = 0x000023,
 395                .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
 396        },
 397        /* iPod Photo */ {
 398                .firmware_revision      = 0x0a2700,
 399                .model                  = 0x00007e,
 400                .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
 401        }
 402};
 403
 404static void free_orb(struct kref *kref)
 405{
 406        struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
 407
 408        kfree(orb);
 409}
 410
 411static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
 412                              int tcode, int destination, int source,
 413                              int generation, unsigned long long offset,
 414                              void *payload, size_t length, void *callback_data)
 415{
 416        struct sbp2_logical_unit *lu = callback_data;
 417        struct sbp2_orb *orb;
 418        struct sbp2_status status;
 419        unsigned long flags;
 420
 421        if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
 422            length < 8 || length > sizeof(status)) {
 423                fw_send_response(card, request, RCODE_TYPE_ERROR);
 424                return;
 425        }
 426
 427        status.status  = be32_to_cpup(payload);
 428        status.orb_low = be32_to_cpup(payload + 4);
 429        memset(status.data, 0, sizeof(status.data));
 430        if (length > 8)
 431                memcpy(status.data, payload + 8, length - 8);
 432
 433        if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
 434                fw_notify("non-orb related status write, not handled\n");
 435                fw_send_response(card, request, RCODE_COMPLETE);
 436                return;
 437        }
 438
 439        /* Lookup the orb corresponding to this status write. */
 440        spin_lock_irqsave(&card->lock, flags);
 441        list_for_each_entry(orb, &lu->orb_list, link) {
 442                if (STATUS_GET_ORB_HIGH(status) == 0 &&
 443                    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
 444                        orb->rcode = RCODE_COMPLETE;
 445                        list_del(&orb->link);
 446                        break;
 447                }
 448        }
 449        spin_unlock_irqrestore(&card->lock, flags);
 450
 451        if (&orb->link != &lu->orb_list) {
 452                orb->callback(orb, &status);
 453                kref_put(&orb->kref, free_orb); /* orb callback reference */
 454        } else {
 455                fw_error("status write for unknown orb\n");
 456        }
 457
 458        fw_send_response(card, request, RCODE_COMPLETE);
 459}
 460
 461static void complete_transaction(struct fw_card *card, int rcode,
 462                                 void *payload, size_t length, void *data)
 463{
 464        struct sbp2_orb *orb = data;
 465        unsigned long flags;
 466
 467        /*
 468         * This is a little tricky.  We can get the status write for
 469         * the orb before we get this callback.  The status write
 470         * handler above will assume the orb pointer transaction was
 471         * successful and set the rcode to RCODE_COMPLETE for the orb.
 472         * So this callback only sets the rcode if it hasn't already
 473         * been set and only does the cleanup if the transaction
 474         * failed and we didn't already get a status write.
 475         *
 476         * Here we treat RCODE_CANCELLED like RCODE_COMPLETE because some
 477         * OXUF936QSE firmwares occasionally respond after Split_Timeout and
 478         * complete the ORB just fine.  Note, we also get RCODE_CANCELLED
 479         * from sbp2_cancel_orbs() if fw_cancel_transaction() == 0.
 480         */
 481        spin_lock_irqsave(&card->lock, flags);
 482
 483        if (orb->rcode == -1)
 484                orb->rcode = rcode;
 485
 486        if (orb->rcode != RCODE_COMPLETE && orb->rcode != RCODE_CANCELLED) {
 487                list_del(&orb->link);
 488                spin_unlock_irqrestore(&card->lock, flags);
 489
 490                orb->callback(orb, NULL);
 491                kref_put(&orb->kref, free_orb); /* orb callback reference */
 492        } else {
 493                spin_unlock_irqrestore(&card->lock, flags);
 494        }
 495
 496        kref_put(&orb->kref, free_orb); /* transaction callback reference */
 497}
 498
 499static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
 500                          int node_id, int generation, u64 offset)
 501{
 502        struct fw_device *device = target_device(lu->tgt);
 503        unsigned long flags;
 504
 505        orb->pointer.high = 0;
 506        orb->pointer.low = cpu_to_be32(orb->request_bus);
 507
 508        spin_lock_irqsave(&device->card->lock, flags);
 509        list_add_tail(&orb->link, &lu->orb_list);
 510        spin_unlock_irqrestore(&device->card->lock, flags);
 511
 512        kref_get(&orb->kref); /* transaction callback reference */
 513        kref_get(&orb->kref); /* orb callback reference */
 514
 515        fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
 516                        node_id, generation, device->max_speed, offset,
 517                        &orb->pointer, 8, complete_transaction, orb);
 518}
 519
 520static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
 521{
 522        struct fw_device *device = target_device(lu->tgt);
 523        struct sbp2_orb *orb, *next;
 524        struct list_head list;
 525        unsigned long flags;
 526        int retval = -ENOENT;
 527
 528        INIT_LIST_HEAD(&list);
 529        spin_lock_irqsave(&device->card->lock, flags);
 530        list_splice_init(&lu->orb_list, &list);
 531        spin_unlock_irqrestore(&device->card->lock, flags);
 532
 533        list_for_each_entry_safe(orb, next, &list, link) {
 534                retval = 0;
 535                fw_cancel_transaction(device->card, &orb->t);
 536
 537                orb->rcode = RCODE_CANCELLED;
 538                orb->callback(orb, NULL);
 539                kref_put(&orb->kref, free_orb); /* orb callback reference */
 540        }
 541
 542        return retval;
 543}
 544
 545static void complete_management_orb(struct sbp2_orb *base_orb,
 546                                    struct sbp2_status *status)
 547{
 548        struct sbp2_management_orb *orb =
 549                container_of(base_orb, struct sbp2_management_orb, base);
 550
 551        if (status)
 552                memcpy(&orb->status, status, sizeof(*status));
 553        complete(&orb->done);
 554}
 555
 556static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
 557                                    int generation, int function,
 558                                    int lun_or_login_id, void *response)
 559{
 560        struct fw_device *device = target_device(lu->tgt);
 561        struct sbp2_management_orb *orb;
 562        unsigned int timeout;
 563        int retval = -ENOMEM;
 564
 565        if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
 566                return 0;
 567
 568        orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
 569        if (orb == NULL)
 570                return -ENOMEM;
 571
 572        kref_init(&orb->base.kref);
 573        orb->response_bus =
 574                dma_map_single(device->card->device, &orb->response,
 575                               sizeof(orb->response), DMA_FROM_DEVICE);
 576        if (dma_mapping_error(device->card->device, orb->response_bus))
 577                goto fail_mapping_response;
 578
 579        orb->request.response.high = 0;
 580        orb->request.response.low  = cpu_to_be32(orb->response_bus);
 581
 582        orb->request.misc = cpu_to_be32(
 583                MANAGEMENT_ORB_NOTIFY |
 584                MANAGEMENT_ORB_FUNCTION(function) |
 585                MANAGEMENT_ORB_LUN(lun_or_login_id));
 586        orb->request.length = cpu_to_be32(
 587                MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
 588
 589        orb->request.status_fifo.high =
 590                cpu_to_be32(lu->address_handler.offset >> 32);
 591        orb->request.status_fifo.low  =
 592                cpu_to_be32(lu->address_handler.offset);
 593
 594        if (function == SBP2_LOGIN_REQUEST) {
 595                /* Ask for 2^2 == 4 seconds reconnect grace period */
 596                orb->request.misc |= cpu_to_be32(
 597                        MANAGEMENT_ORB_RECONNECT(2) |
 598                        MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
 599                timeout = lu->tgt->mgt_orb_timeout;
 600        } else {
 601                timeout = SBP2_ORB_TIMEOUT;
 602        }
 603
 604        init_completion(&orb->done);
 605        orb->base.callback = complete_management_orb;
 606
 607        orb->base.request_bus =
 608                dma_map_single(device->card->device, &orb->request,
 609                               sizeof(orb->request), DMA_TO_DEVICE);
 610        if (dma_mapping_error(device->card->device, orb->base.request_bus))
 611                goto fail_mapping_request;
 612
 613        sbp2_send_orb(&orb->base, lu, node_id, generation,
 614                      lu->tgt->management_agent_address);
 615
 616        wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
 617
 618        retval = -EIO;
 619        if (sbp2_cancel_orbs(lu) == 0) {
 620                fw_error("%s: orb reply timed out, rcode=0x%02x\n",
 621                         lu->tgt->bus_id, orb->base.rcode);
 622                goto out;
 623        }
 624
 625        if (orb->base.rcode != RCODE_COMPLETE) {
 626                fw_error("%s: management write failed, rcode 0x%02x\n",
 627                         lu->tgt->bus_id, orb->base.rcode);
 628                goto out;
 629        }
 630
 631        if (STATUS_GET_RESPONSE(orb->status) != 0 ||
 632            STATUS_GET_SBP_STATUS(orb->status) != 0) {
 633                fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
 634                         STATUS_GET_RESPONSE(orb->status),
 635                         STATUS_GET_SBP_STATUS(orb->status));
 636                goto out;
 637        }
 638
 639        retval = 0;
 640 out:
 641        dma_unmap_single(device->card->device, orb->base.request_bus,
 642                         sizeof(orb->request), DMA_TO_DEVICE);
 643 fail_mapping_request:
 644        dma_unmap_single(device->card->device, orb->response_bus,
 645                         sizeof(orb->response), DMA_FROM_DEVICE);
 646 fail_mapping_response:
 647        if (response)
 648                memcpy(response, orb->response, sizeof(orb->response));
 649        kref_put(&orb->base.kref, free_orb);
 650
 651        return retval;
 652}
 653
 654static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
 655{
 656        struct fw_device *device = target_device(lu->tgt);
 657        __be32 d = 0;
 658
 659        fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 660                           lu->tgt->node_id, lu->generation, device->max_speed,
 661                           lu->command_block_agent_address + SBP2_AGENT_RESET,
 662                           &d, 4);
 663}
 664
 665static void complete_agent_reset_write_no_wait(struct fw_card *card,
 666                int rcode, void *payload, size_t length, void *data)
 667{
 668        kfree(data);
 669}
 670
 671static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
 672{
 673        struct fw_device *device = target_device(lu->tgt);
 674        struct fw_transaction *t;
 675        static __be32 d;
 676
 677        t = kmalloc(sizeof(*t), GFP_ATOMIC);
 678        if (t == NULL)
 679                return;
 680
 681        fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
 682                        lu->tgt->node_id, lu->generation, device->max_speed,
 683                        lu->command_block_agent_address + SBP2_AGENT_RESET,
 684                        &d, 4, complete_agent_reset_write_no_wait, t);
 685}
 686
 687static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
 688{
 689        /*
 690         * We may access dont_block without taking card->lock here:
 691         * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
 692         * are currently serialized against each other.
 693         * And a wrong result in sbp2_conditionally_block()'s access of
 694         * dont_block is rather harmless, it simply misses its first chance.
 695         */
 696        --lu->tgt->dont_block;
 697}
 698
 699/*
 700 * Blocks lu->tgt if all of the following conditions are met:
 701 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 702 *     logical units have been finished (indicated by dont_block == 0).
 703 *   - lu->generation is stale.
 704 *
 705 * Note, scsi_block_requests() must be called while holding card->lock,
 706 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 707 * unblock the target.
 708 */
 709static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
 710{
 711        struct sbp2_target *tgt = lu->tgt;
 712        struct fw_card *card = target_device(tgt)->card;
 713        struct Scsi_Host *shost =
 714                container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 715        unsigned long flags;
 716
 717        spin_lock_irqsave(&card->lock, flags);
 718        if (!tgt->dont_block && !lu->blocked &&
 719            lu->generation != card->generation) {
 720                lu->blocked = true;
 721                if (++tgt->blocked == 1)
 722                        scsi_block_requests(shost);
 723        }
 724        spin_unlock_irqrestore(&card->lock, flags);
 725}
 726
 727/*
 728 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 729 * Note, it is harmless to run scsi_unblock_requests() outside the
 730 * card->lock protected section.  On the other hand, running it inside
 731 * the section might clash with shost->host_lock.
 732 */
 733static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
 734{
 735        struct sbp2_target *tgt = lu->tgt;
 736        struct fw_card *card = target_device(tgt)->card;
 737        struct Scsi_Host *shost =
 738                container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 739        unsigned long flags;
 740        bool unblock = false;
 741
 742        spin_lock_irqsave(&card->lock, flags);
 743        if (lu->blocked && lu->generation == card->generation) {
 744                lu->blocked = false;
 745                unblock = --tgt->blocked == 0;
 746        }
 747        spin_unlock_irqrestore(&card->lock, flags);
 748
 749        if (unblock)
 750                scsi_unblock_requests(shost);
 751}
 752
 753/*
 754 * Prevents future blocking of tgt and unblocks it.
 755 * Note, it is harmless to run scsi_unblock_requests() outside the
 756 * card->lock protected section.  On the other hand, running it inside
 757 * the section might clash with shost->host_lock.
 758 */
 759static void sbp2_unblock(struct sbp2_target *tgt)
 760{
 761        struct fw_card *card = target_device(tgt)->card;
 762        struct Scsi_Host *shost =
 763                container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 764        unsigned long flags;
 765
 766        spin_lock_irqsave(&card->lock, flags);
 767        ++tgt->dont_block;
 768        spin_unlock_irqrestore(&card->lock, flags);
 769
 770        scsi_unblock_requests(shost);
 771}
 772
 773static int sbp2_lun2int(u16 lun)
 774{
 775        struct scsi_lun eight_bytes_lun;
 776
 777        memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
 778        eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
 779        eight_bytes_lun.scsi_lun[1] = lun & 0xff;
 780
 781        return scsilun_to_int(&eight_bytes_lun);
 782}
 783
 784static void sbp2_release_target(struct kref *kref)
 785{
 786        struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
 787        struct sbp2_logical_unit *lu, *next;
 788        struct Scsi_Host *shost =
 789                container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 790        struct scsi_device *sdev;
 791        struct fw_device *device = target_device(tgt);
 792
 793        /* prevent deadlocks */
 794        sbp2_unblock(tgt);
 795
 796        list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
 797                sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
 798                if (sdev) {
 799                        scsi_remove_device(sdev);
 800                        scsi_device_put(sdev);
 801                }
 802                if (lu->login_id != INVALID_LOGIN_ID) {
 803                        int generation, node_id;
 804                        /*
 805                         * tgt->node_id may be obsolete here if we failed
 806                         * during initial login or after a bus reset where
 807                         * the topology changed.
 808                         */
 809                        generation = device->generation;
 810                        smp_rmb(); /* node_id vs. generation */
 811                        node_id    = device->node_id;
 812                        sbp2_send_management_orb(lu, node_id, generation,
 813                                                 SBP2_LOGOUT_REQUEST,
 814                                                 lu->login_id, NULL);
 815                }
 816                fw_core_remove_address_handler(&lu->address_handler);
 817                list_del(&lu->link);
 818                kfree(lu);
 819        }
 820        scsi_remove_host(shost);
 821        fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
 822
 823        fw_unit_put(tgt->unit);
 824        scsi_host_put(shost);
 825        fw_device_put(device);
 826}
 827
 828static void sbp2_target_get(struct sbp2_target *tgt)
 829{
 830        kref_get(&tgt->kref);
 831}
 832
 833static void sbp2_target_put(struct sbp2_target *tgt)
 834{
 835        kref_put(&tgt->kref, sbp2_release_target);
 836}
 837
 838static struct workqueue_struct *sbp2_wq;
 839
 840/*
 841 * Always get the target's kref when scheduling work on one its units.
 842 * Each workqueue job is responsible to call sbp2_target_put() upon return.
 843 */
 844static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
 845{
 846        sbp2_target_get(lu->tgt);
 847        if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
 848                sbp2_target_put(lu->tgt);
 849}
 850
 851/*
 852 * Write retransmit retry values into the BUSY_TIMEOUT register.
 853 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
 854 *   default retry_limit value is 0 (i.e. never retry transmission). We write a
 855 *   saner value after logging into the device.
 856 * - The dual-phase retry protocol is optional to implement, and if not
 857 *   supported, writes to the dual-phase portion of the register will be
 858 *   ignored. We try to write the original 1394-1995 default here.
 859 * - In the case of devices that are also SBP-3-compliant, all writes are
 860 *   ignored, as the register is read-only, but contains single-phase retry of
 861 *   15, which is what we're trying to set for all SBP-2 device anyway, so this
 862 *   write attempt is safe and yields more consistent behavior for all devices.
 863 *
 864 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
 865 * and section 6.4 of the SBP-3 spec for further details.
 866 */
 867static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
 868{
 869        struct fw_device *device = target_device(lu->tgt);
 870        __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
 871
 872        fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 873                           lu->tgt->node_id, lu->generation, device->max_speed,
 874                           CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
 875}
 876
 877static void sbp2_reconnect(struct work_struct *work);
 878
 879static void sbp2_login(struct work_struct *work)
 880{
 881        struct sbp2_logical_unit *lu =
 882                container_of(work, struct sbp2_logical_unit, work.work);
 883        struct sbp2_target *tgt = lu->tgt;
 884        struct fw_device *device = target_device(tgt);
 885        struct Scsi_Host *shost;
 886        struct scsi_device *sdev;
 887        struct sbp2_login_response response;
 888        int generation, node_id, local_node_id;
 889
 890        if (fw_device_is_shutdown(device))
 891                goto out;
 892
 893        generation    = device->generation;
 894        smp_rmb();    /* node IDs must not be older than generation */
 895        node_id       = device->node_id;
 896        local_node_id = device->card->node_id;
 897
 898        /* If this is a re-login attempt, log out, or we might be rejected. */
 899        if (lu->has_sdev)
 900                sbp2_send_management_orb(lu, device->node_id, generation,
 901                                SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 902
 903        if (sbp2_send_management_orb(lu, node_id, generation,
 904                                SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
 905                if (lu->retries++ < 5) {
 906                        sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 907                } else {
 908                        fw_error("%s: failed to login to LUN %04x\n",
 909                                 tgt->bus_id, lu->lun);
 910                        /* Let any waiting I/O fail from now on. */
 911                        sbp2_unblock(lu->tgt);
 912                }
 913                goto out;
 914        }
 915
 916        tgt->node_id      = node_id;
 917        tgt->address_high = local_node_id << 16;
 918        smp_wmb();        /* node IDs must not be older than generation */
 919        lu->generation    = generation;
 920
 921        lu->command_block_agent_address =
 922                ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
 923                      << 32) | be32_to_cpu(response.command_block_agent.low);
 924        lu->login_id = be32_to_cpu(response.misc) & 0xffff;
 925
 926        fw_notify("%s: logged in to LUN %04x (%d retries)\n",
 927                  tgt->bus_id, lu->lun, lu->retries);
 928
 929        /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
 930        sbp2_set_busy_timeout(lu);
 931
 932        PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
 933        sbp2_agent_reset(lu);
 934
 935        /* This was a re-login. */
 936        if (lu->has_sdev) {
 937                sbp2_cancel_orbs(lu);
 938                sbp2_conditionally_unblock(lu);
 939                goto out;
 940        }
 941
 942        if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
 943                ssleep(SBP2_INQUIRY_DELAY);
 944
 945        shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 946        sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
 947        /*
 948         * FIXME:  We are unable to perform reconnects while in sbp2_login().
 949         * Therefore __scsi_add_device() will get into trouble if a bus reset
 950         * happens in parallel.  It will either fail or leave us with an
 951         * unusable sdev.  As a workaround we check for this and retry the
 952         * whole login and SCSI probing.
 953         */
 954
 955        /* Reported error during __scsi_add_device() */
 956        if (IS_ERR(sdev))
 957                goto out_logout_login;
 958
 959        /* Unreported error during __scsi_add_device() */
 960        smp_rmb(); /* get current card generation */
 961        if (generation != device->card->generation) {
 962                scsi_remove_device(sdev);
 963                scsi_device_put(sdev);
 964                goto out_logout_login;
 965        }
 966
 967        /* No error during __scsi_add_device() */
 968        lu->has_sdev = true;
 969        scsi_device_put(sdev);
 970        sbp2_allow_block(lu);
 971        goto out;
 972
 973 out_logout_login:
 974        smp_rmb(); /* generation may have changed */
 975        generation = device->generation;
 976        smp_rmb(); /* node_id must not be older than generation */
 977
 978        sbp2_send_management_orb(lu, device->node_id, generation,
 979                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 980        /*
 981         * If a bus reset happened, sbp2_update will have requeued
 982         * lu->work already.  Reset the work from reconnect to login.
 983         */
 984        PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
 985 out:
 986        sbp2_target_put(tgt);
 987}
 988
 989static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
 990{
 991        struct sbp2_logical_unit *lu;
 992
 993        lu = kmalloc(sizeof(*lu), GFP_KERNEL);
 994        if (!lu)
 995                return -ENOMEM;
 996
 997        lu->address_handler.length           = 0x100;
 998        lu->address_handler.address_callback = sbp2_status_write;
 999        lu->address_handler.callback_data    = lu;
1000
1001        if (fw_core_add_address_handler(&lu->address_handler,
1002                                        &fw_high_memory_region) < 0) {
1003                kfree(lu);
1004                return -ENOMEM;
1005        }
1006
1007        lu->tgt      = tgt;
1008        lu->lun      = lun_entry & 0xffff;
1009        lu->login_id = INVALID_LOGIN_ID;
1010        lu->retries  = 0;
1011        lu->has_sdev = false;
1012        lu->blocked  = false;
1013        ++tgt->dont_block;
1014        INIT_LIST_HEAD(&lu->orb_list);
1015        INIT_DELAYED_WORK(&lu->work, sbp2_login);
1016
1017        list_add_tail(&lu->link, &tgt->lu_list);
1018        return 0;
1019}
1020
1021static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1022                                      const u32 *directory)
1023{
1024        struct fw_csr_iterator ci;
1025        int key, value;
1026
1027        fw_csr_iterator_init(&ci, directory);
1028        while (fw_csr_iterator_next(&ci, &key, &value))
1029                if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1030                    sbp2_add_logical_unit(tgt, value) < 0)
1031                        return -ENOMEM;
1032        return 0;
1033}
1034
1035static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1036                              u32 *model, u32 *firmware_revision)
1037{
1038        struct fw_csr_iterator ci;
1039        int key, value;
1040
1041        fw_csr_iterator_init(&ci, directory);
1042        while (fw_csr_iterator_next(&ci, &key, &value)) {
1043                switch (key) {
1044
1045                case CSR_DEPENDENT_INFO | CSR_OFFSET:
1046                        tgt->management_agent_address =
1047                                        CSR_REGISTER_BASE + 4 * value;
1048                        break;
1049
1050                case CSR_DIRECTORY_ID:
1051                        tgt->directory_id = value;
1052                        break;
1053
1054                case CSR_MODEL:
1055                        *model = value;
1056                        break;
1057
1058                case SBP2_CSR_FIRMWARE_REVISION:
1059                        *firmware_revision = value;
1060                        break;
1061
1062                case SBP2_CSR_UNIT_CHARACTERISTICS:
1063                        /* the timeout value is stored in 500ms units */
1064                        tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1065                        break;
1066
1067                case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1068                        if (sbp2_add_logical_unit(tgt, value) < 0)
1069                                return -ENOMEM;
1070                        break;
1071
1072                case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1073                        /* Adjust for the increment in the iterator */
1074                        if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1075                                return -ENOMEM;
1076                        break;
1077                }
1078        }
1079        return 0;
1080}
1081
1082/*
1083 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1084 * provided in the config rom. Most devices do provide a value, which
1085 * we'll use for login management orbs, but with some sane limits.
1086 */
1087static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1088{
1089        unsigned int timeout = tgt->mgt_orb_timeout;
1090
1091        if (timeout > 40000)
1092                fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
1093                          tgt->bus_id, timeout / 1000);
1094
1095        tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1096}
1097
1098static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1099                                  u32 firmware_revision)
1100{
1101        int i;
1102        unsigned int w = sbp2_param_workarounds;
1103
1104        if (w)
1105                fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1106                          "if you need the workarounds parameter for %s\n",
1107                          tgt->bus_id);
1108
1109        if (w & SBP2_WORKAROUND_OVERRIDE)
1110                goto out;
1111
1112        for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1113
1114                if (sbp2_workarounds_table[i].firmware_revision !=
1115                    (firmware_revision & 0xffffff00))
1116                        continue;
1117
1118                if (sbp2_workarounds_table[i].model != model &&
1119                    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1120                        continue;
1121
1122                w |= sbp2_workarounds_table[i].workarounds;
1123                break;
1124        }
1125 out:
1126        if (w)
1127                fw_notify("Workarounds for %s: 0x%x "
1128                          "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1129                          tgt->bus_id, w, firmware_revision, model);
1130        tgt->workarounds = w;
1131}
1132
1133static struct scsi_host_template scsi_driver_template;
1134
1135static int sbp2_probe(struct device *dev)
1136{
1137        struct fw_unit *unit = fw_unit(dev);
1138        struct fw_device *device = fw_parent_device(unit);
1139        struct sbp2_target *tgt;
1140        struct sbp2_logical_unit *lu;
1141        struct Scsi_Host *shost;
1142        u32 model, firmware_revision;
1143
1144        if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1145                BUG_ON(dma_set_max_seg_size(device->card->device,
1146                                            SBP2_MAX_SEG_SIZE));
1147
1148        shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1149        if (shost == NULL)
1150                return -ENOMEM;
1151
1152        tgt = (struct sbp2_target *)shost->hostdata;
1153        dev_set_drvdata(&unit->device, tgt);
1154        tgt->unit = unit;
1155        kref_init(&tgt->kref);
1156        INIT_LIST_HEAD(&tgt->lu_list);
1157        tgt->bus_id = dev_name(&unit->device);
1158        tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1159
1160        if (fw_device_enable_phys_dma(device) < 0)
1161                goto fail_shost_put;
1162
1163        shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1164
1165        if (scsi_add_host(shost, &unit->device) < 0)
1166                goto fail_shost_put;
1167
1168        fw_device_get(device);
1169        fw_unit_get(unit);
1170
1171        /* implicit directory ID */
1172        tgt->directory_id = ((unit->directory - device->config_rom) * 4
1173                             + CSR_CONFIG_ROM) & 0xffffff;
1174
1175        firmware_revision = SBP2_ROM_VALUE_MISSING;
1176        model             = SBP2_ROM_VALUE_MISSING;
1177
1178        if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1179                               &firmware_revision) < 0)
1180                goto fail_tgt_put;
1181
1182        sbp2_clamp_management_orb_timeout(tgt);
1183        sbp2_init_workarounds(tgt, model, firmware_revision);
1184
1185        /*
1186         * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1187         * and so on up to 4096 bytes.  The SBP-2 max_payload field
1188         * specifies the max payload size as 2 ^ (max_payload + 2), so
1189         * if we set this to max_speed + 7, we get the right value.
1190         */
1191        tgt->max_payload = min(device->max_speed + 7, 10U);
1192        tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1193
1194        /* Do the login in a workqueue so we can easily reschedule retries. */
1195        list_for_each_entry(lu, &tgt->lu_list, link)
1196                sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1197        return 0;
1198
1199 fail_tgt_put:
1200        sbp2_target_put(tgt);
1201        return -ENOMEM;
1202
1203 fail_shost_put:
1204        scsi_host_put(shost);
1205        return -ENOMEM;
1206}
1207
1208static int sbp2_remove(struct device *dev)
1209{
1210        struct fw_unit *unit = fw_unit(dev);
1211        struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1212
1213        sbp2_target_put(tgt);
1214        return 0;
1215}
1216
1217static void sbp2_reconnect(struct work_struct *work)
1218{
1219        struct sbp2_logical_unit *lu =
1220                container_of(work, struct sbp2_logical_unit, work.work);
1221        struct sbp2_target *tgt = lu->tgt;
1222        struct fw_device *device = target_device(tgt);
1223        int generation, node_id, local_node_id;
1224
1225        if (fw_device_is_shutdown(device))
1226                goto out;
1227
1228        generation    = device->generation;
1229        smp_rmb();    /* node IDs must not be older than generation */
1230        node_id       = device->node_id;
1231        local_node_id = device->card->node_id;
1232
1233        if (sbp2_send_management_orb(lu, node_id, generation,
1234                                     SBP2_RECONNECT_REQUEST,
1235                                     lu->login_id, NULL) < 0) {
1236                /*
1237                 * If reconnect was impossible even though we are in the
1238                 * current generation, fall back and try to log in again.
1239                 *
1240                 * We could check for "Function rejected" status, but
1241                 * looking at the bus generation as simpler and more general.
1242                 */
1243                smp_rmb(); /* get current card generation */
1244                if (generation == device->card->generation ||
1245                    lu->retries++ >= 5) {
1246                        fw_error("%s: failed to reconnect\n", tgt->bus_id);
1247                        lu->retries = 0;
1248                        PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1249                }
1250                sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1251                goto out;
1252        }
1253
1254        tgt->node_id      = node_id;
1255        tgt->address_high = local_node_id << 16;
1256        smp_wmb();        /* node IDs must not be older than generation */
1257        lu->generation    = generation;
1258
1259        fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1260                  tgt->bus_id, lu->lun, lu->retries);
1261
1262        sbp2_agent_reset(lu);
1263        sbp2_cancel_orbs(lu);
1264        sbp2_conditionally_unblock(lu);
1265 out:
1266        sbp2_target_put(tgt);
1267}
1268
1269static void sbp2_update(struct fw_unit *unit)
1270{
1271        struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1272        struct sbp2_logical_unit *lu;
1273
1274        fw_device_enable_phys_dma(fw_parent_device(unit));
1275
1276        /*
1277         * Fw-core serializes sbp2_update() against sbp2_remove().
1278         * Iteration over tgt->lu_list is therefore safe here.
1279         */
1280        list_for_each_entry(lu, &tgt->lu_list, link) {
1281                sbp2_conditionally_block(lu);
1282                lu->retries = 0;
1283                sbp2_queue_work(lu, 0);
1284        }
1285}
1286
1287#define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1288#define SBP2_SW_VERSION_ENTRY   0x00010483
1289
1290static const struct ieee1394_device_id sbp2_id_table[] = {
1291        {
1292                .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1293                                IEEE1394_MATCH_VERSION,
1294                .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1295                .version      = SBP2_SW_VERSION_ENTRY,
1296        },
1297        { }
1298};
1299
1300static struct fw_driver sbp2_driver = {
1301        .driver   = {
1302                .owner  = THIS_MODULE,
1303                .name   = sbp2_driver_name,
1304                .bus    = &fw_bus_type,
1305                .probe  = sbp2_probe,
1306                .remove = sbp2_remove,
1307        },
1308        .update   = sbp2_update,
1309        .id_table = sbp2_id_table,
1310};
1311
1312static void sbp2_unmap_scatterlist(struct device *card_device,
1313                                   struct sbp2_command_orb *orb)
1314{
1315        if (scsi_sg_count(orb->cmd))
1316                dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1317                             scsi_sg_count(orb->cmd),
1318                             orb->cmd->sc_data_direction);
1319
1320        if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1321                dma_unmap_single(card_device, orb->page_table_bus,
1322                                 sizeof(orb->page_table), DMA_TO_DEVICE);
1323}
1324
1325static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1326{
1327        int sam_status;
1328
1329        sense_data[0] = 0x70;
1330        sense_data[1] = 0x0;
1331        sense_data[2] = sbp2_status[1];
1332        sense_data[3] = sbp2_status[4];
1333        sense_data[4] = sbp2_status[5];
1334        sense_data[5] = sbp2_status[6];
1335        sense_data[6] = sbp2_status[7];
1336        sense_data[7] = 10;
1337        sense_data[8] = sbp2_status[8];
1338        sense_data[9] = sbp2_status[9];
1339        sense_data[10] = sbp2_status[10];
1340        sense_data[11] = sbp2_status[11];
1341        sense_data[12] = sbp2_status[2];
1342        sense_data[13] = sbp2_status[3];
1343        sense_data[14] = sbp2_status[12];
1344        sense_data[15] = sbp2_status[13];
1345
1346        sam_status = sbp2_status[0] & 0x3f;
1347
1348        switch (sam_status) {
1349        case SAM_STAT_GOOD:
1350        case SAM_STAT_CHECK_CONDITION:
1351        case SAM_STAT_CONDITION_MET:
1352        case SAM_STAT_BUSY:
1353        case SAM_STAT_RESERVATION_CONFLICT:
1354        case SAM_STAT_COMMAND_TERMINATED:
1355                return DID_OK << 16 | sam_status;
1356
1357        default:
1358                return DID_ERROR << 16;
1359        }
1360}
1361
1362static void complete_command_orb(struct sbp2_orb *base_orb,
1363                                 struct sbp2_status *status)
1364{
1365        struct sbp2_command_orb *orb =
1366                container_of(base_orb, struct sbp2_command_orb, base);
1367        struct fw_device *device = target_device(orb->lu->tgt);
1368        int result;
1369
1370        if (status != NULL) {
1371                if (STATUS_GET_DEAD(*status))
1372                        sbp2_agent_reset_no_wait(orb->lu);
1373
1374                switch (STATUS_GET_RESPONSE(*status)) {
1375                case SBP2_STATUS_REQUEST_COMPLETE:
1376                        result = DID_OK << 16;
1377                        break;
1378                case SBP2_STATUS_TRANSPORT_FAILURE:
1379                        result = DID_BUS_BUSY << 16;
1380                        break;
1381                case SBP2_STATUS_ILLEGAL_REQUEST:
1382                case SBP2_STATUS_VENDOR_DEPENDENT:
1383                default:
1384                        result = DID_ERROR << 16;
1385                        break;
1386                }
1387
1388                if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1389                        result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1390                                                           orb->cmd->sense_buffer);
1391        } else {
1392                /*
1393                 * If the orb completes with status == NULL, something
1394                 * went wrong, typically a bus reset happened mid-orb
1395                 * or when sending the write (less likely).
1396                 */
1397                result = DID_BUS_BUSY << 16;
1398                sbp2_conditionally_block(orb->lu);
1399        }
1400
1401        dma_unmap_single(device->card->device, orb->base.request_bus,
1402                         sizeof(orb->request), DMA_TO_DEVICE);
1403        sbp2_unmap_scatterlist(device->card->device, orb);
1404
1405        orb->cmd->result = result;
1406        orb->done(orb->cmd);
1407}
1408
1409static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1410                struct fw_device *device, struct sbp2_logical_unit *lu)
1411{
1412        struct scatterlist *sg = scsi_sglist(orb->cmd);
1413        int i, n;
1414
1415        n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1416                       orb->cmd->sc_data_direction);
1417        if (n == 0)
1418                goto fail;
1419
1420        /*
1421         * Handle the special case where there is only one element in
1422         * the scatter list by converting it to an immediate block
1423         * request. This is also a workaround for broken devices such
1424         * as the second generation iPod which doesn't support page
1425         * tables.
1426         */
1427        if (n == 1) {
1428                orb->request.data_descriptor.high =
1429                        cpu_to_be32(lu->tgt->address_high);
1430                orb->request.data_descriptor.low  =
1431                        cpu_to_be32(sg_dma_address(sg));
1432                orb->request.misc |=
1433                        cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1434                return 0;
1435        }
1436
1437        for_each_sg(sg, sg, n, i) {
1438                orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1439                orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1440        }
1441
1442        orb->page_table_bus =
1443                dma_map_single(device->card->device, orb->page_table,
1444                               sizeof(orb->page_table), DMA_TO_DEVICE);
1445        if (dma_mapping_error(device->card->device, orb->page_table_bus))
1446                goto fail_page_table;
1447
1448        /*
1449         * The data_descriptor pointer is the one case where we need
1450         * to fill in the node ID part of the address.  All other
1451         * pointers assume that the data referenced reside on the
1452         * initiator (i.e. us), but data_descriptor can refer to data
1453         * on other nodes so we need to put our ID in descriptor.high.
1454         */
1455        orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1456        orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1457        orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1458                                         COMMAND_ORB_DATA_SIZE(n));
1459
1460        return 0;
1461
1462 fail_page_table:
1463        dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1464                     scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1465 fail:
1466        return -ENOMEM;
1467}
1468
1469/* SCSI stack integration */
1470
1471static int sbp2_scsi_queuecommand_lck(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1472{
1473        struct sbp2_logical_unit *lu = cmd->device->hostdata;
1474        struct fw_device *device = target_device(lu->tgt);
1475        struct sbp2_command_orb *orb;
1476        int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1477
1478        /*
1479         * Bidirectional commands are not yet implemented, and unknown
1480         * transfer direction not handled.
1481         */
1482        if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1483                fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1484                cmd->result = DID_ERROR << 16;
1485                done(cmd);
1486                return 0;
1487        }
1488
1489        orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1490        if (orb == NULL) {
1491                fw_notify("failed to alloc orb\n");
1492                return SCSI_MLQUEUE_HOST_BUSY;
1493        }
1494
1495        /* Initialize rcode to something not RCODE_COMPLETE. */
1496        orb->base.rcode = -1;
1497        kref_init(&orb->base.kref);
1498
1499        orb->lu   = lu;
1500        orb->done = done;
1501        orb->cmd  = cmd;
1502
1503        orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1504        orb->request.misc = cpu_to_be32(
1505                COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1506                COMMAND_ORB_SPEED(device->max_speed) |
1507                COMMAND_ORB_NOTIFY);
1508
1509        if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1510                orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1511
1512        generation = device->generation;
1513        smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1514
1515        if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1516                goto out;
1517
1518        memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1519
1520        orb->base.callback = complete_command_orb;
1521        orb->base.request_bus =
1522                dma_map_single(device->card->device, &orb->request,
1523                               sizeof(orb->request), DMA_TO_DEVICE);
1524        if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1525                sbp2_unmap_scatterlist(device->card->device, orb);
1526                goto out;
1527        }
1528
1529        sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1530                      lu->command_block_agent_address + SBP2_ORB_POINTER);
1531        retval = 0;
1532 out:
1533        kref_put(&orb->base.kref, free_orb);
1534        return retval;
1535}
1536
1537static DEF_SCSI_QCMD(sbp2_scsi_queuecommand)
1538
1539static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1540{
1541        struct sbp2_logical_unit *lu = sdev->hostdata;
1542
1543        /* (Re-)Adding logical units via the SCSI stack is not supported. */
1544        if (!lu)
1545                return -ENOSYS;
1546
1547        sdev->allow_restart = 1;
1548
1549        /* SBP-2 requires quadlet alignment of the data buffers. */
1550        blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1551
1552        if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1553                sdev->inquiry_len = 36;
1554
1555        return 0;
1556}
1557
1558static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1559{
1560        struct sbp2_logical_unit *lu = sdev->hostdata;
1561
1562        sdev->use_10_for_rw = 1;
1563
1564        if (sbp2_param_exclusive_login)
1565                sdev->manage_start_stop = 1;
1566
1567        if (sdev->type == TYPE_ROM)
1568                sdev->use_10_for_ms = 1;
1569
1570        if (sdev->type == TYPE_DISK &&
1571            lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1572                sdev->skip_ms_page_8 = 1;
1573
1574        if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1575                sdev->fix_capacity = 1;
1576
1577        if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1578                sdev->start_stop_pwr_cond = 1;
1579
1580        if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1581                blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1582
1583        blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1584
1585        return 0;
1586}
1587
1588/*
1589 * Called by scsi stack when something has really gone wrong.  Usually
1590 * called when a command has timed-out for some reason.
1591 */
1592static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1593{
1594        struct sbp2_logical_unit *lu = cmd->device->hostdata;
1595
1596        fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1597        sbp2_agent_reset(lu);
1598        sbp2_cancel_orbs(lu);
1599
1600        return SUCCESS;
1601}
1602
1603/*
1604 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1605 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1606 *
1607 * This is the concatenation of target port identifier and logical unit
1608 * identifier as per SAM-2...SAM-4 annex A.
1609 */
1610static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1611                        struct device_attribute *attr, char *buf)
1612{
1613        struct scsi_device *sdev = to_scsi_device(dev);
1614        struct sbp2_logical_unit *lu;
1615
1616        if (!sdev)
1617                return 0;
1618
1619        lu = sdev->hostdata;
1620
1621        return sprintf(buf, "%016llx:%06x:%04x\n",
1622                        (unsigned long long)lu->tgt->guid,
1623                        lu->tgt->directory_id, lu->lun);
1624}
1625
1626static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1627
1628static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1629        &dev_attr_ieee1394_id,
1630        NULL
1631};
1632
1633static struct scsi_host_template scsi_driver_template = {
1634        .module                 = THIS_MODULE,
1635        .name                   = "SBP-2 IEEE-1394",
1636        .proc_name              = sbp2_driver_name,
1637        .queuecommand           = sbp2_scsi_queuecommand,
1638        .slave_alloc            = sbp2_scsi_slave_alloc,
1639        .slave_configure        = sbp2_scsi_slave_configure,
1640        .eh_abort_handler       = sbp2_scsi_abort,
1641        .this_id                = -1,
1642        .sg_tablesize           = SG_ALL,
1643        .use_clustering         = ENABLE_CLUSTERING,
1644        .cmd_per_lun            = 1,
1645        .can_queue              = 1,
1646        .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1647};
1648
1649MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1650MODULE_DESCRIPTION("SCSI over IEEE1394");
1651MODULE_LICENSE("GPL");
1652MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1653
1654/* Provide a module alias so root-on-sbp2 initrds don't break. */
1655#ifndef CONFIG_IEEE1394_SBP2_MODULE
1656MODULE_ALIAS("sbp2");
1657#endif
1658
1659static int __init sbp2_init(void)
1660{
1661        sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1662        if (!sbp2_wq)
1663                return -ENOMEM;
1664
1665        return driver_register(&sbp2_driver.driver);
1666}
1667
1668static void __exit sbp2_cleanup(void)
1669{
1670        driver_unregister(&sbp2_driver.driver);
1671        destroy_workqueue(sbp2_wq);
1672}
1673
1674module_init(sbp2_init);
1675module_exit(sbp2_cleanup);
1676