linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/completion.h>
  10#include <linux/err.h>
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/bio.h>
  15#include <linux/blkdev.h>
  16#include <linux/mempool.h>
  17#include <linux/slab.h>
  18#include <linux/crypto.h>
  19#include <linux/workqueue.h>
  20#include <linux/backing-dev.h>
  21#include <linux/percpu.h>
  22#include <asm/atomic.h>
  23#include <linux/scatterlist.h>
  24#include <asm/page.h>
  25#include <asm/unaligned.h>
  26#include <crypto/hash.h>
  27#include <crypto/md5.h>
  28#include <crypto/algapi.h>
  29
  30#include <linux/device-mapper.h>
  31
  32#define DM_MSG_PREFIX "crypt"
  33#define MESG_STR(x) x, sizeof(x)
  34
  35/*
  36 * context holding the current state of a multi-part conversion
  37 */
  38struct convert_context {
  39        struct completion restart;
  40        struct bio *bio_in;
  41        struct bio *bio_out;
  42        unsigned int offset_in;
  43        unsigned int offset_out;
  44        unsigned int idx_in;
  45        unsigned int idx_out;
  46        sector_t sector;
  47        atomic_t pending;
  48};
  49
  50/*
  51 * per bio private data
  52 */
  53struct dm_crypt_io {
  54        struct dm_target *target;
  55        struct bio *base_bio;
  56        struct work_struct work;
  57
  58        struct convert_context ctx;
  59
  60        atomic_t pending;
  61        int error;
  62        sector_t sector;
  63        struct dm_crypt_io *base_io;
  64};
  65
  66struct dm_crypt_request {
  67        struct convert_context *ctx;
  68        struct scatterlist sg_in;
  69        struct scatterlist sg_out;
  70        sector_t iv_sector;
  71};
  72
  73struct crypt_config;
  74
  75struct crypt_iv_operations {
  76        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  77                   const char *opts);
  78        void (*dtr)(struct crypt_config *cc);
  79        int (*init)(struct crypt_config *cc);
  80        int (*wipe)(struct crypt_config *cc);
  81        int (*generator)(struct crypt_config *cc, u8 *iv,
  82                         struct dm_crypt_request *dmreq);
  83        int (*post)(struct crypt_config *cc, u8 *iv,
  84                    struct dm_crypt_request *dmreq);
  85};
  86
  87struct iv_essiv_private {
  88        struct crypto_hash *hash_tfm;
  89        u8 *salt;
  90};
  91
  92struct iv_benbi_private {
  93        int shift;
  94};
  95
  96#define LMK_SEED_SIZE 64 /* hash + 0 */
  97struct iv_lmk_private {
  98        struct crypto_shash *hash_tfm;
  99        u8 *seed;
 100};
 101
 102/*
 103 * Crypt: maps a linear range of a block device
 104 * and encrypts / decrypts at the same time.
 105 */
 106enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
 107
 108/*
 109 * Duplicated per-CPU state for cipher.
 110 */
 111struct crypt_cpu {
 112        struct ablkcipher_request *req;
 113        /* ESSIV: struct crypto_cipher *essiv_tfm */
 114        void *iv_private;
 115        struct crypto_ablkcipher *tfms[0];
 116};
 117
 118/*
 119 * The fields in here must be read only after initialization,
 120 * changing state should be in crypt_cpu.
 121 */
 122struct crypt_config {
 123        struct dm_dev *dev;
 124        sector_t start;
 125
 126        /*
 127         * pool for per bio private data, crypto requests and
 128         * encryption requeusts/buffer pages
 129         */
 130        mempool_t *io_pool;
 131        mempool_t *req_pool;
 132        mempool_t *page_pool;
 133        struct bio_set *bs;
 134
 135        struct workqueue_struct *io_queue;
 136        struct workqueue_struct *crypt_queue;
 137
 138        char *cipher;
 139        char *cipher_string;
 140
 141        struct crypt_iv_operations *iv_gen_ops;
 142        union {
 143                struct iv_essiv_private essiv;
 144                struct iv_benbi_private benbi;
 145                struct iv_lmk_private lmk;
 146        } iv_gen_private;
 147        sector_t iv_offset;
 148        unsigned int iv_size;
 149
 150        /*
 151         * Duplicated per cpu state. Access through
 152         * per_cpu_ptr() only.
 153         */
 154        struct crypt_cpu __percpu *cpu;
 155        unsigned tfms_count;
 156
 157        /*
 158         * Layout of each crypto request:
 159         *
 160         *   struct ablkcipher_request
 161         *      context
 162         *      padding
 163         *   struct dm_crypt_request
 164         *      padding
 165         *   IV
 166         *
 167         * The padding is added so that dm_crypt_request and the IV are
 168         * correctly aligned.
 169         */
 170        unsigned int dmreq_start;
 171
 172        unsigned long flags;
 173        unsigned int key_size;
 174        unsigned int key_parts;
 175        u8 key[0];
 176};
 177
 178#define MIN_IOS        16
 179#define MIN_POOL_PAGES 32
 180#define MIN_BIO_PAGES  8
 181
 182static struct kmem_cache *_crypt_io_pool;
 183
 184static void clone_init(struct dm_crypt_io *, struct bio *);
 185static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 186static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 187
 188static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
 189{
 190        return this_cpu_ptr(cc->cpu);
 191}
 192
 193/*
 194 * Use this to access cipher attributes that are the same for each CPU.
 195 */
 196static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
 197{
 198        return __this_cpu_ptr(cc->cpu)->tfms[0];
 199}
 200
 201/*
 202 * Different IV generation algorithms:
 203 *
 204 * plain: the initial vector is the 32-bit little-endian version of the sector
 205 *        number, padded with zeros if necessary.
 206 *
 207 * plain64: the initial vector is the 64-bit little-endian version of the sector
 208 *        number, padded with zeros if necessary.
 209 *
 210 * essiv: "encrypted sector|salt initial vector", the sector number is
 211 *        encrypted with the bulk cipher using a salt as key. The salt
 212 *        should be derived from the bulk cipher's key via hashing.
 213 *
 214 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 215 *        (needed for LRW-32-AES and possible other narrow block modes)
 216 *
 217 * null: the initial vector is always zero.  Provides compatibility with
 218 *       obsolete loop_fish2 devices.  Do not use for new devices.
 219 *
 220 * lmk:  Compatible implementation of the block chaining mode used
 221 *       by the Loop-AES block device encryption system
 222 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 223 *       It operates on full 512 byte sectors and uses CBC
 224 *       with an IV derived from the sector number, the data and
 225 *       optionally extra IV seed.
 226 *       This means that after decryption the first block
 227 *       of sector must be tweaked according to decrypted data.
 228 *       Loop-AES can use three encryption schemes:
 229 *         version 1: is plain aes-cbc mode
 230 *         version 2: uses 64 multikey scheme with lmk IV generator
 231 *         version 3: the same as version 2 with additional IV seed
 232 *                   (it uses 65 keys, last key is used as IV seed)
 233 *
 234 * plumb: unimplemented, see:
 235 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 236 */
 237
 238static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 239                              struct dm_crypt_request *dmreq)
 240{
 241        memset(iv, 0, cc->iv_size);
 242        *(u32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 243
 244        return 0;
 245}
 246
 247static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 248                                struct dm_crypt_request *dmreq)
 249{
 250        memset(iv, 0, cc->iv_size);
 251        *(u64 *)iv = cpu_to_le64(dmreq->iv_sector);
 252
 253        return 0;
 254}
 255
 256/* Initialise ESSIV - compute salt but no local memory allocations */
 257static int crypt_iv_essiv_init(struct crypt_config *cc)
 258{
 259        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 260        struct hash_desc desc;
 261        struct scatterlist sg;
 262        struct crypto_cipher *essiv_tfm;
 263        int err, cpu;
 264
 265        sg_init_one(&sg, cc->key, cc->key_size);
 266        desc.tfm = essiv->hash_tfm;
 267        desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 268
 269        err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
 270        if (err)
 271                return err;
 272
 273        for_each_possible_cpu(cpu) {
 274                essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private,
 275
 276                err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 277                                    crypto_hash_digestsize(essiv->hash_tfm));
 278                if (err)
 279                        return err;
 280        }
 281
 282        return 0;
 283}
 284
 285/* Wipe salt and reset key derived from volume key */
 286static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 287{
 288        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 289        unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
 290        struct crypto_cipher *essiv_tfm;
 291        int cpu, r, err = 0;
 292
 293        memset(essiv->salt, 0, salt_size);
 294
 295        for_each_possible_cpu(cpu) {
 296                essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private;
 297                r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 298                if (r)
 299                        err = r;
 300        }
 301
 302        return err;
 303}
 304
 305/* Set up per cpu cipher state */
 306static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 307                                             struct dm_target *ti,
 308                                             u8 *salt, unsigned saltsize)
 309{
 310        struct crypto_cipher *essiv_tfm;
 311        int err;
 312
 313        /* Setup the essiv_tfm with the given salt */
 314        essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 315        if (IS_ERR(essiv_tfm)) {
 316                ti->error = "Error allocating crypto tfm for ESSIV";
 317                return essiv_tfm;
 318        }
 319
 320        if (crypto_cipher_blocksize(essiv_tfm) !=
 321            crypto_ablkcipher_ivsize(any_tfm(cc))) {
 322                ti->error = "Block size of ESSIV cipher does "
 323                            "not match IV size of block cipher";
 324                crypto_free_cipher(essiv_tfm);
 325                return ERR_PTR(-EINVAL);
 326        }
 327
 328        err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 329        if (err) {
 330                ti->error = "Failed to set key for ESSIV cipher";
 331                crypto_free_cipher(essiv_tfm);
 332                return ERR_PTR(err);
 333        }
 334
 335        return essiv_tfm;
 336}
 337
 338static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 339{
 340        int cpu;
 341        struct crypt_cpu *cpu_cc;
 342        struct crypto_cipher *essiv_tfm;
 343        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 344
 345        crypto_free_hash(essiv->hash_tfm);
 346        essiv->hash_tfm = NULL;
 347
 348        kzfree(essiv->salt);
 349        essiv->salt = NULL;
 350
 351        for_each_possible_cpu(cpu) {
 352                cpu_cc = per_cpu_ptr(cc->cpu, cpu);
 353                essiv_tfm = cpu_cc->iv_private;
 354
 355                if (essiv_tfm)
 356                        crypto_free_cipher(essiv_tfm);
 357
 358                cpu_cc->iv_private = NULL;
 359        }
 360}
 361
 362static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 363                              const char *opts)
 364{
 365        struct crypto_cipher *essiv_tfm = NULL;
 366        struct crypto_hash *hash_tfm = NULL;
 367        u8 *salt = NULL;
 368        int err, cpu;
 369
 370        if (!opts) {
 371                ti->error = "Digest algorithm missing for ESSIV mode";
 372                return -EINVAL;
 373        }
 374
 375        /* Allocate hash algorithm */
 376        hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
 377        if (IS_ERR(hash_tfm)) {
 378                ti->error = "Error initializing ESSIV hash";
 379                err = PTR_ERR(hash_tfm);
 380                goto bad;
 381        }
 382
 383        salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
 384        if (!salt) {
 385                ti->error = "Error kmallocing salt storage in ESSIV";
 386                err = -ENOMEM;
 387                goto bad;
 388        }
 389
 390        cc->iv_gen_private.essiv.salt = salt;
 391        cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 392
 393        for_each_possible_cpu(cpu) {
 394                essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 395                                        crypto_hash_digestsize(hash_tfm));
 396                if (IS_ERR(essiv_tfm)) {
 397                        crypt_iv_essiv_dtr(cc);
 398                        return PTR_ERR(essiv_tfm);
 399                }
 400                per_cpu_ptr(cc->cpu, cpu)->iv_private = essiv_tfm;
 401        }
 402
 403        return 0;
 404
 405bad:
 406        if (hash_tfm && !IS_ERR(hash_tfm))
 407                crypto_free_hash(hash_tfm);
 408        kfree(salt);
 409        return err;
 410}
 411
 412static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 413                              struct dm_crypt_request *dmreq)
 414{
 415        struct crypto_cipher *essiv_tfm = this_crypt_config(cc)->iv_private;
 416
 417        memset(iv, 0, cc->iv_size);
 418        *(u64 *)iv = cpu_to_le64(dmreq->iv_sector);
 419        crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 420
 421        return 0;
 422}
 423
 424static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 425                              const char *opts)
 426{
 427        unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
 428        int log = ilog2(bs);
 429
 430        /* we need to calculate how far we must shift the sector count
 431         * to get the cipher block count, we use this shift in _gen */
 432
 433        if (1 << log != bs) {
 434                ti->error = "cypher blocksize is not a power of 2";
 435                return -EINVAL;
 436        }
 437
 438        if (log > 9) {
 439                ti->error = "cypher blocksize is > 512";
 440                return -EINVAL;
 441        }
 442
 443        cc->iv_gen_private.benbi.shift = 9 - log;
 444
 445        return 0;
 446}
 447
 448static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 449{
 450}
 451
 452static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 453                              struct dm_crypt_request *dmreq)
 454{
 455        __be64 val;
 456
 457        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 458
 459        val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 460        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 461
 462        return 0;
 463}
 464
 465static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 466                             struct dm_crypt_request *dmreq)
 467{
 468        memset(iv, 0, cc->iv_size);
 469
 470        return 0;
 471}
 472
 473static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 474{
 475        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 476
 477        if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 478                crypto_free_shash(lmk->hash_tfm);
 479        lmk->hash_tfm = NULL;
 480
 481        kzfree(lmk->seed);
 482        lmk->seed = NULL;
 483}
 484
 485static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 486                            const char *opts)
 487{
 488        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 489
 490        lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 491        if (IS_ERR(lmk->hash_tfm)) {
 492                ti->error = "Error initializing LMK hash";
 493                return PTR_ERR(lmk->hash_tfm);
 494        }
 495
 496        /* No seed in LMK version 2 */
 497        if (cc->key_parts == cc->tfms_count) {
 498                lmk->seed = NULL;
 499                return 0;
 500        }
 501
 502        lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 503        if (!lmk->seed) {
 504                crypt_iv_lmk_dtr(cc);
 505                ti->error = "Error kmallocing seed storage in LMK";
 506                return -ENOMEM;
 507        }
 508
 509        return 0;
 510}
 511
 512static int crypt_iv_lmk_init(struct crypt_config *cc)
 513{
 514        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 515        int subkey_size = cc->key_size / cc->key_parts;
 516
 517        /* LMK seed is on the position of LMK_KEYS + 1 key */
 518        if (lmk->seed)
 519                memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 520                       crypto_shash_digestsize(lmk->hash_tfm));
 521
 522        return 0;
 523}
 524
 525static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 526{
 527        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 528
 529        if (lmk->seed)
 530                memset(lmk->seed, 0, LMK_SEED_SIZE);
 531
 532        return 0;
 533}
 534
 535static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 536                            struct dm_crypt_request *dmreq,
 537                            u8 *data)
 538{
 539        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 540        struct {
 541                struct shash_desc desc;
 542                char ctx[crypto_shash_descsize(lmk->hash_tfm)];
 543        } sdesc;
 544        struct md5_state md5state;
 545        u32 buf[4];
 546        int i, r;
 547
 548        sdesc.desc.tfm = lmk->hash_tfm;
 549        sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 550
 551        r = crypto_shash_init(&sdesc.desc);
 552        if (r)
 553                return r;
 554
 555        if (lmk->seed) {
 556                r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
 557                if (r)
 558                        return r;
 559        }
 560
 561        /* Sector is always 512B, block size 16, add data of blocks 1-31 */
 562        r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
 563        if (r)
 564                return r;
 565
 566        /* Sector is cropped to 56 bits here */
 567        buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 568        buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 569        buf[2] = cpu_to_le32(4024);
 570        buf[3] = 0;
 571        r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
 572        if (r)
 573                return r;
 574
 575        /* No MD5 padding here */
 576        r = crypto_shash_export(&sdesc.desc, &md5state);
 577        if (r)
 578                return r;
 579
 580        for (i = 0; i < MD5_HASH_WORDS; i++)
 581                __cpu_to_le32s(&md5state.hash[i]);
 582        memcpy(iv, &md5state.hash, cc->iv_size);
 583
 584        return 0;
 585}
 586
 587static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 588                            struct dm_crypt_request *dmreq)
 589{
 590        u8 *src;
 591        int r = 0;
 592
 593        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 594                src = kmap_atomic(sg_page(&dmreq->sg_in), KM_USER0);
 595                r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 596                kunmap_atomic(src, KM_USER0);
 597        } else
 598                memset(iv, 0, cc->iv_size);
 599
 600        return r;
 601}
 602
 603static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 604                             struct dm_crypt_request *dmreq)
 605{
 606        u8 *dst;
 607        int r;
 608
 609        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 610                return 0;
 611
 612        dst = kmap_atomic(sg_page(&dmreq->sg_out), KM_USER0);
 613        r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 614
 615        /* Tweak the first block of plaintext sector */
 616        if (!r)
 617                crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 618
 619        kunmap_atomic(dst, KM_USER0);
 620        return r;
 621}
 622
 623static struct crypt_iv_operations crypt_iv_plain_ops = {
 624        .generator = crypt_iv_plain_gen
 625};
 626
 627static struct crypt_iv_operations crypt_iv_plain64_ops = {
 628        .generator = crypt_iv_plain64_gen
 629};
 630
 631static struct crypt_iv_operations crypt_iv_essiv_ops = {
 632        .ctr       = crypt_iv_essiv_ctr,
 633        .dtr       = crypt_iv_essiv_dtr,
 634        .init      = crypt_iv_essiv_init,
 635        .wipe      = crypt_iv_essiv_wipe,
 636        .generator = crypt_iv_essiv_gen
 637};
 638
 639static struct crypt_iv_operations crypt_iv_benbi_ops = {
 640        .ctr       = crypt_iv_benbi_ctr,
 641        .dtr       = crypt_iv_benbi_dtr,
 642        .generator = crypt_iv_benbi_gen
 643};
 644
 645static struct crypt_iv_operations crypt_iv_null_ops = {
 646        .generator = crypt_iv_null_gen
 647};
 648
 649static struct crypt_iv_operations crypt_iv_lmk_ops = {
 650        .ctr       = crypt_iv_lmk_ctr,
 651        .dtr       = crypt_iv_lmk_dtr,
 652        .init      = crypt_iv_lmk_init,
 653        .wipe      = crypt_iv_lmk_wipe,
 654        .generator = crypt_iv_lmk_gen,
 655        .post      = crypt_iv_lmk_post
 656};
 657
 658static void crypt_convert_init(struct crypt_config *cc,
 659                               struct convert_context *ctx,
 660                               struct bio *bio_out, struct bio *bio_in,
 661                               sector_t sector)
 662{
 663        ctx->bio_in = bio_in;
 664        ctx->bio_out = bio_out;
 665        ctx->offset_in = 0;
 666        ctx->offset_out = 0;
 667        ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
 668        ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
 669        ctx->sector = sector + cc->iv_offset;
 670        init_completion(&ctx->restart);
 671}
 672
 673static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 674                                             struct ablkcipher_request *req)
 675{
 676        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 677}
 678
 679static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
 680                                               struct dm_crypt_request *dmreq)
 681{
 682        return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
 683}
 684
 685static u8 *iv_of_dmreq(struct crypt_config *cc,
 686                       struct dm_crypt_request *dmreq)
 687{
 688        return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 689                crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
 690}
 691
 692static int crypt_convert_block(struct crypt_config *cc,
 693                               struct convert_context *ctx,
 694                               struct ablkcipher_request *req)
 695{
 696        struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
 697        struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
 698        struct dm_crypt_request *dmreq;
 699        u8 *iv;
 700        int r = 0;
 701
 702        dmreq = dmreq_of_req(cc, req);
 703        iv = iv_of_dmreq(cc, dmreq);
 704
 705        dmreq->iv_sector = ctx->sector;
 706        dmreq->ctx = ctx;
 707        sg_init_table(&dmreq->sg_in, 1);
 708        sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
 709                    bv_in->bv_offset + ctx->offset_in);
 710
 711        sg_init_table(&dmreq->sg_out, 1);
 712        sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
 713                    bv_out->bv_offset + ctx->offset_out);
 714
 715        ctx->offset_in += 1 << SECTOR_SHIFT;
 716        if (ctx->offset_in >= bv_in->bv_len) {
 717                ctx->offset_in = 0;
 718                ctx->idx_in++;
 719        }
 720
 721        ctx->offset_out += 1 << SECTOR_SHIFT;
 722        if (ctx->offset_out >= bv_out->bv_len) {
 723                ctx->offset_out = 0;
 724                ctx->idx_out++;
 725        }
 726
 727        if (cc->iv_gen_ops) {
 728                r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 729                if (r < 0)
 730                        return r;
 731        }
 732
 733        ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 734                                     1 << SECTOR_SHIFT, iv);
 735
 736        if (bio_data_dir(ctx->bio_in) == WRITE)
 737                r = crypto_ablkcipher_encrypt(req);
 738        else
 739                r = crypto_ablkcipher_decrypt(req);
 740
 741        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 742                r = cc->iv_gen_ops->post(cc, iv, dmreq);
 743
 744        return r;
 745}
 746
 747static void kcryptd_async_done(struct crypto_async_request *async_req,
 748                               int error);
 749
 750static void crypt_alloc_req(struct crypt_config *cc,
 751                            struct convert_context *ctx)
 752{
 753        struct crypt_cpu *this_cc = this_crypt_config(cc);
 754        unsigned key_index = ctx->sector & (cc->tfms_count - 1);
 755
 756        if (!this_cc->req)
 757                this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 758
 759        ablkcipher_request_set_tfm(this_cc->req, this_cc->tfms[key_index]);
 760        ablkcipher_request_set_callback(this_cc->req,
 761            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 762            kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
 763}
 764
 765/*
 766 * Encrypt / decrypt data from one bio to another one (can be the same one)
 767 */
 768static int crypt_convert(struct crypt_config *cc,
 769                         struct convert_context *ctx)
 770{
 771        struct crypt_cpu *this_cc = this_crypt_config(cc);
 772        int r;
 773
 774        atomic_set(&ctx->pending, 1);
 775
 776        while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
 777              ctx->idx_out < ctx->bio_out->bi_vcnt) {
 778
 779                crypt_alloc_req(cc, ctx);
 780
 781                atomic_inc(&ctx->pending);
 782
 783                r = crypt_convert_block(cc, ctx, this_cc->req);
 784
 785                switch (r) {
 786                /* async */
 787                case -EBUSY:
 788                        wait_for_completion(&ctx->restart);
 789                        INIT_COMPLETION(ctx->restart);
 790                        /* fall through*/
 791                case -EINPROGRESS:
 792                        this_cc->req = NULL;
 793                        ctx->sector++;
 794                        continue;
 795
 796                /* sync */
 797                case 0:
 798                        atomic_dec(&ctx->pending);
 799                        ctx->sector++;
 800                        cond_resched();
 801                        continue;
 802
 803                /* error */
 804                default:
 805                        atomic_dec(&ctx->pending);
 806                        return r;
 807                }
 808        }
 809
 810        return 0;
 811}
 812
 813static void dm_crypt_bio_destructor(struct bio *bio)
 814{
 815        struct dm_crypt_io *io = bio->bi_private;
 816        struct crypt_config *cc = io->target->private;
 817
 818        bio_free(bio, cc->bs);
 819}
 820
 821/*
 822 * Generate a new unfragmented bio with the given size
 823 * This should never violate the device limitations
 824 * May return a smaller bio when running out of pages, indicated by
 825 * *out_of_pages set to 1.
 826 */
 827static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
 828                                      unsigned *out_of_pages)
 829{
 830        struct crypt_config *cc = io->target->private;
 831        struct bio *clone;
 832        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 833        gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
 834        unsigned i, len;
 835        struct page *page;
 836
 837        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
 838        if (!clone)
 839                return NULL;
 840
 841        clone_init(io, clone);
 842        *out_of_pages = 0;
 843
 844        for (i = 0; i < nr_iovecs; i++) {
 845                page = mempool_alloc(cc->page_pool, gfp_mask);
 846                if (!page) {
 847                        *out_of_pages = 1;
 848                        break;
 849                }
 850
 851                /*
 852                 * if additional pages cannot be allocated without waiting,
 853                 * return a partially allocated bio, the caller will then try
 854                 * to allocate additional bios while submitting this partial bio
 855                 */
 856                if (i == (MIN_BIO_PAGES - 1))
 857                        gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
 858
 859                len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
 860
 861                if (!bio_add_page(clone, page, len, 0)) {
 862                        mempool_free(page, cc->page_pool);
 863                        break;
 864                }
 865
 866                size -= len;
 867        }
 868
 869        if (!clone->bi_size) {
 870                bio_put(clone);
 871                return NULL;
 872        }
 873
 874        return clone;
 875}
 876
 877static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
 878{
 879        unsigned int i;
 880        struct bio_vec *bv;
 881
 882        for (i = 0; i < clone->bi_vcnt; i++) {
 883                bv = bio_iovec_idx(clone, i);
 884                BUG_ON(!bv->bv_page);
 885                mempool_free(bv->bv_page, cc->page_pool);
 886                bv->bv_page = NULL;
 887        }
 888}
 889
 890static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
 891                                          struct bio *bio, sector_t sector)
 892{
 893        struct crypt_config *cc = ti->private;
 894        struct dm_crypt_io *io;
 895
 896        io = mempool_alloc(cc->io_pool, GFP_NOIO);
 897        io->target = ti;
 898        io->base_bio = bio;
 899        io->sector = sector;
 900        io->error = 0;
 901        io->base_io = NULL;
 902        atomic_set(&io->pending, 0);
 903
 904        return io;
 905}
 906
 907static void crypt_inc_pending(struct dm_crypt_io *io)
 908{
 909        atomic_inc(&io->pending);
 910}
 911
 912/*
 913 * One of the bios was finished. Check for completion of
 914 * the whole request and correctly clean up the buffer.
 915 * If base_io is set, wait for the last fragment to complete.
 916 */
 917static void crypt_dec_pending(struct dm_crypt_io *io)
 918{
 919        struct crypt_config *cc = io->target->private;
 920        struct bio *base_bio = io->base_bio;
 921        struct dm_crypt_io *base_io = io->base_io;
 922        int error = io->error;
 923
 924        if (!atomic_dec_and_test(&io->pending))
 925                return;
 926
 927        mempool_free(io, cc->io_pool);
 928
 929        if (likely(!base_io))
 930                bio_endio(base_bio, error);
 931        else {
 932                if (error && !base_io->error)
 933                        base_io->error = error;
 934                crypt_dec_pending(base_io);
 935        }
 936}
 937
 938/*
 939 * kcryptd/kcryptd_io:
 940 *
 941 * Needed because it would be very unwise to do decryption in an
 942 * interrupt context.
 943 *
 944 * kcryptd performs the actual encryption or decryption.
 945 *
 946 * kcryptd_io performs the IO submission.
 947 *
 948 * They must be separated as otherwise the final stages could be
 949 * starved by new requests which can block in the first stages due
 950 * to memory allocation.
 951 *
 952 * The work is done per CPU global for all dm-crypt instances.
 953 * They should not depend on each other and do not block.
 954 */
 955static void crypt_endio(struct bio *clone, int error)
 956{
 957        struct dm_crypt_io *io = clone->bi_private;
 958        struct crypt_config *cc = io->target->private;
 959        unsigned rw = bio_data_dir(clone);
 960
 961        if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
 962                error = -EIO;
 963
 964        /*
 965         * free the processed pages
 966         */
 967        if (rw == WRITE)
 968                crypt_free_buffer_pages(cc, clone);
 969
 970        bio_put(clone);
 971
 972        if (rw == READ && !error) {
 973                kcryptd_queue_crypt(io);
 974                return;
 975        }
 976
 977        if (unlikely(error))
 978                io->error = error;
 979
 980        crypt_dec_pending(io);
 981}
 982
 983static void clone_init(struct dm_crypt_io *io, struct bio *clone)
 984{
 985        struct crypt_config *cc = io->target->private;
 986
 987        clone->bi_private = io;
 988        clone->bi_end_io  = crypt_endio;
 989        clone->bi_bdev    = cc->dev->bdev;
 990        clone->bi_rw      = io->base_bio->bi_rw;
 991        clone->bi_destructor = dm_crypt_bio_destructor;
 992}
 993
 994static void kcryptd_unplug(struct crypt_config *cc)
 995{
 996        blk_unplug(bdev_get_queue(cc->dev->bdev));
 997}
 998
 999static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1000{
1001        struct crypt_config *cc = io->target->private;
1002        struct bio *base_bio = io->base_bio;
1003        struct bio *clone;
1004
1005        /*
1006         * The block layer might modify the bvec array, so always
1007         * copy the required bvecs because we need the original
1008         * one in order to decrypt the whole bio data *afterwards*.
1009         */
1010        clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
1011        if (!clone) {
1012                kcryptd_unplug(cc);
1013                return 1;
1014        }
1015
1016        crypt_inc_pending(io);
1017
1018        clone_init(io, clone);
1019        clone->bi_idx = 0;
1020        clone->bi_vcnt = bio_segments(base_bio);
1021        clone->bi_size = base_bio->bi_size;
1022        clone->bi_sector = cc->start + io->sector;
1023        memcpy(clone->bi_io_vec, bio_iovec(base_bio),
1024               sizeof(struct bio_vec) * clone->bi_vcnt);
1025
1026        generic_make_request(clone);
1027        return 0;
1028}
1029
1030static void kcryptd_io_write(struct dm_crypt_io *io)
1031{
1032        struct bio *clone = io->ctx.bio_out;
1033        generic_make_request(clone);
1034}
1035
1036static void kcryptd_io(struct work_struct *work)
1037{
1038        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1039
1040        if (bio_data_dir(io->base_bio) == READ) {
1041                crypt_inc_pending(io);
1042                if (kcryptd_io_read(io, GFP_NOIO))
1043                        io->error = -ENOMEM;
1044                crypt_dec_pending(io);
1045        } else
1046                kcryptd_io_write(io);
1047}
1048
1049static void kcryptd_queue_io(struct dm_crypt_io *io)
1050{
1051        struct crypt_config *cc = io->target->private;
1052
1053        INIT_WORK(&io->work, kcryptd_io);
1054        queue_work(cc->io_queue, &io->work);
1055}
1056
1057static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
1058                                          int error, int async)
1059{
1060        struct bio *clone = io->ctx.bio_out;
1061        struct crypt_config *cc = io->target->private;
1062
1063        if (unlikely(error < 0)) {
1064                crypt_free_buffer_pages(cc, clone);
1065                bio_put(clone);
1066                io->error = -EIO;
1067                crypt_dec_pending(io);
1068                return;
1069        }
1070
1071        /* crypt_convert should have filled the clone bio */
1072        BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1073
1074        clone->bi_sector = cc->start + io->sector;
1075
1076        if (async)
1077                kcryptd_queue_io(io);
1078        else
1079                generic_make_request(clone);
1080}
1081
1082static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1083{
1084        struct crypt_config *cc = io->target->private;
1085        struct bio *clone;
1086        struct dm_crypt_io *new_io;
1087        int crypt_finished;
1088        unsigned out_of_pages = 0;
1089        unsigned remaining = io->base_bio->bi_size;
1090        sector_t sector = io->sector;
1091        int r;
1092
1093        /*
1094         * Prevent io from disappearing until this function completes.
1095         */
1096        crypt_inc_pending(io);
1097        crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1098
1099        /*
1100         * The allocated buffers can be smaller than the whole bio,
1101         * so repeat the whole process until all the data can be handled.
1102         */
1103        while (remaining) {
1104                clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1105                if (unlikely(!clone)) {
1106                        io->error = -ENOMEM;
1107                        break;
1108                }
1109
1110                io->ctx.bio_out = clone;
1111                io->ctx.idx_out = 0;
1112
1113                remaining -= clone->bi_size;
1114                sector += bio_sectors(clone);
1115
1116                crypt_inc_pending(io);
1117                r = crypt_convert(cc, &io->ctx);
1118                crypt_finished = atomic_dec_and_test(&io->ctx.pending);
1119
1120                /* Encryption was already finished, submit io now */
1121                if (crypt_finished) {
1122                        kcryptd_crypt_write_io_submit(io, r, 0);
1123
1124                        /*
1125                         * If there was an error, do not try next fragments.
1126                         * For async, error is processed in async handler.
1127                         */
1128                        if (unlikely(r < 0))
1129                                break;
1130
1131                        io->sector = sector;
1132                }
1133
1134                /*
1135                 * Out of memory -> run queues
1136                 * But don't wait if split was due to the io size restriction
1137                 */
1138                if (unlikely(out_of_pages))
1139                        congestion_wait(BLK_RW_ASYNC, HZ/100);
1140
1141                /*
1142                 * With async crypto it is unsafe to share the crypto context
1143                 * between fragments, so switch to a new dm_crypt_io structure.
1144                 */
1145                if (unlikely(!crypt_finished && remaining)) {
1146                        new_io = crypt_io_alloc(io->target, io->base_bio,
1147                                                sector);
1148                        crypt_inc_pending(new_io);
1149                        crypt_convert_init(cc, &new_io->ctx, NULL,
1150                                           io->base_bio, sector);
1151                        new_io->ctx.idx_in = io->ctx.idx_in;
1152                        new_io->ctx.offset_in = io->ctx.offset_in;
1153
1154                        /*
1155                         * Fragments after the first use the base_io
1156                         * pending count.
1157                         */
1158                        if (!io->base_io)
1159                                new_io->base_io = io;
1160                        else {
1161                                new_io->base_io = io->base_io;
1162                                crypt_inc_pending(io->base_io);
1163                                crypt_dec_pending(io);
1164                        }
1165
1166                        io = new_io;
1167                }
1168        }
1169
1170        crypt_dec_pending(io);
1171}
1172
1173static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
1174{
1175        if (unlikely(error < 0))
1176                io->error = -EIO;
1177
1178        crypt_dec_pending(io);
1179}
1180
1181static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1182{
1183        struct crypt_config *cc = io->target->private;
1184        int r = 0;
1185
1186        crypt_inc_pending(io);
1187
1188        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1189                           io->sector);
1190
1191        r = crypt_convert(cc, &io->ctx);
1192
1193        if (atomic_dec_and_test(&io->ctx.pending))
1194                kcryptd_crypt_read_done(io, r);
1195
1196        crypt_dec_pending(io);
1197}
1198
1199static void kcryptd_async_done(struct crypto_async_request *async_req,
1200                               int error)
1201{
1202        struct dm_crypt_request *dmreq = async_req->data;
1203        struct convert_context *ctx = dmreq->ctx;
1204        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1205        struct crypt_config *cc = io->target->private;
1206
1207        if (error == -EINPROGRESS) {
1208                complete(&ctx->restart);
1209                return;
1210        }
1211
1212        if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1213                error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1214
1215        mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1216
1217        if (!atomic_dec_and_test(&ctx->pending))
1218                return;
1219
1220        if (bio_data_dir(io->base_bio) == READ)
1221                kcryptd_crypt_read_done(io, error);
1222        else
1223                kcryptd_crypt_write_io_submit(io, error, 1);
1224}
1225
1226static void kcryptd_crypt(struct work_struct *work)
1227{
1228        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1229
1230        if (bio_data_dir(io->base_bio) == READ)
1231                kcryptd_crypt_read_convert(io);
1232        else
1233                kcryptd_crypt_write_convert(io);
1234}
1235
1236static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1237{
1238        struct crypt_config *cc = io->target->private;
1239
1240        INIT_WORK(&io->work, kcryptd_crypt);
1241        queue_work(cc->crypt_queue, &io->work);
1242}
1243
1244/*
1245 * Decode key from its hex representation
1246 */
1247static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1248{
1249        char buffer[3];
1250        char *endp;
1251        unsigned int i;
1252
1253        buffer[2] = '\0';
1254
1255        for (i = 0; i < size; i++) {
1256                buffer[0] = *hex++;
1257                buffer[1] = *hex++;
1258
1259                key[i] = (u8)simple_strtoul(buffer, &endp, 16);
1260
1261                if (endp != &buffer[2])
1262                        return -EINVAL;
1263        }
1264
1265        if (*hex != '\0')
1266                return -EINVAL;
1267
1268        return 0;
1269}
1270
1271/*
1272 * Encode key into its hex representation
1273 */
1274static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
1275{
1276        unsigned int i;
1277
1278        for (i = 0; i < size; i++) {
1279                sprintf(hex, "%02x", *key);
1280                hex += 2;
1281                key++;
1282        }
1283}
1284
1285static void crypt_free_tfms(struct crypt_config *cc, int cpu)
1286{
1287        struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1288        unsigned i;
1289
1290        for (i = 0; i < cc->tfms_count; i++)
1291                if (cpu_cc->tfms[i] && !IS_ERR(cpu_cc->tfms[i])) {
1292                        crypto_free_ablkcipher(cpu_cc->tfms[i]);
1293                        cpu_cc->tfms[i] = NULL;
1294                }
1295}
1296
1297static int crypt_alloc_tfms(struct crypt_config *cc, int cpu, char *ciphermode)
1298{
1299        struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1300        unsigned i;
1301        int err;
1302
1303        for (i = 0; i < cc->tfms_count; i++) {
1304                cpu_cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1305                if (IS_ERR(cpu_cc->tfms[i])) {
1306                        err = PTR_ERR(cpu_cc->tfms[i]);
1307                        crypt_free_tfms(cc, cpu);
1308                        return err;
1309                }
1310        }
1311
1312        return 0;
1313}
1314
1315static int crypt_setkey_allcpus(struct crypt_config *cc)
1316{
1317        unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1318        int cpu, err = 0, i, r;
1319
1320        for_each_possible_cpu(cpu) {
1321                for (i = 0; i < cc->tfms_count; i++) {
1322                        r = crypto_ablkcipher_setkey(per_cpu_ptr(cc->cpu, cpu)->tfms[i],
1323                                                     cc->key + (i * subkey_size), subkey_size);
1324                        if (r)
1325                                err = r;
1326                }
1327        }
1328
1329        return err;
1330}
1331
1332static int crypt_set_key(struct crypt_config *cc, char *key)
1333{
1334        /* The key size may not be changed. */
1335        if (cc->key_size != (strlen(key) >> 1))
1336                return -EINVAL;
1337
1338        /* Hyphen (which gives a key_size of zero) means there is no key. */
1339        if (!cc->key_size && strcmp(key, "-"))
1340                return -EINVAL;
1341
1342        if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1343                return -EINVAL;
1344
1345        set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1346
1347        return crypt_setkey_allcpus(cc);
1348}
1349
1350static int crypt_wipe_key(struct crypt_config *cc)
1351{
1352        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1353        memset(&cc->key, 0, cc->key_size * sizeof(u8));
1354
1355        return crypt_setkey_allcpus(cc);
1356}
1357
1358static void crypt_dtr(struct dm_target *ti)
1359{
1360        struct crypt_config *cc = ti->private;
1361        struct crypt_cpu *cpu_cc;
1362        int cpu;
1363
1364        ti->private = NULL;
1365
1366        if (!cc)
1367                return;
1368
1369        if (cc->io_queue)
1370                destroy_workqueue(cc->io_queue);
1371        if (cc->crypt_queue)
1372                destroy_workqueue(cc->crypt_queue);
1373
1374        if (cc->cpu)
1375                for_each_possible_cpu(cpu) {
1376                        cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1377                        if (cpu_cc->req)
1378                                mempool_free(cpu_cc->req, cc->req_pool);
1379                        crypt_free_tfms(cc, cpu);
1380                }
1381
1382        if (cc->bs)
1383                bioset_free(cc->bs);
1384
1385        if (cc->page_pool)
1386                mempool_destroy(cc->page_pool);
1387        if (cc->req_pool)
1388                mempool_destroy(cc->req_pool);
1389        if (cc->io_pool)
1390                mempool_destroy(cc->io_pool);
1391
1392        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1393                cc->iv_gen_ops->dtr(cc);
1394
1395        if (cc->dev)
1396                dm_put_device(ti, cc->dev);
1397
1398        if (cc->cpu)
1399                free_percpu(cc->cpu);
1400
1401        kzfree(cc->cipher);
1402        kzfree(cc->cipher_string);
1403
1404        /* Must zero key material before freeing */
1405        kzfree(cc);
1406}
1407
1408static int crypt_ctr_cipher(struct dm_target *ti,
1409                            char *cipher_in, char *key)
1410{
1411        struct crypt_config *cc = ti->private;
1412        char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1413        char *cipher_api = NULL;
1414        int cpu, ret = -EINVAL;
1415
1416        /* Convert to crypto api definition? */
1417        if (strchr(cipher_in, '(')) {
1418                ti->error = "Bad cipher specification";
1419                return -EINVAL;
1420        }
1421
1422        cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1423        if (!cc->cipher_string)
1424                goto bad_mem;
1425
1426        /*
1427         * Legacy dm-crypt cipher specification
1428         * cipher[:keycount]-mode-iv:ivopts
1429         */
1430        tmp = cipher_in;
1431        keycount = strsep(&tmp, "-");
1432        cipher = strsep(&keycount, ":");
1433
1434        if (!keycount)
1435                cc->tfms_count = 1;
1436        else if (sscanf(keycount, "%u", &cc->tfms_count) != 1 ||
1437                 !is_power_of_2(cc->tfms_count)) {
1438                ti->error = "Bad cipher key count specification";
1439                return -EINVAL;
1440        }
1441        cc->key_parts = cc->tfms_count;
1442
1443        cc->cipher = kstrdup(cipher, GFP_KERNEL);
1444        if (!cc->cipher)
1445                goto bad_mem;
1446
1447        chainmode = strsep(&tmp, "-");
1448        ivopts = strsep(&tmp, "-");
1449        ivmode = strsep(&ivopts, ":");
1450
1451        if (tmp)
1452                DMWARN("Ignoring unexpected additional cipher options");
1453
1454        cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)) +
1455                                 cc->tfms_count * sizeof(*(cc->cpu->tfms)),
1456                                 __alignof__(struct crypt_cpu));
1457        if (!cc->cpu) {
1458                ti->error = "Cannot allocate per cpu state";
1459                goto bad_mem;
1460        }
1461
1462        /*
1463         * For compatibility with the original dm-crypt mapping format, if
1464         * only the cipher name is supplied, use cbc-plain.
1465         */
1466        if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1467                chainmode = "cbc";
1468                ivmode = "plain";
1469        }
1470
1471        if (strcmp(chainmode, "ecb") && !ivmode) {
1472                ti->error = "IV mechanism required";
1473                return -EINVAL;
1474        }
1475
1476        cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1477        if (!cipher_api)
1478                goto bad_mem;
1479
1480        ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1481                       "%s(%s)", chainmode, cipher);
1482        if (ret < 0) {
1483                kfree(cipher_api);
1484                goto bad_mem;
1485        }
1486
1487        /* Allocate cipher */
1488        for_each_possible_cpu(cpu) {
1489                ret = crypt_alloc_tfms(cc, cpu, cipher_api);
1490                if (ret < 0) {
1491                        ti->error = "Error allocating crypto tfm";
1492                        goto bad;
1493                }
1494        }
1495
1496        /* Initialize and set key */
1497        ret = crypt_set_key(cc, key);
1498        if (ret < 0) {
1499                ti->error = "Error decoding and setting key";
1500                goto bad;
1501        }
1502
1503        /* Initialize IV */
1504        cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1505        if (cc->iv_size)
1506                /* at least a 64 bit sector number should fit in our buffer */
1507                cc->iv_size = max(cc->iv_size,
1508                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
1509        else if (ivmode) {
1510                DMWARN("Selected cipher does not support IVs");
1511                ivmode = NULL;
1512        }
1513
1514        /* Choose ivmode, see comments at iv code. */
1515        if (ivmode == NULL)
1516                cc->iv_gen_ops = NULL;
1517        else if (strcmp(ivmode, "plain") == 0)
1518                cc->iv_gen_ops = &crypt_iv_plain_ops;
1519        else if (strcmp(ivmode, "plain64") == 0)
1520                cc->iv_gen_ops = &crypt_iv_plain64_ops;
1521        else if (strcmp(ivmode, "essiv") == 0)
1522                cc->iv_gen_ops = &crypt_iv_essiv_ops;
1523        else if (strcmp(ivmode, "benbi") == 0)
1524                cc->iv_gen_ops = &crypt_iv_benbi_ops;
1525        else if (strcmp(ivmode, "null") == 0)
1526                cc->iv_gen_ops = &crypt_iv_null_ops;
1527        else if (strcmp(ivmode, "lmk") == 0) {
1528                cc->iv_gen_ops = &crypt_iv_lmk_ops;
1529                /* Version 2 and 3 is recognised according
1530                 * to length of provided multi-key string.
1531                 * If present (version 3), last key is used as IV seed.
1532                 */
1533                if (cc->key_size % cc->key_parts)
1534                        cc->key_parts++;
1535        } else {
1536                ret = -EINVAL;
1537                ti->error = "Invalid IV mode";
1538                goto bad;
1539        }
1540
1541        /* Allocate IV */
1542        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1543                ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1544                if (ret < 0) {
1545                        ti->error = "Error creating IV";
1546                        goto bad;
1547                }
1548        }
1549
1550        /* Initialize IV (set keys for ESSIV etc) */
1551        if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1552                ret = cc->iv_gen_ops->init(cc);
1553                if (ret < 0) {
1554                        ti->error = "Error initialising IV";
1555                        goto bad;
1556                }
1557        }
1558
1559        ret = 0;
1560bad:
1561        kfree(cipher_api);
1562        return ret;
1563
1564bad_mem:
1565        ti->error = "Cannot allocate cipher strings";
1566        return -ENOMEM;
1567}
1568
1569/*
1570 * Construct an encryption mapping:
1571 * <cipher> <key> <iv_offset> <dev_path> <start>
1572 */
1573static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1574{
1575        struct crypt_config *cc;
1576        unsigned int key_size;
1577        unsigned long long tmpll;
1578        int ret;
1579
1580        if (argc != 5) {
1581                ti->error = "Not enough arguments";
1582                return -EINVAL;
1583        }
1584
1585        key_size = strlen(argv[1]) >> 1;
1586
1587        cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1588        if (!cc) {
1589                ti->error = "Cannot allocate encryption context";
1590                return -ENOMEM;
1591        }
1592        cc->key_size = key_size;
1593
1594        ti->private = cc;
1595        ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1596        if (ret < 0)
1597                goto bad;
1598
1599        ret = -ENOMEM;
1600        cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1601        if (!cc->io_pool) {
1602                ti->error = "Cannot allocate crypt io mempool";
1603                goto bad;
1604        }
1605
1606        cc->dmreq_start = sizeof(struct ablkcipher_request);
1607        cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1608        cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1609        cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1610                           ~(crypto_tfm_ctx_alignment() - 1);
1611
1612        cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1613                        sizeof(struct dm_crypt_request) + cc->iv_size);
1614        if (!cc->req_pool) {
1615                ti->error = "Cannot allocate crypt request mempool";
1616                goto bad;
1617        }
1618
1619        cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1620        if (!cc->page_pool) {
1621                ti->error = "Cannot allocate page mempool";
1622                goto bad;
1623        }
1624
1625        cc->bs = bioset_create(MIN_IOS, 0);
1626        if (!cc->bs) {
1627                ti->error = "Cannot allocate crypt bioset";
1628                goto bad;
1629        }
1630
1631        ret = -EINVAL;
1632        if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1633                ti->error = "Invalid iv_offset sector";
1634                goto bad;
1635        }
1636        cc->iv_offset = tmpll;
1637
1638        if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1639                ti->error = "Device lookup failed";
1640                goto bad;
1641        }
1642
1643        if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1644                ti->error = "Invalid device sector";
1645                goto bad;
1646        }
1647        cc->start = tmpll;
1648
1649        ret = -ENOMEM;
1650        cc->io_queue = alloc_workqueue("kcryptd_io",
1651                                       WQ_NON_REENTRANT|
1652                                       WQ_MEM_RECLAIM,
1653                                       1);
1654        if (!cc->io_queue) {
1655                ti->error = "Couldn't create kcryptd io queue";
1656                goto bad;
1657        }
1658
1659        cc->crypt_queue = alloc_workqueue("kcryptd",
1660                                          WQ_NON_REENTRANT|
1661                                          WQ_CPU_INTENSIVE|
1662                                          WQ_MEM_RECLAIM,
1663                                          1);
1664        if (!cc->crypt_queue) {
1665                ti->error = "Couldn't create kcryptd queue";
1666                goto bad;
1667        }
1668
1669        ti->num_flush_requests = 1;
1670        return 0;
1671
1672bad:
1673        crypt_dtr(ti);
1674        return ret;
1675}
1676
1677static int crypt_map(struct dm_target *ti, struct bio *bio,
1678                     union map_info *map_context)
1679{
1680        struct dm_crypt_io *io;
1681        struct crypt_config *cc;
1682
1683        if (bio->bi_rw & REQ_FLUSH) {
1684                cc = ti->private;
1685                bio->bi_bdev = cc->dev->bdev;
1686                return DM_MAPIO_REMAPPED;
1687        }
1688
1689        io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
1690
1691        if (bio_data_dir(io->base_bio) == READ) {
1692                if (kcryptd_io_read(io, GFP_NOWAIT))
1693                        kcryptd_queue_io(io);
1694        } else
1695                kcryptd_queue_crypt(io);
1696
1697        return DM_MAPIO_SUBMITTED;
1698}
1699
1700static int crypt_status(struct dm_target *ti, status_type_t type,
1701                        char *result, unsigned int maxlen)
1702{
1703        struct crypt_config *cc = ti->private;
1704        unsigned int sz = 0;
1705
1706        switch (type) {
1707        case STATUSTYPE_INFO:
1708                result[0] = '\0';
1709                break;
1710
1711        case STATUSTYPE_TABLE:
1712                DMEMIT("%s ", cc->cipher_string);
1713
1714                if (cc->key_size > 0) {
1715                        if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1716                                return -ENOMEM;
1717
1718                        crypt_encode_key(result + sz, cc->key, cc->key_size);
1719                        sz += cc->key_size << 1;
1720                } else {
1721                        if (sz >= maxlen)
1722                                return -ENOMEM;
1723                        result[sz++] = '-';
1724                }
1725
1726                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1727                                cc->dev->name, (unsigned long long)cc->start);
1728                break;
1729        }
1730        return 0;
1731}
1732
1733static void crypt_postsuspend(struct dm_target *ti)
1734{
1735        struct crypt_config *cc = ti->private;
1736
1737        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1738}
1739
1740static int crypt_preresume(struct dm_target *ti)
1741{
1742        struct crypt_config *cc = ti->private;
1743
1744        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1745                DMERR("aborting resume - crypt key is not set.");
1746                return -EAGAIN;
1747        }
1748
1749        return 0;
1750}
1751
1752static void crypt_resume(struct dm_target *ti)
1753{
1754        struct crypt_config *cc = ti->private;
1755
1756        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1757}
1758
1759/* Message interface
1760 *      key set <key>
1761 *      key wipe
1762 */
1763static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1764{
1765        struct crypt_config *cc = ti->private;
1766        int ret = -EINVAL;
1767
1768        if (argc < 2)
1769                goto error;
1770
1771        if (!strnicmp(argv[0], MESG_STR("key"))) {
1772                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1773                        DMWARN("not suspended during key manipulation.");
1774                        return -EINVAL;
1775                }
1776                if (argc == 3 && !strnicmp(argv[1], MESG_STR("set"))) {
1777                        ret = crypt_set_key(cc, argv[2]);
1778                        if (ret)
1779                                return ret;
1780                        if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1781                                ret = cc->iv_gen_ops->init(cc);
1782                        return ret;
1783                }
1784                if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe"))) {
1785                        if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1786                                ret = cc->iv_gen_ops->wipe(cc);
1787                                if (ret)
1788                                        return ret;
1789                        }
1790                        return crypt_wipe_key(cc);
1791                }
1792        }
1793
1794error:
1795        DMWARN("unrecognised message received.");
1796        return -EINVAL;
1797}
1798
1799static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1800                       struct bio_vec *biovec, int max_size)
1801{
1802        struct crypt_config *cc = ti->private;
1803        struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1804
1805        if (!q->merge_bvec_fn)
1806                return max_size;
1807
1808        bvm->bi_bdev = cc->dev->bdev;
1809        bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1810
1811        return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1812}
1813
1814static int crypt_iterate_devices(struct dm_target *ti,
1815                                 iterate_devices_callout_fn fn, void *data)
1816{
1817        struct crypt_config *cc = ti->private;
1818
1819        return fn(ti, cc->dev, cc->start, ti->len, data);
1820}
1821
1822static struct target_type crypt_target = {
1823        .name   = "crypt",
1824        .version = {1, 10, 0},
1825        .module = THIS_MODULE,
1826        .ctr    = crypt_ctr,
1827        .dtr    = crypt_dtr,
1828        .map    = crypt_map,
1829        .status = crypt_status,
1830        .postsuspend = crypt_postsuspend,
1831        .preresume = crypt_preresume,
1832        .resume = crypt_resume,
1833        .message = crypt_message,
1834        .merge  = crypt_merge,
1835        .iterate_devices = crypt_iterate_devices,
1836};
1837
1838static int __init dm_crypt_init(void)
1839{
1840        int r;
1841
1842        _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1843        if (!_crypt_io_pool)
1844                return -ENOMEM;
1845
1846        r = dm_register_target(&crypt_target);
1847        if (r < 0) {
1848                DMERR("register failed %d", r);
1849                kmem_cache_destroy(_crypt_io_pool);
1850        }
1851
1852        return r;
1853}
1854
1855static void __exit dm_crypt_exit(void)
1856{
1857        dm_unregister_target(&crypt_target);
1858        kmem_cache_destroy(_crypt_io_pool);
1859}
1860
1861module_init(dm_crypt_init);
1862module_exit(dm_crypt_exit);
1863
1864MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1865MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1866MODULE_LICENSE("GPL");
1867