linux/drivers/md/raid1.c
<<
>>
Prefs
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/seq_file.h>
  38#include "md.h"
  39#include "raid1.h"
  40#include "bitmap.h"
  41
  42#define DEBUG 0
  43#if DEBUG
  44#define PRINTK(x...) printk(x)
  45#else
  46#define PRINTK(x...)
  47#endif
  48
  49/*
  50 * Number of guaranteed r1bios in case of extreme VM load:
  51 */
  52#define NR_RAID1_BIOS 256
  53
  54
  55static void unplug_slaves(mddev_t *mddev);
  56
  57static void allow_barrier(conf_t *conf);
  58static void lower_barrier(conf_t *conf);
  59
  60static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  61{
  62        struct pool_info *pi = data;
  63        r1bio_t *r1_bio;
  64        int size = offsetof(r1bio_t, bios[pi->raid_disks]);
  65
  66        /* allocate a r1bio with room for raid_disks entries in the bios array */
  67        r1_bio = kzalloc(size, gfp_flags);
  68        if (!r1_bio && pi->mddev)
  69                unplug_slaves(pi->mddev);
  70
  71        return r1_bio;
  72}
  73
  74static void r1bio_pool_free(void *r1_bio, void *data)
  75{
  76        kfree(r1_bio);
  77}
  78
  79#define RESYNC_BLOCK_SIZE (64*1024)
  80//#define RESYNC_BLOCK_SIZE PAGE_SIZE
  81#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  82#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  83#define RESYNC_WINDOW (2048*1024)
  84
  85static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  86{
  87        struct pool_info *pi = data;
  88        struct page *page;
  89        r1bio_t *r1_bio;
  90        struct bio *bio;
  91        int i, j;
  92
  93        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  94        if (!r1_bio) {
  95                unplug_slaves(pi->mddev);
  96                return NULL;
  97        }
  98
  99        /*
 100         * Allocate bios : 1 for reading, n-1 for writing
 101         */
 102        for (j = pi->raid_disks ; j-- ; ) {
 103                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 104                if (!bio)
 105                        goto out_free_bio;
 106                r1_bio->bios[j] = bio;
 107        }
 108        /*
 109         * Allocate RESYNC_PAGES data pages and attach them to
 110         * the first bio.
 111         * If this is a user-requested check/repair, allocate
 112         * RESYNC_PAGES for each bio.
 113         */
 114        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 115                j = pi->raid_disks;
 116        else
 117                j = 1;
 118        while(j--) {
 119                bio = r1_bio->bios[j];
 120                for (i = 0; i < RESYNC_PAGES; i++) {
 121                        page = alloc_page(gfp_flags);
 122                        if (unlikely(!page))
 123                                goto out_free_pages;
 124
 125                        bio->bi_io_vec[i].bv_page = page;
 126                        bio->bi_vcnt = i+1;
 127                }
 128        }
 129        /* If not user-requests, copy the page pointers to all bios */
 130        if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 131                for (i=0; i<RESYNC_PAGES ; i++)
 132                        for (j=1; j<pi->raid_disks; j++)
 133                                r1_bio->bios[j]->bi_io_vec[i].bv_page =
 134                                        r1_bio->bios[0]->bi_io_vec[i].bv_page;
 135        }
 136
 137        r1_bio->master_bio = NULL;
 138
 139        return r1_bio;
 140
 141out_free_pages:
 142        for (j=0 ; j < pi->raid_disks; j++)
 143                for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
 144                        put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
 145        j = -1;
 146out_free_bio:
 147        while ( ++j < pi->raid_disks )
 148                bio_put(r1_bio->bios[j]);
 149        r1bio_pool_free(r1_bio, data);
 150        return NULL;
 151}
 152
 153static void r1buf_pool_free(void *__r1_bio, void *data)
 154{
 155        struct pool_info *pi = data;
 156        int i,j;
 157        r1bio_t *r1bio = __r1_bio;
 158
 159        for (i = 0; i < RESYNC_PAGES; i++)
 160                for (j = pi->raid_disks; j-- ;) {
 161                        if (j == 0 ||
 162                            r1bio->bios[j]->bi_io_vec[i].bv_page !=
 163                            r1bio->bios[0]->bi_io_vec[i].bv_page)
 164                                safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 165                }
 166        for (i=0 ; i < pi->raid_disks; i++)
 167                bio_put(r1bio->bios[i]);
 168
 169        r1bio_pool_free(r1bio, data);
 170}
 171
 172static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
 173{
 174        int i;
 175
 176        for (i = 0; i < conf->raid_disks; i++) {
 177                struct bio **bio = r1_bio->bios + i;
 178                if (*bio && *bio != IO_BLOCKED)
 179                        bio_put(*bio);
 180                *bio = NULL;
 181        }
 182}
 183
 184static void free_r1bio(r1bio_t *r1_bio)
 185{
 186        conf_t *conf = r1_bio->mddev->private;
 187
 188        /*
 189         * Wake up any possible resync thread that waits for the device
 190         * to go idle.
 191         */
 192        allow_barrier(conf);
 193
 194        put_all_bios(conf, r1_bio);
 195        mempool_free(r1_bio, conf->r1bio_pool);
 196}
 197
 198static void put_buf(r1bio_t *r1_bio)
 199{
 200        conf_t *conf = r1_bio->mddev->private;
 201        int i;
 202
 203        for (i=0; i<conf->raid_disks; i++) {
 204                struct bio *bio = r1_bio->bios[i];
 205                if (bio->bi_end_io)
 206                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 207        }
 208
 209        mempool_free(r1_bio, conf->r1buf_pool);
 210
 211        lower_barrier(conf);
 212}
 213
 214static void reschedule_retry(r1bio_t *r1_bio)
 215{
 216        unsigned long flags;
 217        mddev_t *mddev = r1_bio->mddev;
 218        conf_t *conf = mddev->private;
 219
 220        spin_lock_irqsave(&conf->device_lock, flags);
 221        list_add(&r1_bio->retry_list, &conf->retry_list);
 222        conf->nr_queued ++;
 223        spin_unlock_irqrestore(&conf->device_lock, flags);
 224
 225        wake_up(&conf->wait_barrier);
 226        md_wakeup_thread(mddev->thread);
 227}
 228
 229/*
 230 * raid_end_bio_io() is called when we have finished servicing a mirrored
 231 * operation and are ready to return a success/failure code to the buffer
 232 * cache layer.
 233 */
 234static void raid_end_bio_io(r1bio_t *r1_bio)
 235{
 236        struct bio *bio = r1_bio->master_bio;
 237
 238        /* if nobody has done the final endio yet, do it now */
 239        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 240                PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
 241                        (bio_data_dir(bio) == WRITE) ? "write" : "read",
 242                        (unsigned long long) bio->bi_sector,
 243                        (unsigned long long) bio->bi_sector +
 244                                (bio->bi_size >> 9) - 1);
 245
 246                bio_endio(bio,
 247                        test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
 248        }
 249        free_r1bio(r1_bio);
 250}
 251
 252/*
 253 * Update disk head position estimator based on IRQ completion info.
 254 */
 255static inline void update_head_pos(int disk, r1bio_t *r1_bio)
 256{
 257        conf_t *conf = r1_bio->mddev->private;
 258
 259        conf->mirrors[disk].head_position =
 260                r1_bio->sector + (r1_bio->sectors);
 261}
 262
 263static void raid1_end_read_request(struct bio *bio, int error)
 264{
 265        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 266        r1bio_t *r1_bio = bio->bi_private;
 267        int mirror;
 268        conf_t *conf = r1_bio->mddev->private;
 269
 270        mirror = r1_bio->read_disk;
 271        /*
 272         * this branch is our 'one mirror IO has finished' event handler:
 273         */
 274        update_head_pos(mirror, r1_bio);
 275
 276        if (uptodate)
 277                set_bit(R1BIO_Uptodate, &r1_bio->state);
 278        else {
 279                /* If all other devices have failed, we want to return
 280                 * the error upwards rather than fail the last device.
 281                 * Here we redefine "uptodate" to mean "Don't want to retry"
 282                 */
 283                unsigned long flags;
 284                spin_lock_irqsave(&conf->device_lock, flags);
 285                if (r1_bio->mddev->degraded == conf->raid_disks ||
 286                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 287                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
 288                        uptodate = 1;
 289                spin_unlock_irqrestore(&conf->device_lock, flags);
 290        }
 291
 292        if (uptodate)
 293                raid_end_bio_io(r1_bio);
 294        else {
 295                /*
 296                 * oops, read error:
 297                 */
 298                char b[BDEVNAME_SIZE];
 299                if (printk_ratelimit())
 300                        printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
 301                               mdname(conf->mddev),
 302                               bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
 303                reschedule_retry(r1_bio);
 304        }
 305
 306        rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 307}
 308
 309static void r1_bio_write_done(r1bio_t *r1_bio, int vcnt, struct bio_vec *bv,
 310                              int behind)
 311{
 312        if (atomic_dec_and_test(&r1_bio->remaining))
 313        {
 314                /* it really is the end of this request */
 315                if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 316                        /* free extra copy of the data pages */
 317                        int i = vcnt;
 318                        while (i--)
 319                                safe_put_page(bv[i].bv_page);
 320                }
 321                /* clear the bitmap if all writes complete successfully */
 322                bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 323                                r1_bio->sectors,
 324                                !test_bit(R1BIO_Degraded, &r1_bio->state),
 325                                behind);
 326                md_write_end(r1_bio->mddev);
 327                raid_end_bio_io(r1_bio);
 328        }
 329}
 330
 331static void raid1_end_write_request(struct bio *bio, int error)
 332{
 333        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 334        r1bio_t *r1_bio = bio->bi_private;
 335        int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 336        conf_t *conf = r1_bio->mddev->private;
 337        struct bio *to_put = NULL;
 338
 339
 340        for (mirror = 0; mirror < conf->raid_disks; mirror++)
 341                if (r1_bio->bios[mirror] == bio)
 342                        break;
 343
 344        /*
 345         * 'one mirror IO has finished' event handler:
 346         */
 347        r1_bio->bios[mirror] = NULL;
 348        to_put = bio;
 349        if (!uptodate) {
 350                md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
 351                /* an I/O failed, we can't clear the bitmap */
 352                set_bit(R1BIO_Degraded, &r1_bio->state);
 353        } else
 354                /*
 355                 * Set R1BIO_Uptodate in our master bio, so that we
 356                 * will return a good error code for to the higher
 357                 * levels even if IO on some other mirrored buffer
 358                 * fails.
 359                 *
 360                 * The 'master' represents the composite IO operation
 361                 * to user-side. So if something waits for IO, then it
 362                 * will wait for the 'master' bio.
 363                 */
 364                set_bit(R1BIO_Uptodate, &r1_bio->state);
 365
 366        update_head_pos(mirror, r1_bio);
 367
 368        if (behind) {
 369                if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 370                        atomic_dec(&r1_bio->behind_remaining);
 371
 372                /*
 373                 * In behind mode, we ACK the master bio once the I/O
 374                 * has safely reached all non-writemostly
 375                 * disks. Setting the Returned bit ensures that this
 376                 * gets done only once -- we don't ever want to return
 377                 * -EIO here, instead we'll wait
 378                 */
 379                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 380                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 381                        /* Maybe we can return now */
 382                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 383                                struct bio *mbio = r1_bio->master_bio;
 384                                PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
 385                                       (unsigned long long) mbio->bi_sector,
 386                                       (unsigned long long) mbio->bi_sector +
 387                                       (mbio->bi_size >> 9) - 1);
 388                                bio_endio(mbio, 0);
 389                        }
 390                }
 391        }
 392        rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 393
 394        /*
 395         * Let's see if all mirrored write operations have finished
 396         * already.
 397         */
 398        r1_bio_write_done(r1_bio, bio->bi_vcnt, bio->bi_io_vec, behind);
 399
 400        if (to_put)
 401                bio_put(to_put);
 402}
 403
 404
 405/*
 406 * This routine returns the disk from which the requested read should
 407 * be done. There is a per-array 'next expected sequential IO' sector
 408 * number - if this matches on the next IO then we use the last disk.
 409 * There is also a per-disk 'last know head position' sector that is
 410 * maintained from IRQ contexts, both the normal and the resync IO
 411 * completion handlers update this position correctly. If there is no
 412 * perfect sequential match then we pick the disk whose head is closest.
 413 *
 414 * If there are 2 mirrors in the same 2 devices, performance degrades
 415 * because position is mirror, not device based.
 416 *
 417 * The rdev for the device selected will have nr_pending incremented.
 418 */
 419static int read_balance(conf_t *conf, r1bio_t *r1_bio)
 420{
 421        const sector_t this_sector = r1_bio->sector;
 422        const int sectors = r1_bio->sectors;
 423        int new_disk = -1;
 424        int start_disk;
 425        int i;
 426        sector_t new_distance, current_distance;
 427        mdk_rdev_t *rdev;
 428        int choose_first;
 429
 430        rcu_read_lock();
 431        /*
 432         * Check if we can balance. We can balance on the whole
 433         * device if no resync is going on, or below the resync window.
 434         * We take the first readable disk when above the resync window.
 435         */
 436 retry:
 437        if (conf->mddev->recovery_cp < MaxSector &&
 438            (this_sector + sectors >= conf->next_resync)) {
 439                choose_first = 1;
 440                start_disk = 0;
 441        } else {
 442                choose_first = 0;
 443                start_disk = conf->last_used;
 444        }
 445
 446        /* make sure the disk is operational */
 447        for (i = 0 ; i < conf->raid_disks ; i++) {
 448                int disk = start_disk + i;
 449                if (disk >= conf->raid_disks)
 450                        disk -= conf->raid_disks;
 451
 452                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 453                if (r1_bio->bios[disk] == IO_BLOCKED
 454                    || rdev == NULL
 455                    || !test_bit(In_sync, &rdev->flags))
 456                        continue;
 457
 458                new_disk = disk;
 459                if (!test_bit(WriteMostly, &rdev->flags))
 460                        break;
 461        }
 462
 463        if (new_disk < 0 || choose_first)
 464                goto rb_out;
 465
 466        /*
 467         * Don't change to another disk for sequential reads:
 468         */
 469        if (conf->next_seq_sect == this_sector)
 470                goto rb_out;
 471        if (this_sector == conf->mirrors[new_disk].head_position)
 472                goto rb_out;
 473
 474        current_distance = abs(this_sector 
 475                               - conf->mirrors[new_disk].head_position);
 476
 477        /* look for a better disk - i.e. head is closer */
 478        start_disk = new_disk;
 479        for (i = 1; i < conf->raid_disks; i++) {
 480                int disk = start_disk + 1;
 481                if (disk >= conf->raid_disks)
 482                        disk -= conf->raid_disks;
 483
 484                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 485                if (r1_bio->bios[disk] == IO_BLOCKED
 486                    || rdev == NULL
 487                    || !test_bit(In_sync, &rdev->flags)
 488                    || test_bit(WriteMostly, &rdev->flags))
 489                        continue;
 490
 491                if (!atomic_read(&rdev->nr_pending)) {
 492                        new_disk = disk;
 493                        break;
 494                }
 495                new_distance = abs(this_sector - conf->mirrors[disk].head_position);
 496                if (new_distance < current_distance) {
 497                        current_distance = new_distance;
 498                        new_disk = disk;
 499                }
 500        }
 501
 502 rb_out:
 503        if (new_disk >= 0) {
 504                rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
 505                if (!rdev)
 506                        goto retry;
 507                atomic_inc(&rdev->nr_pending);
 508                if (!test_bit(In_sync, &rdev->flags)) {
 509                        /* cannot risk returning a device that failed
 510                         * before we inc'ed nr_pending
 511                         */
 512                        rdev_dec_pending(rdev, conf->mddev);
 513                        goto retry;
 514                }
 515                conf->next_seq_sect = this_sector + sectors;
 516                conf->last_used = new_disk;
 517        }
 518        rcu_read_unlock();
 519
 520        return new_disk;
 521}
 522
 523static void unplug_slaves(mddev_t *mddev)
 524{
 525        conf_t *conf = mddev->private;
 526        int i;
 527
 528        rcu_read_lock();
 529        for (i=0; i<mddev->raid_disks; i++) {
 530                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 531                if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
 532                        struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
 533
 534                        atomic_inc(&rdev->nr_pending);
 535                        rcu_read_unlock();
 536
 537                        blk_unplug(r_queue);
 538
 539                        rdev_dec_pending(rdev, mddev);
 540                        rcu_read_lock();
 541                }
 542        }
 543        rcu_read_unlock();
 544}
 545
 546static void raid1_unplug(struct request_queue *q)
 547{
 548        mddev_t *mddev = q->queuedata;
 549
 550        unplug_slaves(mddev);
 551        md_wakeup_thread(mddev->thread);
 552}
 553
 554static int raid1_congested(void *data, int bits)
 555{
 556        mddev_t *mddev = data;
 557        conf_t *conf = mddev->private;
 558        int i, ret = 0;
 559
 560        if (mddev_congested(mddev, bits))
 561                return 1;
 562
 563        rcu_read_lock();
 564        for (i = 0; i < mddev->raid_disks; i++) {
 565                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 566                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 567                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 568
 569                        /* Note the '|| 1' - when read_balance prefers
 570                         * non-congested targets, it can be removed
 571                         */
 572                        if ((bits & (1<<BDI_async_congested)) || 1)
 573                                ret |= bdi_congested(&q->backing_dev_info, bits);
 574                        else
 575                                ret &= bdi_congested(&q->backing_dev_info, bits);
 576                }
 577        }
 578        rcu_read_unlock();
 579        return ret;
 580}
 581
 582
 583static int flush_pending_writes(conf_t *conf)
 584{
 585        /* Any writes that have been queued but are awaiting
 586         * bitmap updates get flushed here.
 587         * We return 1 if any requests were actually submitted.
 588         */
 589        int rv = 0;
 590
 591        spin_lock_irq(&conf->device_lock);
 592
 593        if (conf->pending_bio_list.head) {
 594                struct bio *bio;
 595                bio = bio_list_get(&conf->pending_bio_list);
 596                /* Only take the spinlock to quiet a warning */
 597                spin_lock(conf->mddev->queue->queue_lock);
 598                blk_remove_plug(conf->mddev->queue);
 599                spin_unlock(conf->mddev->queue->queue_lock);
 600                spin_unlock_irq(&conf->device_lock);
 601                /* flush any pending bitmap writes to
 602                 * disk before proceeding w/ I/O */
 603                bitmap_unplug(conf->mddev->bitmap);
 604
 605                while (bio) { /* submit pending writes */
 606                        struct bio *next = bio->bi_next;
 607                        bio->bi_next = NULL;
 608                        generic_make_request(bio);
 609                        bio = next;
 610                }
 611                rv = 1;
 612        } else
 613                spin_unlock_irq(&conf->device_lock);
 614        return rv;
 615}
 616
 617/* Barriers....
 618 * Sometimes we need to suspend IO while we do something else,
 619 * either some resync/recovery, or reconfigure the array.
 620 * To do this we raise a 'barrier'.
 621 * The 'barrier' is a counter that can be raised multiple times
 622 * to count how many activities are happening which preclude
 623 * normal IO.
 624 * We can only raise the barrier if there is no pending IO.
 625 * i.e. if nr_pending == 0.
 626 * We choose only to raise the barrier if no-one is waiting for the
 627 * barrier to go down.  This means that as soon as an IO request
 628 * is ready, no other operations which require a barrier will start
 629 * until the IO request has had a chance.
 630 *
 631 * So: regular IO calls 'wait_barrier'.  When that returns there
 632 *    is no backgroup IO happening,  It must arrange to call
 633 *    allow_barrier when it has finished its IO.
 634 * backgroup IO calls must call raise_barrier.  Once that returns
 635 *    there is no normal IO happeing.  It must arrange to call
 636 *    lower_barrier when the particular background IO completes.
 637 */
 638#define RESYNC_DEPTH 32
 639
 640static void raise_barrier(conf_t *conf)
 641{
 642        spin_lock_irq(&conf->resync_lock);
 643
 644        /* Wait until no block IO is waiting */
 645        wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 646                            conf->resync_lock,
 647                            raid1_unplug(conf->mddev->queue));
 648
 649        /* block any new IO from starting */
 650        conf->barrier++;
 651
 652        /* Now wait for all pending IO to complete */
 653        wait_event_lock_irq(conf->wait_barrier,
 654                            !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 655                            conf->resync_lock,
 656                            raid1_unplug(conf->mddev->queue));
 657
 658        spin_unlock_irq(&conf->resync_lock);
 659}
 660
 661static void lower_barrier(conf_t *conf)
 662{
 663        unsigned long flags;
 664        BUG_ON(conf->barrier <= 0);
 665        spin_lock_irqsave(&conf->resync_lock, flags);
 666        conf->barrier--;
 667        spin_unlock_irqrestore(&conf->resync_lock, flags);
 668        wake_up(&conf->wait_barrier);
 669}
 670
 671static void wait_barrier(conf_t *conf)
 672{
 673        spin_lock_irq(&conf->resync_lock);
 674        if (conf->barrier) {
 675                conf->nr_waiting++;
 676                wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
 677                                    conf->resync_lock,
 678                                    raid1_unplug(conf->mddev->queue));
 679                conf->nr_waiting--;
 680        }
 681        conf->nr_pending++;
 682        spin_unlock_irq(&conf->resync_lock);
 683}
 684
 685static void allow_barrier(conf_t *conf)
 686{
 687        unsigned long flags;
 688        spin_lock_irqsave(&conf->resync_lock, flags);
 689        conf->nr_pending--;
 690        spin_unlock_irqrestore(&conf->resync_lock, flags);
 691        wake_up(&conf->wait_barrier);
 692}
 693
 694static void freeze_array(conf_t *conf)
 695{
 696        /* stop syncio and normal IO and wait for everything to
 697         * go quite.
 698         * We increment barrier and nr_waiting, and then
 699         * wait until nr_pending match nr_queued+1
 700         * This is called in the context of one normal IO request
 701         * that has failed. Thus any sync request that might be pending
 702         * will be blocked by nr_pending, and we need to wait for
 703         * pending IO requests to complete or be queued for re-try.
 704         * Thus the number queued (nr_queued) plus this request (1)
 705         * must match the number of pending IOs (nr_pending) before
 706         * we continue.
 707         */
 708        spin_lock_irq(&conf->resync_lock);
 709        conf->barrier++;
 710        conf->nr_waiting++;
 711        wait_event_lock_irq(conf->wait_barrier,
 712                            conf->nr_pending == conf->nr_queued+1,
 713                            conf->resync_lock,
 714                            ({ flush_pending_writes(conf);
 715                               raid1_unplug(conf->mddev->queue); }));
 716        spin_unlock_irq(&conf->resync_lock);
 717}
 718static void unfreeze_array(conf_t *conf)
 719{
 720        /* reverse the effect of the freeze */
 721        spin_lock_irq(&conf->resync_lock);
 722        conf->barrier--;
 723        conf->nr_waiting--;
 724        wake_up(&conf->wait_barrier);
 725        spin_unlock_irq(&conf->resync_lock);
 726}
 727
 728
 729/* duplicate the data pages for behind I/O 
 730 * We return a list of bio_vec rather than just page pointers
 731 * as it makes freeing easier
 732 */
 733static struct bio_vec *alloc_behind_pages(struct bio *bio)
 734{
 735        int i;
 736        struct bio_vec *bvec;
 737        struct bio_vec *pages = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 738                                        GFP_NOIO);
 739        if (unlikely(!pages))
 740                goto do_sync_io;
 741
 742        bio_for_each_segment(bvec, bio, i) {
 743                pages[i].bv_page = alloc_page(GFP_NOIO);
 744                if (unlikely(!pages[i].bv_page))
 745                        goto do_sync_io;
 746                memcpy(kmap(pages[i].bv_page) + bvec->bv_offset,
 747                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 748                kunmap(pages[i].bv_page);
 749                kunmap(bvec->bv_page);
 750        }
 751
 752        return pages;
 753
 754do_sync_io:
 755        if (pages)
 756                for (i = 0; i < bio->bi_vcnt && pages[i].bv_page; i++)
 757                        put_page(pages[i].bv_page);
 758        kfree(pages);
 759        PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
 760        return NULL;
 761}
 762
 763static int make_request(mddev_t *mddev, struct bio * bio)
 764{
 765        conf_t *conf = mddev->private;
 766        mirror_info_t *mirror;
 767        r1bio_t *r1_bio;
 768        struct bio *read_bio;
 769        int i, targets = 0, disks;
 770        struct bitmap *bitmap;
 771        unsigned long flags;
 772        struct bio_vec *behind_pages = NULL;
 773        const int rw = bio_data_dir(bio);
 774        const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
 775        const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
 776        mdk_rdev_t *blocked_rdev;
 777
 778        /*
 779         * Register the new request and wait if the reconstruction
 780         * thread has put up a bar for new requests.
 781         * Continue immediately if no resync is active currently.
 782         */
 783
 784        md_write_start(mddev, bio); /* wait on superblock update early */
 785
 786        if (bio_data_dir(bio) == WRITE &&
 787            bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
 788            bio->bi_sector < mddev->suspend_hi) {
 789                /* As the suspend_* range is controlled by
 790                 * userspace, we want an interruptible
 791                 * wait.
 792                 */
 793                DEFINE_WAIT(w);
 794                for (;;) {
 795                        flush_signals(current);
 796                        prepare_to_wait(&conf->wait_barrier,
 797                                        &w, TASK_INTERRUPTIBLE);
 798                        if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
 799                            bio->bi_sector >= mddev->suspend_hi)
 800                                break;
 801                        schedule();
 802                }
 803                finish_wait(&conf->wait_barrier, &w);
 804        }
 805
 806        wait_barrier(conf);
 807
 808        bitmap = mddev->bitmap;
 809
 810        /*
 811         * make_request() can abort the operation when READA is being
 812         * used and no empty request is available.
 813         *
 814         */
 815        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 816
 817        r1_bio->master_bio = bio;
 818        r1_bio->sectors = bio->bi_size >> 9;
 819        r1_bio->state = 0;
 820        r1_bio->mddev = mddev;
 821        r1_bio->sector = bio->bi_sector;
 822
 823        if (rw == READ) {
 824                /*
 825                 * read balancing logic:
 826                 */
 827                int rdisk = read_balance(conf, r1_bio);
 828
 829                if (rdisk < 0) {
 830                        /* couldn't find anywhere to read from */
 831                        raid_end_bio_io(r1_bio);
 832                        return 0;
 833                }
 834                mirror = conf->mirrors + rdisk;
 835
 836                if (test_bit(WriteMostly, &mirror->rdev->flags) &&
 837                    bitmap) {
 838                        /* Reading from a write-mostly device must
 839                         * take care not to over-take any writes
 840                         * that are 'behind'
 841                         */
 842                        wait_event(bitmap->behind_wait,
 843                                   atomic_read(&bitmap->behind_writes) == 0);
 844                }
 845                r1_bio->read_disk = rdisk;
 846
 847                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 848
 849                r1_bio->bios[rdisk] = read_bio;
 850
 851                read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
 852                read_bio->bi_bdev = mirror->rdev->bdev;
 853                read_bio->bi_end_io = raid1_end_read_request;
 854                read_bio->bi_rw = READ | do_sync;
 855                read_bio->bi_private = r1_bio;
 856
 857                generic_make_request(read_bio);
 858                return 0;
 859        }
 860
 861        /*
 862         * WRITE:
 863         */
 864        /* first select target devices under spinlock and
 865         * inc refcount on their rdev.  Record them by setting
 866         * bios[x] to bio
 867         */
 868        disks = conf->raid_disks;
 869 retry_write:
 870        blocked_rdev = NULL;
 871        rcu_read_lock();
 872        for (i = 0;  i < disks; i++) {
 873                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 874                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
 875                        atomic_inc(&rdev->nr_pending);
 876                        blocked_rdev = rdev;
 877                        break;
 878                }
 879                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 880                        atomic_inc(&rdev->nr_pending);
 881                        if (test_bit(Faulty, &rdev->flags)) {
 882                                rdev_dec_pending(rdev, mddev);
 883                                r1_bio->bios[i] = NULL;
 884                        } else {
 885                                r1_bio->bios[i] = bio;
 886                                targets++;
 887                        }
 888                } else
 889                        r1_bio->bios[i] = NULL;
 890        }
 891        rcu_read_unlock();
 892
 893        if (unlikely(blocked_rdev)) {
 894                /* Wait for this device to become unblocked */
 895                int j;
 896
 897                for (j = 0; j < i; j++)
 898                        if (r1_bio->bios[j])
 899                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
 900
 901                allow_barrier(conf);
 902                md_wait_for_blocked_rdev(blocked_rdev, mddev);
 903                wait_barrier(conf);
 904                goto retry_write;
 905        }
 906
 907        BUG_ON(targets == 0); /* we never fail the last device */
 908
 909        if (targets < conf->raid_disks) {
 910                /* array is degraded, we will not clear the bitmap
 911                 * on I/O completion (see raid1_end_write_request) */
 912                set_bit(R1BIO_Degraded, &r1_bio->state);
 913        }
 914
 915        /* do behind I/O ?
 916         * Not if there are too many, or cannot allocate memory,
 917         * or a reader on WriteMostly is waiting for behind writes 
 918         * to flush */
 919        if (bitmap &&
 920            (atomic_read(&bitmap->behind_writes)
 921             < mddev->bitmap_info.max_write_behind) &&
 922            !waitqueue_active(&bitmap->behind_wait) &&
 923            (behind_pages = alloc_behind_pages(bio)) != NULL)
 924                set_bit(R1BIO_BehindIO, &r1_bio->state);
 925
 926        atomic_set(&r1_bio->remaining, 1);
 927        atomic_set(&r1_bio->behind_remaining, 0);
 928
 929        bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
 930                                test_bit(R1BIO_BehindIO, &r1_bio->state));
 931        for (i = 0; i < disks; i++) {
 932                struct bio *mbio;
 933                if (!r1_bio->bios[i])
 934                        continue;
 935
 936                mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 937                r1_bio->bios[i] = mbio;
 938
 939                mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
 940                mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
 941                mbio->bi_end_io = raid1_end_write_request;
 942                mbio->bi_rw = WRITE | do_flush_fua | do_sync;
 943                mbio->bi_private = r1_bio;
 944
 945                if (behind_pages) {
 946                        struct bio_vec *bvec;
 947                        int j;
 948
 949                        /* Yes, I really want the '__' version so that
 950                         * we clear any unused pointer in the io_vec, rather
 951                         * than leave them unchanged.  This is important
 952                         * because when we come to free the pages, we won't
 953                         * know the original bi_idx, so we just free
 954                         * them all
 955                         */
 956                        __bio_for_each_segment(bvec, mbio, j, 0)
 957                                bvec->bv_page = behind_pages[j].bv_page;
 958                        if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
 959                                atomic_inc(&r1_bio->behind_remaining);
 960                }
 961
 962                atomic_inc(&r1_bio->remaining);
 963                spin_lock_irqsave(&conf->device_lock, flags);
 964                bio_list_add(&conf->pending_bio_list, mbio);
 965                blk_plug_device_unlocked(mddev->queue);
 966                spin_unlock_irqrestore(&conf->device_lock, flags);
 967        }
 968        r1_bio_write_done(r1_bio, bio->bi_vcnt, behind_pages, behind_pages != NULL);
 969        kfree(behind_pages); /* the behind pages are attached to the bios now */
 970
 971        /* In case raid1d snuck in to freeze_array */
 972        wake_up(&conf->wait_barrier);
 973
 974        if (do_sync)
 975                md_wakeup_thread(mddev->thread);
 976
 977        return 0;
 978}
 979
 980static void status(struct seq_file *seq, mddev_t *mddev)
 981{
 982        conf_t *conf = mddev->private;
 983        int i;
 984
 985        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
 986                   conf->raid_disks - mddev->degraded);
 987        rcu_read_lock();
 988        for (i = 0; i < conf->raid_disks; i++) {
 989                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 990                seq_printf(seq, "%s",
 991                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
 992        }
 993        rcu_read_unlock();
 994        seq_printf(seq, "]");
 995}
 996
 997
 998static void error(mddev_t *mddev, mdk_rdev_t *rdev)
 999{
1000        char b[BDEVNAME_SIZE];
1001        conf_t *conf = mddev->private;
1002
1003        /*
1004         * If it is not operational, then we have already marked it as dead
1005         * else if it is the last working disks, ignore the error, let the
1006         * next level up know.
1007         * else mark the drive as failed
1008         */
1009        if (test_bit(In_sync, &rdev->flags)
1010            && (conf->raid_disks - mddev->degraded) == 1) {
1011                /*
1012                 * Don't fail the drive, act as though we were just a
1013                 * normal single drive.
1014                 * However don't try a recovery from this drive as
1015                 * it is very likely to fail.
1016                 */
1017                mddev->recovery_disabled = 1;
1018                return;
1019        }
1020        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1021                unsigned long flags;
1022                spin_lock_irqsave(&conf->device_lock, flags);
1023                mddev->degraded++;
1024                set_bit(Faulty, &rdev->flags);
1025                spin_unlock_irqrestore(&conf->device_lock, flags);
1026                /*
1027                 * if recovery is running, make sure it aborts.
1028                 */
1029                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1030        } else
1031                set_bit(Faulty, &rdev->flags);
1032        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1033        printk(KERN_ALERT
1034               "md/raid1:%s: Disk failure on %s, disabling device.\n"
1035               "md/raid1:%s: Operation continuing on %d devices.\n",
1036               mdname(mddev), bdevname(rdev->bdev, b),
1037               mdname(mddev), conf->raid_disks - mddev->degraded);
1038}
1039
1040static void print_conf(conf_t *conf)
1041{
1042        int i;
1043
1044        printk(KERN_DEBUG "RAID1 conf printout:\n");
1045        if (!conf) {
1046                printk(KERN_DEBUG "(!conf)\n");
1047                return;
1048        }
1049        printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1050                conf->raid_disks);
1051
1052        rcu_read_lock();
1053        for (i = 0; i < conf->raid_disks; i++) {
1054                char b[BDEVNAME_SIZE];
1055                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1056                if (rdev)
1057                        printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1058                               i, !test_bit(In_sync, &rdev->flags),
1059                               !test_bit(Faulty, &rdev->flags),
1060                               bdevname(rdev->bdev,b));
1061        }
1062        rcu_read_unlock();
1063}
1064
1065static void close_sync(conf_t *conf)
1066{
1067        wait_barrier(conf);
1068        allow_barrier(conf);
1069
1070        mempool_destroy(conf->r1buf_pool);
1071        conf->r1buf_pool = NULL;
1072}
1073
1074static int raid1_spare_active(mddev_t *mddev)
1075{
1076        int i;
1077        conf_t *conf = mddev->private;
1078        int count = 0;
1079        unsigned long flags;
1080
1081        /*
1082         * Find all failed disks within the RAID1 configuration 
1083         * and mark them readable.
1084         * Called under mddev lock, so rcu protection not needed.
1085         */
1086        for (i = 0; i < conf->raid_disks; i++) {
1087                mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1088                if (rdev
1089                    && !test_bit(Faulty, &rdev->flags)
1090                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1091                        count++;
1092                        sysfs_notify_dirent(rdev->sysfs_state);
1093                }
1094        }
1095        spin_lock_irqsave(&conf->device_lock, flags);
1096        mddev->degraded -= count;
1097        spin_unlock_irqrestore(&conf->device_lock, flags);
1098
1099        print_conf(conf);
1100        return count;
1101}
1102
1103
1104static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1105{
1106        conf_t *conf = mddev->private;
1107        int err = -EEXIST;
1108        int mirror = 0;
1109        mirror_info_t *p;
1110        int first = 0;
1111        int last = mddev->raid_disks - 1;
1112
1113        if (rdev->raid_disk >= 0)
1114                first = last = rdev->raid_disk;
1115
1116        for (mirror = first; mirror <= last; mirror++)
1117                if ( !(p=conf->mirrors+mirror)->rdev) {
1118
1119                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1120                                          rdev->data_offset << 9);
1121                        /* as we don't honour merge_bvec_fn, we must
1122                         * never risk violating it, so limit
1123                         * ->max_segments to one lying with a single
1124                         * page, as a one page request is never in
1125                         * violation.
1126                         */
1127                        if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1128                                blk_queue_max_segments(mddev->queue, 1);
1129                                blk_queue_segment_boundary(mddev->queue,
1130                                                           PAGE_CACHE_SIZE - 1);
1131                        }
1132
1133                        p->head_position = 0;
1134                        rdev->raid_disk = mirror;
1135                        err = 0;
1136                        /* As all devices are equivalent, we don't need a full recovery
1137                         * if this was recently any drive of the array
1138                         */
1139                        if (rdev->saved_raid_disk < 0)
1140                                conf->fullsync = 1;
1141                        rcu_assign_pointer(p->rdev, rdev);
1142                        break;
1143                }
1144        md_integrity_add_rdev(rdev, mddev);
1145        print_conf(conf);
1146        return err;
1147}
1148
1149static int raid1_remove_disk(mddev_t *mddev, int number)
1150{
1151        conf_t *conf = mddev->private;
1152        int err = 0;
1153        mdk_rdev_t *rdev;
1154        mirror_info_t *p = conf->mirrors+ number;
1155
1156        print_conf(conf);
1157        rdev = p->rdev;
1158        if (rdev) {
1159                if (test_bit(In_sync, &rdev->flags) ||
1160                    atomic_read(&rdev->nr_pending)) {
1161                        err = -EBUSY;
1162                        goto abort;
1163                }
1164                /* Only remove non-faulty devices if recovery
1165                 * is not possible.
1166                 */
1167                if (!test_bit(Faulty, &rdev->flags) &&
1168                    !mddev->recovery_disabled &&
1169                    mddev->degraded < conf->raid_disks) {
1170                        err = -EBUSY;
1171                        goto abort;
1172                }
1173                p->rdev = NULL;
1174                synchronize_rcu();
1175                if (atomic_read(&rdev->nr_pending)) {
1176                        /* lost the race, try later */
1177                        err = -EBUSY;
1178                        p->rdev = rdev;
1179                        goto abort;
1180                }
1181                md_integrity_register(mddev);
1182        }
1183abort:
1184
1185        print_conf(conf);
1186        return err;
1187}
1188
1189
1190static void end_sync_read(struct bio *bio, int error)
1191{
1192        r1bio_t *r1_bio = bio->bi_private;
1193        int i;
1194
1195        for (i=r1_bio->mddev->raid_disks; i--; )
1196                if (r1_bio->bios[i] == bio)
1197                        break;
1198        BUG_ON(i < 0);
1199        update_head_pos(i, r1_bio);
1200        /*
1201         * we have read a block, now it needs to be re-written,
1202         * or re-read if the read failed.
1203         * We don't do much here, just schedule handling by raid1d
1204         */
1205        if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1206                set_bit(R1BIO_Uptodate, &r1_bio->state);
1207
1208        if (atomic_dec_and_test(&r1_bio->remaining))
1209                reschedule_retry(r1_bio);
1210}
1211
1212static void end_sync_write(struct bio *bio, int error)
1213{
1214        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1215        r1bio_t *r1_bio = bio->bi_private;
1216        mddev_t *mddev = r1_bio->mddev;
1217        conf_t *conf = mddev->private;
1218        int i;
1219        int mirror=0;
1220
1221        for (i = 0; i < conf->raid_disks; i++)
1222                if (r1_bio->bios[i] == bio) {
1223                        mirror = i;
1224                        break;
1225                }
1226        if (!uptodate) {
1227                sector_t sync_blocks = 0;
1228                sector_t s = r1_bio->sector;
1229                long sectors_to_go = r1_bio->sectors;
1230                /* make sure these bits doesn't get cleared. */
1231                do {
1232                        bitmap_end_sync(mddev->bitmap, s,
1233                                        &sync_blocks, 1);
1234                        s += sync_blocks;
1235                        sectors_to_go -= sync_blocks;
1236                } while (sectors_to_go > 0);
1237                md_error(mddev, conf->mirrors[mirror].rdev);
1238        }
1239
1240        update_head_pos(mirror, r1_bio);
1241
1242        if (atomic_dec_and_test(&r1_bio->remaining)) {
1243                sector_t s = r1_bio->sectors;
1244                put_buf(r1_bio);
1245                md_done_sync(mddev, s, uptodate);
1246        }
1247}
1248
1249static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1250{
1251        conf_t *conf = mddev->private;
1252        int i;
1253        int disks = conf->raid_disks;
1254        struct bio *bio, *wbio;
1255
1256        bio = r1_bio->bios[r1_bio->read_disk];
1257
1258
1259        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1260                /* We have read all readable devices.  If we haven't
1261                 * got the block, then there is no hope left.
1262                 * If we have, then we want to do a comparison
1263                 * and skip the write if everything is the same.
1264                 * If any blocks failed to read, then we need to
1265                 * attempt an over-write
1266                 */
1267                int primary;
1268                if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1269                        for (i=0; i<mddev->raid_disks; i++)
1270                                if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1271                                        md_error(mddev, conf->mirrors[i].rdev);
1272
1273                        md_done_sync(mddev, r1_bio->sectors, 1);
1274                        put_buf(r1_bio);
1275                        return;
1276                }
1277                for (primary=0; primary<mddev->raid_disks; primary++)
1278                        if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1279                            test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1280                                r1_bio->bios[primary]->bi_end_io = NULL;
1281                                rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1282                                break;
1283                        }
1284                r1_bio->read_disk = primary;
1285                for (i=0; i<mddev->raid_disks; i++)
1286                        if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1287                                int j;
1288                                int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1289                                struct bio *pbio = r1_bio->bios[primary];
1290                                struct bio *sbio = r1_bio->bios[i];
1291
1292                                if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1293                                        for (j = vcnt; j-- ; ) {
1294                                                struct page *p, *s;
1295                                                p = pbio->bi_io_vec[j].bv_page;
1296                                                s = sbio->bi_io_vec[j].bv_page;
1297                                                if (memcmp(page_address(p),
1298                                                           page_address(s),
1299                                                           PAGE_SIZE))
1300                                                        break;
1301                                        }
1302                                } else
1303                                        j = 0;
1304                                if (j >= 0)
1305                                        mddev->resync_mismatches += r1_bio->sectors;
1306                                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1307                                              && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1308                                        sbio->bi_end_io = NULL;
1309                                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1310                                } else {
1311                                        /* fixup the bio for reuse */
1312                                        int size;
1313                                        sbio->bi_vcnt = vcnt;
1314                                        sbio->bi_size = r1_bio->sectors << 9;
1315                                        sbio->bi_idx = 0;
1316                                        sbio->bi_phys_segments = 0;
1317                                        sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1318                                        sbio->bi_flags |= 1 << BIO_UPTODATE;
1319                                        sbio->bi_next = NULL;
1320                                        sbio->bi_sector = r1_bio->sector +
1321                                                conf->mirrors[i].rdev->data_offset;
1322                                        sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1323                                        size = sbio->bi_size;
1324                                        for (j = 0; j < vcnt ; j++) {
1325                                                struct bio_vec *bi;
1326                                                bi = &sbio->bi_io_vec[j];
1327                                                bi->bv_offset = 0;
1328                                                if (size > PAGE_SIZE)
1329                                                        bi->bv_len = PAGE_SIZE;
1330                                                else
1331                                                        bi->bv_len = size;
1332                                                size -= PAGE_SIZE;
1333                                                memcpy(page_address(bi->bv_page),
1334                                                       page_address(pbio->bi_io_vec[j].bv_page),
1335                                                       PAGE_SIZE);
1336                                        }
1337
1338                                }
1339                        }
1340        }
1341        if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1342                /* ouch - failed to read all of that.
1343                 * Try some synchronous reads of other devices to get
1344                 * good data, much like with normal read errors.  Only
1345                 * read into the pages we already have so we don't
1346                 * need to re-issue the read request.
1347                 * We don't need to freeze the array, because being in an
1348                 * active sync request, there is no normal IO, and
1349                 * no overlapping syncs.
1350                 */
1351                sector_t sect = r1_bio->sector;
1352                int sectors = r1_bio->sectors;
1353                int idx = 0;
1354
1355                while(sectors) {
1356                        int s = sectors;
1357                        int d = r1_bio->read_disk;
1358                        int success = 0;
1359                        mdk_rdev_t *rdev;
1360
1361                        if (s > (PAGE_SIZE>>9))
1362                                s = PAGE_SIZE >> 9;
1363                        do {
1364                                if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1365                                        /* No rcu protection needed here devices
1366                                         * can only be removed when no resync is
1367                                         * active, and resync is currently active
1368                                         */
1369                                        rdev = conf->mirrors[d].rdev;
1370                                        if (sync_page_io(rdev,
1371                                                         sect,
1372                                                         s<<9,
1373                                                         bio->bi_io_vec[idx].bv_page,
1374                                                         READ, false)) {
1375                                                success = 1;
1376                                                break;
1377                                        }
1378                                }
1379                                d++;
1380                                if (d == conf->raid_disks)
1381                                        d = 0;
1382                        } while (!success && d != r1_bio->read_disk);
1383
1384                        if (success) {
1385                                int start = d;
1386                                /* write it back and re-read */
1387                                set_bit(R1BIO_Uptodate, &r1_bio->state);
1388                                while (d != r1_bio->read_disk) {
1389                                        if (d == 0)
1390                                                d = conf->raid_disks;
1391                                        d--;
1392                                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1393                                                continue;
1394                                        rdev = conf->mirrors[d].rdev;
1395                                        atomic_add(s, &rdev->corrected_errors);
1396                                        if (sync_page_io(rdev,
1397                                                         sect,
1398                                                         s<<9,
1399                                                         bio->bi_io_vec[idx].bv_page,
1400                                                         WRITE, false) == 0)
1401                                                md_error(mddev, rdev);
1402                                }
1403                                d = start;
1404                                while (d != r1_bio->read_disk) {
1405                                        if (d == 0)
1406                                                d = conf->raid_disks;
1407                                        d--;
1408                                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1409                                                continue;
1410                                        rdev = conf->mirrors[d].rdev;
1411                                        if (sync_page_io(rdev,
1412                                                         sect,
1413                                                         s<<9,
1414                                                         bio->bi_io_vec[idx].bv_page,
1415                                                         READ, false) == 0)
1416                                                md_error(mddev, rdev);
1417                                }
1418                        } else {
1419                                char b[BDEVNAME_SIZE];
1420                                /* Cannot read from anywhere, array is toast */
1421                                md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1422                                printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1423                                       " for block %llu\n",
1424                                       mdname(mddev),
1425                                       bdevname(bio->bi_bdev, b),
1426                                       (unsigned long long)r1_bio->sector);
1427                                md_done_sync(mddev, r1_bio->sectors, 0);
1428                                put_buf(r1_bio);
1429                                return;
1430                        }
1431                        sectors -= s;
1432                        sect += s;
1433                        idx ++;
1434                }
1435        }
1436
1437        /*
1438         * schedule writes
1439         */
1440        atomic_set(&r1_bio->remaining, 1);
1441        for (i = 0; i < disks ; i++) {
1442                wbio = r1_bio->bios[i];
1443                if (wbio->bi_end_io == NULL ||
1444                    (wbio->bi_end_io == end_sync_read &&
1445                     (i == r1_bio->read_disk ||
1446                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1447                        continue;
1448
1449                wbio->bi_rw = WRITE;
1450                wbio->bi_end_io = end_sync_write;
1451                atomic_inc(&r1_bio->remaining);
1452                md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1453
1454                generic_make_request(wbio);
1455        }
1456
1457        if (atomic_dec_and_test(&r1_bio->remaining)) {
1458                /* if we're here, all write(s) have completed, so clean up */
1459                md_done_sync(mddev, r1_bio->sectors, 1);
1460                put_buf(r1_bio);
1461        }
1462}
1463
1464/*
1465 * This is a kernel thread which:
1466 *
1467 *      1.      Retries failed read operations on working mirrors.
1468 *      2.      Updates the raid superblock when problems encounter.
1469 *      3.      Performs writes following reads for array syncronising.
1470 */
1471
1472static void fix_read_error(conf_t *conf, int read_disk,
1473                           sector_t sect, int sectors)
1474{
1475        mddev_t *mddev = conf->mddev;
1476        while(sectors) {
1477                int s = sectors;
1478                int d = read_disk;
1479                int success = 0;
1480                int start;
1481                mdk_rdev_t *rdev;
1482
1483                if (s > (PAGE_SIZE>>9))
1484                        s = PAGE_SIZE >> 9;
1485
1486                do {
1487                        /* Note: no rcu protection needed here
1488                         * as this is synchronous in the raid1d thread
1489                         * which is the thread that might remove
1490                         * a device.  If raid1d ever becomes multi-threaded....
1491                         */
1492                        rdev = conf->mirrors[d].rdev;
1493                        if (rdev &&
1494                            test_bit(In_sync, &rdev->flags) &&
1495                            sync_page_io(rdev, sect, s<<9,
1496                                         conf->tmppage, READ, false))
1497                                success = 1;
1498                        else {
1499                                d++;
1500                                if (d == conf->raid_disks)
1501                                        d = 0;
1502                        }
1503                } while (!success && d != read_disk);
1504
1505                if (!success) {
1506                        /* Cannot read from anywhere -- bye bye array */
1507                        md_error(mddev, conf->mirrors[read_disk].rdev);
1508                        break;
1509                }
1510                /* write it back and re-read */
1511                start = d;
1512                while (d != read_disk) {
1513                        if (d==0)
1514                                d = conf->raid_disks;
1515                        d--;
1516                        rdev = conf->mirrors[d].rdev;
1517                        if (rdev &&
1518                            test_bit(In_sync, &rdev->flags)) {
1519                                if (sync_page_io(rdev, sect, s<<9,
1520                                                 conf->tmppage, WRITE, false)
1521                                    == 0)
1522                                        /* Well, this device is dead */
1523                                        md_error(mddev, rdev);
1524                        }
1525                }
1526                d = start;
1527                while (d != read_disk) {
1528                        char b[BDEVNAME_SIZE];
1529                        if (d==0)
1530                                d = conf->raid_disks;
1531                        d--;
1532                        rdev = conf->mirrors[d].rdev;
1533                        if (rdev &&
1534                            test_bit(In_sync, &rdev->flags)) {
1535                                if (sync_page_io(rdev, sect, s<<9,
1536                                                 conf->tmppage, READ, false)
1537                                    == 0)
1538                                        /* Well, this device is dead */
1539                                        md_error(mddev, rdev);
1540                                else {
1541                                        atomic_add(s, &rdev->corrected_errors);
1542                                        printk(KERN_INFO
1543                                               "md/raid1:%s: read error corrected "
1544                                               "(%d sectors at %llu on %s)\n",
1545                                               mdname(mddev), s,
1546                                               (unsigned long long)(sect +
1547                                                   rdev->data_offset),
1548                                               bdevname(rdev->bdev, b));
1549                                }
1550                        }
1551                }
1552                sectors -= s;
1553                sect += s;
1554        }
1555}
1556
1557static void raid1d(mddev_t *mddev)
1558{
1559        r1bio_t *r1_bio;
1560        struct bio *bio;
1561        unsigned long flags;
1562        conf_t *conf = mddev->private;
1563        struct list_head *head = &conf->retry_list;
1564        int unplug=0;
1565        mdk_rdev_t *rdev;
1566
1567        md_check_recovery(mddev);
1568        
1569        for (;;) {
1570                char b[BDEVNAME_SIZE];
1571
1572                unplug += flush_pending_writes(conf);
1573
1574                spin_lock_irqsave(&conf->device_lock, flags);
1575                if (list_empty(head)) {
1576                        spin_unlock_irqrestore(&conf->device_lock, flags);
1577                        break;
1578                }
1579                r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1580                list_del(head->prev);
1581                conf->nr_queued--;
1582                spin_unlock_irqrestore(&conf->device_lock, flags);
1583
1584                mddev = r1_bio->mddev;
1585                conf = mddev->private;
1586                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1587                        sync_request_write(mddev, r1_bio);
1588                        unplug = 1;
1589                } else {
1590                        int disk;
1591
1592                        /* we got a read error. Maybe the drive is bad.  Maybe just
1593                         * the block and we can fix it.
1594                         * We freeze all other IO, and try reading the block from
1595                         * other devices.  When we find one, we re-write
1596                         * and check it that fixes the read error.
1597                         * This is all done synchronously while the array is
1598                         * frozen
1599                         */
1600                        if (mddev->ro == 0) {
1601                                freeze_array(conf);
1602                                fix_read_error(conf, r1_bio->read_disk,
1603                                               r1_bio->sector,
1604                                               r1_bio->sectors);
1605                                unfreeze_array(conf);
1606                        } else
1607                                md_error(mddev,
1608                                         conf->mirrors[r1_bio->read_disk].rdev);
1609
1610                        bio = r1_bio->bios[r1_bio->read_disk];
1611                        if ((disk=read_balance(conf, r1_bio)) == -1) {
1612                                printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1613                                       " read error for block %llu\n",
1614                                       mdname(mddev),
1615                                       bdevname(bio->bi_bdev,b),
1616                                       (unsigned long long)r1_bio->sector);
1617                                raid_end_bio_io(r1_bio);
1618                        } else {
1619                                const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1620                                r1_bio->bios[r1_bio->read_disk] =
1621                                        mddev->ro ? IO_BLOCKED : NULL;
1622                                r1_bio->read_disk = disk;
1623                                bio_put(bio);
1624                                bio = bio_clone_mddev(r1_bio->master_bio,
1625                                                      GFP_NOIO, mddev);
1626                                r1_bio->bios[r1_bio->read_disk] = bio;
1627                                rdev = conf->mirrors[disk].rdev;
1628                                if (printk_ratelimit())
1629                                        printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1630                                               " other mirror: %s\n",
1631                                               mdname(mddev),
1632                                               (unsigned long long)r1_bio->sector,
1633                                               bdevname(rdev->bdev,b));
1634                                bio->bi_sector = r1_bio->sector + rdev->data_offset;
1635                                bio->bi_bdev = rdev->bdev;
1636                                bio->bi_end_io = raid1_end_read_request;
1637                                bio->bi_rw = READ | do_sync;
1638                                bio->bi_private = r1_bio;
1639                                unplug = 1;
1640                                generic_make_request(bio);
1641                        }
1642                }
1643                cond_resched();
1644        }
1645        if (unplug)
1646                unplug_slaves(mddev);
1647}
1648
1649
1650static int init_resync(conf_t *conf)
1651{
1652        int buffs;
1653
1654        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1655        BUG_ON(conf->r1buf_pool);
1656        conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1657                                          conf->poolinfo);
1658        if (!conf->r1buf_pool)
1659                return -ENOMEM;
1660        conf->next_resync = 0;
1661        return 0;
1662}
1663
1664/*
1665 * perform a "sync" on one "block"
1666 *
1667 * We need to make sure that no normal I/O request - particularly write
1668 * requests - conflict with active sync requests.
1669 *
1670 * This is achieved by tracking pending requests and a 'barrier' concept
1671 * that can be installed to exclude normal IO requests.
1672 */
1673
1674static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1675{
1676        conf_t *conf = mddev->private;
1677        r1bio_t *r1_bio;
1678        struct bio *bio;
1679        sector_t max_sector, nr_sectors;
1680        int disk = -1;
1681        int i;
1682        int wonly = -1;
1683        int write_targets = 0, read_targets = 0;
1684        sector_t sync_blocks;
1685        int still_degraded = 0;
1686
1687        if (!conf->r1buf_pool)
1688                if (init_resync(conf))
1689                        return 0;
1690
1691        max_sector = mddev->dev_sectors;
1692        if (sector_nr >= max_sector) {
1693                /* If we aborted, we need to abort the
1694                 * sync on the 'current' bitmap chunk (there will
1695                 * only be one in raid1 resync.
1696                 * We can find the current addess in mddev->curr_resync
1697                 */
1698                if (mddev->curr_resync < max_sector) /* aborted */
1699                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1700                                                &sync_blocks, 1);
1701                else /* completed sync */
1702                        conf->fullsync = 0;
1703
1704                bitmap_close_sync(mddev->bitmap);
1705                close_sync(conf);
1706                return 0;
1707        }
1708
1709        if (mddev->bitmap == NULL &&
1710            mddev->recovery_cp == MaxSector &&
1711            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1712            conf->fullsync == 0) {
1713                *skipped = 1;
1714                return max_sector - sector_nr;
1715        }
1716        /* before building a request, check if we can skip these blocks..
1717         * This call the bitmap_start_sync doesn't actually record anything
1718         */
1719        if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1720            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1721                /* We can skip this block, and probably several more */
1722                *skipped = 1;
1723                return sync_blocks;
1724        }
1725        /*
1726         * If there is non-resync activity waiting for a turn,
1727         * and resync is going fast enough,
1728         * then let it though before starting on this new sync request.
1729         */
1730        if (!go_faster && conf->nr_waiting)
1731                msleep_interruptible(1000);
1732
1733        bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1734        r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1735        raise_barrier(conf);
1736
1737        conf->next_resync = sector_nr;
1738
1739        rcu_read_lock();
1740        /*
1741         * If we get a correctably read error during resync or recovery,
1742         * we might want to read from a different device.  So we
1743         * flag all drives that could conceivably be read from for READ,
1744         * and any others (which will be non-In_sync devices) for WRITE.
1745         * If a read fails, we try reading from something else for which READ
1746         * is OK.
1747         */
1748
1749        r1_bio->mddev = mddev;
1750        r1_bio->sector = sector_nr;
1751        r1_bio->state = 0;
1752        set_bit(R1BIO_IsSync, &r1_bio->state);
1753
1754        for (i=0; i < conf->raid_disks; i++) {
1755                mdk_rdev_t *rdev;
1756                bio = r1_bio->bios[i];
1757
1758                /* take from bio_init */
1759                bio->bi_next = NULL;
1760                bio->bi_flags &= ~(BIO_POOL_MASK-1);
1761                bio->bi_flags |= 1 << BIO_UPTODATE;
1762                bio->bi_comp_cpu = -1;
1763                bio->bi_rw = READ;
1764                bio->bi_vcnt = 0;
1765                bio->bi_idx = 0;
1766                bio->bi_phys_segments = 0;
1767                bio->bi_size = 0;
1768                bio->bi_end_io = NULL;
1769                bio->bi_private = NULL;
1770
1771                rdev = rcu_dereference(conf->mirrors[i].rdev);
1772                if (rdev == NULL ||
1773                           test_bit(Faulty, &rdev->flags)) {
1774                        still_degraded = 1;
1775                        continue;
1776                } else if (!test_bit(In_sync, &rdev->flags)) {
1777                        bio->bi_rw = WRITE;
1778                        bio->bi_end_io = end_sync_write;
1779                        write_targets ++;
1780                } else {
1781                        /* may need to read from here */
1782                        bio->bi_rw = READ;
1783                        bio->bi_end_io = end_sync_read;
1784                        if (test_bit(WriteMostly, &rdev->flags)) {
1785                                if (wonly < 0)
1786                                        wonly = i;
1787                        } else {
1788                                if (disk < 0)
1789                                        disk = i;
1790                        }
1791                        read_targets++;
1792                }
1793                atomic_inc(&rdev->nr_pending);
1794                bio->bi_sector = sector_nr + rdev->data_offset;
1795                bio->bi_bdev = rdev->bdev;
1796                bio->bi_private = r1_bio;
1797        }
1798        rcu_read_unlock();
1799        if (disk < 0)
1800                disk = wonly;
1801        r1_bio->read_disk = disk;
1802
1803        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1804                /* extra read targets are also write targets */
1805                write_targets += read_targets-1;
1806
1807        if (write_targets == 0 || read_targets == 0) {
1808                /* There is nowhere to write, so all non-sync
1809                 * drives must be failed - so we are finished
1810                 */
1811                sector_t rv = max_sector - sector_nr;
1812                *skipped = 1;
1813                put_buf(r1_bio);
1814                return rv;
1815        }
1816
1817        if (max_sector > mddev->resync_max)
1818                max_sector = mddev->resync_max; /* Don't do IO beyond here */
1819        nr_sectors = 0;
1820        sync_blocks = 0;
1821        do {
1822                struct page *page;
1823                int len = PAGE_SIZE;
1824                if (sector_nr + (len>>9) > max_sector)
1825                        len = (max_sector - sector_nr) << 9;
1826                if (len == 0)
1827                        break;
1828                if (sync_blocks == 0) {
1829                        if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1830                                               &sync_blocks, still_degraded) &&
1831                            !conf->fullsync &&
1832                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1833                                break;
1834                        BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1835                        if ((len >> 9) > sync_blocks)
1836                                len = sync_blocks<<9;
1837                }
1838
1839                for (i=0 ; i < conf->raid_disks; i++) {
1840                        bio = r1_bio->bios[i];
1841                        if (bio->bi_end_io) {
1842                                page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1843                                if (bio_add_page(bio, page, len, 0) == 0) {
1844                                        /* stop here */
1845                                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1846                                        while (i > 0) {
1847                                                i--;
1848                                                bio = r1_bio->bios[i];
1849                                                if (bio->bi_end_io==NULL)
1850                                                        continue;
1851                                                /* remove last page from this bio */
1852                                                bio->bi_vcnt--;
1853                                                bio->bi_size -= len;
1854                                                bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1855                                        }
1856                                        goto bio_full;
1857                                }
1858                        }
1859                }
1860                nr_sectors += len>>9;
1861                sector_nr += len>>9;
1862                sync_blocks -= (len>>9);
1863        } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1864 bio_full:
1865        r1_bio->sectors = nr_sectors;
1866
1867        /* For a user-requested sync, we read all readable devices and do a
1868         * compare
1869         */
1870        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1871                atomic_set(&r1_bio->remaining, read_targets);
1872                for (i=0; i<conf->raid_disks; i++) {
1873                        bio = r1_bio->bios[i];
1874                        if (bio->bi_end_io == end_sync_read) {
1875                                md_sync_acct(bio->bi_bdev, nr_sectors);
1876                                generic_make_request(bio);
1877                        }
1878                }
1879        } else {
1880                atomic_set(&r1_bio->remaining, 1);
1881                bio = r1_bio->bios[r1_bio->read_disk];
1882                md_sync_acct(bio->bi_bdev, nr_sectors);
1883                generic_make_request(bio);
1884
1885        }
1886        return nr_sectors;
1887}
1888
1889static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1890{
1891        if (sectors)
1892                return sectors;
1893
1894        return mddev->dev_sectors;
1895}
1896
1897static conf_t *setup_conf(mddev_t *mddev)
1898{
1899        conf_t *conf;
1900        int i;
1901        mirror_info_t *disk;
1902        mdk_rdev_t *rdev;
1903        int err = -ENOMEM;
1904
1905        conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1906        if (!conf)
1907                goto abort;
1908
1909        conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1910                                 GFP_KERNEL);
1911        if (!conf->mirrors)
1912                goto abort;
1913
1914        conf->tmppage = alloc_page(GFP_KERNEL);
1915        if (!conf->tmppage)
1916                goto abort;
1917
1918        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1919        if (!conf->poolinfo)
1920                goto abort;
1921        conf->poolinfo->raid_disks = mddev->raid_disks;
1922        conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1923                                          r1bio_pool_free,
1924                                          conf->poolinfo);
1925        if (!conf->r1bio_pool)
1926                goto abort;
1927
1928        conf->poolinfo->mddev = mddev;
1929
1930        spin_lock_init(&conf->device_lock);
1931        list_for_each_entry(rdev, &mddev->disks, same_set) {
1932                int disk_idx = rdev->raid_disk;
1933                if (disk_idx >= mddev->raid_disks
1934                    || disk_idx < 0)
1935                        continue;
1936                disk = conf->mirrors + disk_idx;
1937
1938                disk->rdev = rdev;
1939
1940                disk->head_position = 0;
1941        }
1942        conf->raid_disks = mddev->raid_disks;
1943        conf->mddev = mddev;
1944        INIT_LIST_HEAD(&conf->retry_list);
1945
1946        spin_lock_init(&conf->resync_lock);
1947        init_waitqueue_head(&conf->wait_barrier);
1948
1949        bio_list_init(&conf->pending_bio_list);
1950
1951        conf->last_used = -1;
1952        for (i = 0; i < conf->raid_disks; i++) {
1953
1954                disk = conf->mirrors + i;
1955
1956                if (!disk->rdev ||
1957                    !test_bit(In_sync, &disk->rdev->flags)) {
1958                        disk->head_position = 0;
1959                        if (disk->rdev)
1960                                conf->fullsync = 1;
1961                } else if (conf->last_used < 0)
1962                        /*
1963                         * The first working device is used as a
1964                         * starting point to read balancing.
1965                         */
1966                        conf->last_used = i;
1967        }
1968
1969        err = -EIO;
1970        if (conf->last_used < 0) {
1971                printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
1972                       mdname(mddev));
1973                goto abort;
1974        }
1975        err = -ENOMEM;
1976        conf->thread = md_register_thread(raid1d, mddev, NULL);
1977        if (!conf->thread) {
1978                printk(KERN_ERR
1979                       "md/raid1:%s: couldn't allocate thread\n",
1980                       mdname(mddev));
1981                goto abort;
1982        }
1983
1984        return conf;
1985
1986 abort:
1987        if (conf) {
1988                if (conf->r1bio_pool)
1989                        mempool_destroy(conf->r1bio_pool);
1990                kfree(conf->mirrors);
1991                safe_put_page(conf->tmppage);
1992                kfree(conf->poolinfo);
1993                kfree(conf);
1994        }
1995        return ERR_PTR(err);
1996}
1997
1998static int run(mddev_t *mddev)
1999{
2000        conf_t *conf;
2001        int i;
2002        mdk_rdev_t *rdev;
2003
2004        if (mddev->level != 1) {
2005                printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2006                       mdname(mddev), mddev->level);
2007                return -EIO;
2008        }
2009        if (mddev->reshape_position != MaxSector) {
2010                printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2011                       mdname(mddev));
2012                return -EIO;
2013        }
2014        /*
2015         * copy the already verified devices into our private RAID1
2016         * bookkeeping area. [whatever we allocate in run(),
2017         * should be freed in stop()]
2018         */
2019        if (mddev->private == NULL)
2020                conf = setup_conf(mddev);
2021        else
2022                conf = mddev->private;
2023
2024        if (IS_ERR(conf))
2025                return PTR_ERR(conf);
2026
2027        list_for_each_entry(rdev, &mddev->disks, same_set) {
2028                disk_stack_limits(mddev->gendisk, rdev->bdev,
2029                                  rdev->data_offset << 9);
2030                /* as we don't honour merge_bvec_fn, we must never risk
2031                 * violating it, so limit ->max_segments to 1 lying within
2032                 * a single page, as a one page request is never in violation.
2033                 */
2034                if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2035                        blk_queue_max_segments(mddev->queue, 1);
2036                        blk_queue_segment_boundary(mddev->queue,
2037                                                   PAGE_CACHE_SIZE - 1);
2038                }
2039        }
2040
2041        mddev->degraded = 0;
2042        for (i=0; i < conf->raid_disks; i++)
2043                if (conf->mirrors[i].rdev == NULL ||
2044                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2045                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2046                        mddev->degraded++;
2047
2048        if (conf->raid_disks - mddev->degraded == 1)
2049                mddev->recovery_cp = MaxSector;
2050
2051        if (mddev->recovery_cp != MaxSector)
2052                printk(KERN_NOTICE "md/raid1:%s: not clean"
2053                       " -- starting background reconstruction\n",
2054                       mdname(mddev));
2055        printk(KERN_INFO 
2056                "md/raid1:%s: active with %d out of %d mirrors\n",
2057                mdname(mddev), mddev->raid_disks - mddev->degraded, 
2058                mddev->raid_disks);
2059
2060        /*
2061         * Ok, everything is just fine now
2062         */
2063        mddev->thread = conf->thread;
2064        conf->thread = NULL;
2065        mddev->private = conf;
2066
2067        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2068
2069        mddev->queue->unplug_fn = raid1_unplug;
2070        mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2071        mddev->queue->backing_dev_info.congested_data = mddev;
2072        md_integrity_register(mddev);
2073        return 0;
2074}
2075
2076static int stop(mddev_t *mddev)
2077{
2078        conf_t *conf = mddev->private;
2079        struct bitmap *bitmap = mddev->bitmap;
2080
2081        /* wait for behind writes to complete */
2082        if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2083                printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2084                       mdname(mddev));
2085                /* need to kick something here to make sure I/O goes? */
2086                wait_event(bitmap->behind_wait,
2087                           atomic_read(&bitmap->behind_writes) == 0);
2088        }
2089
2090        raise_barrier(conf);
2091        lower_barrier(conf);
2092
2093        md_unregister_thread(mddev->thread);
2094        mddev->thread = NULL;
2095        blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2096        if (conf->r1bio_pool)
2097                mempool_destroy(conf->r1bio_pool);
2098        kfree(conf->mirrors);
2099        kfree(conf->poolinfo);
2100        kfree(conf);
2101        mddev->private = NULL;
2102        return 0;
2103}
2104
2105static int raid1_resize(mddev_t *mddev, sector_t sectors)
2106{
2107        /* no resync is happening, and there is enough space
2108         * on all devices, so we can resize.
2109         * We need to make sure resync covers any new space.
2110         * If the array is shrinking we should possibly wait until
2111         * any io in the removed space completes, but it hardly seems
2112         * worth it.
2113         */
2114        md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2115        if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2116                return -EINVAL;
2117        set_capacity(mddev->gendisk, mddev->array_sectors);
2118        revalidate_disk(mddev->gendisk);
2119        if (sectors > mddev->dev_sectors &&
2120            mddev->recovery_cp == MaxSector) {
2121                mddev->recovery_cp = mddev->dev_sectors;
2122                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2123        }
2124        mddev->dev_sectors = sectors;
2125        mddev->resync_max_sectors = sectors;
2126        return 0;
2127}
2128
2129static int raid1_reshape(mddev_t *mddev)
2130{
2131        /* We need to:
2132         * 1/ resize the r1bio_pool
2133         * 2/ resize conf->mirrors
2134         *
2135         * We allocate a new r1bio_pool if we can.
2136         * Then raise a device barrier and wait until all IO stops.
2137         * Then resize conf->mirrors and swap in the new r1bio pool.
2138         *
2139         * At the same time, we "pack" the devices so that all the missing
2140         * devices have the higher raid_disk numbers.
2141         */
2142        mempool_t *newpool, *oldpool;
2143        struct pool_info *newpoolinfo;
2144        mirror_info_t *newmirrors;
2145        conf_t *conf = mddev->private;
2146        int cnt, raid_disks;
2147        unsigned long flags;
2148        int d, d2, err;
2149
2150        /* Cannot change chunk_size, layout, or level */
2151        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2152            mddev->layout != mddev->new_layout ||
2153            mddev->level != mddev->new_level) {
2154                mddev->new_chunk_sectors = mddev->chunk_sectors;
2155                mddev->new_layout = mddev->layout;
2156                mddev->new_level = mddev->level;
2157                return -EINVAL;
2158        }
2159
2160        err = md_allow_write(mddev);
2161        if (err)
2162                return err;
2163
2164        raid_disks = mddev->raid_disks + mddev->delta_disks;
2165
2166        if (raid_disks < conf->raid_disks) {
2167                cnt=0;
2168                for (d= 0; d < conf->raid_disks; d++)
2169                        if (conf->mirrors[d].rdev)
2170                                cnt++;
2171                if (cnt > raid_disks)
2172                        return -EBUSY;
2173        }
2174
2175        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2176        if (!newpoolinfo)
2177                return -ENOMEM;
2178        newpoolinfo->mddev = mddev;
2179        newpoolinfo->raid_disks = raid_disks;
2180
2181        newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2182                                 r1bio_pool_free, newpoolinfo);
2183        if (!newpool) {
2184                kfree(newpoolinfo);
2185                return -ENOMEM;
2186        }
2187        newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2188        if (!newmirrors) {
2189                kfree(newpoolinfo);
2190                mempool_destroy(newpool);
2191                return -ENOMEM;
2192        }
2193
2194        raise_barrier(conf);
2195
2196        /* ok, everything is stopped */
2197        oldpool = conf->r1bio_pool;
2198        conf->r1bio_pool = newpool;
2199
2200        for (d = d2 = 0; d < conf->raid_disks; d++) {
2201                mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2202                if (rdev && rdev->raid_disk != d2) {
2203                        char nm[20];
2204                        sprintf(nm, "rd%d", rdev->raid_disk);
2205                        sysfs_remove_link(&mddev->kobj, nm);
2206                        rdev->raid_disk = d2;
2207                        sprintf(nm, "rd%d", rdev->raid_disk);
2208                        sysfs_remove_link(&mddev->kobj, nm);
2209                        if (sysfs_create_link(&mddev->kobj,
2210                                              &rdev->kobj, nm))
2211                                printk(KERN_WARNING
2212                                       "md/raid1:%s: cannot register "
2213                                       "%s\n",
2214                                       mdname(mddev), nm);
2215                }
2216                if (rdev)
2217                        newmirrors[d2++].rdev = rdev;
2218        }
2219        kfree(conf->mirrors);
2220        conf->mirrors = newmirrors;
2221        kfree(conf->poolinfo);
2222        conf->poolinfo = newpoolinfo;
2223
2224        spin_lock_irqsave(&conf->device_lock, flags);
2225        mddev->degraded += (raid_disks - conf->raid_disks);
2226        spin_unlock_irqrestore(&conf->device_lock, flags);
2227        conf->raid_disks = mddev->raid_disks = raid_disks;
2228        mddev->delta_disks = 0;
2229
2230        conf->last_used = 0; /* just make sure it is in-range */
2231        lower_barrier(conf);
2232
2233        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2234        md_wakeup_thread(mddev->thread);
2235
2236        mempool_destroy(oldpool);
2237        return 0;
2238}
2239
2240static void raid1_quiesce(mddev_t *mddev, int state)
2241{
2242        conf_t *conf = mddev->private;
2243
2244        switch(state) {
2245        case 2: /* wake for suspend */
2246                wake_up(&conf->wait_barrier);
2247                break;
2248        case 1:
2249                raise_barrier(conf);
2250                break;
2251        case 0:
2252                lower_barrier(conf);
2253                break;
2254        }
2255}
2256
2257static void *raid1_takeover(mddev_t *mddev)
2258{
2259        /* raid1 can take over:
2260         *  raid5 with 2 devices, any layout or chunk size
2261         */
2262        if (mddev->level == 5 && mddev->raid_disks == 2) {
2263                conf_t *conf;
2264                mddev->new_level = 1;
2265                mddev->new_layout = 0;
2266                mddev->new_chunk_sectors = 0;
2267                conf = setup_conf(mddev);
2268                if (!IS_ERR(conf))
2269                        conf->barrier = 1;
2270                return conf;
2271        }
2272        return ERR_PTR(-EINVAL);
2273}
2274
2275static struct mdk_personality raid1_personality =
2276{
2277        .name           = "raid1",
2278        .level          = 1,
2279        .owner          = THIS_MODULE,
2280        .make_request   = make_request,
2281        .run            = run,
2282        .stop           = stop,
2283        .status         = status,
2284        .error_handler  = error,
2285        .hot_add_disk   = raid1_add_disk,
2286        .hot_remove_disk= raid1_remove_disk,
2287        .spare_active   = raid1_spare_active,
2288        .sync_request   = sync_request,
2289        .resize         = raid1_resize,
2290        .size           = raid1_size,
2291        .check_reshape  = raid1_reshape,
2292        .quiesce        = raid1_quiesce,
2293        .takeover       = raid1_takeover,
2294};
2295
2296static int __init raid_init(void)
2297{
2298        return register_md_personality(&raid1_personality);
2299}
2300
2301static void raid_exit(void)
2302{
2303        unregister_md_personality(&raid1_personality);
2304}
2305
2306module_init(raid_init);
2307module_exit(raid_exit);
2308MODULE_LICENSE("GPL");
2309MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2310MODULE_ALIAS("md-personality-3"); /* RAID1 */
2311MODULE_ALIAS("md-raid1");
2312MODULE_ALIAS("md-level-1");
2313