linux/drivers/md/raid10.c
<<
>>
Prefs
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for futher copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/seq_file.h>
  25#include "md.h"
  26#include "raid10.h"
  27#include "raid0.h"
  28#include "bitmap.h"
  29
  30/*
  31 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  32 * The layout of data is defined by
  33 *    chunk_size
  34 *    raid_disks
  35 *    near_copies (stored in low byte of layout)
  36 *    far_copies (stored in second byte of layout)
  37 *    far_offset (stored in bit 16 of layout )
  38 *
  39 * The data to be stored is divided into chunks using chunksize.
  40 * Each device is divided into far_copies sections.
  41 * In each section, chunks are laid out in a style similar to raid0, but
  42 * near_copies copies of each chunk is stored (each on a different drive).
  43 * The starting device for each section is offset near_copies from the starting
  44 * device of the previous section.
  45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
  46 * drive.
  47 * near_copies and far_copies must be at least one, and their product is at most
  48 * raid_disks.
  49 *
  50 * If far_offset is true, then the far_copies are handled a bit differently.
  51 * The copies are still in different stripes, but instead of be very far apart
  52 * on disk, there are adjacent stripes.
  53 */
  54
  55/*
  56 * Number of guaranteed r10bios in case of extreme VM load:
  57 */
  58#define NR_RAID10_BIOS 256
  59
  60static void unplug_slaves(mddev_t *mddev);
  61
  62static void allow_barrier(conf_t *conf);
  63static void lower_barrier(conf_t *conf);
  64
  65static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  66{
  67        conf_t *conf = data;
  68        r10bio_t *r10_bio;
  69        int size = offsetof(struct r10bio_s, devs[conf->copies]);
  70
  71        /* allocate a r10bio with room for raid_disks entries in the bios array */
  72        r10_bio = kzalloc(size, gfp_flags);
  73        if (!r10_bio && conf->mddev)
  74                unplug_slaves(conf->mddev);
  75
  76        return r10_bio;
  77}
  78
  79static void r10bio_pool_free(void *r10_bio, void *data)
  80{
  81        kfree(r10_bio);
  82}
  83
  84/* Maximum size of each resync request */
  85#define RESYNC_BLOCK_SIZE (64*1024)
  86#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  87/* amount of memory to reserve for resync requests */
  88#define RESYNC_WINDOW (1024*1024)
  89/* maximum number of concurrent requests, memory permitting */
  90#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
  91
  92/*
  93 * When performing a resync, we need to read and compare, so
  94 * we need as many pages are there are copies.
  95 * When performing a recovery, we need 2 bios, one for read,
  96 * one for write (we recover only one drive per r10buf)
  97 *
  98 */
  99static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 100{
 101        conf_t *conf = data;
 102        struct page *page;
 103        r10bio_t *r10_bio;
 104        struct bio *bio;
 105        int i, j;
 106        int nalloc;
 107
 108        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 109        if (!r10_bio) {
 110                unplug_slaves(conf->mddev);
 111                return NULL;
 112        }
 113
 114        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
 115                nalloc = conf->copies; /* resync */
 116        else
 117                nalloc = 2; /* recovery */
 118
 119        /*
 120         * Allocate bios.
 121         */
 122        for (j = nalloc ; j-- ; ) {
 123                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 124                if (!bio)
 125                        goto out_free_bio;
 126                r10_bio->devs[j].bio = bio;
 127        }
 128        /*
 129         * Allocate RESYNC_PAGES data pages and attach them
 130         * where needed.
 131         */
 132        for (j = 0 ; j < nalloc; j++) {
 133                bio = r10_bio->devs[j].bio;
 134                for (i = 0; i < RESYNC_PAGES; i++) {
 135                        page = alloc_page(gfp_flags);
 136                        if (unlikely(!page))
 137                                goto out_free_pages;
 138
 139                        bio->bi_io_vec[i].bv_page = page;
 140                }
 141        }
 142
 143        return r10_bio;
 144
 145out_free_pages:
 146        for ( ; i > 0 ; i--)
 147                safe_put_page(bio->bi_io_vec[i-1].bv_page);
 148        while (j--)
 149                for (i = 0; i < RESYNC_PAGES ; i++)
 150                        safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 151        j = -1;
 152out_free_bio:
 153        while ( ++j < nalloc )
 154                bio_put(r10_bio->devs[j].bio);
 155        r10bio_pool_free(r10_bio, conf);
 156        return NULL;
 157}
 158
 159static void r10buf_pool_free(void *__r10_bio, void *data)
 160{
 161        int i;
 162        conf_t *conf = data;
 163        r10bio_t *r10bio = __r10_bio;
 164        int j;
 165
 166        for (j=0; j < conf->copies; j++) {
 167                struct bio *bio = r10bio->devs[j].bio;
 168                if (bio) {
 169                        for (i = 0; i < RESYNC_PAGES; i++) {
 170                                safe_put_page(bio->bi_io_vec[i].bv_page);
 171                                bio->bi_io_vec[i].bv_page = NULL;
 172                        }
 173                        bio_put(bio);
 174                }
 175        }
 176        r10bio_pool_free(r10bio, conf);
 177}
 178
 179static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
 180{
 181        int i;
 182
 183        for (i = 0; i < conf->copies; i++) {
 184                struct bio **bio = & r10_bio->devs[i].bio;
 185                if (*bio && *bio != IO_BLOCKED)
 186                        bio_put(*bio);
 187                *bio = NULL;
 188        }
 189}
 190
 191static void free_r10bio(r10bio_t *r10_bio)
 192{
 193        conf_t *conf = r10_bio->mddev->private;
 194
 195        /*
 196         * Wake up any possible resync thread that waits for the device
 197         * to go idle.
 198         */
 199        allow_barrier(conf);
 200
 201        put_all_bios(conf, r10_bio);
 202        mempool_free(r10_bio, conf->r10bio_pool);
 203}
 204
 205static void put_buf(r10bio_t *r10_bio)
 206{
 207        conf_t *conf = r10_bio->mddev->private;
 208
 209        mempool_free(r10_bio, conf->r10buf_pool);
 210
 211        lower_barrier(conf);
 212}
 213
 214static void reschedule_retry(r10bio_t *r10_bio)
 215{
 216        unsigned long flags;
 217        mddev_t *mddev = r10_bio->mddev;
 218        conf_t *conf = mddev->private;
 219
 220        spin_lock_irqsave(&conf->device_lock, flags);
 221        list_add(&r10_bio->retry_list, &conf->retry_list);
 222        conf->nr_queued ++;
 223        spin_unlock_irqrestore(&conf->device_lock, flags);
 224
 225        /* wake up frozen array... */
 226        wake_up(&conf->wait_barrier);
 227
 228        md_wakeup_thread(mddev->thread);
 229}
 230
 231/*
 232 * raid_end_bio_io() is called when we have finished servicing a mirrored
 233 * operation and are ready to return a success/failure code to the buffer
 234 * cache layer.
 235 */
 236static void raid_end_bio_io(r10bio_t *r10_bio)
 237{
 238        struct bio *bio = r10_bio->master_bio;
 239
 240        bio_endio(bio,
 241                test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
 242        free_r10bio(r10_bio);
 243}
 244
 245/*
 246 * Update disk head position estimator based on IRQ completion info.
 247 */
 248static inline void update_head_pos(int slot, r10bio_t *r10_bio)
 249{
 250        conf_t *conf = r10_bio->mddev->private;
 251
 252        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 253                r10_bio->devs[slot].addr + (r10_bio->sectors);
 254}
 255
 256static void raid10_end_read_request(struct bio *bio, int error)
 257{
 258        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 259        r10bio_t *r10_bio = bio->bi_private;
 260        int slot, dev;
 261        conf_t *conf = r10_bio->mddev->private;
 262
 263
 264        slot = r10_bio->read_slot;
 265        dev = r10_bio->devs[slot].devnum;
 266        /*
 267         * this branch is our 'one mirror IO has finished' event handler:
 268         */
 269        update_head_pos(slot, r10_bio);
 270
 271        if (uptodate) {
 272                /*
 273                 * Set R10BIO_Uptodate in our master bio, so that
 274                 * we will return a good error code to the higher
 275                 * levels even if IO on some other mirrored buffer fails.
 276                 *
 277                 * The 'master' represents the composite IO operation to
 278                 * user-side. So if something waits for IO, then it will
 279                 * wait for the 'master' bio.
 280                 */
 281                set_bit(R10BIO_Uptodate, &r10_bio->state);
 282                raid_end_bio_io(r10_bio);
 283        } else {
 284                /*
 285                 * oops, read error:
 286                 */
 287                char b[BDEVNAME_SIZE];
 288                if (printk_ratelimit())
 289                        printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
 290                               mdname(conf->mddev),
 291                               bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
 292                reschedule_retry(r10_bio);
 293        }
 294
 295        rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
 296}
 297
 298static void raid10_end_write_request(struct bio *bio, int error)
 299{
 300        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 301        r10bio_t *r10_bio = bio->bi_private;
 302        int slot, dev;
 303        conf_t *conf = r10_bio->mddev->private;
 304
 305        for (slot = 0; slot < conf->copies; slot++)
 306                if (r10_bio->devs[slot].bio == bio)
 307                        break;
 308        dev = r10_bio->devs[slot].devnum;
 309
 310        /*
 311         * this branch is our 'one mirror IO has finished' event handler:
 312         */
 313        if (!uptodate) {
 314                md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
 315                /* an I/O failed, we can't clear the bitmap */
 316                set_bit(R10BIO_Degraded, &r10_bio->state);
 317        } else
 318                /*
 319                 * Set R10BIO_Uptodate in our master bio, so that
 320                 * we will return a good error code for to the higher
 321                 * levels even if IO on some other mirrored buffer fails.
 322                 *
 323                 * The 'master' represents the composite IO operation to
 324                 * user-side. So if something waits for IO, then it will
 325                 * wait for the 'master' bio.
 326                 */
 327                set_bit(R10BIO_Uptodate, &r10_bio->state);
 328
 329        update_head_pos(slot, r10_bio);
 330
 331        /*
 332         *
 333         * Let's see if all mirrored write operations have finished
 334         * already.
 335         */
 336        if (atomic_dec_and_test(&r10_bio->remaining)) {
 337                /* clear the bitmap if all writes complete successfully */
 338                bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 339                                r10_bio->sectors,
 340                                !test_bit(R10BIO_Degraded, &r10_bio->state),
 341                                0);
 342                md_write_end(r10_bio->mddev);
 343                raid_end_bio_io(r10_bio);
 344        }
 345
 346        rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
 347}
 348
 349
 350/*
 351 * RAID10 layout manager
 352 * Aswell as the chunksize and raid_disks count, there are two
 353 * parameters: near_copies and far_copies.
 354 * near_copies * far_copies must be <= raid_disks.
 355 * Normally one of these will be 1.
 356 * If both are 1, we get raid0.
 357 * If near_copies == raid_disks, we get raid1.
 358 *
 359 * Chunks are layed out in raid0 style with near_copies copies of the
 360 * first chunk, followed by near_copies copies of the next chunk and
 361 * so on.
 362 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 363 * as described above, we start again with a device offset of near_copies.
 364 * So we effectively have another copy of the whole array further down all
 365 * the drives, but with blocks on different drives.
 366 * With this layout, and block is never stored twice on the one device.
 367 *
 368 * raid10_find_phys finds the sector offset of a given virtual sector
 369 * on each device that it is on.
 370 *
 371 * raid10_find_virt does the reverse mapping, from a device and a
 372 * sector offset to a virtual address
 373 */
 374
 375static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
 376{
 377        int n,f;
 378        sector_t sector;
 379        sector_t chunk;
 380        sector_t stripe;
 381        int dev;
 382
 383        int slot = 0;
 384
 385        /* now calculate first sector/dev */
 386        chunk = r10bio->sector >> conf->chunk_shift;
 387        sector = r10bio->sector & conf->chunk_mask;
 388
 389        chunk *= conf->near_copies;
 390        stripe = chunk;
 391        dev = sector_div(stripe, conf->raid_disks);
 392        if (conf->far_offset)
 393                stripe *= conf->far_copies;
 394
 395        sector += stripe << conf->chunk_shift;
 396
 397        /* and calculate all the others */
 398        for (n=0; n < conf->near_copies; n++) {
 399                int d = dev;
 400                sector_t s = sector;
 401                r10bio->devs[slot].addr = sector;
 402                r10bio->devs[slot].devnum = d;
 403                slot++;
 404
 405                for (f = 1; f < conf->far_copies; f++) {
 406                        d += conf->near_copies;
 407                        if (d >= conf->raid_disks)
 408                                d -= conf->raid_disks;
 409                        s += conf->stride;
 410                        r10bio->devs[slot].devnum = d;
 411                        r10bio->devs[slot].addr = s;
 412                        slot++;
 413                }
 414                dev++;
 415                if (dev >= conf->raid_disks) {
 416                        dev = 0;
 417                        sector += (conf->chunk_mask + 1);
 418                }
 419        }
 420        BUG_ON(slot != conf->copies);
 421}
 422
 423static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
 424{
 425        sector_t offset, chunk, vchunk;
 426
 427        offset = sector & conf->chunk_mask;
 428        if (conf->far_offset) {
 429                int fc;
 430                chunk = sector >> conf->chunk_shift;
 431                fc = sector_div(chunk, conf->far_copies);
 432                dev -= fc * conf->near_copies;
 433                if (dev < 0)
 434                        dev += conf->raid_disks;
 435        } else {
 436                while (sector >= conf->stride) {
 437                        sector -= conf->stride;
 438                        if (dev < conf->near_copies)
 439                                dev += conf->raid_disks - conf->near_copies;
 440                        else
 441                                dev -= conf->near_copies;
 442                }
 443                chunk = sector >> conf->chunk_shift;
 444        }
 445        vchunk = chunk * conf->raid_disks + dev;
 446        sector_div(vchunk, conf->near_copies);
 447        return (vchunk << conf->chunk_shift) + offset;
 448}
 449
 450/**
 451 *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
 452 *      @q: request queue
 453 *      @bvm: properties of new bio
 454 *      @biovec: the request that could be merged to it.
 455 *
 456 *      Return amount of bytes we can accept at this offset
 457 *      If near_copies == raid_disk, there are no striping issues,
 458 *      but in that case, the function isn't called at all.
 459 */
 460static int raid10_mergeable_bvec(struct request_queue *q,
 461                                 struct bvec_merge_data *bvm,
 462                                 struct bio_vec *biovec)
 463{
 464        mddev_t *mddev = q->queuedata;
 465        sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 466        int max;
 467        unsigned int chunk_sectors = mddev->chunk_sectors;
 468        unsigned int bio_sectors = bvm->bi_size >> 9;
 469
 470        max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
 471        if (max < 0) max = 0; /* bio_add cannot handle a negative return */
 472        if (max <= biovec->bv_len && bio_sectors == 0)
 473                return biovec->bv_len;
 474        else
 475                return max;
 476}
 477
 478/*
 479 * This routine returns the disk from which the requested read should
 480 * be done. There is a per-array 'next expected sequential IO' sector
 481 * number - if this matches on the next IO then we use the last disk.
 482 * There is also a per-disk 'last know head position' sector that is
 483 * maintained from IRQ contexts, both the normal and the resync IO
 484 * completion handlers update this position correctly. If there is no
 485 * perfect sequential match then we pick the disk whose head is closest.
 486 *
 487 * If there are 2 mirrors in the same 2 devices, performance degrades
 488 * because position is mirror, not device based.
 489 *
 490 * The rdev for the device selected will have nr_pending incremented.
 491 */
 492
 493/*
 494 * FIXME: possibly should rethink readbalancing and do it differently
 495 * depending on near_copies / far_copies geometry.
 496 */
 497static int read_balance(conf_t *conf, r10bio_t *r10_bio)
 498{
 499        const sector_t this_sector = r10_bio->sector;
 500        int disk, slot, nslot;
 501        const int sectors = r10_bio->sectors;
 502        sector_t new_distance, current_distance;
 503        mdk_rdev_t *rdev;
 504
 505        raid10_find_phys(conf, r10_bio);
 506        rcu_read_lock();
 507        /*
 508         * Check if we can balance. We can balance on the whole
 509         * device if no resync is going on (recovery is ok), or below
 510         * the resync window. We take the first readable disk when
 511         * above the resync window.
 512         */
 513        if (conf->mddev->recovery_cp < MaxSector
 514            && (this_sector + sectors >= conf->next_resync)) {
 515                /* make sure that disk is operational */
 516                slot = 0;
 517                disk = r10_bio->devs[slot].devnum;
 518
 519                while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
 520                       r10_bio->devs[slot].bio == IO_BLOCKED ||
 521                       !test_bit(In_sync, &rdev->flags)) {
 522                        slot++;
 523                        if (slot == conf->copies) {
 524                                slot = 0;
 525                                disk = -1;
 526                                break;
 527                        }
 528                        disk = r10_bio->devs[slot].devnum;
 529                }
 530                goto rb_out;
 531        }
 532
 533
 534        /* make sure the disk is operational */
 535        slot = 0;
 536        disk = r10_bio->devs[slot].devnum;
 537        while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
 538               r10_bio->devs[slot].bio == IO_BLOCKED ||
 539               !test_bit(In_sync, &rdev->flags)) {
 540                slot ++;
 541                if (slot == conf->copies) {
 542                        disk = -1;
 543                        goto rb_out;
 544                }
 545                disk = r10_bio->devs[slot].devnum;
 546        }
 547
 548
 549        current_distance = abs(r10_bio->devs[slot].addr -
 550                               conf->mirrors[disk].head_position);
 551
 552        /* Find the disk whose head is closest,
 553         * or - for far > 1 - find the closest to partition beginning */
 554
 555        for (nslot = slot; nslot < conf->copies; nslot++) {
 556                int ndisk = r10_bio->devs[nslot].devnum;
 557
 558
 559                if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
 560                    r10_bio->devs[nslot].bio == IO_BLOCKED ||
 561                    !test_bit(In_sync, &rdev->flags))
 562                        continue;
 563
 564                /* This optimisation is debatable, and completely destroys
 565                 * sequential read speed for 'far copies' arrays.  So only
 566                 * keep it for 'near' arrays, and review those later.
 567                 */
 568                if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
 569                        disk = ndisk;
 570                        slot = nslot;
 571                        break;
 572                }
 573
 574                /* for far > 1 always use the lowest address */
 575                if (conf->far_copies > 1)
 576                        new_distance = r10_bio->devs[nslot].addr;
 577                else
 578                        new_distance = abs(r10_bio->devs[nslot].addr -
 579                                           conf->mirrors[ndisk].head_position);
 580                if (new_distance < current_distance) {
 581                        current_distance = new_distance;
 582                        disk = ndisk;
 583                        slot = nslot;
 584                }
 585        }
 586
 587rb_out:
 588        r10_bio->read_slot = slot;
 589/*      conf->next_seq_sect = this_sector + sectors;*/
 590
 591        if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
 592                atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
 593        else
 594                disk = -1;
 595        rcu_read_unlock();
 596
 597        return disk;
 598}
 599
 600static void unplug_slaves(mddev_t *mddev)
 601{
 602        conf_t *conf = mddev->private;
 603        int i;
 604
 605        rcu_read_lock();
 606        for (i=0; i < conf->raid_disks; i++) {
 607                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 608                if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
 609                        struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
 610
 611                        atomic_inc(&rdev->nr_pending);
 612                        rcu_read_unlock();
 613
 614                        blk_unplug(r_queue);
 615
 616                        rdev_dec_pending(rdev, mddev);
 617                        rcu_read_lock();
 618                }
 619        }
 620        rcu_read_unlock();
 621}
 622
 623static void raid10_unplug(struct request_queue *q)
 624{
 625        mddev_t *mddev = q->queuedata;
 626
 627        unplug_slaves(q->queuedata);
 628        md_wakeup_thread(mddev->thread);
 629}
 630
 631static int raid10_congested(void *data, int bits)
 632{
 633        mddev_t *mddev = data;
 634        conf_t *conf = mddev->private;
 635        int i, ret = 0;
 636
 637        if (mddev_congested(mddev, bits))
 638                return 1;
 639        rcu_read_lock();
 640        for (i = 0; i < conf->raid_disks && ret == 0; i++) {
 641                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 642                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 643                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 644
 645                        ret |= bdi_congested(&q->backing_dev_info, bits);
 646                }
 647        }
 648        rcu_read_unlock();
 649        return ret;
 650}
 651
 652static int flush_pending_writes(conf_t *conf)
 653{
 654        /* Any writes that have been queued but are awaiting
 655         * bitmap updates get flushed here.
 656         * We return 1 if any requests were actually submitted.
 657         */
 658        int rv = 0;
 659
 660        spin_lock_irq(&conf->device_lock);
 661
 662        if (conf->pending_bio_list.head) {
 663                struct bio *bio;
 664                bio = bio_list_get(&conf->pending_bio_list);
 665                /* Spinlock only taken to quiet a warning */
 666                spin_lock(conf->mddev->queue->queue_lock);
 667                blk_remove_plug(conf->mddev->queue);
 668                spin_unlock(conf->mddev->queue->queue_lock);
 669                spin_unlock_irq(&conf->device_lock);
 670                /* flush any pending bitmap writes to disk
 671                 * before proceeding w/ I/O */
 672                bitmap_unplug(conf->mddev->bitmap);
 673
 674                while (bio) { /* submit pending writes */
 675                        struct bio *next = bio->bi_next;
 676                        bio->bi_next = NULL;
 677                        generic_make_request(bio);
 678                        bio = next;
 679                }
 680                rv = 1;
 681        } else
 682                spin_unlock_irq(&conf->device_lock);
 683        return rv;
 684}
 685/* Barriers....
 686 * Sometimes we need to suspend IO while we do something else,
 687 * either some resync/recovery, or reconfigure the array.
 688 * To do this we raise a 'barrier'.
 689 * The 'barrier' is a counter that can be raised multiple times
 690 * to count how many activities are happening which preclude
 691 * normal IO.
 692 * We can only raise the barrier if there is no pending IO.
 693 * i.e. if nr_pending == 0.
 694 * We choose only to raise the barrier if no-one is waiting for the
 695 * barrier to go down.  This means that as soon as an IO request
 696 * is ready, no other operations which require a barrier will start
 697 * until the IO request has had a chance.
 698 *
 699 * So: regular IO calls 'wait_barrier'.  When that returns there
 700 *    is no backgroup IO happening,  It must arrange to call
 701 *    allow_barrier when it has finished its IO.
 702 * backgroup IO calls must call raise_barrier.  Once that returns
 703 *    there is no normal IO happeing.  It must arrange to call
 704 *    lower_barrier when the particular background IO completes.
 705 */
 706
 707static void raise_barrier(conf_t *conf, int force)
 708{
 709        BUG_ON(force && !conf->barrier);
 710        spin_lock_irq(&conf->resync_lock);
 711
 712        /* Wait until no block IO is waiting (unless 'force') */
 713        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 714                            conf->resync_lock,
 715                            raid10_unplug(conf->mddev->queue));
 716
 717        /* block any new IO from starting */
 718        conf->barrier++;
 719
 720        /* No wait for all pending IO to complete */
 721        wait_event_lock_irq(conf->wait_barrier,
 722                            !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 723                            conf->resync_lock,
 724                            raid10_unplug(conf->mddev->queue));
 725
 726        spin_unlock_irq(&conf->resync_lock);
 727}
 728
 729static void lower_barrier(conf_t *conf)
 730{
 731        unsigned long flags;
 732        spin_lock_irqsave(&conf->resync_lock, flags);
 733        conf->barrier--;
 734        spin_unlock_irqrestore(&conf->resync_lock, flags);
 735        wake_up(&conf->wait_barrier);
 736}
 737
 738static void wait_barrier(conf_t *conf)
 739{
 740        spin_lock_irq(&conf->resync_lock);
 741        if (conf->barrier) {
 742                conf->nr_waiting++;
 743                wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
 744                                    conf->resync_lock,
 745                                    raid10_unplug(conf->mddev->queue));
 746                conf->nr_waiting--;
 747        }
 748        conf->nr_pending++;
 749        spin_unlock_irq(&conf->resync_lock);
 750}
 751
 752static void allow_barrier(conf_t *conf)
 753{
 754        unsigned long flags;
 755        spin_lock_irqsave(&conf->resync_lock, flags);
 756        conf->nr_pending--;
 757        spin_unlock_irqrestore(&conf->resync_lock, flags);
 758        wake_up(&conf->wait_barrier);
 759}
 760
 761static void freeze_array(conf_t *conf)
 762{
 763        /* stop syncio and normal IO and wait for everything to
 764         * go quiet.
 765         * We increment barrier and nr_waiting, and then
 766         * wait until nr_pending match nr_queued+1
 767         * This is called in the context of one normal IO request
 768         * that has failed. Thus any sync request that might be pending
 769         * will be blocked by nr_pending, and we need to wait for
 770         * pending IO requests to complete or be queued for re-try.
 771         * Thus the number queued (nr_queued) plus this request (1)
 772         * must match the number of pending IOs (nr_pending) before
 773         * we continue.
 774         */
 775        spin_lock_irq(&conf->resync_lock);
 776        conf->barrier++;
 777        conf->nr_waiting++;
 778        wait_event_lock_irq(conf->wait_barrier,
 779                            conf->nr_pending == conf->nr_queued+1,
 780                            conf->resync_lock,
 781                            ({ flush_pending_writes(conf);
 782                               raid10_unplug(conf->mddev->queue); }));
 783        spin_unlock_irq(&conf->resync_lock);
 784}
 785
 786static void unfreeze_array(conf_t *conf)
 787{
 788        /* reverse the effect of the freeze */
 789        spin_lock_irq(&conf->resync_lock);
 790        conf->barrier--;
 791        conf->nr_waiting--;
 792        wake_up(&conf->wait_barrier);
 793        spin_unlock_irq(&conf->resync_lock);
 794}
 795
 796static int make_request(mddev_t *mddev, struct bio * bio)
 797{
 798        conf_t *conf = mddev->private;
 799        mirror_info_t *mirror;
 800        r10bio_t *r10_bio;
 801        struct bio *read_bio;
 802        int i;
 803        int chunk_sects = conf->chunk_mask + 1;
 804        const int rw = bio_data_dir(bio);
 805        const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
 806        const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
 807        unsigned long flags;
 808        mdk_rdev_t *blocked_rdev;
 809
 810        if (unlikely(bio->bi_rw & REQ_FLUSH)) {
 811                md_flush_request(mddev, bio);
 812                return 0;
 813        }
 814
 815        /* If this request crosses a chunk boundary, we need to
 816         * split it.  This will only happen for 1 PAGE (or less) requests.
 817         */
 818        if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
 819                      > chunk_sects &&
 820                    conf->near_copies < conf->raid_disks)) {
 821                struct bio_pair *bp;
 822                /* Sanity check -- queue functions should prevent this happening */
 823                if (bio->bi_vcnt != 1 ||
 824                    bio->bi_idx != 0)
 825                        goto bad_map;
 826                /* This is a one page bio that upper layers
 827                 * refuse to split for us, so we need to split it.
 828                 */
 829                bp = bio_split(bio,
 830                               chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
 831
 832                /* Each of these 'make_request' calls will call 'wait_barrier'.
 833                 * If the first succeeds but the second blocks due to the resync
 834                 * thread raising the barrier, we will deadlock because the
 835                 * IO to the underlying device will be queued in generic_make_request
 836                 * and will never complete, so will never reduce nr_pending.
 837                 * So increment nr_waiting here so no new raise_barriers will
 838                 * succeed, and so the second wait_barrier cannot block.
 839                 */
 840                spin_lock_irq(&conf->resync_lock);
 841                conf->nr_waiting++;
 842                spin_unlock_irq(&conf->resync_lock);
 843
 844                if (make_request(mddev, &bp->bio1))
 845                        generic_make_request(&bp->bio1);
 846                if (make_request(mddev, &bp->bio2))
 847                        generic_make_request(&bp->bio2);
 848
 849                spin_lock_irq(&conf->resync_lock);
 850                conf->nr_waiting--;
 851                wake_up(&conf->wait_barrier);
 852                spin_unlock_irq(&conf->resync_lock);
 853
 854                bio_pair_release(bp);
 855                return 0;
 856        bad_map:
 857                printk("md/raid10:%s: make_request bug: can't convert block across chunks"
 858                       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
 859                       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
 860
 861                bio_io_error(bio);
 862                return 0;
 863        }
 864
 865        md_write_start(mddev, bio);
 866
 867        /*
 868         * Register the new request and wait if the reconstruction
 869         * thread has put up a bar for new requests.
 870         * Continue immediately if no resync is active currently.
 871         */
 872        wait_barrier(conf);
 873
 874        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 875
 876        r10_bio->master_bio = bio;
 877        r10_bio->sectors = bio->bi_size >> 9;
 878
 879        r10_bio->mddev = mddev;
 880        r10_bio->sector = bio->bi_sector;
 881        r10_bio->state = 0;
 882
 883        if (rw == READ) {
 884                /*
 885                 * read balancing logic:
 886                 */
 887                int disk = read_balance(conf, r10_bio);
 888                int slot = r10_bio->read_slot;
 889                if (disk < 0) {
 890                        raid_end_bio_io(r10_bio);
 891                        return 0;
 892                }
 893                mirror = conf->mirrors + disk;
 894
 895                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 896
 897                r10_bio->devs[slot].bio = read_bio;
 898
 899                read_bio->bi_sector = r10_bio->devs[slot].addr +
 900                        mirror->rdev->data_offset;
 901                read_bio->bi_bdev = mirror->rdev->bdev;
 902                read_bio->bi_end_io = raid10_end_read_request;
 903                read_bio->bi_rw = READ | do_sync;
 904                read_bio->bi_private = r10_bio;
 905
 906                generic_make_request(read_bio);
 907                return 0;
 908        }
 909
 910        /*
 911         * WRITE:
 912         */
 913        /* first select target devices under rcu_lock and
 914         * inc refcount on their rdev.  Record them by setting
 915         * bios[x] to bio
 916         */
 917        raid10_find_phys(conf, r10_bio);
 918 retry_write:
 919        blocked_rdev = NULL;
 920        rcu_read_lock();
 921        for (i = 0;  i < conf->copies; i++) {
 922                int d = r10_bio->devs[i].devnum;
 923                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
 924                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
 925                        atomic_inc(&rdev->nr_pending);
 926                        blocked_rdev = rdev;
 927                        break;
 928                }
 929                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 930                        atomic_inc(&rdev->nr_pending);
 931                        r10_bio->devs[i].bio = bio;
 932                } else {
 933                        r10_bio->devs[i].bio = NULL;
 934                        set_bit(R10BIO_Degraded, &r10_bio->state);
 935                }
 936        }
 937        rcu_read_unlock();
 938
 939        if (unlikely(blocked_rdev)) {
 940                /* Have to wait for this device to get unblocked, then retry */
 941                int j;
 942                int d;
 943
 944                for (j = 0; j < i; j++)
 945                        if (r10_bio->devs[j].bio) {
 946                                d = r10_bio->devs[j].devnum;
 947                                rdev_dec_pending(conf->mirrors[d].rdev, mddev);
 948                        }
 949                allow_barrier(conf);
 950                md_wait_for_blocked_rdev(blocked_rdev, mddev);
 951                wait_barrier(conf);
 952                goto retry_write;
 953        }
 954
 955        atomic_set(&r10_bio->remaining, 1);
 956        bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
 957
 958        for (i = 0; i < conf->copies; i++) {
 959                struct bio *mbio;
 960                int d = r10_bio->devs[i].devnum;
 961                if (!r10_bio->devs[i].bio)
 962                        continue;
 963
 964                mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 965                r10_bio->devs[i].bio = mbio;
 966
 967                mbio->bi_sector = r10_bio->devs[i].addr+
 968                        conf->mirrors[d].rdev->data_offset;
 969                mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
 970                mbio->bi_end_io = raid10_end_write_request;
 971                mbio->bi_rw = WRITE | do_sync | do_fua;
 972                mbio->bi_private = r10_bio;
 973
 974                atomic_inc(&r10_bio->remaining);
 975                spin_lock_irqsave(&conf->device_lock, flags);
 976                bio_list_add(&conf->pending_bio_list, mbio);
 977                blk_plug_device_unlocked(mddev->queue);
 978                spin_unlock_irqrestore(&conf->device_lock, flags);
 979        }
 980
 981        if (atomic_dec_and_test(&r10_bio->remaining)) {
 982                /* This matches the end of raid10_end_write_request() */
 983                bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 984                                r10_bio->sectors,
 985                                !test_bit(R10BIO_Degraded, &r10_bio->state),
 986                                0);
 987                md_write_end(mddev);
 988                raid_end_bio_io(r10_bio);
 989        }
 990
 991        /* In case raid10d snuck in to freeze_array */
 992        wake_up(&conf->wait_barrier);
 993
 994        if (do_sync)
 995                md_wakeup_thread(mddev->thread);
 996
 997        return 0;
 998}
 999
1000static void status(struct seq_file *seq, mddev_t *mddev)
1001{
1002        conf_t *conf = mddev->private;
1003        int i;
1004
1005        if (conf->near_copies < conf->raid_disks)
1006                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1007        if (conf->near_copies > 1)
1008                seq_printf(seq, " %d near-copies", conf->near_copies);
1009        if (conf->far_copies > 1) {
1010                if (conf->far_offset)
1011                        seq_printf(seq, " %d offset-copies", conf->far_copies);
1012                else
1013                        seq_printf(seq, " %d far-copies", conf->far_copies);
1014        }
1015        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1016                                        conf->raid_disks - mddev->degraded);
1017        for (i = 0; i < conf->raid_disks; i++)
1018                seq_printf(seq, "%s",
1019                              conf->mirrors[i].rdev &&
1020                              test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1021        seq_printf(seq, "]");
1022}
1023
1024static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1025{
1026        char b[BDEVNAME_SIZE];
1027        conf_t *conf = mddev->private;
1028
1029        /*
1030         * If it is not operational, then we have already marked it as dead
1031         * else if it is the last working disks, ignore the error, let the
1032         * next level up know.
1033         * else mark the drive as failed
1034         */
1035        if (test_bit(In_sync, &rdev->flags)
1036            && conf->raid_disks-mddev->degraded == 1)
1037                /*
1038                 * Don't fail the drive, just return an IO error.
1039                 * The test should really be more sophisticated than
1040                 * "working_disks == 1", but it isn't critical, and
1041                 * can wait until we do more sophisticated "is the drive
1042                 * really dead" tests...
1043                 */
1044                return;
1045        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1046                unsigned long flags;
1047                spin_lock_irqsave(&conf->device_lock, flags);
1048                mddev->degraded++;
1049                spin_unlock_irqrestore(&conf->device_lock, flags);
1050                /*
1051                 * if recovery is running, make sure it aborts.
1052                 */
1053                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1054        }
1055        set_bit(Faulty, &rdev->flags);
1056        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1057        printk(KERN_ALERT
1058               "md/raid10:%s: Disk failure on %s, disabling device.\n"
1059               "md/raid10:%s: Operation continuing on %d devices.\n",
1060               mdname(mddev), bdevname(rdev->bdev, b),
1061               mdname(mddev), conf->raid_disks - mddev->degraded);
1062}
1063
1064static void print_conf(conf_t *conf)
1065{
1066        int i;
1067        mirror_info_t *tmp;
1068
1069        printk(KERN_DEBUG "RAID10 conf printout:\n");
1070        if (!conf) {
1071                printk(KERN_DEBUG "(!conf)\n");
1072                return;
1073        }
1074        printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1075                conf->raid_disks);
1076
1077        for (i = 0; i < conf->raid_disks; i++) {
1078                char b[BDEVNAME_SIZE];
1079                tmp = conf->mirrors + i;
1080                if (tmp->rdev)
1081                        printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1082                                i, !test_bit(In_sync, &tmp->rdev->flags),
1083                                !test_bit(Faulty, &tmp->rdev->flags),
1084                                bdevname(tmp->rdev->bdev,b));
1085        }
1086}
1087
1088static void close_sync(conf_t *conf)
1089{
1090        wait_barrier(conf);
1091        allow_barrier(conf);
1092
1093        mempool_destroy(conf->r10buf_pool);
1094        conf->r10buf_pool = NULL;
1095}
1096
1097/* check if there are enough drives for
1098 * every block to appear on atleast one
1099 */
1100static int enough(conf_t *conf)
1101{
1102        int first = 0;
1103
1104        do {
1105                int n = conf->copies;
1106                int cnt = 0;
1107                while (n--) {
1108                        if (conf->mirrors[first].rdev)
1109                                cnt++;
1110                        first = (first+1) % conf->raid_disks;
1111                }
1112                if (cnt == 0)
1113                        return 0;
1114        } while (first != 0);
1115        return 1;
1116}
1117
1118static int raid10_spare_active(mddev_t *mddev)
1119{
1120        int i;
1121        conf_t *conf = mddev->private;
1122        mirror_info_t *tmp;
1123        int count = 0;
1124        unsigned long flags;
1125
1126        /*
1127         * Find all non-in_sync disks within the RAID10 configuration
1128         * and mark them in_sync
1129         */
1130        for (i = 0; i < conf->raid_disks; i++) {
1131                tmp = conf->mirrors + i;
1132                if (tmp->rdev
1133                    && !test_bit(Faulty, &tmp->rdev->flags)
1134                    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1135                        count++;
1136                        sysfs_notify_dirent(tmp->rdev->sysfs_state);
1137                }
1138        }
1139        spin_lock_irqsave(&conf->device_lock, flags);
1140        mddev->degraded -= count;
1141        spin_unlock_irqrestore(&conf->device_lock, flags);
1142
1143        print_conf(conf);
1144        return count;
1145}
1146
1147
1148static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1149{
1150        conf_t *conf = mddev->private;
1151        int err = -EEXIST;
1152        int mirror;
1153        mirror_info_t *p;
1154        int first = 0;
1155        int last = conf->raid_disks - 1;
1156
1157        if (mddev->recovery_cp < MaxSector)
1158                /* only hot-add to in-sync arrays, as recovery is
1159                 * very different from resync
1160                 */
1161                return -EBUSY;
1162        if (!enough(conf))
1163                return -EINVAL;
1164
1165        if (rdev->raid_disk >= 0)
1166                first = last = rdev->raid_disk;
1167
1168        if (rdev->saved_raid_disk >= 0 &&
1169            rdev->saved_raid_disk >= first &&
1170            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1171                mirror = rdev->saved_raid_disk;
1172        else
1173                mirror = first;
1174        for ( ; mirror <= last ; mirror++)
1175                if ( !(p=conf->mirrors+mirror)->rdev) {
1176
1177                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1178                                          rdev->data_offset << 9);
1179                        /* as we don't honour merge_bvec_fn, we must
1180                         * never risk violating it, so limit
1181                         * ->max_segments to one lying with a single
1182                         * page, as a one page request is never in
1183                         * violation.
1184                         */
1185                        if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1186                                blk_queue_max_segments(mddev->queue, 1);
1187                                blk_queue_segment_boundary(mddev->queue,
1188                                                           PAGE_CACHE_SIZE - 1);
1189                        }
1190
1191                        p->head_position = 0;
1192                        rdev->raid_disk = mirror;
1193                        err = 0;
1194                        if (rdev->saved_raid_disk != mirror)
1195                                conf->fullsync = 1;
1196                        rcu_assign_pointer(p->rdev, rdev);
1197                        break;
1198                }
1199
1200        md_integrity_add_rdev(rdev, mddev);
1201        print_conf(conf);
1202        return err;
1203}
1204
1205static int raid10_remove_disk(mddev_t *mddev, int number)
1206{
1207        conf_t *conf = mddev->private;
1208        int err = 0;
1209        mdk_rdev_t *rdev;
1210        mirror_info_t *p = conf->mirrors+ number;
1211
1212        print_conf(conf);
1213        rdev = p->rdev;
1214        if (rdev) {
1215                if (test_bit(In_sync, &rdev->flags) ||
1216                    atomic_read(&rdev->nr_pending)) {
1217                        err = -EBUSY;
1218                        goto abort;
1219                }
1220                /* Only remove faulty devices in recovery
1221                 * is not possible.
1222                 */
1223                if (!test_bit(Faulty, &rdev->flags) &&
1224                    enough(conf)) {
1225                        err = -EBUSY;
1226                        goto abort;
1227                }
1228                p->rdev = NULL;
1229                synchronize_rcu();
1230                if (atomic_read(&rdev->nr_pending)) {
1231                        /* lost the race, try later */
1232                        err = -EBUSY;
1233                        p->rdev = rdev;
1234                        goto abort;
1235                }
1236                md_integrity_register(mddev);
1237        }
1238abort:
1239
1240        print_conf(conf);
1241        return err;
1242}
1243
1244
1245static void end_sync_read(struct bio *bio, int error)
1246{
1247        r10bio_t *r10_bio = bio->bi_private;
1248        conf_t *conf = r10_bio->mddev->private;
1249        int i,d;
1250
1251        for (i=0; i<conf->copies; i++)
1252                if (r10_bio->devs[i].bio == bio)
1253                        break;
1254        BUG_ON(i == conf->copies);
1255        update_head_pos(i, r10_bio);
1256        d = r10_bio->devs[i].devnum;
1257
1258        if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1259                set_bit(R10BIO_Uptodate, &r10_bio->state);
1260        else {
1261                atomic_add(r10_bio->sectors,
1262                           &conf->mirrors[d].rdev->corrected_errors);
1263                if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1264                        md_error(r10_bio->mddev,
1265                                 conf->mirrors[d].rdev);
1266        }
1267
1268        /* for reconstruct, we always reschedule after a read.
1269         * for resync, only after all reads
1270         */
1271        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1272        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1273            atomic_dec_and_test(&r10_bio->remaining)) {
1274                /* we have read all the blocks,
1275                 * do the comparison in process context in raid10d
1276                 */
1277                reschedule_retry(r10_bio);
1278        }
1279}
1280
1281static void end_sync_write(struct bio *bio, int error)
1282{
1283        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1284        r10bio_t *r10_bio = bio->bi_private;
1285        mddev_t *mddev = r10_bio->mddev;
1286        conf_t *conf = mddev->private;
1287        int i,d;
1288
1289        for (i = 0; i < conf->copies; i++)
1290                if (r10_bio->devs[i].bio == bio)
1291                        break;
1292        d = r10_bio->devs[i].devnum;
1293
1294        if (!uptodate)
1295                md_error(mddev, conf->mirrors[d].rdev);
1296
1297        update_head_pos(i, r10_bio);
1298
1299        rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1300        while (atomic_dec_and_test(&r10_bio->remaining)) {
1301                if (r10_bio->master_bio == NULL) {
1302                        /* the primary of several recovery bios */
1303                        sector_t s = r10_bio->sectors;
1304                        put_buf(r10_bio);
1305                        md_done_sync(mddev, s, 1);
1306                        break;
1307                } else {
1308                        r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1309                        put_buf(r10_bio);
1310                        r10_bio = r10_bio2;
1311                }
1312        }
1313}
1314
1315/*
1316 * Note: sync and recover and handled very differently for raid10
1317 * This code is for resync.
1318 * For resync, we read through virtual addresses and read all blocks.
1319 * If there is any error, we schedule a write.  The lowest numbered
1320 * drive is authoritative.
1321 * However requests come for physical address, so we need to map.
1322 * For every physical address there are raid_disks/copies virtual addresses,
1323 * which is always are least one, but is not necessarly an integer.
1324 * This means that a physical address can span multiple chunks, so we may
1325 * have to submit multiple io requests for a single sync request.
1326 */
1327/*
1328 * We check if all blocks are in-sync and only write to blocks that
1329 * aren't in sync
1330 */
1331static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1332{
1333        conf_t *conf = mddev->private;
1334        int i, first;
1335        struct bio *tbio, *fbio;
1336
1337        atomic_set(&r10_bio->remaining, 1);
1338
1339        /* find the first device with a block */
1340        for (i=0; i<conf->copies; i++)
1341                if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1342                        break;
1343
1344        if (i == conf->copies)
1345                goto done;
1346
1347        first = i;
1348        fbio = r10_bio->devs[i].bio;
1349
1350        /* now find blocks with errors */
1351        for (i=0 ; i < conf->copies ; i++) {
1352                int  j, d;
1353                int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1354
1355                tbio = r10_bio->devs[i].bio;
1356
1357                if (tbio->bi_end_io != end_sync_read)
1358                        continue;
1359                if (i == first)
1360                        continue;
1361                if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1362                        /* We know that the bi_io_vec layout is the same for
1363                         * both 'first' and 'i', so we just compare them.
1364                         * All vec entries are PAGE_SIZE;
1365                         */
1366                        for (j = 0; j < vcnt; j++)
1367                                if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1368                                           page_address(tbio->bi_io_vec[j].bv_page),
1369                                           PAGE_SIZE))
1370                                        break;
1371                        if (j == vcnt)
1372                                continue;
1373                        mddev->resync_mismatches += r10_bio->sectors;
1374                }
1375                if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1376                        /* Don't fix anything. */
1377                        continue;
1378                /* Ok, we need to write this bio
1379                 * First we need to fixup bv_offset, bv_len and
1380                 * bi_vecs, as the read request might have corrupted these
1381                 */
1382                tbio->bi_vcnt = vcnt;
1383                tbio->bi_size = r10_bio->sectors << 9;
1384                tbio->bi_idx = 0;
1385                tbio->bi_phys_segments = 0;
1386                tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1387                tbio->bi_flags |= 1 << BIO_UPTODATE;
1388                tbio->bi_next = NULL;
1389                tbio->bi_rw = WRITE;
1390                tbio->bi_private = r10_bio;
1391                tbio->bi_sector = r10_bio->devs[i].addr;
1392
1393                for (j=0; j < vcnt ; j++) {
1394                        tbio->bi_io_vec[j].bv_offset = 0;
1395                        tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1396
1397                        memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1398                               page_address(fbio->bi_io_vec[j].bv_page),
1399                               PAGE_SIZE);
1400                }
1401                tbio->bi_end_io = end_sync_write;
1402
1403                d = r10_bio->devs[i].devnum;
1404                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1405                atomic_inc(&r10_bio->remaining);
1406                md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1407
1408                tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1409                tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1410                generic_make_request(tbio);
1411        }
1412
1413done:
1414        if (atomic_dec_and_test(&r10_bio->remaining)) {
1415                md_done_sync(mddev, r10_bio->sectors, 1);
1416                put_buf(r10_bio);
1417        }
1418}
1419
1420/*
1421 * Now for the recovery code.
1422 * Recovery happens across physical sectors.
1423 * We recover all non-is_sync drives by finding the virtual address of
1424 * each, and then choose a working drive that also has that virt address.
1425 * There is a separate r10_bio for each non-in_sync drive.
1426 * Only the first two slots are in use. The first for reading,
1427 * The second for writing.
1428 *
1429 */
1430
1431static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1432{
1433        conf_t *conf = mddev->private;
1434        int i, d;
1435        struct bio *bio, *wbio;
1436
1437
1438        /* move the pages across to the second bio
1439         * and submit the write request
1440         */
1441        bio = r10_bio->devs[0].bio;
1442        wbio = r10_bio->devs[1].bio;
1443        for (i=0; i < wbio->bi_vcnt; i++) {
1444                struct page *p = bio->bi_io_vec[i].bv_page;
1445                bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1446                wbio->bi_io_vec[i].bv_page = p;
1447        }
1448        d = r10_bio->devs[1].devnum;
1449
1450        atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1451        md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1452        if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1453                generic_make_request(wbio);
1454        else
1455                bio_endio(wbio, -EIO);
1456}
1457
1458
1459/*
1460 * Used by fix_read_error() to decay the per rdev read_errors.
1461 * We halve the read error count for every hour that has elapsed
1462 * since the last recorded read error.
1463 *
1464 */
1465static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1466{
1467        struct timespec cur_time_mon;
1468        unsigned long hours_since_last;
1469        unsigned int read_errors = atomic_read(&rdev->read_errors);
1470
1471        ktime_get_ts(&cur_time_mon);
1472
1473        if (rdev->last_read_error.tv_sec == 0 &&
1474            rdev->last_read_error.tv_nsec == 0) {
1475                /* first time we've seen a read error */
1476                rdev->last_read_error = cur_time_mon;
1477                return;
1478        }
1479
1480        hours_since_last = (cur_time_mon.tv_sec -
1481                            rdev->last_read_error.tv_sec) / 3600;
1482
1483        rdev->last_read_error = cur_time_mon;
1484
1485        /*
1486         * if hours_since_last is > the number of bits in read_errors
1487         * just set read errors to 0. We do this to avoid
1488         * overflowing the shift of read_errors by hours_since_last.
1489         */
1490        if (hours_since_last >= 8 * sizeof(read_errors))
1491                atomic_set(&rdev->read_errors, 0);
1492        else
1493                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1494}
1495
1496/*
1497 * This is a kernel thread which:
1498 *
1499 *      1.      Retries failed read operations on working mirrors.
1500 *      2.      Updates the raid superblock when problems encounter.
1501 *      3.      Performs writes following reads for array synchronising.
1502 */
1503
1504static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1505{
1506        int sect = 0; /* Offset from r10_bio->sector */
1507        int sectors = r10_bio->sectors;
1508        mdk_rdev_t*rdev;
1509        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1510        int d = r10_bio->devs[r10_bio->read_slot].devnum;
1511
1512        rcu_read_lock();
1513        rdev = rcu_dereference(conf->mirrors[d].rdev);
1514        if (rdev) { /* If rdev is not NULL */
1515                char b[BDEVNAME_SIZE];
1516                int cur_read_error_count = 0;
1517
1518                bdevname(rdev->bdev, b);
1519
1520                if (test_bit(Faulty, &rdev->flags)) {
1521                        rcu_read_unlock();
1522                        /* drive has already been failed, just ignore any
1523                           more fix_read_error() attempts */
1524                        return;
1525                }
1526
1527                check_decay_read_errors(mddev, rdev);
1528                atomic_inc(&rdev->read_errors);
1529                cur_read_error_count = atomic_read(&rdev->read_errors);
1530                if (cur_read_error_count > max_read_errors) {
1531                        rcu_read_unlock();
1532                        printk(KERN_NOTICE
1533                               "md/raid10:%s: %s: Raid device exceeded "
1534                               "read_error threshold "
1535                               "[cur %d:max %d]\n",
1536                               mdname(mddev),
1537                               b, cur_read_error_count, max_read_errors);
1538                        printk(KERN_NOTICE
1539                               "md/raid10:%s: %s: Failing raid "
1540                               "device\n", mdname(mddev), b);
1541                        md_error(mddev, conf->mirrors[d].rdev);
1542                        return;
1543                }
1544        }
1545        rcu_read_unlock();
1546
1547        while(sectors) {
1548                int s = sectors;
1549                int sl = r10_bio->read_slot;
1550                int success = 0;
1551                int start;
1552
1553                if (s > (PAGE_SIZE>>9))
1554                        s = PAGE_SIZE >> 9;
1555
1556                rcu_read_lock();
1557                do {
1558                        d = r10_bio->devs[sl].devnum;
1559                        rdev = rcu_dereference(conf->mirrors[d].rdev);
1560                        if (rdev &&
1561                            test_bit(In_sync, &rdev->flags)) {
1562                                atomic_inc(&rdev->nr_pending);
1563                                rcu_read_unlock();
1564                                success = sync_page_io(rdev,
1565                                                       r10_bio->devs[sl].addr +
1566                                                       sect,
1567                                                       s<<9,
1568                                                       conf->tmppage, READ, false);
1569                                rdev_dec_pending(rdev, mddev);
1570                                rcu_read_lock();
1571                                if (success)
1572                                        break;
1573                        }
1574                        sl++;
1575                        if (sl == conf->copies)
1576                                sl = 0;
1577                } while (!success && sl != r10_bio->read_slot);
1578                rcu_read_unlock();
1579
1580                if (!success) {
1581                        /* Cannot read from anywhere -- bye bye array */
1582                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1583                        md_error(mddev, conf->mirrors[dn].rdev);
1584                        break;
1585                }
1586
1587                start = sl;
1588                /* write it back and re-read */
1589                rcu_read_lock();
1590                while (sl != r10_bio->read_slot) {
1591                        char b[BDEVNAME_SIZE];
1592
1593                        if (sl==0)
1594                                sl = conf->copies;
1595                        sl--;
1596                        d = r10_bio->devs[sl].devnum;
1597                        rdev = rcu_dereference(conf->mirrors[d].rdev);
1598                        if (rdev &&
1599                            test_bit(In_sync, &rdev->flags)) {
1600                                atomic_inc(&rdev->nr_pending);
1601                                rcu_read_unlock();
1602                                atomic_add(s, &rdev->corrected_errors);
1603                                if (sync_page_io(rdev,
1604                                                 r10_bio->devs[sl].addr +
1605                                                 sect,
1606                                                 s<<9, conf->tmppage, WRITE, false)
1607                                    == 0) {
1608                                        /* Well, this device is dead */
1609                                        printk(KERN_NOTICE
1610                                               "md/raid10:%s: read correction "
1611                                               "write failed"
1612                                               " (%d sectors at %llu on %s)\n",
1613                                               mdname(mddev), s,
1614                                               (unsigned long long)(sect+
1615                                               rdev->data_offset),
1616                                               bdevname(rdev->bdev, b));
1617                                        printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1618                                               "drive\n",
1619                                               mdname(mddev),
1620                                               bdevname(rdev->bdev, b));
1621                                        md_error(mddev, rdev);
1622                                }
1623                                rdev_dec_pending(rdev, mddev);
1624                                rcu_read_lock();
1625                        }
1626                }
1627                sl = start;
1628                while (sl != r10_bio->read_slot) {
1629
1630                        if (sl==0)
1631                                sl = conf->copies;
1632                        sl--;
1633                        d = r10_bio->devs[sl].devnum;
1634                        rdev = rcu_dereference(conf->mirrors[d].rdev);
1635                        if (rdev &&
1636                            test_bit(In_sync, &rdev->flags)) {
1637                                char b[BDEVNAME_SIZE];
1638                                atomic_inc(&rdev->nr_pending);
1639                                rcu_read_unlock();
1640                                if (sync_page_io(rdev,
1641                                                 r10_bio->devs[sl].addr +
1642                                                 sect,
1643                                                 s<<9, conf->tmppage,
1644                                                 READ, false) == 0) {
1645                                        /* Well, this device is dead */
1646                                        printk(KERN_NOTICE
1647                                               "md/raid10:%s: unable to read back "
1648                                               "corrected sectors"
1649                                               " (%d sectors at %llu on %s)\n",
1650                                               mdname(mddev), s,
1651                                               (unsigned long long)(sect+
1652                                                    rdev->data_offset),
1653                                               bdevname(rdev->bdev, b));
1654                                        printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1655                                               mdname(mddev),
1656                                               bdevname(rdev->bdev, b));
1657
1658                                        md_error(mddev, rdev);
1659                                } else {
1660                                        printk(KERN_INFO
1661                                               "md/raid10:%s: read error corrected"
1662                                               " (%d sectors at %llu on %s)\n",
1663                                               mdname(mddev), s,
1664                                               (unsigned long long)(sect+
1665                                                    rdev->data_offset),
1666                                               bdevname(rdev->bdev, b));
1667                                }
1668
1669                                rdev_dec_pending(rdev, mddev);
1670                                rcu_read_lock();
1671                        }
1672                }
1673                rcu_read_unlock();
1674
1675                sectors -= s;
1676                sect += s;
1677        }
1678}
1679
1680static void raid10d(mddev_t *mddev)
1681{
1682        r10bio_t *r10_bio;
1683        struct bio *bio;
1684        unsigned long flags;
1685        conf_t *conf = mddev->private;
1686        struct list_head *head = &conf->retry_list;
1687        int unplug=0;
1688        mdk_rdev_t *rdev;
1689
1690        md_check_recovery(mddev);
1691
1692        for (;;) {
1693                char b[BDEVNAME_SIZE];
1694
1695                unplug += flush_pending_writes(conf);
1696
1697                spin_lock_irqsave(&conf->device_lock, flags);
1698                if (list_empty(head)) {
1699                        spin_unlock_irqrestore(&conf->device_lock, flags);
1700                        break;
1701                }
1702                r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1703                list_del(head->prev);
1704                conf->nr_queued--;
1705                spin_unlock_irqrestore(&conf->device_lock, flags);
1706
1707                mddev = r10_bio->mddev;
1708                conf = mddev->private;
1709                if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1710                        sync_request_write(mddev, r10_bio);
1711                        unplug = 1;
1712                } else  if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1713                        recovery_request_write(mddev, r10_bio);
1714                        unplug = 1;
1715                } else {
1716                        int mirror;
1717                        /* we got a read error. Maybe the drive is bad.  Maybe just
1718                         * the block and we can fix it.
1719                         * We freeze all other IO, and try reading the block from
1720                         * other devices.  When we find one, we re-write
1721                         * and check it that fixes the read error.
1722                         * This is all done synchronously while the array is
1723                         * frozen.
1724                         */
1725                        if (mddev->ro == 0) {
1726                                freeze_array(conf);
1727                                fix_read_error(conf, mddev, r10_bio);
1728                                unfreeze_array(conf);
1729                        }
1730
1731                        bio = r10_bio->devs[r10_bio->read_slot].bio;
1732                        r10_bio->devs[r10_bio->read_slot].bio =
1733                                mddev->ro ? IO_BLOCKED : NULL;
1734                        mirror = read_balance(conf, r10_bio);
1735                        if (mirror == -1) {
1736                                printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1737                                       " read error for block %llu\n",
1738                                       mdname(mddev),
1739                                       bdevname(bio->bi_bdev,b),
1740                                       (unsigned long long)r10_bio->sector);
1741                                raid_end_bio_io(r10_bio);
1742                                bio_put(bio);
1743                        } else {
1744                                const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1745                                bio_put(bio);
1746                                rdev = conf->mirrors[mirror].rdev;
1747                                if (printk_ratelimit())
1748                                        printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1749                                               " another mirror\n",
1750                                               mdname(mddev),
1751                                               bdevname(rdev->bdev,b),
1752                                               (unsigned long long)r10_bio->sector);
1753                                bio = bio_clone_mddev(r10_bio->master_bio,
1754                                                      GFP_NOIO, mddev);
1755                                r10_bio->devs[r10_bio->read_slot].bio = bio;
1756                                bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1757                                        + rdev->data_offset;
1758                                bio->bi_bdev = rdev->bdev;
1759                                bio->bi_rw = READ | do_sync;
1760                                bio->bi_private = r10_bio;
1761                                bio->bi_end_io = raid10_end_read_request;
1762                                unplug = 1;
1763                                generic_make_request(bio);
1764                        }
1765                }
1766                cond_resched();
1767        }
1768        if (unplug)
1769                unplug_slaves(mddev);
1770}
1771
1772
1773static int init_resync(conf_t *conf)
1774{
1775        int buffs;
1776
1777        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1778        BUG_ON(conf->r10buf_pool);
1779        conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1780        if (!conf->r10buf_pool)
1781                return -ENOMEM;
1782        conf->next_resync = 0;
1783        return 0;
1784}
1785
1786/*
1787 * perform a "sync" on one "block"
1788 *
1789 * We need to make sure that no normal I/O request - particularly write
1790 * requests - conflict with active sync requests.
1791 *
1792 * This is achieved by tracking pending requests and a 'barrier' concept
1793 * that can be installed to exclude normal IO requests.
1794 *
1795 * Resync and recovery are handled very differently.
1796 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1797 *
1798 * For resync, we iterate over virtual addresses, read all copies,
1799 * and update if there are differences.  If only one copy is live,
1800 * skip it.
1801 * For recovery, we iterate over physical addresses, read a good
1802 * value for each non-in_sync drive, and over-write.
1803 *
1804 * So, for recovery we may have several outstanding complex requests for a
1805 * given address, one for each out-of-sync device.  We model this by allocating
1806 * a number of r10_bio structures, one for each out-of-sync device.
1807 * As we setup these structures, we collect all bio's together into a list
1808 * which we then process collectively to add pages, and then process again
1809 * to pass to generic_make_request.
1810 *
1811 * The r10_bio structures are linked using a borrowed master_bio pointer.
1812 * This link is counted in ->remaining.  When the r10_bio that points to NULL
1813 * has its remaining count decremented to 0, the whole complex operation
1814 * is complete.
1815 *
1816 */
1817
1818static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1819{
1820        conf_t *conf = mddev->private;
1821        r10bio_t *r10_bio;
1822        struct bio *biolist = NULL, *bio;
1823        sector_t max_sector, nr_sectors;
1824        int disk;
1825        int i;
1826        int max_sync;
1827        sector_t sync_blocks;
1828
1829        sector_t sectors_skipped = 0;
1830        int chunks_skipped = 0;
1831
1832        if (!conf->r10buf_pool)
1833                if (init_resync(conf))
1834                        return 0;
1835
1836 skipped:
1837        max_sector = mddev->dev_sectors;
1838        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1839                max_sector = mddev->resync_max_sectors;
1840        if (sector_nr >= max_sector) {
1841                /* If we aborted, we need to abort the
1842                 * sync on the 'current' bitmap chucks (there can
1843                 * be several when recovering multiple devices).
1844                 * as we may have started syncing it but not finished.
1845                 * We can find the current address in
1846                 * mddev->curr_resync, but for recovery,
1847                 * we need to convert that to several
1848                 * virtual addresses.
1849                 */
1850                if (mddev->curr_resync < max_sector) { /* aborted */
1851                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1852                                bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1853                                                &sync_blocks, 1);
1854                        else for (i=0; i<conf->raid_disks; i++) {
1855                                sector_t sect =
1856                                        raid10_find_virt(conf, mddev->curr_resync, i);
1857                                bitmap_end_sync(mddev->bitmap, sect,
1858                                                &sync_blocks, 1);
1859                        }
1860                } else /* completed sync */
1861                        conf->fullsync = 0;
1862
1863                bitmap_close_sync(mddev->bitmap);
1864                close_sync(conf);
1865                *skipped = 1;
1866                return sectors_skipped;
1867        }
1868        if (chunks_skipped >= conf->raid_disks) {
1869                /* if there has been nothing to do on any drive,
1870                 * then there is nothing to do at all..
1871                 */
1872                *skipped = 1;
1873                return (max_sector - sector_nr) + sectors_skipped;
1874        }
1875
1876        if (max_sector > mddev->resync_max)
1877                max_sector = mddev->resync_max; /* Don't do IO beyond here */
1878
1879        /* make sure whole request will fit in a chunk - if chunks
1880         * are meaningful
1881         */
1882        if (conf->near_copies < conf->raid_disks &&
1883            max_sector > (sector_nr | conf->chunk_mask))
1884                max_sector = (sector_nr | conf->chunk_mask) + 1;
1885        /*
1886         * If there is non-resync activity waiting for us then
1887         * put in a delay to throttle resync.
1888         */
1889        if (!go_faster && conf->nr_waiting)
1890                msleep_interruptible(1000);
1891
1892        /* Again, very different code for resync and recovery.
1893         * Both must result in an r10bio with a list of bios that
1894         * have bi_end_io, bi_sector, bi_bdev set,
1895         * and bi_private set to the r10bio.
1896         * For recovery, we may actually create several r10bios
1897         * with 2 bios in each, that correspond to the bios in the main one.
1898         * In this case, the subordinate r10bios link back through a
1899         * borrowed master_bio pointer, and the counter in the master
1900         * includes a ref from each subordinate.
1901         */
1902        /* First, we decide what to do and set ->bi_end_io
1903         * To end_sync_read if we want to read, and
1904         * end_sync_write if we will want to write.
1905         */
1906
1907        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1908        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1909                /* recovery... the complicated one */
1910                int j, k;
1911                r10_bio = NULL;
1912
1913                for (i=0 ; i<conf->raid_disks; i++)
1914                        if (conf->mirrors[i].rdev &&
1915                            !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1916                                int still_degraded = 0;
1917                                /* want to reconstruct this device */
1918                                r10bio_t *rb2 = r10_bio;
1919                                sector_t sect = raid10_find_virt(conf, sector_nr, i);
1920                                int must_sync;
1921                                /* Unless we are doing a full sync, we only need
1922                                 * to recover the block if it is set in the bitmap
1923                                 */
1924                                must_sync = bitmap_start_sync(mddev->bitmap, sect,
1925                                                              &sync_blocks, 1);
1926                                if (sync_blocks < max_sync)
1927                                        max_sync = sync_blocks;
1928                                if (!must_sync &&
1929                                    !conf->fullsync) {
1930                                        /* yep, skip the sync_blocks here, but don't assume
1931                                         * that there will never be anything to do here
1932                                         */
1933                                        chunks_skipped = -1;
1934                                        continue;
1935                                }
1936
1937                                r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1938                                raise_barrier(conf, rb2 != NULL);
1939                                atomic_set(&r10_bio->remaining, 0);
1940
1941                                r10_bio->master_bio = (struct bio*)rb2;
1942                                if (rb2)
1943                                        atomic_inc(&rb2->remaining);
1944                                r10_bio->mddev = mddev;
1945                                set_bit(R10BIO_IsRecover, &r10_bio->state);
1946                                r10_bio->sector = sect;
1947
1948                                raid10_find_phys(conf, r10_bio);
1949
1950                                /* Need to check if the array will still be
1951                                 * degraded
1952                                 */
1953                                for (j=0; j<conf->raid_disks; j++)
1954                                        if (conf->mirrors[j].rdev == NULL ||
1955                                            test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1956                                                still_degraded = 1;
1957                                                break;
1958                                        }
1959
1960                                must_sync = bitmap_start_sync(mddev->bitmap, sect,
1961                                                              &sync_blocks, still_degraded);
1962
1963                                for (j=0; j<conf->copies;j++) {
1964                                        int d = r10_bio->devs[j].devnum;
1965                                        if (conf->mirrors[d].rdev &&
1966                                            test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1967                                                /* This is where we read from */
1968                                                bio = r10_bio->devs[0].bio;
1969                                                bio->bi_next = biolist;
1970                                                biolist = bio;
1971                                                bio->bi_private = r10_bio;
1972                                                bio->bi_end_io = end_sync_read;
1973                                                bio->bi_rw = READ;
1974                                                bio->bi_sector = r10_bio->devs[j].addr +
1975                                                        conf->mirrors[d].rdev->data_offset;
1976                                                bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1977                                                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1978                                                atomic_inc(&r10_bio->remaining);
1979                                                /* and we write to 'i' */
1980
1981                                                for (k=0; k<conf->copies; k++)
1982                                                        if (r10_bio->devs[k].devnum == i)
1983                                                                break;
1984                                                BUG_ON(k == conf->copies);
1985                                                bio = r10_bio->devs[1].bio;
1986                                                bio->bi_next = biolist;
1987                                                biolist = bio;
1988                                                bio->bi_private = r10_bio;
1989                                                bio->bi_end_io = end_sync_write;
1990                                                bio->bi_rw = WRITE;
1991                                                bio->bi_sector = r10_bio->devs[k].addr +
1992                                                        conf->mirrors[i].rdev->data_offset;
1993                                                bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1994
1995                                                r10_bio->devs[0].devnum = d;
1996                                                r10_bio->devs[1].devnum = i;
1997
1998                                                break;
1999                                        }
2000                                }
2001                                if (j == conf->copies) {
2002                                        /* Cannot recover, so abort the recovery */
2003                                        put_buf(r10_bio);
2004                                        if (rb2)
2005                                                atomic_dec(&rb2->remaining);
2006                                        r10_bio = rb2;
2007                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
2008                                                              &mddev->recovery))
2009                                                printk(KERN_INFO "md/raid10:%s: insufficient "
2010                                                       "working devices for recovery.\n",
2011                                                       mdname(mddev));
2012                                        break;
2013                                }
2014                        }
2015                if (biolist == NULL) {
2016                        while (r10_bio) {
2017                                r10bio_t *rb2 = r10_bio;
2018                                r10_bio = (r10bio_t*) rb2->master_bio;
2019                                rb2->master_bio = NULL;
2020                                put_buf(rb2);
2021                        }
2022                        goto giveup;
2023                }
2024        } else {
2025                /* resync. Schedule a read for every block at this virt offset */
2026                int count = 0;
2027
2028                bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2029
2030                if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2031                                       &sync_blocks, mddev->degraded) &&
2032                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2033                        /* We can skip this block */
2034                        *skipped = 1;
2035                        return sync_blocks + sectors_skipped;
2036                }
2037                if (sync_blocks < max_sync)
2038                        max_sync = sync_blocks;
2039                r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2040
2041                r10_bio->mddev = mddev;
2042                atomic_set(&r10_bio->remaining, 0);
2043                raise_barrier(conf, 0);
2044                conf->next_resync = sector_nr;
2045
2046                r10_bio->master_bio = NULL;
2047                r10_bio->sector = sector_nr;
2048                set_bit(R10BIO_IsSync, &r10_bio->state);
2049                raid10_find_phys(conf, r10_bio);
2050                r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2051
2052                for (i=0; i<conf->copies; i++) {
2053                        int d = r10_bio->devs[i].devnum;
2054                        bio = r10_bio->devs[i].bio;
2055                        bio->bi_end_io = NULL;
2056                        clear_bit(BIO_UPTODATE, &bio->bi_flags);
2057                        if (conf->mirrors[d].rdev == NULL ||
2058                            test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2059                                continue;
2060                        atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2061                        atomic_inc(&r10_bio->remaining);
2062                        bio->bi_next = biolist;
2063                        biolist = bio;
2064                        bio->bi_private = r10_bio;
2065                        bio->bi_end_io = end_sync_read;
2066                        bio->bi_rw = READ;
2067                        bio->bi_sector = r10_bio->devs[i].addr +
2068                                conf->mirrors[d].rdev->data_offset;
2069                        bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2070                        count++;
2071                }
2072
2073                if (count < 2) {
2074                        for (i=0; i<conf->copies; i++) {
2075                                int d = r10_bio->devs[i].devnum;
2076                                if (r10_bio->devs[i].bio->bi_end_io)
2077                                        rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2078                        }
2079                        put_buf(r10_bio);
2080                        biolist = NULL;
2081                        goto giveup;
2082                }
2083        }
2084
2085        for (bio = biolist; bio ; bio=bio->bi_next) {
2086
2087                bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2088                if (bio->bi_end_io)
2089                        bio->bi_flags |= 1 << BIO_UPTODATE;
2090                bio->bi_vcnt = 0;
2091                bio->bi_idx = 0;
2092                bio->bi_phys_segments = 0;
2093                bio->bi_size = 0;
2094        }
2095
2096        nr_sectors = 0;
2097        if (sector_nr + max_sync < max_sector)
2098                max_sector = sector_nr + max_sync;
2099        do {
2100                struct page *page;
2101                int len = PAGE_SIZE;
2102                disk = 0;
2103                if (sector_nr + (len>>9) > max_sector)
2104                        len = (max_sector - sector_nr) << 9;
2105                if (len == 0)
2106                        break;
2107                for (bio= biolist ; bio ; bio=bio->bi_next) {
2108                        page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2109                        if (bio_add_page(bio, page, len, 0) == 0) {
2110                                /* stop here */
2111                                struct bio *bio2;
2112                                bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2113                                for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2114                                        /* remove last page from this bio */
2115                                        bio2->bi_vcnt--;
2116                                        bio2->bi_size -= len;
2117                                        bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2118                                }
2119                                goto bio_full;
2120                        }
2121                        disk = i;
2122                }
2123                nr_sectors += len>>9;
2124                sector_nr += len>>9;
2125        } while (biolist->bi_vcnt < RESYNC_PAGES);
2126 bio_full:
2127        r10_bio->sectors = nr_sectors;
2128
2129        while (biolist) {
2130                bio = biolist;
2131                biolist = biolist->bi_next;
2132
2133                bio->bi_next = NULL;
2134                r10_bio = bio->bi_private;
2135                r10_bio->sectors = nr_sectors;
2136
2137                if (bio->bi_end_io == end_sync_read) {
2138                        md_sync_acct(bio->bi_bdev, nr_sectors);
2139                        generic_make_request(bio);
2140                }
2141        }
2142
2143        if (sectors_skipped)
2144                /* pretend they weren't skipped, it makes
2145                 * no important difference in this case
2146                 */
2147                md_done_sync(mddev, sectors_skipped, 1);
2148
2149        return sectors_skipped + nr_sectors;
2150 giveup:
2151        /* There is nowhere to write, so all non-sync
2152         * drives must be failed, so try the next chunk...
2153         */
2154        if (sector_nr + max_sync < max_sector)
2155                max_sector = sector_nr + max_sync;
2156
2157        sectors_skipped += (max_sector - sector_nr);
2158        chunks_skipped ++;
2159        sector_nr = max_sector;
2160        goto skipped;
2161}
2162
2163static sector_t
2164raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2165{
2166        sector_t size;
2167        conf_t *conf = mddev->private;
2168
2169        if (!raid_disks)
2170                raid_disks = conf->raid_disks;
2171        if (!sectors)
2172                sectors = conf->dev_sectors;
2173
2174        size = sectors >> conf->chunk_shift;
2175        sector_div(size, conf->far_copies);
2176        size = size * raid_disks;
2177        sector_div(size, conf->near_copies);
2178
2179        return size << conf->chunk_shift;
2180}
2181
2182
2183static conf_t *setup_conf(mddev_t *mddev)
2184{
2185        conf_t *conf = NULL;
2186        int nc, fc, fo;
2187        sector_t stride, size;
2188        int err = -EINVAL;
2189
2190        if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2191            !is_power_of_2(mddev->new_chunk_sectors)) {
2192                printk(KERN_ERR "md/raid10:%s: chunk size must be "
2193                       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2194                       mdname(mddev), PAGE_SIZE);
2195                goto out;
2196        }
2197
2198        nc = mddev->new_layout & 255;
2199        fc = (mddev->new_layout >> 8) & 255;
2200        fo = mddev->new_layout & (1<<16);
2201
2202        if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2203            (mddev->new_layout >> 17)) {
2204                printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2205                       mdname(mddev), mddev->new_layout);
2206                goto out;
2207        }
2208
2209        err = -ENOMEM;
2210        conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2211        if (!conf)
2212                goto out;
2213
2214        conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2215                                GFP_KERNEL);
2216        if (!conf->mirrors)
2217                goto out;
2218
2219        conf->tmppage = alloc_page(GFP_KERNEL);
2220        if (!conf->tmppage)
2221                goto out;
2222
2223
2224        conf->raid_disks = mddev->raid_disks;
2225        conf->near_copies = nc;
2226        conf->far_copies = fc;
2227        conf->copies = nc*fc;
2228        conf->far_offset = fo;
2229        conf->chunk_mask = mddev->new_chunk_sectors - 1;
2230        conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2231
2232        conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2233                                           r10bio_pool_free, conf);
2234        if (!conf->r10bio_pool)
2235                goto out;
2236
2237        size = mddev->dev_sectors >> conf->chunk_shift;
2238        sector_div(size, fc);
2239        size = size * conf->raid_disks;
2240        sector_div(size, nc);
2241        /* 'size' is now the number of chunks in the array */
2242        /* calculate "used chunks per device" in 'stride' */
2243        stride = size * conf->copies;
2244
2245        /* We need to round up when dividing by raid_disks to
2246         * get the stride size.
2247         */
2248        stride += conf->raid_disks - 1;
2249        sector_div(stride, conf->raid_disks);
2250
2251        conf->dev_sectors = stride << conf->chunk_shift;
2252
2253        if (fo)
2254                stride = 1;
2255        else
2256                sector_div(stride, fc);
2257        conf->stride = stride << conf->chunk_shift;
2258
2259
2260        spin_lock_init(&conf->device_lock);
2261        INIT_LIST_HEAD(&conf->retry_list);
2262
2263        spin_lock_init(&conf->resync_lock);
2264        init_waitqueue_head(&conf->wait_barrier);
2265
2266        conf->thread = md_register_thread(raid10d, mddev, NULL);
2267        if (!conf->thread)
2268                goto out;
2269
2270        conf->mddev = mddev;
2271        return conf;
2272
2273 out:
2274        printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2275               mdname(mddev));
2276        if (conf) {
2277                if (conf->r10bio_pool)
2278                        mempool_destroy(conf->r10bio_pool);
2279                kfree(conf->mirrors);
2280                safe_put_page(conf->tmppage);
2281                kfree(conf);
2282        }
2283        return ERR_PTR(err);
2284}
2285
2286static int run(mddev_t *mddev)
2287{
2288        conf_t *conf;
2289        int i, disk_idx, chunk_size;
2290        mirror_info_t *disk;
2291        mdk_rdev_t *rdev;
2292        sector_t size;
2293
2294        /*
2295         * copy the already verified devices into our private RAID10
2296         * bookkeeping area. [whatever we allocate in run(),
2297         * should be freed in stop()]
2298         */
2299
2300        if (mddev->private == NULL) {
2301                conf = setup_conf(mddev);
2302                if (IS_ERR(conf))
2303                        return PTR_ERR(conf);
2304                mddev->private = conf;
2305        }
2306        conf = mddev->private;
2307        if (!conf)
2308                goto out;
2309
2310        mddev->thread = conf->thread;
2311        conf->thread = NULL;
2312
2313        chunk_size = mddev->chunk_sectors << 9;
2314        blk_queue_io_min(mddev->queue, chunk_size);
2315        if (conf->raid_disks % conf->near_copies)
2316                blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2317        else
2318                blk_queue_io_opt(mddev->queue, chunk_size *
2319                                 (conf->raid_disks / conf->near_copies));
2320
2321        list_for_each_entry(rdev, &mddev->disks, same_set) {
2322                disk_idx = rdev->raid_disk;
2323                if (disk_idx >= conf->raid_disks
2324                    || disk_idx < 0)
2325                        continue;
2326                disk = conf->mirrors + disk_idx;
2327
2328                disk->rdev = rdev;
2329                disk_stack_limits(mddev->gendisk, rdev->bdev,
2330                                  rdev->data_offset << 9);
2331                /* as we don't honour merge_bvec_fn, we must never risk
2332                 * violating it, so limit max_segments to 1 lying
2333                 * within a single page.
2334                 */
2335                if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2336                        blk_queue_max_segments(mddev->queue, 1);
2337                        blk_queue_segment_boundary(mddev->queue,
2338                                                   PAGE_CACHE_SIZE - 1);
2339                }
2340
2341                disk->head_position = 0;
2342        }
2343        /* need to check that every block has at least one working mirror */
2344        if (!enough(conf)) {
2345                printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2346                       mdname(mddev));
2347                goto out_free_conf;
2348        }
2349
2350        mddev->degraded = 0;
2351        for (i = 0; i < conf->raid_disks; i++) {
2352
2353                disk = conf->mirrors + i;
2354
2355                if (!disk->rdev ||
2356                    !test_bit(In_sync, &disk->rdev->flags)) {
2357                        disk->head_position = 0;
2358                        mddev->degraded++;
2359                        if (disk->rdev)
2360                                conf->fullsync = 1;
2361                }
2362        }
2363
2364        if (mddev->recovery_cp != MaxSector)
2365                printk(KERN_NOTICE "md/raid10:%s: not clean"
2366                       " -- starting background reconstruction\n",
2367                       mdname(mddev));
2368        printk(KERN_INFO
2369                "md/raid10:%s: active with %d out of %d devices\n",
2370                mdname(mddev), conf->raid_disks - mddev->degraded,
2371                conf->raid_disks);
2372        /*
2373         * Ok, everything is just fine now
2374         */
2375        mddev->dev_sectors = conf->dev_sectors;
2376        size = raid10_size(mddev, 0, 0);
2377        md_set_array_sectors(mddev, size);
2378        mddev->resync_max_sectors = size;
2379
2380        mddev->queue->unplug_fn = raid10_unplug;
2381        mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2382        mddev->queue->backing_dev_info.congested_data = mddev;
2383
2384        /* Calculate max read-ahead size.
2385         * We need to readahead at least twice a whole stripe....
2386         * maybe...
2387         */
2388        {
2389                int stripe = conf->raid_disks *
2390                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2391                stripe /= conf->near_copies;
2392                if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2393                        mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2394        }
2395
2396        if (conf->near_copies < conf->raid_disks)
2397                blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2398        md_integrity_register(mddev);
2399        return 0;
2400
2401out_free_conf:
2402        md_unregister_thread(mddev->thread);
2403        if (conf->r10bio_pool)
2404                mempool_destroy(conf->r10bio_pool);
2405        safe_put_page(conf->tmppage);
2406        kfree(conf->mirrors);
2407        kfree(conf);
2408        mddev->private = NULL;
2409out:
2410        return -EIO;
2411}
2412
2413static int stop(mddev_t *mddev)
2414{
2415        conf_t *conf = mddev->private;
2416
2417        raise_barrier(conf, 0);
2418        lower_barrier(conf);
2419
2420        md_unregister_thread(mddev->thread);
2421        mddev->thread = NULL;
2422        blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2423        if (conf->r10bio_pool)
2424                mempool_destroy(conf->r10bio_pool);
2425        kfree(conf->mirrors);
2426        kfree(conf);
2427        mddev->private = NULL;
2428        return 0;
2429}
2430
2431static void raid10_quiesce(mddev_t *mddev, int state)
2432{
2433        conf_t *conf = mddev->private;
2434
2435        switch(state) {
2436        case 1:
2437                raise_barrier(conf, 0);
2438                break;
2439        case 0:
2440                lower_barrier(conf);
2441                break;
2442        }
2443}
2444
2445static void *raid10_takeover_raid0(mddev_t *mddev)
2446{
2447        mdk_rdev_t *rdev;
2448        conf_t *conf;
2449
2450        if (mddev->degraded > 0) {
2451                printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2452                       mdname(mddev));
2453                return ERR_PTR(-EINVAL);
2454        }
2455
2456        /* Set new parameters */
2457        mddev->new_level = 10;
2458        /* new layout: far_copies = 1, near_copies = 2 */
2459        mddev->new_layout = (1<<8) + 2;
2460        mddev->new_chunk_sectors = mddev->chunk_sectors;
2461        mddev->delta_disks = mddev->raid_disks;
2462        mddev->raid_disks *= 2;
2463        /* make sure it will be not marked as dirty */
2464        mddev->recovery_cp = MaxSector;
2465
2466        conf = setup_conf(mddev);
2467        if (!IS_ERR(conf)) {
2468                list_for_each_entry(rdev, &mddev->disks, same_set)
2469                        if (rdev->raid_disk >= 0)
2470                                rdev->new_raid_disk = rdev->raid_disk * 2;
2471                conf->barrier = 1;
2472        }
2473
2474        return conf;
2475}
2476
2477static void *raid10_takeover(mddev_t *mddev)
2478{
2479        struct raid0_private_data *raid0_priv;
2480
2481        /* raid10 can take over:
2482         *  raid0 - providing it has only two drives
2483         */
2484        if (mddev->level == 0) {
2485                /* for raid0 takeover only one zone is supported */
2486                raid0_priv = mddev->private;
2487                if (raid0_priv->nr_strip_zones > 1) {
2488                        printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2489                               " with more than one zone.\n",
2490                               mdname(mddev));
2491                        return ERR_PTR(-EINVAL);
2492                }
2493                return raid10_takeover_raid0(mddev);
2494        }
2495        return ERR_PTR(-EINVAL);
2496}
2497
2498static struct mdk_personality raid10_personality =
2499{
2500        .name           = "raid10",
2501        .level          = 10,
2502        .owner          = THIS_MODULE,
2503        .make_request   = make_request,
2504        .run            = run,
2505        .stop           = stop,
2506        .status         = status,
2507        .error_handler  = error,
2508        .hot_add_disk   = raid10_add_disk,
2509        .hot_remove_disk= raid10_remove_disk,
2510        .spare_active   = raid10_spare_active,
2511        .sync_request   = sync_request,
2512        .quiesce        = raid10_quiesce,
2513        .size           = raid10_size,
2514        .takeover       = raid10_takeover,
2515};
2516
2517static int __init raid_init(void)
2518{
2519        return register_md_personality(&raid10_personality);
2520}
2521
2522static void raid_exit(void)
2523{
2524        unregister_md_personality(&raid10_personality);
2525}
2526
2527module_init(raid_init);
2528module_exit(raid_exit);
2529MODULE_LICENSE("GPL");
2530MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2531MODULE_ALIAS("md-personality-9"); /* RAID10 */
2532MODULE_ALIAS("md-raid10");
2533MODULE_ALIAS("md-level-10");
2534