linux/drivers/md/raid5.c
<<
>>
Prefs
   1/*
   2 * raid5.c : Multiple Devices driver for Linux
   3 *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   4 *         Copyright (C) 1999, 2000 Ingo Molnar
   5 *         Copyright (C) 2002, 2003 H. Peter Anvin
   6 *
   7 * RAID-4/5/6 management functions.
   8 * Thanks to Penguin Computing for making the RAID-6 development possible
   9 * by donating a test server!
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21/*
  22 * BITMAP UNPLUGGING:
  23 *
  24 * The sequencing for updating the bitmap reliably is a little
  25 * subtle (and I got it wrong the first time) so it deserves some
  26 * explanation.
  27 *
  28 * We group bitmap updates into batches.  Each batch has a number.
  29 * We may write out several batches at once, but that isn't very important.
  30 * conf->bm_write is the number of the last batch successfully written.
  31 * conf->bm_flush is the number of the last batch that was closed to
  32 *    new additions.
  33 * When we discover that we will need to write to any block in a stripe
  34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  35 * the number of the batch it will be in. This is bm_flush+1.
  36 * When we are ready to do a write, if that batch hasn't been written yet,
  37 *   we plug the array and queue the stripe for later.
  38 * When an unplug happens, we increment bm_flush, thus closing the current
  39 *   batch.
  40 * When we notice that bm_flush > bm_write, we write out all pending updates
  41 * to the bitmap, and advance bm_write to where bm_flush was.
  42 * This may occasionally write a bit out twice, but is sure never to
  43 * miss any bits.
  44 */
  45
  46#include <linux/blkdev.h>
  47#include <linux/kthread.h>
  48#include <linux/raid/pq.h>
  49#include <linux/async_tx.h>
  50#include <linux/async.h>
  51#include <linux/seq_file.h>
  52#include <linux/cpu.h>
  53#include <linux/slab.h>
  54#include "md.h"
  55#include "raid5.h"
  56#include "raid0.h"
  57#include "bitmap.h"
  58
  59/*
  60 * Stripe cache
  61 */
  62
  63#define NR_STRIPES              256
  64#define STRIPE_SIZE             PAGE_SIZE
  65#define STRIPE_SHIFT            (PAGE_SHIFT - 9)
  66#define STRIPE_SECTORS          (STRIPE_SIZE>>9)
  67#define IO_THRESHOLD            1
  68#define BYPASS_THRESHOLD        1
  69#define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
  70#define HASH_MASK               (NR_HASH - 1)
  71
  72#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
  73
  74/* bio's attached to a stripe+device for I/O are linked together in bi_sector
  75 * order without overlap.  There may be several bio's per stripe+device, and
  76 * a bio could span several devices.
  77 * When walking this list for a particular stripe+device, we must never proceed
  78 * beyond a bio that extends past this device, as the next bio might no longer
  79 * be valid.
  80 * This macro is used to determine the 'next' bio in the list, given the sector
  81 * of the current stripe+device
  82 */
  83#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
  84/*
  85 * The following can be used to debug the driver
  86 */
  87#define RAID5_PARANOIA  1
  88#if RAID5_PARANOIA && defined(CONFIG_SMP)
  89# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
  90#else
  91# define CHECK_DEVLOCK()
  92#endif
  93
  94#ifdef DEBUG
  95#define inline
  96#define __inline__
  97#endif
  98
  99#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
 100
 101/*
 102 * We maintain a biased count of active stripes in the bottom 16 bits of
 103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
 104 */
 105static inline int raid5_bi_phys_segments(struct bio *bio)
 106{
 107        return bio->bi_phys_segments & 0xffff;
 108}
 109
 110static inline int raid5_bi_hw_segments(struct bio *bio)
 111{
 112        return (bio->bi_phys_segments >> 16) & 0xffff;
 113}
 114
 115static inline int raid5_dec_bi_phys_segments(struct bio *bio)
 116{
 117        --bio->bi_phys_segments;
 118        return raid5_bi_phys_segments(bio);
 119}
 120
 121static inline int raid5_dec_bi_hw_segments(struct bio *bio)
 122{
 123        unsigned short val = raid5_bi_hw_segments(bio);
 124
 125        --val;
 126        bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
 127        return val;
 128}
 129
 130static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
 131{
 132        bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
 133}
 134
 135/* Find first data disk in a raid6 stripe */
 136static inline int raid6_d0(struct stripe_head *sh)
 137{
 138        if (sh->ddf_layout)
 139                /* ddf always start from first device */
 140                return 0;
 141        /* md starts just after Q block */
 142        if (sh->qd_idx == sh->disks - 1)
 143                return 0;
 144        else
 145                return sh->qd_idx + 1;
 146}
 147static inline int raid6_next_disk(int disk, int raid_disks)
 148{
 149        disk++;
 150        return (disk < raid_disks) ? disk : 0;
 151}
 152
 153/* When walking through the disks in a raid5, starting at raid6_d0,
 154 * We need to map each disk to a 'slot', where the data disks are slot
 155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 156 * is raid_disks-1.  This help does that mapping.
 157 */
 158static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 159                             int *count, int syndrome_disks)
 160{
 161        int slot = *count;
 162
 163        if (sh->ddf_layout)
 164                (*count)++;
 165        if (idx == sh->pd_idx)
 166                return syndrome_disks;
 167        if (idx == sh->qd_idx)
 168                return syndrome_disks + 1;
 169        if (!sh->ddf_layout)
 170                (*count)++;
 171        return slot;
 172}
 173
 174static void return_io(struct bio *return_bi)
 175{
 176        struct bio *bi = return_bi;
 177        while (bi) {
 178
 179                return_bi = bi->bi_next;
 180                bi->bi_next = NULL;
 181                bi->bi_size = 0;
 182                bio_endio(bi, 0);
 183                bi = return_bi;
 184        }
 185}
 186
 187static void print_raid5_conf (raid5_conf_t *conf);
 188
 189static int stripe_operations_active(struct stripe_head *sh)
 190{
 191        return sh->check_state || sh->reconstruct_state ||
 192               test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 193               test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 194}
 195
 196static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
 197{
 198        if (atomic_dec_and_test(&sh->count)) {
 199                BUG_ON(!list_empty(&sh->lru));
 200                BUG_ON(atomic_read(&conf->active_stripes)==0);
 201                if (test_bit(STRIPE_HANDLE, &sh->state)) {
 202                        if (test_bit(STRIPE_DELAYED, &sh->state)) {
 203                                list_add_tail(&sh->lru, &conf->delayed_list);
 204                                plugger_set_plug(&conf->plug);
 205                        } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 206                                   sh->bm_seq - conf->seq_write > 0) {
 207                                list_add_tail(&sh->lru, &conf->bitmap_list);
 208                                plugger_set_plug(&conf->plug);
 209                        } else {
 210                                clear_bit(STRIPE_BIT_DELAY, &sh->state);
 211                                list_add_tail(&sh->lru, &conf->handle_list);
 212                        }
 213                        md_wakeup_thread(conf->mddev->thread);
 214                } else {
 215                        BUG_ON(stripe_operations_active(sh));
 216                        if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
 217                                atomic_dec(&conf->preread_active_stripes);
 218                                if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
 219                                        md_wakeup_thread(conf->mddev->thread);
 220                        }
 221                        atomic_dec(&conf->active_stripes);
 222                        if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
 223                                list_add_tail(&sh->lru, &conf->inactive_list);
 224                                wake_up(&conf->wait_for_stripe);
 225                                if (conf->retry_read_aligned)
 226                                        md_wakeup_thread(conf->mddev->thread);
 227                        }
 228                }
 229        }
 230}
 231
 232static void release_stripe(struct stripe_head *sh)
 233{
 234        raid5_conf_t *conf = sh->raid_conf;
 235        unsigned long flags;
 236
 237        spin_lock_irqsave(&conf->device_lock, flags);
 238        __release_stripe(conf, sh);
 239        spin_unlock_irqrestore(&conf->device_lock, flags);
 240}
 241
 242static inline void remove_hash(struct stripe_head *sh)
 243{
 244        pr_debug("remove_hash(), stripe %llu\n",
 245                (unsigned long long)sh->sector);
 246
 247        hlist_del_init(&sh->hash);
 248}
 249
 250static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
 251{
 252        struct hlist_head *hp = stripe_hash(conf, sh->sector);
 253
 254        pr_debug("insert_hash(), stripe %llu\n",
 255                (unsigned long long)sh->sector);
 256
 257        CHECK_DEVLOCK();
 258        hlist_add_head(&sh->hash, hp);
 259}
 260
 261
 262/* find an idle stripe, make sure it is unhashed, and return it. */
 263static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
 264{
 265        struct stripe_head *sh = NULL;
 266        struct list_head *first;
 267
 268        CHECK_DEVLOCK();
 269        if (list_empty(&conf->inactive_list))
 270                goto out;
 271        first = conf->inactive_list.next;
 272        sh = list_entry(first, struct stripe_head, lru);
 273        list_del_init(first);
 274        remove_hash(sh);
 275        atomic_inc(&conf->active_stripes);
 276out:
 277        return sh;
 278}
 279
 280static void shrink_buffers(struct stripe_head *sh)
 281{
 282        struct page *p;
 283        int i;
 284        int num = sh->raid_conf->pool_size;
 285
 286        for (i = 0; i < num ; i++) {
 287                p = sh->dev[i].page;
 288                if (!p)
 289                        continue;
 290                sh->dev[i].page = NULL;
 291                put_page(p);
 292        }
 293}
 294
 295static int grow_buffers(struct stripe_head *sh)
 296{
 297        int i;
 298        int num = sh->raid_conf->pool_size;
 299
 300        for (i = 0; i < num; i++) {
 301                struct page *page;
 302
 303                if (!(page = alloc_page(GFP_KERNEL))) {
 304                        return 1;
 305                }
 306                sh->dev[i].page = page;
 307        }
 308        return 0;
 309}
 310
 311static void raid5_build_block(struct stripe_head *sh, int i, int previous);
 312static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
 313                            struct stripe_head *sh);
 314
 315static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 316{
 317        raid5_conf_t *conf = sh->raid_conf;
 318        int i;
 319
 320        BUG_ON(atomic_read(&sh->count) != 0);
 321        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 322        BUG_ON(stripe_operations_active(sh));
 323
 324        CHECK_DEVLOCK();
 325        pr_debug("init_stripe called, stripe %llu\n",
 326                (unsigned long long)sh->sector);
 327
 328        remove_hash(sh);
 329
 330        sh->generation = conf->generation - previous;
 331        sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 332        sh->sector = sector;
 333        stripe_set_idx(sector, conf, previous, sh);
 334        sh->state = 0;
 335
 336
 337        for (i = sh->disks; i--; ) {
 338                struct r5dev *dev = &sh->dev[i];
 339
 340                if (dev->toread || dev->read || dev->towrite || dev->written ||
 341                    test_bit(R5_LOCKED, &dev->flags)) {
 342                        printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
 343                               (unsigned long long)sh->sector, i, dev->toread,
 344                               dev->read, dev->towrite, dev->written,
 345                               test_bit(R5_LOCKED, &dev->flags));
 346                        BUG();
 347                }
 348                dev->flags = 0;
 349                raid5_build_block(sh, i, previous);
 350        }
 351        insert_hash(conf, sh);
 352}
 353
 354static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
 355                                         short generation)
 356{
 357        struct stripe_head *sh;
 358        struct hlist_node *hn;
 359
 360        CHECK_DEVLOCK();
 361        pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 362        hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
 363                if (sh->sector == sector && sh->generation == generation)
 364                        return sh;
 365        pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 366        return NULL;
 367}
 368
 369/*
 370 * Need to check if array has failed when deciding whether to:
 371 *  - start an array
 372 *  - remove non-faulty devices
 373 *  - add a spare
 374 *  - allow a reshape
 375 * This determination is simple when no reshape is happening.
 376 * However if there is a reshape, we need to carefully check
 377 * both the before and after sections.
 378 * This is because some failed devices may only affect one
 379 * of the two sections, and some non-in_sync devices may
 380 * be insync in the section most affected by failed devices.
 381 */
 382static int has_failed(raid5_conf_t *conf)
 383{
 384        int degraded;
 385        int i;
 386        if (conf->mddev->reshape_position == MaxSector)
 387                return conf->mddev->degraded > conf->max_degraded;
 388
 389        rcu_read_lock();
 390        degraded = 0;
 391        for (i = 0; i < conf->previous_raid_disks; i++) {
 392                mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
 393                if (!rdev || test_bit(Faulty, &rdev->flags))
 394                        degraded++;
 395                else if (test_bit(In_sync, &rdev->flags))
 396                        ;
 397                else
 398                        /* not in-sync or faulty.
 399                         * If the reshape increases the number of devices,
 400                         * this is being recovered by the reshape, so
 401                         * this 'previous' section is not in_sync.
 402                         * If the number of devices is being reduced however,
 403                         * the device can only be part of the array if
 404                         * we are reverting a reshape, so this section will
 405                         * be in-sync.
 406                         */
 407                        if (conf->raid_disks >= conf->previous_raid_disks)
 408                                degraded++;
 409        }
 410        rcu_read_unlock();
 411        if (degraded > conf->max_degraded)
 412                return 1;
 413        rcu_read_lock();
 414        degraded = 0;
 415        for (i = 0; i < conf->raid_disks; i++) {
 416                mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
 417                if (!rdev || test_bit(Faulty, &rdev->flags))
 418                        degraded++;
 419                else if (test_bit(In_sync, &rdev->flags))
 420                        ;
 421                else
 422                        /* not in-sync or faulty.
 423                         * If reshape increases the number of devices, this
 424                         * section has already been recovered, else it
 425                         * almost certainly hasn't.
 426                         */
 427                        if (conf->raid_disks <= conf->previous_raid_disks)
 428                                degraded++;
 429        }
 430        rcu_read_unlock();
 431        if (degraded > conf->max_degraded)
 432                return 1;
 433        return 0;
 434}
 435
 436static void unplug_slaves(mddev_t *mddev);
 437
 438static struct stripe_head *
 439get_active_stripe(raid5_conf_t *conf, sector_t sector,
 440                  int previous, int noblock, int noquiesce)
 441{
 442        struct stripe_head *sh;
 443
 444        pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 445
 446        spin_lock_irq(&conf->device_lock);
 447
 448        do {
 449                wait_event_lock_irq(conf->wait_for_stripe,
 450                                    conf->quiesce == 0 || noquiesce,
 451                                    conf->device_lock, /* nothing */);
 452                sh = __find_stripe(conf, sector, conf->generation - previous);
 453                if (!sh) {
 454                        if (!conf->inactive_blocked)
 455                                sh = get_free_stripe(conf);
 456                        if (noblock && sh == NULL)
 457                                break;
 458                        if (!sh) {
 459                                conf->inactive_blocked = 1;
 460                                wait_event_lock_irq(conf->wait_for_stripe,
 461                                                    !list_empty(&conf->inactive_list) &&
 462                                                    (atomic_read(&conf->active_stripes)
 463                                                     < (conf->max_nr_stripes *3/4)
 464                                                     || !conf->inactive_blocked),
 465                                                    conf->device_lock,
 466                                                    md_raid5_unplug_device(conf)
 467                                        );
 468                                conf->inactive_blocked = 0;
 469                        } else
 470                                init_stripe(sh, sector, previous);
 471                } else {
 472                        if (atomic_read(&sh->count)) {
 473                                BUG_ON(!list_empty(&sh->lru)
 474                                    && !test_bit(STRIPE_EXPANDING, &sh->state));
 475                        } else {
 476                                if (!test_bit(STRIPE_HANDLE, &sh->state))
 477                                        atomic_inc(&conf->active_stripes);
 478                                if (list_empty(&sh->lru) &&
 479                                    !test_bit(STRIPE_EXPANDING, &sh->state))
 480                                        BUG();
 481                                list_del_init(&sh->lru);
 482                        }
 483                }
 484        } while (sh == NULL);
 485
 486        if (sh)
 487                atomic_inc(&sh->count);
 488
 489        spin_unlock_irq(&conf->device_lock);
 490        return sh;
 491}
 492
 493static void
 494raid5_end_read_request(struct bio *bi, int error);
 495static void
 496raid5_end_write_request(struct bio *bi, int error);
 497
 498static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 499{
 500        raid5_conf_t *conf = sh->raid_conf;
 501        int i, disks = sh->disks;
 502
 503        might_sleep();
 504
 505        for (i = disks; i--; ) {
 506                int rw;
 507                struct bio *bi;
 508                mdk_rdev_t *rdev;
 509                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
 510                        if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
 511                                rw = WRITE_FUA;
 512                        else
 513                                rw = WRITE;
 514                } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
 515                        rw = READ;
 516                else
 517                        continue;
 518
 519                bi = &sh->dev[i].req;
 520
 521                bi->bi_rw = rw;
 522                if (rw == WRITE)
 523                        bi->bi_end_io = raid5_end_write_request;
 524                else
 525                        bi->bi_end_io = raid5_end_read_request;
 526
 527                rcu_read_lock();
 528                rdev = rcu_dereference(conf->disks[i].rdev);
 529                if (rdev && test_bit(Faulty, &rdev->flags))
 530                        rdev = NULL;
 531                if (rdev)
 532                        atomic_inc(&rdev->nr_pending);
 533                rcu_read_unlock();
 534
 535                if (rdev) {
 536                        if (s->syncing || s->expanding || s->expanded)
 537                                md_sync_acct(rdev->bdev, STRIPE_SECTORS);
 538
 539                        set_bit(STRIPE_IO_STARTED, &sh->state);
 540
 541                        bi->bi_bdev = rdev->bdev;
 542                        pr_debug("%s: for %llu schedule op %ld on disc %d\n",
 543                                __func__, (unsigned long long)sh->sector,
 544                                bi->bi_rw, i);
 545                        atomic_inc(&sh->count);
 546                        bi->bi_sector = sh->sector + rdev->data_offset;
 547                        bi->bi_flags = 1 << BIO_UPTODATE;
 548                        bi->bi_vcnt = 1;
 549                        bi->bi_max_vecs = 1;
 550                        bi->bi_idx = 0;
 551                        bi->bi_io_vec = &sh->dev[i].vec;
 552                        bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
 553                        bi->bi_io_vec[0].bv_offset = 0;
 554                        bi->bi_size = STRIPE_SIZE;
 555                        bi->bi_next = NULL;
 556                        if (rw == WRITE &&
 557                            test_bit(R5_ReWrite, &sh->dev[i].flags))
 558                                atomic_add(STRIPE_SECTORS,
 559                                        &rdev->corrected_errors);
 560                        generic_make_request(bi);
 561                } else {
 562                        if (rw == WRITE)
 563                                set_bit(STRIPE_DEGRADED, &sh->state);
 564                        pr_debug("skip op %ld on disc %d for sector %llu\n",
 565                                bi->bi_rw, i, (unsigned long long)sh->sector);
 566                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
 567                        set_bit(STRIPE_HANDLE, &sh->state);
 568                }
 569        }
 570}
 571
 572static struct dma_async_tx_descriptor *
 573async_copy_data(int frombio, struct bio *bio, struct page *page,
 574        sector_t sector, struct dma_async_tx_descriptor *tx)
 575{
 576        struct bio_vec *bvl;
 577        struct page *bio_page;
 578        int i;
 579        int page_offset;
 580        struct async_submit_ctl submit;
 581        enum async_tx_flags flags = 0;
 582
 583        if (bio->bi_sector >= sector)
 584                page_offset = (signed)(bio->bi_sector - sector) * 512;
 585        else
 586                page_offset = (signed)(sector - bio->bi_sector) * -512;
 587
 588        if (frombio)
 589                flags |= ASYNC_TX_FENCE;
 590        init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
 591
 592        bio_for_each_segment(bvl, bio, i) {
 593                int len = bio_iovec_idx(bio, i)->bv_len;
 594                int clen;
 595                int b_offset = 0;
 596
 597                if (page_offset < 0) {
 598                        b_offset = -page_offset;
 599                        page_offset += b_offset;
 600                        len -= b_offset;
 601                }
 602
 603                if (len > 0 && page_offset + len > STRIPE_SIZE)
 604                        clen = STRIPE_SIZE - page_offset;
 605                else
 606                        clen = len;
 607
 608                if (clen > 0) {
 609                        b_offset += bio_iovec_idx(bio, i)->bv_offset;
 610                        bio_page = bio_iovec_idx(bio, i)->bv_page;
 611                        if (frombio)
 612                                tx = async_memcpy(page, bio_page, page_offset,
 613                                                  b_offset, clen, &submit);
 614                        else
 615                                tx = async_memcpy(bio_page, page, b_offset,
 616                                                  page_offset, clen, &submit);
 617                }
 618                /* chain the operations */
 619                submit.depend_tx = tx;
 620
 621                if (clen < len) /* hit end of page */
 622                        break;
 623                page_offset +=  len;
 624        }
 625
 626        return tx;
 627}
 628
 629static void ops_complete_biofill(void *stripe_head_ref)
 630{
 631        struct stripe_head *sh = stripe_head_ref;
 632        struct bio *return_bi = NULL;
 633        raid5_conf_t *conf = sh->raid_conf;
 634        int i;
 635
 636        pr_debug("%s: stripe %llu\n", __func__,
 637                (unsigned long long)sh->sector);
 638
 639        /* clear completed biofills */
 640        spin_lock_irq(&conf->device_lock);
 641        for (i = sh->disks; i--; ) {
 642                struct r5dev *dev = &sh->dev[i];
 643
 644                /* acknowledge completion of a biofill operation */
 645                /* and check if we need to reply to a read request,
 646                 * new R5_Wantfill requests are held off until
 647                 * !STRIPE_BIOFILL_RUN
 648                 */
 649                if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
 650                        struct bio *rbi, *rbi2;
 651
 652                        BUG_ON(!dev->read);
 653                        rbi = dev->read;
 654                        dev->read = NULL;
 655                        while (rbi && rbi->bi_sector <
 656                                dev->sector + STRIPE_SECTORS) {
 657                                rbi2 = r5_next_bio(rbi, dev->sector);
 658                                if (!raid5_dec_bi_phys_segments(rbi)) {
 659                                        rbi->bi_next = return_bi;
 660                                        return_bi = rbi;
 661                                }
 662                                rbi = rbi2;
 663                        }
 664                }
 665        }
 666        spin_unlock_irq(&conf->device_lock);
 667        clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
 668
 669        return_io(return_bi);
 670
 671        set_bit(STRIPE_HANDLE, &sh->state);
 672        release_stripe(sh);
 673}
 674
 675static void ops_run_biofill(struct stripe_head *sh)
 676{
 677        struct dma_async_tx_descriptor *tx = NULL;
 678        raid5_conf_t *conf = sh->raid_conf;
 679        struct async_submit_ctl submit;
 680        int i;
 681
 682        pr_debug("%s: stripe %llu\n", __func__,
 683                (unsigned long long)sh->sector);
 684
 685        for (i = sh->disks; i--; ) {
 686                struct r5dev *dev = &sh->dev[i];
 687                if (test_bit(R5_Wantfill, &dev->flags)) {
 688                        struct bio *rbi;
 689                        spin_lock_irq(&conf->device_lock);
 690                        dev->read = rbi = dev->toread;
 691                        dev->toread = NULL;
 692                        spin_unlock_irq(&conf->device_lock);
 693                        while (rbi && rbi->bi_sector <
 694                                dev->sector + STRIPE_SECTORS) {
 695                                tx = async_copy_data(0, rbi, dev->page,
 696                                        dev->sector, tx);
 697                                rbi = r5_next_bio(rbi, dev->sector);
 698                        }
 699                }
 700        }
 701
 702        atomic_inc(&sh->count);
 703        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
 704        async_trigger_callback(&submit);
 705}
 706
 707static void mark_target_uptodate(struct stripe_head *sh, int target)
 708{
 709        struct r5dev *tgt;
 710
 711        if (target < 0)
 712                return;
 713
 714        tgt = &sh->dev[target];
 715        set_bit(R5_UPTODATE, &tgt->flags);
 716        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 717        clear_bit(R5_Wantcompute, &tgt->flags);
 718}
 719
 720static void ops_complete_compute(void *stripe_head_ref)
 721{
 722        struct stripe_head *sh = stripe_head_ref;
 723
 724        pr_debug("%s: stripe %llu\n", __func__,
 725                (unsigned long long)sh->sector);
 726
 727        /* mark the computed target(s) as uptodate */
 728        mark_target_uptodate(sh, sh->ops.target);
 729        mark_target_uptodate(sh, sh->ops.target2);
 730
 731        clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
 732        if (sh->check_state == check_state_compute_run)
 733                sh->check_state = check_state_compute_result;
 734        set_bit(STRIPE_HANDLE, &sh->state);
 735        release_stripe(sh);
 736}
 737
 738/* return a pointer to the address conversion region of the scribble buffer */
 739static addr_conv_t *to_addr_conv(struct stripe_head *sh,
 740                                 struct raid5_percpu *percpu)
 741{
 742        return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
 743}
 744
 745static struct dma_async_tx_descriptor *
 746ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
 747{
 748        int disks = sh->disks;
 749        struct page **xor_srcs = percpu->scribble;
 750        int target = sh->ops.target;
 751        struct r5dev *tgt = &sh->dev[target];
 752        struct page *xor_dest = tgt->page;
 753        int count = 0;
 754        struct dma_async_tx_descriptor *tx;
 755        struct async_submit_ctl submit;
 756        int i;
 757
 758        pr_debug("%s: stripe %llu block: %d\n",
 759                __func__, (unsigned long long)sh->sector, target);
 760        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 761
 762        for (i = disks; i--; )
 763                if (i != target)
 764                        xor_srcs[count++] = sh->dev[i].page;
 765
 766        atomic_inc(&sh->count);
 767
 768        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
 769                          ops_complete_compute, sh, to_addr_conv(sh, percpu));
 770        if (unlikely(count == 1))
 771                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
 772        else
 773                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
 774
 775        return tx;
 776}
 777
 778/* set_syndrome_sources - populate source buffers for gen_syndrome
 779 * @srcs - (struct page *) array of size sh->disks
 780 * @sh - stripe_head to parse
 781 *
 782 * Populates srcs in proper layout order for the stripe and returns the
 783 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 784 * destination buffer is recorded in srcs[count] and the Q destination
 785 * is recorded in srcs[count+1]].
 786 */
 787static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
 788{
 789        int disks = sh->disks;
 790        int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
 791        int d0_idx = raid6_d0(sh);
 792        int count;
 793        int i;
 794
 795        for (i = 0; i < disks; i++)
 796                srcs[i] = NULL;
 797
 798        count = 0;
 799        i = d0_idx;
 800        do {
 801                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
 802
 803                srcs[slot] = sh->dev[i].page;
 804                i = raid6_next_disk(i, disks);
 805        } while (i != d0_idx);
 806
 807        return syndrome_disks;
 808}
 809
 810static struct dma_async_tx_descriptor *
 811ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
 812{
 813        int disks = sh->disks;
 814        struct page **blocks = percpu->scribble;
 815        int target;
 816        int qd_idx = sh->qd_idx;
 817        struct dma_async_tx_descriptor *tx;
 818        struct async_submit_ctl submit;
 819        struct r5dev *tgt;
 820        struct page *dest;
 821        int i;
 822        int count;
 823
 824        if (sh->ops.target < 0)
 825                target = sh->ops.target2;
 826        else if (sh->ops.target2 < 0)
 827                target = sh->ops.target;
 828        else
 829                /* we should only have one valid target */
 830                BUG();
 831        BUG_ON(target < 0);
 832        pr_debug("%s: stripe %llu block: %d\n",
 833                __func__, (unsigned long long)sh->sector, target);
 834
 835        tgt = &sh->dev[target];
 836        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 837        dest = tgt->page;
 838
 839        atomic_inc(&sh->count);
 840
 841        if (target == qd_idx) {
 842                count = set_syndrome_sources(blocks, sh);
 843                blocks[count] = NULL; /* regenerating p is not necessary */
 844                BUG_ON(blocks[count+1] != dest); /* q should already be set */
 845                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
 846                                  ops_complete_compute, sh,
 847                                  to_addr_conv(sh, percpu));
 848                tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
 849        } else {
 850                /* Compute any data- or p-drive using XOR */
 851                count = 0;
 852                for (i = disks; i-- ; ) {
 853                        if (i == target || i == qd_idx)
 854                                continue;
 855                        blocks[count++] = sh->dev[i].page;
 856                }
 857
 858                init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
 859                                  NULL, ops_complete_compute, sh,
 860                                  to_addr_conv(sh, percpu));
 861                tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
 862        }
 863
 864        return tx;
 865}
 866
 867static struct dma_async_tx_descriptor *
 868ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
 869{
 870        int i, count, disks = sh->disks;
 871        int syndrome_disks = sh->ddf_layout ? disks : disks-2;
 872        int d0_idx = raid6_d0(sh);
 873        int faila = -1, failb = -1;
 874        int target = sh->ops.target;
 875        int target2 = sh->ops.target2;
 876        struct r5dev *tgt = &sh->dev[target];
 877        struct r5dev *tgt2 = &sh->dev[target2];
 878        struct dma_async_tx_descriptor *tx;
 879        struct page **blocks = percpu->scribble;
 880        struct async_submit_ctl submit;
 881
 882        pr_debug("%s: stripe %llu block1: %d block2: %d\n",
 883                 __func__, (unsigned long long)sh->sector, target, target2);
 884        BUG_ON(target < 0 || target2 < 0);
 885        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 886        BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
 887
 888        /* we need to open-code set_syndrome_sources to handle the
 889         * slot number conversion for 'faila' and 'failb'
 890         */
 891        for (i = 0; i < disks ; i++)
 892                blocks[i] = NULL;
 893        count = 0;
 894        i = d0_idx;
 895        do {
 896                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
 897
 898                blocks[slot] = sh->dev[i].page;
 899
 900                if (i == target)
 901                        faila = slot;
 902                if (i == target2)
 903                        failb = slot;
 904                i = raid6_next_disk(i, disks);
 905        } while (i != d0_idx);
 906
 907        BUG_ON(faila == failb);
 908        if (failb < faila)
 909                swap(faila, failb);
 910        pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
 911                 __func__, (unsigned long long)sh->sector, faila, failb);
 912
 913        atomic_inc(&sh->count);
 914
 915        if (failb == syndrome_disks+1) {
 916                /* Q disk is one of the missing disks */
 917                if (faila == syndrome_disks) {
 918                        /* Missing P+Q, just recompute */
 919                        init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
 920                                          ops_complete_compute, sh,
 921                                          to_addr_conv(sh, percpu));
 922                        return async_gen_syndrome(blocks, 0, syndrome_disks+2,
 923                                                  STRIPE_SIZE, &submit);
 924                } else {
 925                        struct page *dest;
 926                        int data_target;
 927                        int qd_idx = sh->qd_idx;
 928
 929                        /* Missing D+Q: recompute D from P, then recompute Q */
 930                        if (target == qd_idx)
 931                                data_target = target2;
 932                        else
 933                                data_target = target;
 934
 935                        count = 0;
 936                        for (i = disks; i-- ; ) {
 937                                if (i == data_target || i == qd_idx)
 938                                        continue;
 939                                blocks[count++] = sh->dev[i].page;
 940                        }
 941                        dest = sh->dev[data_target].page;
 942                        init_async_submit(&submit,
 943                                          ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
 944                                          NULL, NULL, NULL,
 945                                          to_addr_conv(sh, percpu));
 946                        tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
 947                                       &submit);
 948
 949                        count = set_syndrome_sources(blocks, sh);
 950                        init_async_submit(&submit, ASYNC_TX_FENCE, tx,
 951                                          ops_complete_compute, sh,
 952                                          to_addr_conv(sh, percpu));
 953                        return async_gen_syndrome(blocks, 0, count+2,
 954                                                  STRIPE_SIZE, &submit);
 955                }
 956        } else {
 957                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
 958                                  ops_complete_compute, sh,
 959                                  to_addr_conv(sh, percpu));
 960                if (failb == syndrome_disks) {
 961                        /* We're missing D+P. */
 962                        return async_raid6_datap_recov(syndrome_disks+2,
 963                                                       STRIPE_SIZE, faila,
 964                                                       blocks, &submit);
 965                } else {
 966                        /* We're missing D+D. */
 967                        return async_raid6_2data_recov(syndrome_disks+2,
 968                                                       STRIPE_SIZE, faila, failb,
 969                                                       blocks, &submit);
 970                }
 971        }
 972}
 973
 974
 975static void ops_complete_prexor(void *stripe_head_ref)
 976{
 977        struct stripe_head *sh = stripe_head_ref;
 978
 979        pr_debug("%s: stripe %llu\n", __func__,
 980                (unsigned long long)sh->sector);
 981}
 982
 983static struct dma_async_tx_descriptor *
 984ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
 985               struct dma_async_tx_descriptor *tx)
 986{
 987        int disks = sh->disks;
 988        struct page **xor_srcs = percpu->scribble;
 989        int count = 0, pd_idx = sh->pd_idx, i;
 990        struct async_submit_ctl submit;
 991
 992        /* existing parity data subtracted */
 993        struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
 994
 995        pr_debug("%s: stripe %llu\n", __func__,
 996                (unsigned long long)sh->sector);
 997
 998        for (i = disks; i--; ) {
 999                struct r5dev *dev = &sh->dev[i];
1000                /* Only process blocks that are known to be uptodate */
1001                if (test_bit(R5_Wantdrain, &dev->flags))
1002                        xor_srcs[count++] = dev->page;
1003        }
1004
1005        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1006                          ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1007        tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1008
1009        return tx;
1010}
1011
1012static struct dma_async_tx_descriptor *
1013ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1014{
1015        int disks = sh->disks;
1016        int i;
1017
1018        pr_debug("%s: stripe %llu\n", __func__,
1019                (unsigned long long)sh->sector);
1020
1021        for (i = disks; i--; ) {
1022                struct r5dev *dev = &sh->dev[i];
1023                struct bio *chosen;
1024
1025                if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1026                        struct bio *wbi;
1027
1028                        spin_lock(&sh->lock);
1029                        chosen = dev->towrite;
1030                        dev->towrite = NULL;
1031                        BUG_ON(dev->written);
1032                        wbi = dev->written = chosen;
1033                        spin_unlock(&sh->lock);
1034
1035                        while (wbi && wbi->bi_sector <
1036                                dev->sector + STRIPE_SECTORS) {
1037                                if (wbi->bi_rw & REQ_FUA)
1038                                        set_bit(R5_WantFUA, &dev->flags);
1039                                tx = async_copy_data(1, wbi, dev->page,
1040                                        dev->sector, tx);
1041                                wbi = r5_next_bio(wbi, dev->sector);
1042                        }
1043                }
1044        }
1045
1046        return tx;
1047}
1048
1049static void ops_complete_reconstruct(void *stripe_head_ref)
1050{
1051        struct stripe_head *sh = stripe_head_ref;
1052        int disks = sh->disks;
1053        int pd_idx = sh->pd_idx;
1054        int qd_idx = sh->qd_idx;
1055        int i;
1056        bool fua = false;
1057
1058        pr_debug("%s: stripe %llu\n", __func__,
1059                (unsigned long long)sh->sector);
1060
1061        for (i = disks; i--; )
1062                fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1063
1064        for (i = disks; i--; ) {
1065                struct r5dev *dev = &sh->dev[i];
1066
1067                if (dev->written || i == pd_idx || i == qd_idx) {
1068                        set_bit(R5_UPTODATE, &dev->flags);
1069                        if (fua)
1070                                set_bit(R5_WantFUA, &dev->flags);
1071                }
1072        }
1073
1074        if (sh->reconstruct_state == reconstruct_state_drain_run)
1075                sh->reconstruct_state = reconstruct_state_drain_result;
1076        else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1077                sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1078        else {
1079                BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1080                sh->reconstruct_state = reconstruct_state_result;
1081        }
1082
1083        set_bit(STRIPE_HANDLE, &sh->state);
1084        release_stripe(sh);
1085}
1086
1087static void
1088ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1089                     struct dma_async_tx_descriptor *tx)
1090{
1091        int disks = sh->disks;
1092        struct page **xor_srcs = percpu->scribble;
1093        struct async_submit_ctl submit;
1094        int count = 0, pd_idx = sh->pd_idx, i;
1095        struct page *xor_dest;
1096        int prexor = 0;
1097        unsigned long flags;
1098
1099        pr_debug("%s: stripe %llu\n", __func__,
1100                (unsigned long long)sh->sector);
1101
1102        /* check if prexor is active which means only process blocks
1103         * that are part of a read-modify-write (written)
1104         */
1105        if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1106                prexor = 1;
1107                xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1108                for (i = disks; i--; ) {
1109                        struct r5dev *dev = &sh->dev[i];
1110                        if (dev->written)
1111                                xor_srcs[count++] = dev->page;
1112                }
1113        } else {
1114                xor_dest = sh->dev[pd_idx].page;
1115                for (i = disks; i--; ) {
1116                        struct r5dev *dev = &sh->dev[i];
1117                        if (i != pd_idx)
1118                                xor_srcs[count++] = dev->page;
1119                }
1120        }
1121
1122        /* 1/ if we prexor'd then the dest is reused as a source
1123         * 2/ if we did not prexor then we are redoing the parity
1124         * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1125         * for the synchronous xor case
1126         */
1127        flags = ASYNC_TX_ACK |
1128                (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1129
1130        atomic_inc(&sh->count);
1131
1132        init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1133                          to_addr_conv(sh, percpu));
1134        if (unlikely(count == 1))
1135                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1136        else
1137                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1138}
1139
1140static void
1141ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1142                     struct dma_async_tx_descriptor *tx)
1143{
1144        struct async_submit_ctl submit;
1145        struct page **blocks = percpu->scribble;
1146        int count;
1147
1148        pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1149
1150        count = set_syndrome_sources(blocks, sh);
1151
1152        atomic_inc(&sh->count);
1153
1154        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1155                          sh, to_addr_conv(sh, percpu));
1156        async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1157}
1158
1159static void ops_complete_check(void *stripe_head_ref)
1160{
1161        struct stripe_head *sh = stripe_head_ref;
1162
1163        pr_debug("%s: stripe %llu\n", __func__,
1164                (unsigned long long)sh->sector);
1165
1166        sh->check_state = check_state_check_result;
1167        set_bit(STRIPE_HANDLE, &sh->state);
1168        release_stripe(sh);
1169}
1170
1171static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1172{
1173        int disks = sh->disks;
1174        int pd_idx = sh->pd_idx;
1175        int qd_idx = sh->qd_idx;
1176        struct page *xor_dest;
1177        struct page **xor_srcs = percpu->scribble;
1178        struct dma_async_tx_descriptor *tx;
1179        struct async_submit_ctl submit;
1180        int count;
1181        int i;
1182
1183        pr_debug("%s: stripe %llu\n", __func__,
1184                (unsigned long long)sh->sector);
1185
1186        count = 0;
1187        xor_dest = sh->dev[pd_idx].page;
1188        xor_srcs[count++] = xor_dest;
1189        for (i = disks; i--; ) {
1190                if (i == pd_idx || i == qd_idx)
1191                        continue;
1192                xor_srcs[count++] = sh->dev[i].page;
1193        }
1194
1195        init_async_submit(&submit, 0, NULL, NULL, NULL,
1196                          to_addr_conv(sh, percpu));
1197        tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1198                           &sh->ops.zero_sum_result, &submit);
1199
1200        atomic_inc(&sh->count);
1201        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1202        tx = async_trigger_callback(&submit);
1203}
1204
1205static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1206{
1207        struct page **srcs = percpu->scribble;
1208        struct async_submit_ctl submit;
1209        int count;
1210
1211        pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1212                (unsigned long long)sh->sector, checkp);
1213
1214        count = set_syndrome_sources(srcs, sh);
1215        if (!checkp)
1216                srcs[count] = NULL;
1217
1218        atomic_inc(&sh->count);
1219        init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1220                          sh, to_addr_conv(sh, percpu));
1221        async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1222                           &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1223}
1224
1225static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1226{
1227        int overlap_clear = 0, i, disks = sh->disks;
1228        struct dma_async_tx_descriptor *tx = NULL;
1229        raid5_conf_t *conf = sh->raid_conf;
1230        int level = conf->level;
1231        struct raid5_percpu *percpu;
1232        unsigned long cpu;
1233
1234        cpu = get_cpu();
1235        percpu = per_cpu_ptr(conf->percpu, cpu);
1236        if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1237                ops_run_biofill(sh);
1238                overlap_clear++;
1239        }
1240
1241        if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1242                if (level < 6)
1243                        tx = ops_run_compute5(sh, percpu);
1244                else {
1245                        if (sh->ops.target2 < 0 || sh->ops.target < 0)
1246                                tx = ops_run_compute6_1(sh, percpu);
1247                        else
1248                                tx = ops_run_compute6_2(sh, percpu);
1249                }
1250                /* terminate the chain if reconstruct is not set to be run */
1251                if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1252                        async_tx_ack(tx);
1253        }
1254
1255        if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1256                tx = ops_run_prexor(sh, percpu, tx);
1257
1258        if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1259                tx = ops_run_biodrain(sh, tx);
1260                overlap_clear++;
1261        }
1262
1263        if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1264                if (level < 6)
1265                        ops_run_reconstruct5(sh, percpu, tx);
1266                else
1267                        ops_run_reconstruct6(sh, percpu, tx);
1268        }
1269
1270        if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1271                if (sh->check_state == check_state_run)
1272                        ops_run_check_p(sh, percpu);
1273                else if (sh->check_state == check_state_run_q)
1274                        ops_run_check_pq(sh, percpu, 0);
1275                else if (sh->check_state == check_state_run_pq)
1276                        ops_run_check_pq(sh, percpu, 1);
1277                else
1278                        BUG();
1279        }
1280
1281        if (overlap_clear)
1282                for (i = disks; i--; ) {
1283                        struct r5dev *dev = &sh->dev[i];
1284                        if (test_and_clear_bit(R5_Overlap, &dev->flags))
1285                                wake_up(&sh->raid_conf->wait_for_overlap);
1286                }
1287        put_cpu();
1288}
1289
1290#ifdef CONFIG_MULTICORE_RAID456
1291static void async_run_ops(void *param, async_cookie_t cookie)
1292{
1293        struct stripe_head *sh = param;
1294        unsigned long ops_request = sh->ops.request;
1295
1296        clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1297        wake_up(&sh->ops.wait_for_ops);
1298
1299        __raid_run_ops(sh, ops_request);
1300        release_stripe(sh);
1301}
1302
1303static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1304{
1305        /* since handle_stripe can be called outside of raid5d context
1306         * we need to ensure sh->ops.request is de-staged before another
1307         * request arrives
1308         */
1309        wait_event(sh->ops.wait_for_ops,
1310                   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1311        sh->ops.request = ops_request;
1312
1313        atomic_inc(&sh->count);
1314        async_schedule(async_run_ops, sh);
1315}
1316#else
1317#define raid_run_ops __raid_run_ops
1318#endif
1319
1320static int grow_one_stripe(raid5_conf_t *conf)
1321{
1322        struct stripe_head *sh;
1323        sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1324        if (!sh)
1325                return 0;
1326        memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1327        sh->raid_conf = conf;
1328        spin_lock_init(&sh->lock);
1329        #ifdef CONFIG_MULTICORE_RAID456
1330        init_waitqueue_head(&sh->ops.wait_for_ops);
1331        #endif
1332
1333        if (grow_buffers(sh)) {
1334                shrink_buffers(sh);
1335                kmem_cache_free(conf->slab_cache, sh);
1336                return 0;
1337        }
1338        /* we just created an active stripe so... */
1339        atomic_set(&sh->count, 1);
1340        atomic_inc(&conf->active_stripes);
1341        INIT_LIST_HEAD(&sh->lru);
1342        release_stripe(sh);
1343        return 1;
1344}
1345
1346static int grow_stripes(raid5_conf_t *conf, int num)
1347{
1348        struct kmem_cache *sc;
1349        int devs = max(conf->raid_disks, conf->previous_raid_disks);
1350
1351        if (conf->mddev->gendisk)
1352                sprintf(conf->cache_name[0],
1353                        "raid%d-%s", conf->level, mdname(conf->mddev));
1354        else
1355                sprintf(conf->cache_name[0],
1356                        "raid%d-%p", conf->level, conf->mddev);
1357        sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1358
1359        conf->active_name = 0;
1360        sc = kmem_cache_create(conf->cache_name[conf->active_name],
1361                               sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1362                               0, 0, NULL);
1363        if (!sc)
1364                return 1;
1365        conf->slab_cache = sc;
1366        conf->pool_size = devs;
1367        while (num--)
1368                if (!grow_one_stripe(conf))
1369                        return 1;
1370        return 0;
1371}
1372
1373/**
1374 * scribble_len - return the required size of the scribble region
1375 * @num - total number of disks in the array
1376 *
1377 * The size must be enough to contain:
1378 * 1/ a struct page pointer for each device in the array +2
1379 * 2/ room to convert each entry in (1) to its corresponding dma
1380 *    (dma_map_page()) or page (page_address()) address.
1381 *
1382 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1383 * calculate over all devices (not just the data blocks), using zeros in place
1384 * of the P and Q blocks.
1385 */
1386static size_t scribble_len(int num)
1387{
1388        size_t len;
1389
1390        len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1391
1392        return len;
1393}
1394
1395static int resize_stripes(raid5_conf_t *conf, int newsize)
1396{
1397        /* Make all the stripes able to hold 'newsize' devices.
1398         * New slots in each stripe get 'page' set to a new page.
1399         *
1400         * This happens in stages:
1401         * 1/ create a new kmem_cache and allocate the required number of
1402         *    stripe_heads.
1403         * 2/ gather all the old stripe_heads and tranfer the pages across
1404         *    to the new stripe_heads.  This will have the side effect of
1405         *    freezing the array as once all stripe_heads have been collected,
1406         *    no IO will be possible.  Old stripe heads are freed once their
1407         *    pages have been transferred over, and the old kmem_cache is
1408         *    freed when all stripes are done.
1409         * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1410         *    we simple return a failre status - no need to clean anything up.
1411         * 4/ allocate new pages for the new slots in the new stripe_heads.
1412         *    If this fails, we don't bother trying the shrink the
1413         *    stripe_heads down again, we just leave them as they are.
1414         *    As each stripe_head is processed the new one is released into
1415         *    active service.
1416         *
1417         * Once step2 is started, we cannot afford to wait for a write,
1418         * so we use GFP_NOIO allocations.
1419         */
1420        struct stripe_head *osh, *nsh;
1421        LIST_HEAD(newstripes);
1422        struct disk_info *ndisks;
1423        unsigned long cpu;
1424        int err;
1425        struct kmem_cache *sc;
1426        int i;
1427
1428        if (newsize <= conf->pool_size)
1429                return 0; /* never bother to shrink */
1430
1431        err = md_allow_write(conf->mddev);
1432        if (err)
1433                return err;
1434
1435        /* Step 1 */
1436        sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1437                               sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1438                               0, 0, NULL);
1439        if (!sc)
1440                return -ENOMEM;
1441
1442        for (i = conf->max_nr_stripes; i; i--) {
1443                nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1444                if (!nsh)
1445                        break;
1446
1447                memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1448
1449                nsh->raid_conf = conf;
1450                spin_lock_init(&nsh->lock);
1451                #ifdef CONFIG_MULTICORE_RAID456
1452                init_waitqueue_head(&nsh->ops.wait_for_ops);
1453                #endif
1454
1455                list_add(&nsh->lru, &newstripes);
1456        }
1457        if (i) {
1458                /* didn't get enough, give up */
1459                while (!list_empty(&newstripes)) {
1460                        nsh = list_entry(newstripes.next, struct stripe_head, lru);
1461                        list_del(&nsh->lru);
1462                        kmem_cache_free(sc, nsh);
1463                }
1464                kmem_cache_destroy(sc);
1465                return -ENOMEM;
1466        }
1467        /* Step 2 - Must use GFP_NOIO now.
1468         * OK, we have enough stripes, start collecting inactive
1469         * stripes and copying them over
1470         */
1471        list_for_each_entry(nsh, &newstripes, lru) {
1472                spin_lock_irq(&conf->device_lock);
1473                wait_event_lock_irq(conf->wait_for_stripe,
1474                                    !list_empty(&conf->inactive_list),
1475                                    conf->device_lock,
1476                                    unplug_slaves(conf->mddev)
1477                        );
1478                osh = get_free_stripe(conf);
1479                spin_unlock_irq(&conf->device_lock);
1480                atomic_set(&nsh->count, 1);
1481                for(i=0; i<conf->pool_size; i++)
1482                        nsh->dev[i].page = osh->dev[i].page;
1483                for( ; i<newsize; i++)
1484                        nsh->dev[i].page = NULL;
1485                kmem_cache_free(conf->slab_cache, osh);
1486        }
1487        kmem_cache_destroy(conf->slab_cache);
1488
1489        /* Step 3.
1490         * At this point, we are holding all the stripes so the array
1491         * is completely stalled, so now is a good time to resize
1492         * conf->disks and the scribble region
1493         */
1494        ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1495        if (ndisks) {
1496                for (i=0; i<conf->raid_disks; i++)
1497                        ndisks[i] = conf->disks[i];
1498                kfree(conf->disks);
1499                conf->disks = ndisks;
1500        } else
1501                err = -ENOMEM;
1502
1503        get_online_cpus();
1504        conf->scribble_len = scribble_len(newsize);
1505        for_each_present_cpu(cpu) {
1506                struct raid5_percpu *percpu;
1507                void *scribble;
1508
1509                percpu = per_cpu_ptr(conf->percpu, cpu);
1510                scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1511
1512                if (scribble) {
1513                        kfree(percpu->scribble);
1514                        percpu->scribble = scribble;
1515                } else {
1516                        err = -ENOMEM;
1517                        break;
1518                }
1519        }
1520        put_online_cpus();
1521
1522        /* Step 4, return new stripes to service */
1523        while(!list_empty(&newstripes)) {
1524                nsh = list_entry(newstripes.next, struct stripe_head, lru);
1525                list_del_init(&nsh->lru);
1526
1527                for (i=conf->raid_disks; i < newsize; i++)
1528                        if (nsh->dev[i].page == NULL) {
1529                                struct page *p = alloc_page(GFP_NOIO);
1530                                nsh->dev[i].page = p;
1531                                if (!p)
1532                                        err = -ENOMEM;
1533                        }
1534                release_stripe(nsh);
1535        }
1536        /* critical section pass, GFP_NOIO no longer needed */
1537
1538        conf->slab_cache = sc;
1539        conf->active_name = 1-conf->active_name;
1540        conf->pool_size = newsize;
1541        return err;
1542}
1543
1544static int drop_one_stripe(raid5_conf_t *conf)
1545{
1546        struct stripe_head *sh;
1547
1548        spin_lock_irq(&conf->device_lock);
1549        sh = get_free_stripe(conf);
1550        spin_unlock_irq(&conf->device_lock);
1551        if (!sh)
1552                return 0;
1553        BUG_ON(atomic_read(&sh->count));
1554        shrink_buffers(sh);
1555        kmem_cache_free(conf->slab_cache, sh);
1556        atomic_dec(&conf->active_stripes);
1557        return 1;
1558}
1559
1560static void shrink_stripes(raid5_conf_t *conf)
1561{
1562        while (drop_one_stripe(conf))
1563                ;
1564
1565        if (conf->slab_cache)
1566                kmem_cache_destroy(conf->slab_cache);
1567        conf->slab_cache = NULL;
1568}
1569
1570static void raid5_end_read_request(struct bio * bi, int error)
1571{
1572        struct stripe_head *sh = bi->bi_private;
1573        raid5_conf_t *conf = sh->raid_conf;
1574        int disks = sh->disks, i;
1575        int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1576        char b[BDEVNAME_SIZE];
1577        mdk_rdev_t *rdev;
1578
1579
1580        for (i=0 ; i<disks; i++)
1581                if (bi == &sh->dev[i].req)
1582                        break;
1583
1584        pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1585                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1586                uptodate);
1587        if (i == disks) {
1588                BUG();
1589                return;
1590        }
1591
1592        if (uptodate) {
1593                set_bit(R5_UPTODATE, &sh->dev[i].flags);
1594                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1595                        rdev = conf->disks[i].rdev;
1596                        printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1597                                  " (%lu sectors at %llu on %s)\n",
1598                                  mdname(conf->mddev), STRIPE_SECTORS,
1599                                  (unsigned long long)(sh->sector
1600                                                       + rdev->data_offset),
1601                                  bdevname(rdev->bdev, b));
1602                        clear_bit(R5_ReadError, &sh->dev[i].flags);
1603                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
1604                }
1605                if (atomic_read(&conf->disks[i].rdev->read_errors))
1606                        atomic_set(&conf->disks[i].rdev->read_errors, 0);
1607        } else {
1608                const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1609                int retry = 0;
1610                rdev = conf->disks[i].rdev;
1611
1612                clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1613                atomic_inc(&rdev->read_errors);
1614                if (conf->mddev->degraded >= conf->max_degraded)
1615                        printk_rl(KERN_WARNING
1616                                  "md/raid:%s: read error not correctable "
1617                                  "(sector %llu on %s).\n",
1618                                  mdname(conf->mddev),
1619                                  (unsigned long long)(sh->sector
1620                                                       + rdev->data_offset),
1621                                  bdn);
1622                else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1623                        /* Oh, no!!! */
1624                        printk_rl(KERN_WARNING
1625                                  "md/raid:%s: read error NOT corrected!! "
1626                                  "(sector %llu on %s).\n",
1627                                  mdname(conf->mddev),
1628                                  (unsigned long long)(sh->sector
1629                                                       + rdev->data_offset),
1630                                  bdn);
1631                else if (atomic_read(&rdev->read_errors)
1632                         > conf->max_nr_stripes)
1633                        printk(KERN_WARNING
1634                               "md/raid:%s: Too many read errors, failing device %s.\n",
1635                               mdname(conf->mddev), bdn);
1636                else
1637                        retry = 1;
1638                if (retry)
1639                        set_bit(R5_ReadError, &sh->dev[i].flags);
1640                else {
1641                        clear_bit(R5_ReadError, &sh->dev[i].flags);
1642                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
1643                        md_error(conf->mddev, rdev);
1644                }
1645        }
1646        rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1647        clear_bit(R5_LOCKED, &sh->dev[i].flags);
1648        set_bit(STRIPE_HANDLE, &sh->state);
1649        release_stripe(sh);
1650}
1651
1652static void raid5_end_write_request(struct bio *bi, int error)
1653{
1654        struct stripe_head *sh = bi->bi_private;
1655        raid5_conf_t *conf = sh->raid_conf;
1656        int disks = sh->disks, i;
1657        int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1658
1659        for (i=0 ; i<disks; i++)
1660                if (bi == &sh->dev[i].req)
1661                        break;
1662
1663        pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1664                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1665                uptodate);
1666        if (i == disks) {
1667                BUG();
1668                return;
1669        }
1670
1671        if (!uptodate)
1672                md_error(conf->mddev, conf->disks[i].rdev);
1673
1674        rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1675        
1676        clear_bit(R5_LOCKED, &sh->dev[i].flags);
1677        set_bit(STRIPE_HANDLE, &sh->state);
1678        release_stripe(sh);
1679}
1680
1681
1682static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1683        
1684static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1685{
1686        struct r5dev *dev = &sh->dev[i];
1687
1688        bio_init(&dev->req);
1689        dev->req.bi_io_vec = &dev->vec;
1690        dev->req.bi_vcnt++;
1691        dev->req.bi_max_vecs++;
1692        dev->vec.bv_page = dev->page;
1693        dev->vec.bv_len = STRIPE_SIZE;
1694        dev->vec.bv_offset = 0;
1695
1696        dev->req.bi_sector = sh->sector;
1697        dev->req.bi_private = sh;
1698
1699        dev->flags = 0;
1700        dev->sector = compute_blocknr(sh, i, previous);
1701}
1702
1703static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1704{
1705        char b[BDEVNAME_SIZE];
1706        raid5_conf_t *conf = mddev->private;
1707        pr_debug("raid456: error called\n");
1708
1709        if (!test_bit(Faulty, &rdev->flags)) {
1710                set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711                if (test_and_clear_bit(In_sync, &rdev->flags)) {
1712                        unsigned long flags;
1713                        spin_lock_irqsave(&conf->device_lock, flags);
1714                        mddev->degraded++;
1715                        spin_unlock_irqrestore(&conf->device_lock, flags);
1716                        /*
1717                         * if recovery was running, make sure it aborts.
1718                         */
1719                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1720                }
1721                set_bit(Faulty, &rdev->flags);
1722                printk(KERN_ALERT
1723                       "md/raid:%s: Disk failure on %s, disabling device.\n"
1724                       "md/raid:%s: Operation continuing on %d devices.\n",
1725                       mdname(mddev),
1726                       bdevname(rdev->bdev, b),
1727                       mdname(mddev),
1728                       conf->raid_disks - mddev->degraded);
1729        }
1730}
1731
1732/*
1733 * Input: a 'big' sector number,
1734 * Output: index of the data and parity disk, and the sector # in them.
1735 */
1736static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1737                                     int previous, int *dd_idx,
1738                                     struct stripe_head *sh)
1739{
1740        sector_t stripe, stripe2;
1741        sector_t chunk_number;
1742        unsigned int chunk_offset;
1743        int pd_idx, qd_idx;
1744        int ddf_layout = 0;
1745        sector_t new_sector;
1746        int algorithm = previous ? conf->prev_algo
1747                                 : conf->algorithm;
1748        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1749                                         : conf->chunk_sectors;
1750        int raid_disks = previous ? conf->previous_raid_disks
1751                                  : conf->raid_disks;
1752        int data_disks = raid_disks - conf->max_degraded;
1753
1754        /* First compute the information on this sector */
1755
1756        /*
1757         * Compute the chunk number and the sector offset inside the chunk
1758         */
1759        chunk_offset = sector_div(r_sector, sectors_per_chunk);
1760        chunk_number = r_sector;
1761
1762        /*
1763         * Compute the stripe number
1764         */
1765        stripe = chunk_number;
1766        *dd_idx = sector_div(stripe, data_disks);
1767        stripe2 = stripe;
1768        /*
1769         * Select the parity disk based on the user selected algorithm.
1770         */
1771        pd_idx = qd_idx = ~0;
1772        switch(conf->level) {
1773        case 4:
1774                pd_idx = data_disks;
1775                break;
1776        case 5:
1777                switch (algorithm) {
1778                case ALGORITHM_LEFT_ASYMMETRIC:
1779                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
1780                        if (*dd_idx >= pd_idx)
1781                                (*dd_idx)++;
1782                        break;
1783                case ALGORITHM_RIGHT_ASYMMETRIC:
1784                        pd_idx = sector_div(stripe2, raid_disks);
1785                        if (*dd_idx >= pd_idx)
1786                                (*dd_idx)++;
1787                        break;
1788                case ALGORITHM_LEFT_SYMMETRIC:
1789                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
1790                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1791                        break;
1792                case ALGORITHM_RIGHT_SYMMETRIC:
1793                        pd_idx = sector_div(stripe2, raid_disks);
1794                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1795                        break;
1796                case ALGORITHM_PARITY_0:
1797                        pd_idx = 0;
1798                        (*dd_idx)++;
1799                        break;
1800                case ALGORITHM_PARITY_N:
1801                        pd_idx = data_disks;
1802                        break;
1803                default:
1804                        BUG();
1805                }
1806                break;
1807        case 6:
1808
1809                switch (algorithm) {
1810                case ALGORITHM_LEFT_ASYMMETRIC:
1811                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1812                        qd_idx = pd_idx + 1;
1813                        if (pd_idx == raid_disks-1) {
1814                                (*dd_idx)++;    /* Q D D D P */
1815                                qd_idx = 0;
1816                        } else if (*dd_idx >= pd_idx)
1817                                (*dd_idx) += 2; /* D D P Q D */
1818                        break;
1819                case ALGORITHM_RIGHT_ASYMMETRIC:
1820                        pd_idx = sector_div(stripe2, raid_disks);
1821                        qd_idx = pd_idx + 1;
1822                        if (pd_idx == raid_disks-1) {
1823                                (*dd_idx)++;    /* Q D D D P */
1824                                qd_idx = 0;
1825                        } else if (*dd_idx >= pd_idx)
1826                                (*dd_idx) += 2; /* D D P Q D */
1827                        break;
1828                case ALGORITHM_LEFT_SYMMETRIC:
1829                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1830                        qd_idx = (pd_idx + 1) % raid_disks;
1831                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1832                        break;
1833                case ALGORITHM_RIGHT_SYMMETRIC:
1834                        pd_idx = sector_div(stripe2, raid_disks);
1835                        qd_idx = (pd_idx + 1) % raid_disks;
1836                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1837                        break;
1838
1839                case ALGORITHM_PARITY_0:
1840                        pd_idx = 0;
1841                        qd_idx = 1;
1842                        (*dd_idx) += 2;
1843                        break;
1844                case ALGORITHM_PARITY_N:
1845                        pd_idx = data_disks;
1846                        qd_idx = data_disks + 1;
1847                        break;
1848
1849                case ALGORITHM_ROTATING_ZERO_RESTART:
1850                        /* Exactly the same as RIGHT_ASYMMETRIC, but or
1851                         * of blocks for computing Q is different.
1852                         */
1853                        pd_idx = sector_div(stripe2, raid_disks);
1854                        qd_idx = pd_idx + 1;
1855                        if (pd_idx == raid_disks-1) {
1856                                (*dd_idx)++;    /* Q D D D P */
1857                                qd_idx = 0;
1858                        } else if (*dd_idx >= pd_idx)
1859                                (*dd_idx) += 2; /* D D P Q D */
1860                        ddf_layout = 1;
1861                        break;
1862
1863                case ALGORITHM_ROTATING_N_RESTART:
1864                        /* Same a left_asymmetric, by first stripe is
1865                         * D D D P Q  rather than
1866                         * Q D D D P
1867                         */
1868                        stripe2 += 1;
1869                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870                        qd_idx = pd_idx + 1;
1871                        if (pd_idx == raid_disks-1) {
1872                                (*dd_idx)++;    /* Q D D D P */
1873                                qd_idx = 0;
1874                        } else if (*dd_idx >= pd_idx)
1875                                (*dd_idx) += 2; /* D D P Q D */
1876                        ddf_layout = 1;
1877                        break;
1878
1879                case ALGORITHM_ROTATING_N_CONTINUE:
1880                        /* Same as left_symmetric but Q is before P */
1881                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1882                        qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1883                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1884                        ddf_layout = 1;
1885                        break;
1886
1887                case ALGORITHM_LEFT_ASYMMETRIC_6:
1888                        /* RAID5 left_asymmetric, with Q on last device */
1889                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1890                        if (*dd_idx >= pd_idx)
1891                                (*dd_idx)++;
1892                        qd_idx = raid_disks - 1;
1893                        break;
1894
1895                case ALGORITHM_RIGHT_ASYMMETRIC_6:
1896                        pd_idx = sector_div(stripe2, raid_disks-1);
1897                        if (*dd_idx >= pd_idx)
1898                                (*dd_idx)++;
1899                        qd_idx = raid_disks - 1;
1900                        break;
1901
1902                case ALGORITHM_LEFT_SYMMETRIC_6:
1903                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1904                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1905                        qd_idx = raid_disks - 1;
1906                        break;
1907
1908                case ALGORITHM_RIGHT_SYMMETRIC_6:
1909                        pd_idx = sector_div(stripe2, raid_disks-1);
1910                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1911                        qd_idx = raid_disks - 1;
1912                        break;
1913
1914                case ALGORITHM_PARITY_0_6:
1915                        pd_idx = 0;
1916                        (*dd_idx)++;
1917                        qd_idx = raid_disks - 1;
1918                        break;
1919
1920                default:
1921                        BUG();
1922                }
1923                break;
1924        }
1925
1926        if (sh) {
1927                sh->pd_idx = pd_idx;
1928                sh->qd_idx = qd_idx;
1929                sh->ddf_layout = ddf_layout;
1930        }
1931        /*
1932         * Finally, compute the new sector number
1933         */
1934        new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1935        return new_sector;
1936}
1937
1938
1939static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1940{
1941        raid5_conf_t *conf = sh->raid_conf;
1942        int raid_disks = sh->disks;
1943        int data_disks = raid_disks - conf->max_degraded;
1944        sector_t new_sector = sh->sector, check;
1945        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1946                                         : conf->chunk_sectors;
1947        int algorithm = previous ? conf->prev_algo
1948                                 : conf->algorithm;
1949        sector_t stripe;
1950        int chunk_offset;
1951        sector_t chunk_number;
1952        int dummy1, dd_idx = i;
1953        sector_t r_sector;
1954        struct stripe_head sh2;
1955
1956
1957        chunk_offset = sector_div(new_sector, sectors_per_chunk);
1958        stripe = new_sector;
1959
1960        if (i == sh->pd_idx)
1961                return 0;
1962        switch(conf->level) {
1963        case 4: break;
1964        case 5:
1965                switch (algorithm) {
1966                case ALGORITHM_LEFT_ASYMMETRIC:
1967                case ALGORITHM_RIGHT_ASYMMETRIC:
1968                        if (i > sh->pd_idx)
1969                                i--;
1970                        break;
1971                case ALGORITHM_LEFT_SYMMETRIC:
1972                case ALGORITHM_RIGHT_SYMMETRIC:
1973                        if (i < sh->pd_idx)
1974                                i += raid_disks;
1975                        i -= (sh->pd_idx + 1);
1976                        break;
1977                case ALGORITHM_PARITY_0:
1978                        i -= 1;
1979                        break;
1980                case ALGORITHM_PARITY_N:
1981                        break;
1982                default:
1983                        BUG();
1984                }
1985                break;
1986        case 6:
1987                if (i == sh->qd_idx)
1988                        return 0; /* It is the Q disk */
1989                switch (algorithm) {
1990                case ALGORITHM_LEFT_ASYMMETRIC:
1991                case ALGORITHM_RIGHT_ASYMMETRIC:
1992                case ALGORITHM_ROTATING_ZERO_RESTART:
1993                case ALGORITHM_ROTATING_N_RESTART:
1994                        if (sh->pd_idx == raid_disks-1)
1995                                i--;    /* Q D D D P */
1996                        else if (i > sh->pd_idx)
1997                                i -= 2; /* D D P Q D */
1998                        break;
1999                case ALGORITHM_LEFT_SYMMETRIC:
2000                case ALGORITHM_RIGHT_SYMMETRIC:
2001                        if (sh->pd_idx == raid_disks-1)
2002                                i--; /* Q D D D P */
2003                        else {
2004                                /* D D P Q D */
2005                                if (i < sh->pd_idx)
2006                                        i += raid_disks;
2007                                i -= (sh->pd_idx + 2);
2008                        }
2009                        break;
2010                case ALGORITHM_PARITY_0:
2011                        i -= 2;
2012                        break;
2013                case ALGORITHM_PARITY_N:
2014                        break;
2015                case ALGORITHM_ROTATING_N_CONTINUE:
2016                        /* Like left_symmetric, but P is before Q */
2017                        if (sh->pd_idx == 0)
2018                                i--;    /* P D D D Q */
2019                        else {
2020                                /* D D Q P D */
2021                                if (i < sh->pd_idx)
2022                                        i += raid_disks;
2023                                i -= (sh->pd_idx + 1);
2024                        }
2025                        break;
2026                case ALGORITHM_LEFT_ASYMMETRIC_6:
2027                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2028                        if (i > sh->pd_idx)
2029                                i--;
2030                        break;
2031                case ALGORITHM_LEFT_SYMMETRIC_6:
2032                case ALGORITHM_RIGHT_SYMMETRIC_6:
2033                        if (i < sh->pd_idx)
2034                                i += data_disks + 1;
2035                        i -= (sh->pd_idx + 1);
2036                        break;
2037                case ALGORITHM_PARITY_0_6:
2038                        i -= 1;
2039                        break;
2040                default:
2041                        BUG();
2042                }
2043                break;
2044        }
2045
2046        chunk_number = stripe * data_disks + i;
2047        r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2048
2049        check = raid5_compute_sector(conf, r_sector,
2050                                     previous, &dummy1, &sh2);
2051        if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2052                || sh2.qd_idx != sh->qd_idx) {
2053                printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2054                       mdname(conf->mddev));
2055                return 0;
2056        }
2057        return r_sector;
2058}
2059
2060
2061static void
2062schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2063                         int rcw, int expand)
2064{
2065        int i, pd_idx = sh->pd_idx, disks = sh->disks;
2066        raid5_conf_t *conf = sh->raid_conf;
2067        int level = conf->level;
2068
2069        if (rcw) {
2070                /* if we are not expanding this is a proper write request, and
2071                 * there will be bios with new data to be drained into the
2072                 * stripe cache
2073                 */
2074                if (!expand) {
2075                        sh->reconstruct_state = reconstruct_state_drain_run;
2076                        set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2077                } else
2078                        sh->reconstruct_state = reconstruct_state_run;
2079
2080                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2081
2082                for (i = disks; i--; ) {
2083                        struct r5dev *dev = &sh->dev[i];
2084
2085                        if (dev->towrite) {
2086                                set_bit(R5_LOCKED, &dev->flags);
2087                                set_bit(R5_Wantdrain, &dev->flags);
2088                                if (!expand)
2089                                        clear_bit(R5_UPTODATE, &dev->flags);
2090                                s->locked++;
2091                        }
2092                }
2093                if (s->locked + conf->max_degraded == disks)
2094                        if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2095                                atomic_inc(&conf->pending_full_writes);
2096        } else {
2097                BUG_ON(level == 6);
2098                BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2099                        test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2100
2101                sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2102                set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2103                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2104                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2105
2106                for (i = disks; i--; ) {
2107                        struct r5dev *dev = &sh->dev[i];
2108                        if (i == pd_idx)
2109                                continue;
2110
2111                        if (dev->towrite &&
2112                            (test_bit(R5_UPTODATE, &dev->flags) ||
2113                             test_bit(R5_Wantcompute, &dev->flags))) {
2114                                set_bit(R5_Wantdrain, &dev->flags);
2115                                set_bit(R5_LOCKED, &dev->flags);
2116                                clear_bit(R5_UPTODATE, &dev->flags);
2117                                s->locked++;
2118                        }
2119                }
2120        }
2121
2122        /* keep the parity disk(s) locked while asynchronous operations
2123         * are in flight
2124         */
2125        set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2126        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2127        s->locked++;
2128
2129        if (level == 6) {
2130                int qd_idx = sh->qd_idx;
2131                struct r5dev *dev = &sh->dev[qd_idx];
2132
2133                set_bit(R5_LOCKED, &dev->flags);
2134                clear_bit(R5_UPTODATE, &dev->flags);
2135                s->locked++;
2136        }
2137
2138        pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2139                __func__, (unsigned long long)sh->sector,
2140                s->locked, s->ops_request);
2141}
2142
2143/*
2144 * Each stripe/dev can have one or more bion attached.
2145 * toread/towrite point to the first in a chain.
2146 * The bi_next chain must be in order.
2147 */
2148static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2149{
2150        struct bio **bip;
2151        raid5_conf_t *conf = sh->raid_conf;
2152        int firstwrite=0;
2153
2154        pr_debug("adding bh b#%llu to stripe s#%llu\n",
2155                (unsigned long long)bi->bi_sector,
2156                (unsigned long long)sh->sector);
2157
2158
2159        spin_lock(&sh->lock);
2160        spin_lock_irq(&conf->device_lock);
2161        if (forwrite) {
2162                bip = &sh->dev[dd_idx].towrite;
2163                if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2164                        firstwrite = 1;
2165        } else
2166                bip = &sh->dev[dd_idx].toread;
2167        while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2168                if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2169                        goto overlap;
2170                bip = & (*bip)->bi_next;
2171        }
2172        if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2173                goto overlap;
2174
2175        BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2176        if (*bip)
2177                bi->bi_next = *bip;
2178        *bip = bi;
2179        bi->bi_phys_segments++;
2180        spin_unlock_irq(&conf->device_lock);
2181        spin_unlock(&sh->lock);
2182
2183        pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2184                (unsigned long long)bi->bi_sector,
2185                (unsigned long long)sh->sector, dd_idx);
2186
2187        if (conf->mddev->bitmap && firstwrite) {
2188                bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2189                                  STRIPE_SECTORS, 0);
2190                sh->bm_seq = conf->seq_flush+1;
2191                set_bit(STRIPE_BIT_DELAY, &sh->state);
2192        }
2193
2194        if (forwrite) {
2195                /* check if page is covered */
2196                sector_t sector = sh->dev[dd_idx].sector;
2197                for (bi=sh->dev[dd_idx].towrite;
2198                     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2199                             bi && bi->bi_sector <= sector;
2200                     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2201                        if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2202                                sector = bi->bi_sector + (bi->bi_size>>9);
2203                }
2204                if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2205                        set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2206        }
2207        return 1;
2208
2209 overlap:
2210        set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2211        spin_unlock_irq(&conf->device_lock);
2212        spin_unlock(&sh->lock);
2213        return 0;
2214}
2215
2216static void end_reshape(raid5_conf_t *conf);
2217
2218static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2219                            struct stripe_head *sh)
2220{
2221        int sectors_per_chunk =
2222                previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2223        int dd_idx;
2224        int chunk_offset = sector_div(stripe, sectors_per_chunk);
2225        int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2226
2227        raid5_compute_sector(conf,
2228                             stripe * (disks - conf->max_degraded)
2229                             *sectors_per_chunk + chunk_offset,
2230                             previous,
2231                             &dd_idx, sh);
2232}
2233
2234static void
2235handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2236                                struct stripe_head_state *s, int disks,
2237                                struct bio **return_bi)
2238{
2239        int i;
2240        for (i = disks; i--; ) {
2241                struct bio *bi;
2242                int bitmap_end = 0;
2243
2244                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2245                        mdk_rdev_t *rdev;
2246                        rcu_read_lock();
2247                        rdev = rcu_dereference(conf->disks[i].rdev);
2248                        if (rdev && test_bit(In_sync, &rdev->flags))
2249                                /* multiple read failures in one stripe */
2250                                md_error(conf->mddev, rdev);
2251                        rcu_read_unlock();
2252                }
2253                spin_lock_irq(&conf->device_lock);
2254                /* fail all writes first */
2255                bi = sh->dev[i].towrite;
2256                sh->dev[i].towrite = NULL;
2257                if (bi) {
2258                        s->to_write--;
2259                        bitmap_end = 1;
2260                }
2261
2262                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2263                        wake_up(&conf->wait_for_overlap);
2264
2265                while (bi && bi->bi_sector <
2266                        sh->dev[i].sector + STRIPE_SECTORS) {
2267                        struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2268                        clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269                        if (!raid5_dec_bi_phys_segments(bi)) {
2270                                md_write_end(conf->mddev);
2271                                bi->bi_next = *return_bi;
2272                                *return_bi = bi;
2273                        }
2274                        bi = nextbi;
2275                }
2276                /* and fail all 'written' */
2277                bi = sh->dev[i].written;
2278                sh->dev[i].written = NULL;
2279                if (bi) bitmap_end = 1;
2280                while (bi && bi->bi_sector <
2281                       sh->dev[i].sector + STRIPE_SECTORS) {
2282                        struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2283                        clear_bit(BIO_UPTODATE, &bi->bi_flags);
2284                        if (!raid5_dec_bi_phys_segments(bi)) {
2285                                md_write_end(conf->mddev);
2286                                bi->bi_next = *return_bi;
2287                                *return_bi = bi;
2288                        }
2289                        bi = bi2;
2290                }
2291
2292                /* fail any reads if this device is non-operational and
2293                 * the data has not reached the cache yet.
2294                 */
2295                if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2296                    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2297                      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2298                        bi = sh->dev[i].toread;
2299                        sh->dev[i].toread = NULL;
2300                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2301                                wake_up(&conf->wait_for_overlap);
2302                        if (bi) s->to_read--;
2303                        while (bi && bi->bi_sector <
2304                               sh->dev[i].sector + STRIPE_SECTORS) {
2305                                struct bio *nextbi =
2306                                        r5_next_bio(bi, sh->dev[i].sector);
2307                                clear_bit(BIO_UPTODATE, &bi->bi_flags);
2308                                if (!raid5_dec_bi_phys_segments(bi)) {
2309                                        bi->bi_next = *return_bi;
2310                                        *return_bi = bi;
2311                                }
2312                                bi = nextbi;
2313                        }
2314                }
2315                spin_unlock_irq(&conf->device_lock);
2316                if (bitmap_end)
2317                        bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2318                                        STRIPE_SECTORS, 0, 0);
2319        }
2320
2321        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2322                if (atomic_dec_and_test(&conf->pending_full_writes))
2323                        md_wakeup_thread(conf->mddev->thread);
2324}
2325
2326/* fetch_block5 - checks the given member device to see if its data needs
2327 * to be read or computed to satisfy a request.
2328 *
2329 * Returns 1 when no more member devices need to be checked, otherwise returns
2330 * 0 to tell the loop in handle_stripe_fill5 to continue
2331 */
2332static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2333                        int disk_idx, int disks)
2334{
2335        struct r5dev *dev = &sh->dev[disk_idx];
2336        struct r5dev *failed_dev = &sh->dev[s->failed_num];
2337
2338        /* is the data in this block needed, and can we get it? */
2339        if (!test_bit(R5_LOCKED, &dev->flags) &&
2340            !test_bit(R5_UPTODATE, &dev->flags) &&
2341            (dev->toread ||
2342             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2343             s->syncing || s->expanding ||
2344             (s->failed &&
2345              (failed_dev->toread ||
2346               (failed_dev->towrite &&
2347                !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2348                /* We would like to get this block, possibly by computing it,
2349                 * otherwise read it if the backing disk is insync
2350                 */
2351                if ((s->uptodate == disks - 1) &&
2352                    (s->failed && disk_idx == s->failed_num)) {
2353                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2354                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2355                        set_bit(R5_Wantcompute, &dev->flags);
2356                        sh->ops.target = disk_idx;
2357                        sh->ops.target2 = -1;
2358                        s->req_compute = 1;
2359                        /* Careful: from this point on 'uptodate' is in the eye
2360                         * of raid_run_ops which services 'compute' operations
2361                         * before writes. R5_Wantcompute flags a block that will
2362                         * be R5_UPTODATE by the time it is needed for a
2363                         * subsequent operation.
2364                         */
2365                        s->uptodate++;
2366                        return 1; /* uptodate + compute == disks */
2367                } else if (test_bit(R5_Insync, &dev->flags)) {
2368                        set_bit(R5_LOCKED, &dev->flags);
2369                        set_bit(R5_Wantread, &dev->flags);
2370                        s->locked++;
2371                        pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2372                                s->syncing);
2373                }
2374        }
2375
2376        return 0;
2377}
2378
2379/**
2380 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2381 */
2382static void handle_stripe_fill5(struct stripe_head *sh,
2383                        struct stripe_head_state *s, int disks)
2384{
2385        int i;
2386
2387        /* look for blocks to read/compute, skip this if a compute
2388         * is already in flight, or if the stripe contents are in the
2389         * midst of changing due to a write
2390         */
2391        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2392            !sh->reconstruct_state)
2393                for (i = disks; i--; )
2394                        if (fetch_block5(sh, s, i, disks))
2395                                break;
2396        set_bit(STRIPE_HANDLE, &sh->state);
2397}
2398
2399/* fetch_block6 - checks the given member device to see if its data needs
2400 * to be read or computed to satisfy a request.
2401 *
2402 * Returns 1 when no more member devices need to be checked, otherwise returns
2403 * 0 to tell the loop in handle_stripe_fill6 to continue
2404 */
2405static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2406                         struct r6_state *r6s, int disk_idx, int disks)
2407{
2408        struct r5dev *dev = &sh->dev[disk_idx];
2409        struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2410                                  &sh->dev[r6s->failed_num[1]] };
2411
2412        if (!test_bit(R5_LOCKED, &dev->flags) &&
2413            !test_bit(R5_UPTODATE, &dev->flags) &&
2414            (dev->toread ||
2415             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2416             s->syncing || s->expanding ||
2417             (s->failed >= 1 &&
2418              (fdev[0]->toread || s->to_write)) ||
2419             (s->failed >= 2 &&
2420              (fdev[1]->toread || s->to_write)))) {
2421                /* we would like to get this block, possibly by computing it,
2422                 * otherwise read it if the backing disk is insync
2423                 */
2424                BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2425                BUG_ON(test_bit(R5_Wantread, &dev->flags));
2426                if ((s->uptodate == disks - 1) &&
2427                    (s->failed && (disk_idx == r6s->failed_num[0] ||
2428                                   disk_idx == r6s->failed_num[1]))) {
2429                        /* have disk failed, and we're requested to fetch it;
2430                         * do compute it
2431                         */
2432                        pr_debug("Computing stripe %llu block %d\n",
2433                               (unsigned long long)sh->sector, disk_idx);
2434                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2435                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2436                        set_bit(R5_Wantcompute, &dev->flags);
2437                        sh->ops.target = disk_idx;
2438                        sh->ops.target2 = -1; /* no 2nd target */
2439                        s->req_compute = 1;
2440                        s->uptodate++;
2441                        return 1;
2442                } else if (s->uptodate == disks-2 && s->failed >= 2) {
2443                        /* Computing 2-failure is *very* expensive; only
2444                         * do it if failed >= 2
2445                         */
2446                        int other;
2447                        for (other = disks; other--; ) {
2448                                if (other == disk_idx)
2449                                        continue;
2450                                if (!test_bit(R5_UPTODATE,
2451                                      &sh->dev[other].flags))
2452                                        break;
2453                        }
2454                        BUG_ON(other < 0);
2455                        pr_debug("Computing stripe %llu blocks %d,%d\n",
2456                               (unsigned long long)sh->sector,
2457                               disk_idx, other);
2458                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2459                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2460                        set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2461                        set_bit(R5_Wantcompute, &sh->dev[other].flags);
2462                        sh->ops.target = disk_idx;
2463                        sh->ops.target2 = other;
2464                        s->uptodate += 2;
2465                        s->req_compute = 1;
2466                        return 1;
2467                } else if (test_bit(R5_Insync, &dev->flags)) {
2468                        set_bit(R5_LOCKED, &dev->flags);
2469                        set_bit(R5_Wantread, &dev->flags);
2470                        s->locked++;
2471                        pr_debug("Reading block %d (sync=%d)\n",
2472                                disk_idx, s->syncing);
2473                }
2474        }
2475
2476        return 0;
2477}
2478
2479/**
2480 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2481 */
2482static void handle_stripe_fill6(struct stripe_head *sh,
2483                        struct stripe_head_state *s, struct r6_state *r6s,
2484                        int disks)
2485{
2486        int i;
2487
2488        /* look for blocks to read/compute, skip this if a compute
2489         * is already in flight, or if the stripe contents are in the
2490         * midst of changing due to a write
2491         */
2492        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2493            !sh->reconstruct_state)
2494                for (i = disks; i--; )
2495                        if (fetch_block6(sh, s, r6s, i, disks))
2496                                break;
2497        set_bit(STRIPE_HANDLE, &sh->state);
2498}
2499
2500
2501/* handle_stripe_clean_event
2502 * any written block on an uptodate or failed drive can be returned.
2503 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2504 * never LOCKED, so we don't need to test 'failed' directly.
2505 */
2506static void handle_stripe_clean_event(raid5_conf_t *conf,
2507        struct stripe_head *sh, int disks, struct bio **return_bi)
2508{
2509        int i;
2510        struct r5dev *dev;
2511
2512        for (i = disks; i--; )
2513                if (sh->dev[i].written) {
2514                        dev = &sh->dev[i];
2515                        if (!test_bit(R5_LOCKED, &dev->flags) &&
2516                                test_bit(R5_UPTODATE, &dev->flags)) {
2517                                /* We can return any write requests */
2518                                struct bio *wbi, *wbi2;
2519                                int bitmap_end = 0;
2520                                pr_debug("Return write for disc %d\n", i);
2521                                spin_lock_irq(&conf->device_lock);
2522                                wbi = dev->written;
2523                                dev->written = NULL;
2524                                while (wbi && wbi->bi_sector <
2525                                        dev->sector + STRIPE_SECTORS) {
2526                                        wbi2 = r5_next_bio(wbi, dev->sector);
2527                                        if (!raid5_dec_bi_phys_segments(wbi)) {
2528                                                md_write_end(conf->mddev);
2529                                                wbi->bi_next = *return_bi;
2530                                                *return_bi = wbi;
2531                                        }
2532                                        wbi = wbi2;
2533                                }
2534                                if (dev->towrite == NULL)
2535                                        bitmap_end = 1;
2536                                spin_unlock_irq(&conf->device_lock);
2537                                if (bitmap_end)
2538                                        bitmap_endwrite(conf->mddev->bitmap,
2539                                                        sh->sector,
2540                                                        STRIPE_SECTORS,
2541                                         !test_bit(STRIPE_DEGRADED, &sh->state),
2542                                                        0);
2543                        }
2544                }
2545
2546        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2547                if (atomic_dec_and_test(&conf->pending_full_writes))
2548                        md_wakeup_thread(conf->mddev->thread);
2549}
2550
2551static void handle_stripe_dirtying5(raid5_conf_t *conf,
2552                struct stripe_head *sh, struct stripe_head_state *s, int disks)
2553{
2554        int rmw = 0, rcw = 0, i;
2555        for (i = disks; i--; ) {
2556                /* would I have to read this buffer for read_modify_write */
2557                struct r5dev *dev = &sh->dev[i];
2558                if ((dev->towrite || i == sh->pd_idx) &&
2559                    !test_bit(R5_LOCKED, &dev->flags) &&
2560                    !(test_bit(R5_UPTODATE, &dev->flags) ||
2561                      test_bit(R5_Wantcompute, &dev->flags))) {
2562                        if (test_bit(R5_Insync, &dev->flags))
2563                                rmw++;
2564                        else
2565                                rmw += 2*disks;  /* cannot read it */
2566                }
2567                /* Would I have to read this buffer for reconstruct_write */
2568                if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2569                    !test_bit(R5_LOCKED, &dev->flags) &&
2570                    !(test_bit(R5_UPTODATE, &dev->flags) ||
2571                    test_bit(R5_Wantcompute, &dev->flags))) {
2572                        if (test_bit(R5_Insync, &dev->flags)) rcw++;
2573                        else
2574                                rcw += 2*disks;
2575                }
2576        }
2577        pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2578                (unsigned long long)sh->sector, rmw, rcw);
2579        set_bit(STRIPE_HANDLE, &sh->state);
2580        if (rmw < rcw && rmw > 0)
2581                /* prefer read-modify-write, but need to get some data */
2582                for (i = disks; i--; ) {
2583                        struct r5dev *dev = &sh->dev[i];
2584                        if ((dev->towrite || i == sh->pd_idx) &&
2585                            !test_bit(R5_LOCKED, &dev->flags) &&
2586                            !(test_bit(R5_UPTODATE, &dev->flags) ||
2587                            test_bit(R5_Wantcompute, &dev->flags)) &&
2588                            test_bit(R5_Insync, &dev->flags)) {
2589                                if (
2590                                  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2591                                        pr_debug("Read_old block "
2592                                                "%d for r-m-w\n", i);
2593                                        set_bit(R5_LOCKED, &dev->flags);
2594                                        set_bit(R5_Wantread, &dev->flags);
2595                                        s->locked++;
2596                                } else {
2597                                        set_bit(STRIPE_DELAYED, &sh->state);
2598                                        set_bit(STRIPE_HANDLE, &sh->state);
2599                                }
2600                        }
2601                }
2602        if (rcw <= rmw && rcw > 0)
2603                /* want reconstruct write, but need to get some data */
2604                for (i = disks; i--; ) {
2605                        struct r5dev *dev = &sh->dev[i];
2606                        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2607                            i != sh->pd_idx &&
2608                            !test_bit(R5_LOCKED, &dev->flags) &&
2609                            !(test_bit(R5_UPTODATE, &dev->flags) ||
2610                            test_bit(R5_Wantcompute, &dev->flags)) &&
2611                            test_bit(R5_Insync, &dev->flags)) {
2612                                if (
2613                                  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2614                                        pr_debug("Read_old block "
2615                                                "%d for Reconstruct\n", i);
2616                                        set_bit(R5_LOCKED, &dev->flags);
2617                                        set_bit(R5_Wantread, &dev->flags);
2618                                        s->locked++;
2619                                } else {
2620                                        set_bit(STRIPE_DELAYED, &sh->state);
2621                                        set_bit(STRIPE_HANDLE, &sh->state);
2622                                }
2623                        }
2624                }
2625        /* now if nothing is locked, and if we have enough data,
2626         * we can start a write request
2627         */
2628        /* since handle_stripe can be called at any time we need to handle the
2629         * case where a compute block operation has been submitted and then a
2630         * subsequent call wants to start a write request.  raid_run_ops only
2631         * handles the case where compute block and reconstruct are requested
2632         * simultaneously.  If this is not the case then new writes need to be
2633         * held off until the compute completes.
2634         */
2635        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2636            (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2637            !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2638                schedule_reconstruction(sh, s, rcw == 0, 0);
2639}
2640
2641static void handle_stripe_dirtying6(raid5_conf_t *conf,
2642                struct stripe_head *sh, struct stripe_head_state *s,
2643                struct r6_state *r6s, int disks)
2644{
2645        int rcw = 0, pd_idx = sh->pd_idx, i;
2646        int qd_idx = sh->qd_idx;
2647
2648        set_bit(STRIPE_HANDLE, &sh->state);
2649        for (i = disks; i--; ) {
2650                struct r5dev *dev = &sh->dev[i];
2651                /* check if we haven't enough data */
2652                if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2653                    i != pd_idx && i != qd_idx &&
2654                    !test_bit(R5_LOCKED, &dev->flags) &&
2655                    !(test_bit(R5_UPTODATE, &dev->flags) ||
2656                      test_bit(R5_Wantcompute, &dev->flags))) {
2657                        rcw++;
2658                        if (!test_bit(R5_Insync, &dev->flags))
2659                                continue; /* it's a failed drive */
2660
2661                        if (
2662                          test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2663                                pr_debug("Read_old stripe %llu "
2664                                        "block %d for Reconstruct\n",
2665                                     (unsigned long long)sh->sector, i);
2666                                set_bit(R5_LOCKED, &dev->flags);
2667                                set_bit(R5_Wantread, &dev->flags);
2668                                s->locked++;
2669                        } else {
2670                                pr_debug("Request delayed stripe %llu "
2671                                        "block %d for Reconstruct\n",
2672                                     (unsigned long long)sh->sector, i);
2673                                set_bit(STRIPE_DELAYED, &sh->state);
2674                                set_bit(STRIPE_HANDLE, &sh->state);
2675                        }
2676                }
2677        }
2678        /* now if nothing is locked, and if we have enough data, we can start a
2679         * write request
2680         */
2681        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2682            s->locked == 0 && rcw == 0 &&
2683            !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2684                schedule_reconstruction(sh, s, 1, 0);
2685        }
2686}
2687
2688static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2689                                struct stripe_head_state *s, int disks)
2690{
2691        struct r5dev *dev = NULL;
2692
2693        set_bit(STRIPE_HANDLE, &sh->state);
2694
2695        switch (sh->check_state) {
2696        case check_state_idle:
2697                /* start a new check operation if there are no failures */
2698                if (s->failed == 0) {
2699                        BUG_ON(s->uptodate != disks);
2700                        sh->check_state = check_state_run;
2701                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
2702                        clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2703                        s->uptodate--;
2704                        break;
2705                }
2706                dev = &sh->dev[s->failed_num];
2707                /* fall through */
2708        case check_state_compute_result:
2709                sh->check_state = check_state_idle;
2710                if (!dev)
2711                        dev = &sh->dev[sh->pd_idx];
2712
2713                /* check that a write has not made the stripe insync */
2714                if (test_bit(STRIPE_INSYNC, &sh->state))
2715                        break;
2716
2717                /* either failed parity check, or recovery is happening */
2718                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2719                BUG_ON(s->uptodate != disks);
2720
2721                set_bit(R5_LOCKED, &dev->flags);
2722                s->locked++;
2723                set_bit(R5_Wantwrite, &dev->flags);
2724
2725                clear_bit(STRIPE_DEGRADED, &sh->state);
2726                set_bit(STRIPE_INSYNC, &sh->state);
2727                break;
2728        case check_state_run:
2729                break; /* we will be called again upon completion */
2730        case check_state_check_result:
2731                sh->check_state = check_state_idle;
2732
2733                /* if a failure occurred during the check operation, leave
2734                 * STRIPE_INSYNC not set and let the stripe be handled again
2735                 */
2736                if (s->failed)
2737                        break;
2738
2739                /* handle a successful check operation, if parity is correct
2740                 * we are done.  Otherwise update the mismatch count and repair
2741                 * parity if !MD_RECOVERY_CHECK
2742                 */
2743                if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2744                        /* parity is correct (on disc,
2745                         * not in buffer any more)
2746                         */
2747                        set_bit(STRIPE_INSYNC, &sh->state);
2748                else {
2749                        conf->mddev->resync_mismatches += STRIPE_SECTORS;
2750                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2751                                /* don't try to repair!! */
2752                                set_bit(STRIPE_INSYNC, &sh->state);
2753                        else {
2754                                sh->check_state = check_state_compute_run;
2755                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2756                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2757                                set_bit(R5_Wantcompute,
2758                                        &sh->dev[sh->pd_idx].flags);
2759                                sh->ops.target = sh->pd_idx;
2760                                sh->ops.target2 = -1;
2761                                s->uptodate++;
2762                        }
2763                }
2764                break;
2765        case check_state_compute_run:
2766                break;
2767        default:
2768                printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2769                       __func__, sh->check_state,
2770                       (unsigned long long) sh->sector);
2771                BUG();
2772        }
2773}
2774
2775
2776static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2777                                  struct stripe_head_state *s,
2778                                  struct r6_state *r6s, int disks)
2779{
2780        int pd_idx = sh->pd_idx;
2781        int qd_idx = sh->qd_idx;
2782        struct r5dev *dev;
2783
2784        set_bit(STRIPE_HANDLE, &sh->state);
2785
2786        BUG_ON(s->failed > 2);
2787
2788        /* Want to check and possibly repair P and Q.
2789         * However there could be one 'failed' device, in which
2790         * case we can only check one of them, possibly using the
2791         * other to generate missing data
2792         */
2793
2794        switch (sh->check_state) {
2795        case check_state_idle:
2796                /* start a new check operation if there are < 2 failures */
2797                if (s->failed == r6s->q_failed) {
2798                        /* The only possible failed device holds Q, so it
2799                         * makes sense to check P (If anything else were failed,
2800                         * we would have used P to recreate it).
2801                         */
2802                        sh->check_state = check_state_run;
2803                }
2804                if (!r6s->q_failed && s->failed < 2) {
2805                        /* Q is not failed, and we didn't use it to generate
2806                         * anything, so it makes sense to check it
2807                         */
2808                        if (sh->check_state == check_state_run)
2809                                sh->check_state = check_state_run_pq;
2810                        else
2811                                sh->check_state = check_state_run_q;
2812                }
2813
2814                /* discard potentially stale zero_sum_result */
2815                sh->ops.zero_sum_result = 0;
2816
2817                if (sh->check_state == check_state_run) {
2818                        /* async_xor_zero_sum destroys the contents of P */
2819                        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2820                        s->uptodate--;
2821                }
2822                if (sh->check_state >= check_state_run &&
2823                    sh->check_state <= check_state_run_pq) {
2824                        /* async_syndrome_zero_sum preserves P and Q, so
2825                         * no need to mark them !uptodate here
2826                         */
2827                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
2828                        break;
2829                }
2830
2831                /* we have 2-disk failure */
2832                BUG_ON(s->failed != 2);
2833                /* fall through */
2834        case check_state_compute_result:
2835                sh->check_state = check_state_idle;
2836
2837                /* check that a write has not made the stripe insync */
2838                if (test_bit(STRIPE_INSYNC, &sh->state))
2839                        break;
2840
2841                /* now write out any block on a failed drive,
2842                 * or P or Q if they were recomputed
2843                 */
2844                BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2845                if (s->failed == 2) {
2846                        dev = &sh->dev[r6s->failed_num[1]];
2847                        s->locked++;
2848                        set_bit(R5_LOCKED, &dev->flags);
2849                        set_bit(R5_Wantwrite, &dev->flags);
2850                }
2851                if (s->failed >= 1) {
2852                        dev = &sh->dev[r6s->failed_num[0]];
2853                        s->locked++;
2854                        set_bit(R5_LOCKED, &dev->flags);
2855                        set_bit(R5_Wantwrite, &dev->flags);
2856                }
2857                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2858                        dev = &sh->dev[pd_idx];
2859                        s->locked++;
2860                        set_bit(R5_LOCKED, &dev->flags);
2861                        set_bit(R5_Wantwrite, &dev->flags);
2862                }
2863                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2864                        dev = &sh->dev[qd_idx];
2865                        s->locked++;
2866                        set_bit(R5_LOCKED, &dev->flags);
2867                        set_bit(R5_Wantwrite, &dev->flags);
2868                }
2869                clear_bit(STRIPE_DEGRADED, &sh->state);
2870
2871                set_bit(STRIPE_INSYNC, &sh->state);
2872                break;
2873        case check_state_run:
2874        case check_state_run_q:
2875        case check_state_run_pq:
2876                break; /* we will be called again upon completion */
2877        case check_state_check_result:
2878                sh->check_state = check_state_idle;
2879
2880                /* handle a successful check operation, if parity is correct
2881                 * we are done.  Otherwise update the mismatch count and repair
2882                 * parity if !MD_RECOVERY_CHECK
2883                 */
2884                if (sh->ops.zero_sum_result == 0) {
2885                        /* both parities are correct */
2886                        if (!s->failed)
2887                                set_bit(STRIPE_INSYNC, &sh->state);
2888                        else {
2889                                /* in contrast to the raid5 case we can validate
2890                                 * parity, but still have a failure to write
2891                                 * back
2892                                 */
2893                                sh->check_state = check_state_compute_result;
2894                                /* Returning at this point means that we may go
2895                                 * off and bring p and/or q uptodate again so
2896                                 * we make sure to check zero_sum_result again
2897                                 * to verify if p or q need writeback
2898                                 */
2899                        }
2900                } else {
2901                        conf->mddev->resync_mismatches += STRIPE_SECTORS;
2902                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2903                                /* don't try to repair!! */
2904                                set_bit(STRIPE_INSYNC, &sh->state);
2905                        else {
2906                                int *target = &sh->ops.target;
2907
2908                                sh->ops.target = -1;
2909                                sh->ops.target2 = -1;
2910                                sh->check_state = check_state_compute_run;
2911                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2912                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2913                                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2914                                        set_bit(R5_Wantcompute,
2915                                                &sh->dev[pd_idx].flags);
2916                                        *target = pd_idx;
2917                                        target = &sh->ops.target2;
2918                                        s->uptodate++;
2919                                }
2920                                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2921                                        set_bit(R5_Wantcompute,
2922                                                &sh->dev[qd_idx].flags);
2923                                        *target = qd_idx;
2924                                        s->uptodate++;
2925                                }
2926                        }
2927                }
2928                break;
2929        case check_state_compute_run:
2930                break;
2931        default:
2932                printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2933                       __func__, sh->check_state,
2934                       (unsigned long long) sh->sector);
2935                BUG();
2936        }
2937}
2938
2939static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2940                                struct r6_state *r6s)
2941{
2942        int i;
2943
2944        /* We have read all the blocks in this stripe and now we need to
2945         * copy some of them into a target stripe for expand.
2946         */
2947        struct dma_async_tx_descriptor *tx = NULL;
2948        clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2949        for (i = 0; i < sh->disks; i++)
2950                if (i != sh->pd_idx && i != sh->qd_idx) {
2951                        int dd_idx, j;
2952                        struct stripe_head *sh2;
2953                        struct async_submit_ctl submit;
2954
2955                        sector_t bn = compute_blocknr(sh, i, 1);
2956                        sector_t s = raid5_compute_sector(conf, bn, 0,
2957                                                          &dd_idx, NULL);
2958                        sh2 = get_active_stripe(conf, s, 0, 1, 1);
2959                        if (sh2 == NULL)
2960                                /* so far only the early blocks of this stripe
2961                                 * have been requested.  When later blocks
2962                                 * get requested, we will try again
2963                                 */
2964                                continue;
2965                        if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2966                           test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2967                                /* must have already done this block */
2968                                release_stripe(sh2);
2969                                continue;
2970                        }
2971
2972                        /* place all the copies on one channel */
2973                        init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2974                        tx = async_memcpy(sh2->dev[dd_idx].page,
2975                                          sh->dev[i].page, 0, 0, STRIPE_SIZE,
2976                                          &submit);
2977
2978                        set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2979                        set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2980                        for (j = 0; j < conf->raid_disks; j++)
2981                                if (j != sh2->pd_idx &&
2982                                    (!r6s || j != sh2->qd_idx) &&
2983                                    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2984                                        break;
2985                        if (j == conf->raid_disks) {
2986                                set_bit(STRIPE_EXPAND_READY, &sh2->state);
2987                                set_bit(STRIPE_HANDLE, &sh2->state);
2988                        }
2989                        release_stripe(sh2);
2990
2991                }
2992        /* done submitting copies, wait for them to complete */
2993        if (tx) {
2994                async_tx_ack(tx);
2995                dma_wait_for_async_tx(tx);
2996        }
2997}
2998
2999
3000/*
3001 * handle_stripe - do things to a stripe.
3002 *
3003 * We lock the stripe and then examine the state of various bits
3004 * to see what needs to be done.
3005 * Possible results:
3006 *    return some read request which now have data
3007 *    return some write requests which are safely on disc
3008 *    schedule a read on some buffers
3009 *    schedule a write of some buffers
3010 *    return confirmation of parity correctness
3011 *
3012 * buffers are taken off read_list or write_list, and bh_cache buffers
3013 * get BH_Lock set before the stripe lock is released.
3014 *
3015 */
3016
3017static void handle_stripe5(struct stripe_head *sh)
3018{
3019        raid5_conf_t *conf = sh->raid_conf;
3020        int disks = sh->disks, i;
3021        struct bio *return_bi = NULL;
3022        struct stripe_head_state s;
3023        struct r5dev *dev;
3024        mdk_rdev_t *blocked_rdev = NULL;
3025        int prexor;
3026        int dec_preread_active = 0;
3027
3028        memset(&s, 0, sizeof(s));
3029        pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3030                 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3031                 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3032                 sh->reconstruct_state);
3033
3034        spin_lock(&sh->lock);
3035        clear_bit(STRIPE_HANDLE, &sh->state);
3036        clear_bit(STRIPE_DELAYED, &sh->state);
3037
3038        s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3039        s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3040        s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3041
3042        /* Now to look around and see what can be done */
3043        rcu_read_lock();
3044        for (i=disks; i--; ) {
3045                mdk_rdev_t *rdev;
3046
3047                dev = &sh->dev[i];
3048
3049                pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3050                        "written %p\n", i, dev->flags, dev->toread, dev->read,
3051                        dev->towrite, dev->written);
3052
3053                /* maybe we can request a biofill operation
3054                 *
3055                 * new wantfill requests are only permitted while
3056                 * ops_complete_biofill is guaranteed to be inactive
3057                 */
3058                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3059                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3060                        set_bit(R5_Wantfill, &dev->flags);
3061
3062                /* now count some things */
3063                if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3064                if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3065                if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3066
3067                if (test_bit(R5_Wantfill, &dev->flags))
3068                        s.to_fill++;
3069                else if (dev->toread)
3070                        s.to_read++;
3071                if (dev->towrite) {
3072                        s.to_write++;
3073                        if (!test_bit(R5_OVERWRITE, &dev->flags))
3074                                s.non_overwrite++;
3075                }
3076                if (dev->written)
3077                        s.written++;
3078                rdev = rcu_dereference(conf->disks[i].rdev);
3079                if (blocked_rdev == NULL &&
3080                    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3081                        blocked_rdev = rdev;
3082                        atomic_inc(&rdev->nr_pending);
3083                }
3084                clear_bit(R5_Insync, &dev->flags);
3085                if (!rdev)
3086                        /* Not in-sync */;
3087                else if (test_bit(In_sync, &rdev->flags))
3088                        set_bit(R5_Insync, &dev->flags);
3089                else {
3090                        /* could be in-sync depending on recovery/reshape status */
3091                        if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3092                                set_bit(R5_Insync, &dev->flags);
3093                }
3094                if (!test_bit(R5_Insync, &dev->flags)) {
3095                        /* The ReadError flag will just be confusing now */
3096                        clear_bit(R5_ReadError, &dev->flags);
3097                        clear_bit(R5_ReWrite, &dev->flags);
3098                }
3099                if (test_bit(R5_ReadError, &dev->flags))
3100                        clear_bit(R5_Insync, &dev->flags);
3101                if (!test_bit(R5_Insync, &dev->flags)) {
3102                        s.failed++;
3103                        s.failed_num = i;
3104                }
3105        }
3106        rcu_read_unlock();
3107
3108        if (unlikely(blocked_rdev)) {
3109                if (s.syncing || s.expanding || s.expanded ||
3110                    s.to_write || s.written) {
3111                        set_bit(STRIPE_HANDLE, &sh->state);
3112                        goto unlock;
3113                }
3114                /* There is nothing for the blocked_rdev to block */
3115                rdev_dec_pending(blocked_rdev, conf->mddev);
3116                blocked_rdev = NULL;
3117        }
3118
3119        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3120                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3121                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3122        }
3123
3124        pr_debug("locked=%d uptodate=%d to_read=%d"
3125                " to_write=%d failed=%d failed_num=%d\n",
3126                s.locked, s.uptodate, s.to_read, s.to_write,
3127                s.failed, s.failed_num);
3128        /* check if the array has lost two devices and, if so, some requests might
3129         * need to be failed
3130         */
3131        if (s.failed > 1 && s.to_read+s.to_write+s.written)
3132                handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3133        if (s.failed > 1 && s.syncing) {
3134                md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3135                clear_bit(STRIPE_SYNCING, &sh->state);
3136                s.syncing = 0;
3137        }
3138
3139        /* might be able to return some write requests if the parity block
3140         * is safe, or on a failed drive
3141         */
3142        dev = &sh->dev[sh->pd_idx];
3143        if ( s.written &&
3144             ((test_bit(R5_Insync, &dev->flags) &&
3145               !test_bit(R5_LOCKED, &dev->flags) &&
3146               test_bit(R5_UPTODATE, &dev->flags)) ||
3147               (s.failed == 1 && s.failed_num == sh->pd_idx)))
3148                handle_stripe_clean_event(conf, sh, disks, &return_bi);
3149
3150        /* Now we might consider reading some blocks, either to check/generate
3151         * parity, or to satisfy requests
3152         * or to load a block that is being partially written.
3153         */
3154        if (s.to_read || s.non_overwrite ||
3155            (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3156                handle_stripe_fill5(sh, &s, disks);
3157
3158        /* Now we check to see if any write operations have recently
3159         * completed
3160         */
3161        prexor = 0;
3162        if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3163                prexor = 1;
3164        if (sh->reconstruct_state == reconstruct_state_drain_result ||
3165            sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3166                sh->reconstruct_state = reconstruct_state_idle;
3167
3168                /* All the 'written' buffers and the parity block are ready to
3169                 * be written back to disk
3170                 */
3171                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3172                for (i = disks; i--; ) {
3173                        dev = &sh->dev[i];
3174                        if (test_bit(R5_LOCKED, &dev->flags) &&
3175                                (i == sh->pd_idx || dev->written)) {
3176                                pr_debug("Writing block %d\n", i);
3177                                set_bit(R5_Wantwrite, &dev->flags);
3178                                if (prexor)
3179                                        continue;
3180                                if (!test_bit(R5_Insync, &dev->flags) ||
3181                                    (i == sh->pd_idx && s.failed == 0))
3182                                        set_bit(STRIPE_INSYNC, &sh->state);
3183                        }
3184                }
3185                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3186                        dec_preread_active = 1;
3187        }
3188
3189        /* Now to consider new write requests and what else, if anything
3190         * should be read.  We do not handle new writes when:
3191         * 1/ A 'write' operation (copy+xor) is already in flight.
3192         * 2/ A 'check' operation is in flight, as it may clobber the parity
3193         *    block.
3194         */
3195        if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3196                handle_stripe_dirtying5(conf, sh, &s, disks);
3197
3198        /* maybe we need to check and possibly fix the parity for this stripe
3199         * Any reads will already have been scheduled, so we just see if enough
3200         * data is available.  The parity check is held off while parity
3201         * dependent operations are in flight.
3202         */
3203        if (sh->check_state ||
3204            (s.syncing && s.locked == 0 &&
3205             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3206             !test_bit(STRIPE_INSYNC, &sh->state)))
3207                handle_parity_checks5(conf, sh, &s, disks);
3208
3209        if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3210                md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3211                clear_bit(STRIPE_SYNCING, &sh->state);
3212        }
3213
3214        /* If the failed drive is just a ReadError, then we might need to progress
3215         * the repair/check process
3216         */
3217        if (s.failed == 1 && !conf->mddev->ro &&
3218            test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3219            && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3220            && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3221                ) {
3222                dev = &sh->dev[s.failed_num];
3223                if (!test_bit(R5_ReWrite, &dev->flags)) {
3224                        set_bit(R5_Wantwrite, &dev->flags);
3225                        set_bit(R5_ReWrite, &dev->flags);
3226                        set_bit(R5_LOCKED, &dev->flags);
3227                        s.locked++;
3228                } else {
3229                        /* let's read it back */
3230                        set_bit(R5_Wantread, &dev->flags);
3231                        set_bit(R5_LOCKED, &dev->flags);
3232                        s.locked++;
3233                }
3234        }
3235
3236        /* Finish reconstruct operations initiated by the expansion process */
3237        if (sh->reconstruct_state == reconstruct_state_result) {
3238                struct stripe_head *sh2
3239                        = get_active_stripe(conf, sh->sector, 1, 1, 1);
3240                if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3241                        /* sh cannot be written until sh2 has been read.
3242                         * so arrange for sh to be delayed a little
3243                         */
3244                        set_bit(STRIPE_DELAYED, &sh->state);
3245                        set_bit(STRIPE_HANDLE, &sh->state);
3246                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3247                                              &sh2->state))
3248                                atomic_inc(&conf->preread_active_stripes);
3249                        release_stripe(sh2);
3250                        goto unlock;
3251                }
3252                if (sh2)
3253                        release_stripe(sh2);
3254
3255                sh->reconstruct_state = reconstruct_state_idle;
3256                clear_bit(STRIPE_EXPANDING, &sh->state);
3257                for (i = conf->raid_disks; i--; ) {
3258                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
3259                        set_bit(R5_LOCKED, &sh->dev[i].flags);
3260                        s.locked++;
3261                }
3262        }
3263
3264        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3265            !sh->reconstruct_state) {
3266                /* Need to write out all blocks after computing parity */
3267                sh->disks = conf->raid_disks;
3268                stripe_set_idx(sh->sector, conf, 0, sh);
3269                schedule_reconstruction(sh, &s, 1, 1);
3270        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3271                clear_bit(STRIPE_EXPAND_READY, &sh->state);
3272                atomic_dec(&conf->reshape_stripes);
3273                wake_up(&conf->wait_for_overlap);
3274                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3275        }
3276
3277        if (s.expanding && s.locked == 0 &&
3278            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3279                handle_stripe_expansion(conf, sh, NULL);
3280
3281 unlock:
3282        spin_unlock(&sh->lock);
3283
3284        /* wait for this device to become unblocked */
3285        if (unlikely(blocked_rdev))
3286                md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3287
3288        if (s.ops_request)
3289                raid_run_ops(sh, s.ops_request);
3290
3291        ops_run_io(sh, &s);
3292
3293        if (dec_preread_active) {
3294                /* We delay this until after ops_run_io so that if make_request
3295                 * is waiting on a flush, it won't continue until the writes
3296                 * have actually been submitted.
3297                 */
3298                atomic_dec(&conf->preread_active_stripes);
3299                if (atomic_read(&conf->preread_active_stripes) <
3300                    IO_THRESHOLD)
3301                        md_wakeup_thread(conf->mddev->thread);
3302        }
3303        return_io(return_bi);
3304}
3305
3306static void handle_stripe6(struct stripe_head *sh)
3307{
3308        raid5_conf_t *conf = sh->raid_conf;
3309        int disks = sh->disks;
3310        struct bio *return_bi = NULL;
3311        int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3312        struct stripe_head_state s;
3313        struct r6_state r6s;
3314        struct r5dev *dev, *pdev, *qdev;
3315        mdk_rdev_t *blocked_rdev = NULL;
3316        int dec_preread_active = 0;
3317
3318        pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3319                "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3320               (unsigned long long)sh->sector, sh->state,
3321               atomic_read(&sh->count), pd_idx, qd_idx,
3322               sh->check_state, sh->reconstruct_state);
3323        memset(&s, 0, sizeof(s));
3324
3325        spin_lock(&sh->lock);
3326        clear_bit(STRIPE_HANDLE, &sh->state);
3327        clear_bit(STRIPE_DELAYED, &sh->state);
3328
3329        s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3330        s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3331        s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3332        /* Now to look around and see what can be done */
3333
3334        rcu_read_lock();
3335        for (i=disks; i--; ) {
3336                mdk_rdev_t *rdev;
3337                dev = &sh->dev[i];
3338
3339                pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3340                        i, dev->flags, dev->toread, dev->towrite, dev->written);
3341                /* maybe we can reply to a read
3342                 *
3343                 * new wantfill requests are only permitted while
3344                 * ops_complete_biofill is guaranteed to be inactive
3345                 */
3346                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3347                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3348                        set_bit(R5_Wantfill, &dev->flags);
3349
3350                /* now count some things */
3351                if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3352                if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3353                if (test_bit(R5_Wantcompute, &dev->flags)) {
3354                        s.compute++;
3355                        BUG_ON(s.compute > 2);
3356                }
3357
3358                if (test_bit(R5_Wantfill, &dev->flags)) {
3359                        s.to_fill++;
3360                } else if (dev->toread)
3361                        s.to_read++;
3362                if (dev->towrite) {
3363                        s.to_write++;
3364                        if (!test_bit(R5_OVERWRITE, &dev->flags))
3365                                s.non_overwrite++;
3366                }
3367                if (dev->written)
3368                        s.written++;
3369                rdev = rcu_dereference(conf->disks[i].rdev);
3370                if (blocked_rdev == NULL &&
3371                    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3372                        blocked_rdev = rdev;
3373                        atomic_inc(&rdev->nr_pending);
3374                }
3375                clear_bit(R5_Insync, &dev->flags);
3376                if (!rdev)
3377                        /* Not in-sync */;
3378                else if (test_bit(In_sync, &rdev->flags))
3379                        set_bit(R5_Insync, &dev->flags);
3380                else {
3381                        /* in sync if before recovery_offset */
3382                        if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3383                                set_bit(R5_Insync, &dev->flags);
3384                }
3385                if (!test_bit(R5_Insync, &dev->flags)) {
3386                        /* The ReadError flag will just be confusing now */
3387                        clear_bit(R5_ReadError, &dev->flags);
3388                        clear_bit(R5_ReWrite, &dev->flags);
3389                }
3390                if (test_bit(R5_ReadError, &dev->flags))
3391                        clear_bit(R5_Insync, &dev->flags);
3392                if (!test_bit(R5_Insync, &dev->flags)) {
3393                        if (s.failed < 2)
3394                                r6s.failed_num[s.failed] = i;
3395                        s.failed++;
3396                }
3397        }
3398        rcu_read_unlock();
3399
3400        if (unlikely(blocked_rdev)) {
3401                if (s.syncing || s.expanding || s.expanded ||
3402                    s.to_write || s.written) {
3403                        set_bit(STRIPE_HANDLE, &sh->state);
3404                        goto unlock;
3405                }
3406                /* There is nothing for the blocked_rdev to block */
3407                rdev_dec_pending(blocked_rdev, conf->mddev);
3408                blocked_rdev = NULL;
3409        }
3410
3411        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3412                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3413                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3414        }
3415
3416        pr_debug("locked=%d uptodate=%d to_read=%d"
3417               " to_write=%d failed=%d failed_num=%d,%d\n",
3418               s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3419               r6s.failed_num[0], r6s.failed_num[1]);
3420        /* check if the array has lost >2 devices and, if so, some requests
3421         * might need to be failed
3422         */
3423        if (s.failed > 2 && s.to_read+s.to_write+s.written)
3424                handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3425        if (s.failed > 2 && s.syncing) {
3426                md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3427                clear_bit(STRIPE_SYNCING, &sh->state);
3428                s.syncing = 0;
3429        }
3430
3431        /*
3432         * might be able to return some write requests if the parity blocks
3433         * are safe, or on a failed drive
3434         */
3435        pdev = &sh->dev[pd_idx];
3436        r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3437                || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3438        qdev = &sh->dev[qd_idx];
3439        r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3440                || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3441
3442        if ( s.written &&
3443             ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3444                             && !test_bit(R5_LOCKED, &pdev->flags)
3445                             && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3446             ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3447                             && !test_bit(R5_LOCKED, &qdev->flags)
3448                             && test_bit(R5_UPTODATE, &qdev->flags)))))
3449                handle_stripe_clean_event(conf, sh, disks, &return_bi);
3450
3451        /* Now we might consider reading some blocks, either to check/generate
3452         * parity, or to satisfy requests
3453         * or to load a block that is being partially written.
3454         */
3455        if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3456            (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3457                handle_stripe_fill6(sh, &s, &r6s, disks);
3458
3459        /* Now we check to see if any write operations have recently
3460         * completed
3461         */
3462        if (sh->reconstruct_state == reconstruct_state_drain_result) {
3463
3464                sh->reconstruct_state = reconstruct_state_idle;
3465                /* All the 'written' buffers and the parity blocks are ready to
3466                 * be written back to disk
3467                 */
3468                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3469                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3470                for (i = disks; i--; ) {
3471                        dev = &sh->dev[i];
3472                        if (test_bit(R5_LOCKED, &dev->flags) &&
3473                            (i == sh->pd_idx || i == qd_idx ||
3474                             dev->written)) {
3475                                pr_debug("Writing block %d\n", i);
3476                                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3477                                set_bit(R5_Wantwrite, &dev->flags);
3478                                if (!test_bit(R5_Insync, &dev->flags) ||
3479                                    ((i == sh->pd_idx || i == qd_idx) &&
3480                                      s.failed == 0))
3481                                        set_bit(STRIPE_INSYNC, &sh->state);
3482                        }
3483                }
3484                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3485                        dec_preread_active = 1;
3486        }
3487
3488        /* Now to consider new write requests and what else, if anything
3489         * should be read.  We do not handle new writes when:
3490         * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3491         * 2/ A 'check' operation is in flight, as it may clobber the parity
3492         *    block.
3493         */
3494        if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3495                handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3496
3497        /* maybe we need to check and possibly fix the parity for this stripe
3498         * Any reads will already have been scheduled, so we just see if enough
3499         * data is available.  The parity check is held off while parity
3500         * dependent operations are in flight.
3501         */
3502        if (sh->check_state ||
3503            (s.syncing && s.locked == 0 &&
3504             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3505             !test_bit(STRIPE_INSYNC, &sh->state)))
3506                handle_parity_checks6(conf, sh, &s, &r6s, disks);
3507
3508        if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3509                md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3510                clear_bit(STRIPE_SYNCING, &sh->state);
3511        }
3512
3513        /* If the failed drives are just a ReadError, then we might need
3514         * to progress the repair/check process
3515         */
3516        if (s.failed <= 2 && !conf->mddev->ro)
3517                for (i = 0; i < s.failed; i++) {
3518                        dev = &sh->dev[r6s.failed_num[i]];
3519                        if (test_bit(R5_ReadError, &dev->flags)
3520                            && !test_bit(R5_LOCKED, &dev->flags)
3521                            && test_bit(R5_UPTODATE, &dev->flags)
3522                                ) {
3523                                if (!test_bit(R5_ReWrite, &dev->flags)) {
3524                                        set_bit(R5_Wantwrite, &dev->flags);
3525                                        set_bit(R5_ReWrite, &dev->flags);
3526                                        set_bit(R5_LOCKED, &dev->flags);
3527                                        s.locked++;
3528                                } else {
3529                                        /* let's read it back */
3530                                        set_bit(R5_Wantread, &dev->flags);
3531                                        set_bit(R5_LOCKED, &dev->flags);
3532                                        s.locked++;
3533                                }
3534                        }
3535                }
3536
3537        /* Finish reconstruct operations initiated by the expansion process */
3538        if (sh->reconstruct_state == reconstruct_state_result) {
3539                sh->reconstruct_state = reconstruct_state_idle;
3540                clear_bit(STRIPE_EXPANDING, &sh->state);
3541                for (i = conf->raid_disks; i--; ) {
3542                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
3543                        set_bit(R5_LOCKED, &sh->dev[i].flags);
3544                        s.locked++;
3545                }
3546        }
3547
3548        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3549            !sh->reconstruct_state) {
3550                struct stripe_head *sh2
3551                        = get_active_stripe(conf, sh->sector, 1, 1, 1);
3552                if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3553                        /* sh cannot be written until sh2 has been read.
3554                         * so arrange for sh to be delayed a little
3555                         */
3556                        set_bit(STRIPE_DELAYED, &sh->state);
3557                        set_bit(STRIPE_HANDLE, &sh->state);
3558                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3559                                              &sh2->state))
3560                                atomic_inc(&conf->preread_active_stripes);
3561                        release_stripe(sh2);
3562                        goto unlock;
3563                }
3564                if (sh2)
3565                        release_stripe(sh2);
3566
3567                /* Need to write out all blocks after computing P&Q */
3568                sh->disks = conf->raid_disks;
3569                stripe_set_idx(sh->sector, conf, 0, sh);
3570                schedule_reconstruction(sh, &s, 1, 1);
3571        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3572                clear_bit(STRIPE_EXPAND_READY, &sh->state);
3573                atomic_dec(&conf->reshape_stripes);
3574                wake_up(&conf->wait_for_overlap);
3575                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3576        }
3577
3578        if (s.expanding && s.locked == 0 &&
3579            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3580                handle_stripe_expansion(conf, sh, &r6s);
3581
3582 unlock:
3583        spin_unlock(&sh->lock);
3584
3585        /* wait for this device to become unblocked */
3586        if (unlikely(blocked_rdev))
3587                md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3588
3589        if (s.ops_request)
3590                raid_run_ops(sh, s.ops_request);
3591
3592        ops_run_io(sh, &s);
3593
3594
3595        if (dec_preread_active) {
3596                /* We delay this until after ops_run_io so that if make_request
3597                 * is waiting on a flush, it won't continue until the writes
3598                 * have actually been submitted.
3599                 */
3600                atomic_dec(&conf->preread_active_stripes);
3601                if (atomic_read(&conf->preread_active_stripes) <
3602                    IO_THRESHOLD)
3603                        md_wakeup_thread(conf->mddev->thread);
3604        }
3605
3606        return_io(return_bi);
3607}
3608
3609static void handle_stripe(struct stripe_head *sh)
3610{
3611        if (sh->raid_conf->level == 6)
3612                handle_stripe6(sh);
3613        else
3614                handle_stripe5(sh);
3615}
3616
3617static void raid5_activate_delayed(raid5_conf_t *conf)
3618{
3619        if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3620                while (!list_empty(&conf->delayed_list)) {
3621                        struct list_head *l = conf->delayed_list.next;
3622                        struct stripe_head *sh;
3623                        sh = list_entry(l, struct stripe_head, lru);
3624                        list_del_init(l);
3625                        clear_bit(STRIPE_DELAYED, &sh->state);
3626                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3627                                atomic_inc(&conf->preread_active_stripes);
3628                        list_add_tail(&sh->lru, &conf->hold_list);
3629                }
3630        } else
3631                plugger_set_plug(&conf->plug);
3632}
3633
3634static void activate_bit_delay(raid5_conf_t *conf)
3635{
3636        /* device_lock is held */
3637        struct list_head head;
3638        list_add(&head, &conf->bitmap_list);
3639        list_del_init(&conf->bitmap_list);
3640        while (!list_empty(&head)) {
3641                struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3642                list_del_init(&sh->lru);
3643                atomic_inc(&sh->count);
3644                __release_stripe(conf, sh);
3645        }
3646}
3647
3648static void unplug_slaves(mddev_t *mddev)
3649{
3650        raid5_conf_t *conf = mddev->private;
3651        int i;
3652        int devs = max(conf->raid_disks, conf->previous_raid_disks);
3653
3654        rcu_read_lock();
3655        for (i = 0; i < devs; i++) {
3656                mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3657                if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3658                        struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3659
3660                        atomic_inc(&rdev->nr_pending);
3661                        rcu_read_unlock();
3662
3663                        blk_unplug(r_queue);
3664
3665                        rdev_dec_pending(rdev, mddev);
3666                        rcu_read_lock();
3667                }
3668        }
3669        rcu_read_unlock();
3670}
3671
3672void md_raid5_unplug_device(raid5_conf_t *conf)
3673{
3674        unsigned long flags;
3675
3676        spin_lock_irqsave(&conf->device_lock, flags);
3677
3678        if (plugger_remove_plug(&conf->plug)) {
3679                conf->seq_flush++;
3680                raid5_activate_delayed(conf);
3681        }
3682        md_wakeup_thread(conf->mddev->thread);
3683
3684        spin_unlock_irqrestore(&conf->device_lock, flags);
3685
3686        unplug_slaves(conf->mddev);
3687}
3688EXPORT_SYMBOL_GPL(md_raid5_unplug_device);
3689
3690static void raid5_unplug(struct plug_handle *plug)
3691{
3692        raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug);
3693        md_raid5_unplug_device(conf);
3694}
3695
3696static void raid5_unplug_queue(struct request_queue *q)
3697{
3698        mddev_t *mddev = q->queuedata;
3699        md_raid5_unplug_device(mddev->private);
3700}
3701
3702int md_raid5_congested(mddev_t *mddev, int bits)
3703{
3704        raid5_conf_t *conf = mddev->private;
3705
3706        /* No difference between reads and writes.  Just check
3707         * how busy the stripe_cache is
3708         */
3709
3710        if (conf->inactive_blocked)
3711                return 1;
3712        if (conf->quiesce)
3713                return 1;
3714        if (list_empty_careful(&conf->inactive_list))
3715                return 1;
3716
3717        return 0;
3718}
3719EXPORT_SYMBOL_GPL(md_raid5_congested);
3720
3721static int raid5_congested(void *data, int bits)
3722{
3723        mddev_t *mddev = data;
3724
3725        return mddev_congested(mddev, bits) ||
3726                md_raid5_congested(mddev, bits);
3727}
3728
3729/* We want read requests to align with chunks where possible,
3730 * but write requests don't need to.
3731 */
3732static int raid5_mergeable_bvec(struct request_queue *q,
3733                                struct bvec_merge_data *bvm,
3734                                struct bio_vec *biovec)
3735{
3736        mddev_t *mddev = q->queuedata;
3737        sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3738        int max;
3739        unsigned int chunk_sectors = mddev->chunk_sectors;
3740        unsigned int bio_sectors = bvm->bi_size >> 9;
3741
3742        if ((bvm->bi_rw & 1) == WRITE)
3743                return biovec->bv_len; /* always allow writes to be mergeable */
3744
3745        if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3746                chunk_sectors = mddev->new_chunk_sectors;
3747        max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3748        if (max < 0) max = 0;
3749        if (max <= biovec->bv_len && bio_sectors == 0)
3750                return biovec->bv_len;
3751        else
3752                return max;
3753}
3754
3755
3756static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3757{
3758        sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3759        unsigned int chunk_sectors = mddev->chunk_sectors;
3760        unsigned int bio_sectors = bio->bi_size >> 9;
3761
3762        if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3763                chunk_sectors = mddev->new_chunk_sectors;
3764        return  chunk_sectors >=
3765                ((sector & (chunk_sectors - 1)) + bio_sectors);
3766}
3767
3768/*
3769 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3770 *  later sampled by raid5d.
3771 */
3772static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3773{
3774        unsigned long flags;
3775
3776        spin_lock_irqsave(&conf->device_lock, flags);
3777
3778        bi->bi_next = conf->retry_read_aligned_list;
3779        conf->retry_read_aligned_list = bi;
3780
3781        spin_unlock_irqrestore(&conf->device_lock, flags);
3782        md_wakeup_thread(conf->mddev->thread);
3783}
3784
3785
3786static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3787{
3788        struct bio *bi;
3789
3790        bi = conf->retry_read_aligned;
3791        if (bi) {
3792                conf->retry_read_aligned = NULL;
3793                return bi;
3794        }
3795        bi = conf->retry_read_aligned_list;
3796        if(bi) {
3797                conf->retry_read_aligned_list = bi->bi_next;
3798                bi->bi_next = NULL;
3799                /*
3800                 * this sets the active strip count to 1 and the processed
3801                 * strip count to zero (upper 8 bits)
3802                 */
3803                bi->bi_phys_segments = 1; /* biased count of active stripes */
3804        }
3805
3806        return bi;
3807}
3808
3809
3810/*
3811 *  The "raid5_align_endio" should check if the read succeeded and if it
3812 *  did, call bio_endio on the original bio (having bio_put the new bio
3813 *  first).
3814 *  If the read failed..
3815 */
3816static void raid5_align_endio(struct bio *bi, int error)
3817{
3818        struct bio* raid_bi  = bi->bi_private;
3819        mddev_t *mddev;
3820        raid5_conf_t *conf;
3821        int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3822        mdk_rdev_t *rdev;
3823
3824        bio_put(bi);
3825
3826        rdev = (void*)raid_bi->bi_next;
3827        raid_bi->bi_next = NULL;
3828        mddev = rdev->mddev;
3829        conf = mddev->private;
3830
3831        rdev_dec_pending(rdev, conf->mddev);
3832
3833        if (!error && uptodate) {
3834                bio_endio(raid_bi, 0);
3835                if (atomic_dec_and_test(&conf->active_aligned_reads))
3836                        wake_up(&conf->wait_for_stripe);
3837                return;
3838        }
3839
3840
3841        pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3842
3843        add_bio_to_retry(raid_bi, conf);
3844}
3845
3846static int bio_fits_rdev(struct bio *bi)
3847{
3848        struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3849
3850        if ((bi->bi_size>>9) > queue_max_sectors(q))
3851                return 0;
3852        blk_recount_segments(q, bi);
3853        if (bi->bi_phys_segments > queue_max_segments(q))
3854                return 0;
3855
3856        if (q->merge_bvec_fn)
3857                /* it's too hard to apply the merge_bvec_fn at this stage,
3858                 * just just give up
3859                 */
3860                return 0;
3861
3862        return 1;
3863}
3864
3865
3866static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3867{
3868        raid5_conf_t *conf = mddev->private;
3869        int dd_idx;
3870        struct bio* align_bi;
3871        mdk_rdev_t *rdev;
3872
3873        if (!in_chunk_boundary(mddev, raid_bio)) {
3874                pr_debug("chunk_aligned_read : non aligned\n");
3875                return 0;
3876        }
3877        /*
3878         * use bio_clone_mddev to make a copy of the bio
3879         */
3880        align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3881        if (!align_bi)
3882                return 0;
3883        /*
3884         *   set bi_end_io to a new function, and set bi_private to the
3885         *     original bio.
3886         */
3887        align_bi->bi_end_io  = raid5_align_endio;
3888        align_bi->bi_private = raid_bio;
3889        /*
3890         *      compute position
3891         */
3892        align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3893                                                    0,
3894                                                    &dd_idx, NULL);
3895
3896        rcu_read_lock();
3897        rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3898        if (rdev && test_bit(In_sync, &rdev->flags)) {
3899                atomic_inc(&rdev->nr_pending);
3900                rcu_read_unlock();
3901                raid_bio->bi_next = (void*)rdev;
3902                align_bi->bi_bdev =  rdev->bdev;
3903                align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3904                align_bi->bi_sector += rdev->data_offset;
3905
3906                if (!bio_fits_rdev(align_bi)) {
3907                        /* too big in some way */
3908                        bio_put(align_bi);
3909                        rdev_dec_pending(rdev, mddev);
3910                        return 0;
3911                }
3912
3913                spin_lock_irq(&conf->device_lock);
3914                wait_event_lock_irq(conf->wait_for_stripe,
3915                                    conf->quiesce == 0,
3916                                    conf->device_lock, /* nothing */);
3917                atomic_inc(&conf->active_aligned_reads);
3918                spin_unlock_irq(&conf->device_lock);
3919
3920                generic_make_request(align_bi);
3921                return 1;
3922        } else {
3923                rcu_read_unlock();
3924                bio_put(align_bi);
3925                return 0;
3926        }
3927}
3928
3929/* __get_priority_stripe - get the next stripe to process
3930 *
3931 * Full stripe writes are allowed to pass preread active stripes up until
3932 * the bypass_threshold is exceeded.  In general the bypass_count
3933 * increments when the handle_list is handled before the hold_list; however, it
3934 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3935 * stripe with in flight i/o.  The bypass_count will be reset when the
3936 * head of the hold_list has changed, i.e. the head was promoted to the
3937 * handle_list.
3938 */
3939static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3940{
3941        struct stripe_head *sh;
3942
3943        pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3944                  __func__,
3945                  list_empty(&conf->handle_list) ? "empty" : "busy",
3946                  list_empty(&conf->hold_list) ? "empty" : "busy",
3947                  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3948
3949        if (!list_empty(&conf->handle_list)) {
3950                sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3951
3952                if (list_empty(&conf->hold_list))
3953                        conf->bypass_count = 0;
3954                else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3955                        if (conf->hold_list.next == conf->last_hold)
3956                                conf->bypass_count++;
3957                        else {
3958                                conf->last_hold = conf->hold_list.next;
3959                                conf->bypass_count -= conf->bypass_threshold;
3960                                if (conf->bypass_count < 0)
3961                                        conf->bypass_count = 0;
3962                        }
3963                }
3964        } else if (!list_empty(&conf->hold_list) &&
3965                   ((conf->bypass_threshold &&
3966                     conf->bypass_count > conf->bypass_threshold) ||
3967                    atomic_read(&conf->pending_full_writes) == 0)) {
3968                sh = list_entry(conf->hold_list.next,
3969                                typeof(*sh), lru);
3970                conf->bypass_count -= conf->bypass_threshold;
3971                if (conf->bypass_count < 0)
3972                        conf->bypass_count = 0;
3973        } else
3974                return NULL;
3975
3976        list_del_init(&sh->lru);
3977        atomic_inc(&sh->count);
3978        BUG_ON(atomic_read(&sh->count) != 1);
3979        return sh;
3980}
3981
3982static int make_request(mddev_t *mddev, struct bio * bi)
3983{
3984        raid5_conf_t *conf = mddev->private;
3985        int dd_idx;
3986        sector_t new_sector;
3987        sector_t logical_sector, last_sector;
3988        struct stripe_head *sh;
3989        const int rw = bio_data_dir(bi);
3990        int remaining;
3991
3992        if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3993                md_flush_request(mddev, bi);
3994                return 0;
3995        }
3996
3997        md_write_start(mddev, bi);
3998
3999        if (rw == READ &&
4000             mddev->reshape_position == MaxSector &&
4001             chunk_aligned_read(mddev,bi))
4002                return 0;
4003
4004        logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4005        last_sector = bi->bi_sector + (bi->bi_size>>9);
4006        bi->bi_next = NULL;
4007        bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4008
4009        for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4010                DEFINE_WAIT(w);
4011                int disks, data_disks;
4012                int previous;
4013
4014        retry:
4015                previous = 0;
4016                disks = conf->raid_disks;
4017                prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4018                if (unlikely(conf->reshape_progress != MaxSector)) {
4019                        /* spinlock is needed as reshape_progress may be
4020                         * 64bit on a 32bit platform, and so it might be
4021                         * possible to see a half-updated value
4022                         * Ofcourse reshape_progress could change after
4023                         * the lock is dropped, so once we get a reference
4024                         * to the stripe that we think it is, we will have
4025                         * to check again.
4026                         */
4027                        spin_lock_irq(&conf->device_lock);
4028                        if (mddev->delta_disks < 0
4029                            ? logical_sector < conf->reshape_progress
4030                            : logical_sector >= conf->reshape_progress) {
4031                                disks = conf->previous_raid_disks;
4032                                previous = 1;
4033                        } else {
4034                                if (mddev->delta_disks < 0
4035                                    ? logical_sector < conf->reshape_safe
4036                                    : logical_sector >= conf->reshape_safe) {
4037                                        spin_unlock_irq(&conf->device_lock);
4038                                        schedule();
4039                                        goto retry;
4040                                }
4041                        }
4042                        spin_unlock_irq(&conf->device_lock);
4043                }
4044                data_disks = disks - conf->max_degraded;
4045
4046                new_sector = raid5_compute_sector(conf, logical_sector,
4047                                                  previous,
4048                                                  &dd_idx, NULL);
4049                pr_debug("raid456: make_request, sector %llu logical %llu\n",
4050                        (unsigned long long)new_sector, 
4051                        (unsigned long long)logical_sector);
4052
4053                sh = get_active_stripe(conf, new_sector, previous,
4054                                       (bi->bi_rw&RWA_MASK), 0);
4055                if (sh) {
4056                        if (unlikely(previous)) {
4057                                /* expansion might have moved on while waiting for a
4058                                 * stripe, so we must do the range check again.
4059                                 * Expansion could still move past after this
4060                                 * test, but as we are holding a reference to
4061                                 * 'sh', we know that if that happens,
4062                                 *  STRIPE_EXPANDING will get set and the expansion
4063                                 * won't proceed until we finish with the stripe.
4064                                 */
4065                                int must_retry = 0;
4066                                spin_lock_irq(&conf->device_lock);
4067                                if (mddev->delta_disks < 0
4068                                    ? logical_sector >= conf->reshape_progress
4069                                    : logical_sector < conf->reshape_progress)
4070                                        /* mismatch, need to try again */
4071                                        must_retry = 1;
4072                                spin_unlock_irq(&conf->device_lock);
4073                                if (must_retry) {
4074                                        release_stripe(sh);
4075                                        schedule();
4076                                        goto retry;
4077                                }
4078                        }
4079
4080                        if (bio_data_dir(bi) == WRITE &&
4081                            logical_sector >= mddev->suspend_lo &&
4082                            logical_sector < mddev->suspend_hi) {
4083                                release_stripe(sh);
4084                                /* As the suspend_* range is controlled by
4085                                 * userspace, we want an interruptible
4086                                 * wait.
4087                                 */
4088                                flush_signals(current);
4089                                prepare_to_wait(&conf->wait_for_overlap,
4090                                                &w, TASK_INTERRUPTIBLE);
4091                                if (logical_sector >= mddev->suspend_lo &&
4092                                    logical_sector < mddev->suspend_hi)
4093                                        schedule();
4094                                goto retry;
4095                        }
4096
4097                        if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4098                            !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4099                                /* Stripe is busy expanding or
4100                                 * add failed due to overlap.  Flush everything
4101                                 * and wait a while
4102                                 */
4103                                md_raid5_unplug_device(conf);
4104                                release_stripe(sh);
4105                                schedule();
4106                                goto retry;
4107                        }
4108                        finish_wait(&conf->wait_for_overlap, &w);
4109                        set_bit(STRIPE_HANDLE, &sh->state);
4110                        clear_bit(STRIPE_DELAYED, &sh->state);
4111                        if ((bi->bi_rw & REQ_SYNC) &&
4112                            !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4113                                atomic_inc(&conf->preread_active_stripes);
4114                        release_stripe(sh);
4115                } else {
4116                        /* cannot get stripe for read-ahead, just give-up */
4117                        clear_bit(BIO_UPTODATE, &bi->bi_flags);
4118                        finish_wait(&conf->wait_for_overlap, &w);
4119                        break;
4120                }
4121                        
4122        }
4123        spin_lock_irq(&conf->device_lock);
4124        remaining = raid5_dec_bi_phys_segments(bi);
4125        spin_unlock_irq(&conf->device_lock);
4126        if (remaining == 0) {
4127
4128                if ( rw == WRITE )
4129                        md_write_end(mddev);
4130
4131                bio_endio(bi, 0);
4132        }
4133
4134        return 0;
4135}
4136
4137static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4138
4139static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4140{
4141        /* reshaping is quite different to recovery/resync so it is
4142         * handled quite separately ... here.
4143         *
4144         * On each call to sync_request, we gather one chunk worth of
4145         * destination stripes and flag them as expanding.
4146         * Then we find all the source stripes and request reads.
4147         * As the reads complete, handle_stripe will copy the data
4148         * into the destination stripe and release that stripe.
4149         */
4150        raid5_conf_t *conf = mddev->private;
4151        struct stripe_head *sh;
4152        sector_t first_sector, last_sector;
4153        int raid_disks = conf->previous_raid_disks;
4154        int data_disks = raid_disks - conf->max_degraded;
4155        int new_data_disks = conf->raid_disks - conf->max_degraded;
4156        int i;
4157        int dd_idx;
4158        sector_t writepos, readpos, safepos;
4159        sector_t stripe_addr;
4160        int reshape_sectors;
4161        struct list_head stripes;
4162
4163        if (sector_nr == 0) {
4164                /* If restarting in the middle, skip the initial sectors */
4165                if (mddev->delta_disks < 0 &&
4166                    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4167                        sector_nr = raid5_size(mddev, 0, 0)
4168                                - conf->reshape_progress;
4169                } else if (mddev->delta_disks >= 0 &&
4170                           conf->reshape_progress > 0)
4171                        sector_nr = conf->reshape_progress;
4172                sector_div(sector_nr, new_data_disks);
4173                if (sector_nr) {
4174                        mddev->curr_resync_completed = sector_nr;
4175                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4176                        *skipped = 1;
4177                        return sector_nr;
4178                }
4179        }
4180
4181        /* We need to process a full chunk at a time.
4182         * If old and new chunk sizes differ, we need to process the
4183         * largest of these
4184         */
4185        if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4186                reshape_sectors = mddev->new_chunk_sectors;
4187        else
4188                reshape_sectors = mddev->chunk_sectors;
4189
4190        /* we update the metadata when there is more than 3Meg
4191         * in the block range (that is rather arbitrary, should
4192         * probably be time based) or when the data about to be
4193         * copied would over-write the source of the data at
4194         * the front of the range.
4195         * i.e. one new_stripe along from reshape_progress new_maps
4196         * to after where reshape_safe old_maps to
4197         */
4198        writepos = conf->reshape_progress;
4199        sector_div(writepos, new_data_disks);
4200        readpos = conf->reshape_progress;
4201        sector_div(readpos, data_disks);
4202        safepos = conf->reshape_safe;
4203        sector_div(safepos, data_disks);
4204        if (mddev->delta_disks < 0) {
4205                writepos -= min_t(sector_t, reshape_sectors, writepos);
4206                readpos += reshape_sectors;
4207                safepos += reshape_sectors;
4208        } else {
4209                writepos += reshape_sectors;
4210                readpos -= min_t(sector_t, reshape_sectors, readpos);
4211                safepos -= min_t(sector_t, reshape_sectors, safepos);
4212        }
4213
4214        /* 'writepos' is the most advanced device address we might write.
4215         * 'readpos' is the least advanced device address we might read.
4216         * 'safepos' is the least address recorded in the metadata as having
4217         *     been reshaped.
4218         * If 'readpos' is behind 'writepos', then there is no way that we can
4219         * ensure safety in the face of a crash - that must be done by userspace
4220         * making a backup of the data.  So in that case there is no particular
4221         * rush to update metadata.
4222         * Otherwise if 'safepos' is behind 'writepos', then we really need to
4223         * update the metadata to advance 'safepos' to match 'readpos' so that
4224         * we can be safe in the event of a crash.
4225         * So we insist on updating metadata if safepos is behind writepos and
4226         * readpos is beyond writepos.
4227         * In any case, update the metadata every 10 seconds.
4228         * Maybe that number should be configurable, but I'm not sure it is
4229         * worth it.... maybe it could be a multiple of safemode_delay???
4230         */
4231        if ((mddev->delta_disks < 0
4232             ? (safepos > writepos && readpos < writepos)
4233             : (safepos < writepos && readpos > writepos)) ||
4234            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4235                /* Cannot proceed until we've updated the superblock... */
4236                wait_event(conf->wait_for_overlap,
4237                           atomic_read(&conf->reshape_stripes)==0);
4238                mddev->reshape_position = conf->reshape_progress;
4239                mddev->curr_resync_completed = sector_nr;
4240                conf->reshape_checkpoint = jiffies;
4241                set_bit(MD_CHANGE_DEVS, &mddev->flags);
4242                md_wakeup_thread(mddev->thread);
4243                wait_event(mddev->sb_wait, mddev->flags == 0 ||
4244                           kthread_should_stop());
4245                spin_lock_irq(&conf->device_lock);
4246                conf->reshape_safe = mddev->reshape_position;
4247                spin_unlock_irq(&conf->device_lock);
4248                wake_up(&conf->wait_for_overlap);
4249                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4250        }
4251
4252        if (mddev->delta_disks < 0) {
4253                BUG_ON(conf->reshape_progress == 0);
4254                stripe_addr = writepos;
4255                BUG_ON((mddev->dev_sectors &
4256                        ~((sector_t)reshape_sectors - 1))
4257                       - reshape_sectors - stripe_addr
4258                       != sector_nr);
4259        } else {
4260                BUG_ON(writepos != sector_nr + reshape_sectors);
4261                stripe_addr = sector_nr;
4262        }
4263        INIT_LIST_HEAD(&stripes);
4264        for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4265                int j;
4266                int skipped_disk = 0;
4267                sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4268                set_bit(STRIPE_EXPANDING, &sh->state);
4269                atomic_inc(&conf->reshape_stripes);
4270                /* If any of this stripe is beyond the end of the old
4271                 * array, then we need to zero those blocks
4272                 */
4273                for (j=sh->disks; j--;) {
4274                        sector_t s;
4275                        if (j == sh->pd_idx)
4276                                continue;
4277                        if (conf->level == 6 &&
4278                            j == sh->qd_idx)
4279                                continue;
4280                        s = compute_blocknr(sh, j, 0);
4281                        if (s < raid5_size(mddev, 0, 0)) {
4282                                skipped_disk = 1;
4283                                continue;
4284                        }
4285                        memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4286                        set_bit(R5_Expanded, &sh->dev[j].flags);
4287                        set_bit(R5_UPTODATE, &sh->dev[j].flags);
4288                }
4289                if (!skipped_disk) {
4290                        set_bit(STRIPE_EXPAND_READY, &sh->state);
4291                        set_bit(STRIPE_HANDLE, &sh->state);
4292                }
4293                list_add(&sh->lru, &stripes);
4294        }
4295        spin_lock_irq(&conf->device_lock);
4296        if (mddev->delta_disks < 0)
4297                conf->reshape_progress -= reshape_sectors * new_data_disks;
4298        else
4299                conf->reshape_progress += reshape_sectors * new_data_disks;
4300        spin_unlock_irq(&conf->device_lock);
4301        /* Ok, those stripe are ready. We can start scheduling
4302         * reads on the source stripes.
4303         * The source stripes are determined by mapping the first and last
4304         * block on the destination stripes.
4305         */
4306        first_sector =
4307                raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4308                                     1, &dd_idx, NULL);
4309        last_sector =
4310                raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4311                                            * new_data_disks - 1),
4312                                     1, &dd_idx, NULL);
4313        if (last_sector >= mddev->dev_sectors)
4314                last_sector = mddev->dev_sectors - 1;
4315        while (first_sector <= last_sector) {
4316                sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4317                set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4318                set_bit(STRIPE_HANDLE, &sh->state);
4319                release_stripe(sh);
4320                first_sector += STRIPE_SECTORS;
4321        }
4322        /* Now that the sources are clearly marked, we can release
4323         * the destination stripes
4324         */
4325        while (!list_empty(&stripes)) {
4326                sh = list_entry(stripes.next, struct stripe_head, lru);
4327                list_del_init(&sh->lru);
4328                release_stripe(sh);
4329        }
4330        /* If this takes us to the resync_max point where we have to pause,
4331         * then we need to write out the superblock.
4332         */
4333        sector_nr += reshape_sectors;
4334        if ((sector_nr - mddev->curr_resync_completed) * 2
4335            >= mddev->resync_max - mddev->curr_resync_completed) {
4336                /* Cannot proceed until we've updated the superblock... */
4337                wait_event(conf->wait_for_overlap,
4338                           atomic_read(&conf->reshape_stripes) == 0);
4339                mddev->reshape_position = conf->reshape_progress;
4340                mddev->curr_resync_completed = sector_nr;
4341                conf->reshape_checkpoint = jiffies;
4342                set_bit(MD_CHANGE_DEVS, &mddev->flags);
4343                md_wakeup_thread(mddev->thread);
4344                wait_event(mddev->sb_wait,
4345                           !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4346                           || kthread_should_stop());
4347                spin_lock_irq(&conf->device_lock);
4348                conf->reshape_safe = mddev->reshape_position;
4349                spin_unlock_irq(&conf->device_lock);
4350                wake_up(&conf->wait_for_overlap);
4351                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4352        }
4353        return reshape_sectors;
4354}
4355
4356/* FIXME go_faster isn't used */
4357static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4358{
4359        raid5_conf_t *conf = mddev->private;
4360        struct stripe_head *sh;
4361        sector_t max_sector = mddev->dev_sectors;
4362        sector_t sync_blocks;
4363        int still_degraded = 0;
4364        int i;
4365
4366        if (sector_nr >= max_sector) {
4367                /* just being told to finish up .. nothing much to do */
4368                unplug_slaves(mddev);
4369
4370                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4371                        end_reshape(conf);
4372                        return 0;
4373                }
4374
4375                if (mddev->curr_resync < max_sector) /* aborted */
4376                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4377                                        &sync_blocks, 1);
4378                else /* completed sync */
4379                        conf->fullsync = 0;
4380                bitmap_close_sync(mddev->bitmap);
4381
4382                return 0;
4383        }
4384
4385        /* Allow raid5_quiesce to complete */
4386        wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4387
4388        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4389                return reshape_request(mddev, sector_nr, skipped);
4390
4391        /* No need to check resync_max as we never do more than one
4392         * stripe, and as resync_max will always be on a chunk boundary,
4393         * if the check in md_do_sync didn't fire, there is no chance
4394         * of overstepping resync_max here
4395         */
4396
4397        /* if there is too many failed drives and we are trying
4398         * to resync, then assert that we are finished, because there is
4399         * nothing we can do.
4400         */
4401        if (mddev->degraded >= conf->max_degraded &&
4402            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4403                sector_t rv = mddev->dev_sectors - sector_nr;
4404                *skipped = 1;
4405                return rv;
4406        }
4407        if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4408            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4409            !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4410                /* we can skip this block, and probably more */
4411                sync_blocks /= STRIPE_SECTORS;
4412                *skipped = 1;
4413                return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4414        }
4415
4416
4417        bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4418
4419        sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4420        if (sh == NULL) {
4421                sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4422                /* make sure we don't swamp the stripe cache if someone else
4423                 * is trying to get access
4424                 */
4425                schedule_timeout_uninterruptible(1);
4426        }
4427        /* Need to check if array will still be degraded after recovery/resync
4428         * We don't need to check the 'failed' flag as when that gets set,
4429         * recovery aborts.
4430         */
4431        for (i = 0; i < conf->raid_disks; i++)
4432                if (conf->disks[i].rdev == NULL)
4433                        still_degraded = 1;
4434
4435        bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4436
4437        spin_lock(&sh->lock);
4438        set_bit(STRIPE_SYNCING, &sh->state);
4439        clear_bit(STRIPE_INSYNC, &sh->state);
4440        spin_unlock(&sh->lock);
4441
4442        handle_stripe(sh);
4443        release_stripe(sh);
4444
4445        return STRIPE_SECTORS;
4446}
4447
4448static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4449{
4450        /* We may not be able to submit a whole bio at once as there
4451         * may not be enough stripe_heads available.
4452         * We cannot pre-allocate enough stripe_heads as we may need
4453         * more than exist in the cache (if we allow ever large chunks).
4454         * So we do one stripe head at a time and record in
4455         * ->bi_hw_segments how many have been done.
4456         *
4457         * We *know* that this entire raid_bio is in one chunk, so
4458         * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4459         */
4460        struct stripe_head *sh;
4461        int dd_idx;
4462        sector_t sector, logical_sector, last_sector;
4463        int scnt = 0;
4464        int remaining;
4465        int handled = 0;
4466
4467        logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4468        sector = raid5_compute_sector(conf, logical_sector,
4469                                      0, &dd_idx, NULL);
4470        last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4471
4472        for (; logical_sector < last_sector;
4473             logical_sector += STRIPE_SECTORS,
4474                     sector += STRIPE_SECTORS,
4475                     scnt++) {
4476
4477                if (scnt < raid5_bi_hw_segments(raid_bio))
4478                        /* already done this stripe */
4479                        continue;
4480
4481                sh = get_active_stripe(conf, sector, 0, 1, 0);
4482
4483                if (!sh) {
4484                        /* failed to get a stripe - must wait */
4485                        raid5_set_bi_hw_segments(raid_bio, scnt);
4486                        conf->retry_read_aligned = raid_bio;
4487                        return handled;
4488                }
4489
4490                set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4491                if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4492                        release_stripe(sh);
4493                        raid5_set_bi_hw_segments(raid_bio, scnt);
4494                        conf->retry_read_aligned = raid_bio;
4495                        return handled;
4496                }
4497
4498                handle_stripe(sh);
4499                release_stripe(sh);
4500                handled++;
4501        }
4502        spin_lock_irq(&conf->device_lock);
4503        remaining = raid5_dec_bi_phys_segments(raid_bio);
4504        spin_unlock_irq(&conf->device_lock);
4505        if (remaining == 0)
4506                bio_endio(raid_bio, 0);
4507        if (atomic_dec_and_test(&conf->active_aligned_reads))
4508                wake_up(&conf->wait_for_stripe);
4509        return handled;
4510}
4511
4512
4513/*
4514 * This is our raid5 kernel thread.
4515 *
4516 * We scan the hash table for stripes which can be handled now.
4517 * During the scan, completed stripes are saved for us by the interrupt
4518 * handler, so that they will not have to wait for our next wakeup.
4519 */
4520static void raid5d(mddev_t *mddev)
4521{
4522        struct stripe_head *sh;
4523        raid5_conf_t *conf = mddev->private;
4524        int handled;
4525
4526        pr_debug("+++ raid5d active\n");
4527
4528        md_check_recovery(mddev);
4529
4530        handled = 0;
4531        spin_lock_irq(&conf->device_lock);
4532        while (1) {
4533                struct bio *bio;
4534
4535                if (conf->seq_flush != conf->seq_write) {
4536                        int seq = conf->seq_flush;
4537                        spin_unlock_irq(&conf->device_lock);
4538                        bitmap_unplug(mddev->bitmap);
4539                        spin_lock_irq(&conf->device_lock);
4540                        conf->seq_write = seq;
4541                        activate_bit_delay(conf);
4542                }
4543
4544                while ((bio = remove_bio_from_retry(conf))) {
4545                        int ok;
4546                        spin_unlock_irq(&conf->device_lock);
4547                        ok = retry_aligned_read(conf, bio);
4548                        spin_lock_irq(&conf->device_lock);
4549                        if (!ok)
4550                                break;
4551                        handled++;
4552                }
4553
4554                sh = __get_priority_stripe(conf);
4555
4556                if (!sh)
4557                        break;
4558                spin_unlock_irq(&conf->device_lock);
4559                
4560                handled++;
4561                handle_stripe(sh);
4562                release_stripe(sh);
4563                cond_resched();
4564
4565                spin_lock_irq(&conf->device_lock);
4566        }
4567        pr_debug("%d stripes handled\n", handled);
4568
4569        spin_unlock_irq(&conf->device_lock);
4570
4571        async_tx_issue_pending_all();
4572        unplug_slaves(mddev);
4573
4574        pr_debug("--- raid5d inactive\n");
4575}
4576
4577static ssize_t
4578raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4579{
4580        raid5_conf_t *conf = mddev->private;
4581        if (conf)
4582                return sprintf(page, "%d\n", conf->max_nr_stripes);
4583        else
4584                return 0;
4585}
4586
4587int
4588raid5_set_cache_size(mddev_t *mddev, int size)
4589{
4590        raid5_conf_t *conf = mddev->private;
4591        int err;
4592
4593        if (size <= 16 || size > 32768)
4594                return -EINVAL;
4595        while (size < conf->max_nr_stripes) {
4596                if (drop_one_stripe(conf))
4597                        conf->max_nr_stripes--;
4598                else
4599                        break;
4600        }
4601        err = md_allow_write(mddev);
4602        if (err)
4603                return err;
4604        while (size > conf->max_nr_stripes) {
4605                if (grow_one_stripe(conf))
4606                        conf->max_nr_stripes++;
4607                else break;
4608        }
4609        return 0;
4610}
4611EXPORT_SYMBOL(raid5_set_cache_size);
4612
4613static ssize_t
4614raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4615{
4616        raid5_conf_t *conf = mddev->private;
4617        unsigned long new;
4618        int err;
4619
4620        if (len >= PAGE_SIZE)
4621                return -EINVAL;
4622        if (!conf)
4623                return -ENODEV;
4624
4625        if (strict_strtoul(page, 10, &new))
4626                return -EINVAL;
4627        err = raid5_set_cache_size(mddev, new);
4628        if (err)
4629                return err;
4630        return len;
4631}
4632
4633static struct md_sysfs_entry
4634raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4635                                raid5_show_stripe_cache_size,
4636                                raid5_store_stripe_cache_size);
4637
4638static ssize_t
4639raid5_show_preread_threshold(mddev_t *mddev, char *page)
4640{
4641        raid5_conf_t *conf = mddev->private;
4642        if (conf)
4643                return sprintf(page, "%d\n", conf->bypass_threshold);
4644        else
4645                return 0;
4646}
4647
4648static ssize_t
4649raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4650{
4651        raid5_conf_t *conf = mddev->private;
4652        unsigned long new;
4653        if (len >= PAGE_SIZE)
4654                return -EINVAL;
4655        if (!conf)
4656                return -ENODEV;
4657
4658        if (strict_strtoul(page, 10, &new))
4659                return -EINVAL;
4660        if (new > conf->max_nr_stripes)
4661                return -EINVAL;
4662        conf->bypass_threshold = new;
4663        return len;
4664}
4665
4666static struct md_sysfs_entry
4667raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4668                                        S_IRUGO | S_IWUSR,
4669                                        raid5_show_preread_threshold,
4670                                        raid5_store_preread_threshold);
4671
4672static ssize_t
4673stripe_cache_active_show(mddev_t *mddev, char *page)
4674{
4675        raid5_conf_t *conf = mddev->private;
4676        if (conf)
4677                return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4678        else
4679                return 0;
4680}
4681
4682static struct md_sysfs_entry
4683raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4684
4685static struct attribute *raid5_attrs[] =  {
4686        &raid5_stripecache_size.attr,
4687        &raid5_stripecache_active.attr,
4688        &raid5_preread_bypass_threshold.attr,
4689        NULL,
4690};
4691static struct attribute_group raid5_attrs_group = {
4692        .name = NULL,
4693        .attrs = raid5_attrs,
4694};
4695
4696static sector_t
4697raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4698{
4699        raid5_conf_t *conf = mddev->private;
4700
4701        if (!sectors)
4702                sectors = mddev->dev_sectors;
4703        if (!raid_disks)
4704                /* size is defined by the smallest of previous and new size */
4705                raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4706
4707        sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4708        sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4709        return sectors * (raid_disks - conf->max_degraded);
4710}
4711
4712static void raid5_free_percpu(raid5_conf_t *conf)
4713{
4714        struct raid5_percpu *percpu;
4715        unsigned long cpu;
4716
4717        if (!conf->percpu)
4718                return;
4719
4720        get_online_cpus();
4721        for_each_possible_cpu(cpu) {
4722                percpu = per_cpu_ptr(conf->percpu, cpu);
4723                safe_put_page(percpu->spare_page);
4724                kfree(percpu->scribble);
4725        }
4726#ifdef CONFIG_HOTPLUG_CPU
4727        unregister_cpu_notifier(&conf->cpu_notify);
4728#endif
4729        put_online_cpus();
4730
4731        free_percpu(conf->percpu);
4732}
4733
4734static void free_conf(raid5_conf_t *conf)
4735{
4736        shrink_stripes(conf);
4737        raid5_free_percpu(conf);
4738        kfree(conf->disks);
4739        kfree(conf->stripe_hashtbl);
4740        kfree(conf);
4741}
4742
4743#ifdef CONFIG_HOTPLUG_CPU
4744static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4745                              void *hcpu)
4746{
4747        raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4748        long cpu = (long)hcpu;
4749        struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4750
4751        switch (action) {
4752        case CPU_UP_PREPARE:
4753        case CPU_UP_PREPARE_FROZEN:
4754                if (conf->level == 6 && !percpu->spare_page)
4755                        percpu->spare_page = alloc_page(GFP_KERNEL);
4756                if (!percpu->scribble)
4757                        percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4758
4759                if (!percpu->scribble ||
4760                    (conf->level == 6 && !percpu->spare_page)) {
4761                        safe_put_page(percpu->spare_page);
4762                        kfree(percpu->scribble);
4763                        pr_err("%s: failed memory allocation for cpu%ld\n",
4764                               __func__, cpu);
4765                        return notifier_from_errno(-ENOMEM);
4766                }
4767                break;
4768        case CPU_DEAD:
4769        case CPU_DEAD_FROZEN:
4770                safe_put_page(percpu->spare_page);
4771                kfree(percpu->scribble);
4772                percpu->spare_page = NULL;
4773                percpu->scribble = NULL;
4774                break;
4775        default:
4776                break;
4777        }
4778        return NOTIFY_OK;
4779}
4780#endif
4781
4782static int raid5_alloc_percpu(raid5_conf_t *conf)
4783{
4784        unsigned long cpu;
4785        struct page *spare_page;
4786        struct raid5_percpu __percpu *allcpus;
4787        void *scribble;
4788        int err;
4789
4790        allcpus = alloc_percpu(struct raid5_percpu);
4791        if (!allcpus)
4792                return -ENOMEM;
4793        conf->percpu = allcpus;
4794
4795        get_online_cpus();
4796        err = 0;
4797        for_each_present_cpu(cpu) {
4798                if (conf->level == 6) {
4799                        spare_page = alloc_page(GFP_KERNEL);
4800                        if (!spare_page) {
4801                                err = -ENOMEM;
4802                                break;
4803                        }
4804                        per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4805                }
4806                scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4807                if (!scribble) {
4808                        err = -ENOMEM;
4809                        break;
4810                }
4811                per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4812        }
4813#ifdef CONFIG_HOTPLUG_CPU
4814        conf->cpu_notify.notifier_call = raid456_cpu_notify;
4815        conf->cpu_notify.priority = 0;
4816        if (err == 0)
4817                err = register_cpu_notifier(&conf->cpu_notify);
4818#endif
4819        put_online_cpus();
4820
4821        return err;
4822}
4823
4824static raid5_conf_t *setup_conf(mddev_t *mddev)
4825{
4826        raid5_conf_t *conf;
4827        int raid_disk, memory, max_disks;
4828        mdk_rdev_t *rdev;
4829        struct disk_info *disk;
4830
4831        if (mddev->new_level != 5
4832            && mddev->new_level != 4
4833            && mddev->new_level != 6) {
4834                printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4835                       mdname(mddev), mddev->new_level);
4836                return ERR_PTR(-EIO);
4837        }
4838        if ((mddev->new_level == 5
4839             && !algorithm_valid_raid5(mddev->new_layout)) ||
4840            (mddev->new_level == 6
4841             && !algorithm_valid_raid6(mddev->new_layout))) {
4842                printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4843                       mdname(mddev), mddev->new_layout);
4844                return ERR_PTR(-EIO);
4845        }
4846        if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4847                printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4848                       mdname(mddev), mddev->raid_disks);
4849                return ERR_PTR(-EINVAL);
4850        }
4851
4852        if (!mddev->new_chunk_sectors ||
4853            (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4854            !is_power_of_2(mddev->new_chunk_sectors)) {
4855                printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4856                       mdname(mddev), mddev->new_chunk_sectors << 9);
4857                return ERR_PTR(-EINVAL);
4858        }
4859
4860        conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4861        if (conf == NULL)
4862                goto abort;
4863        spin_lock_init(&conf->device_lock);
4864        init_waitqueue_head(&conf->wait_for_stripe);
4865        init_waitqueue_head(&conf->wait_for_overlap);
4866        INIT_LIST_HEAD(&conf->handle_list);
4867        INIT_LIST_HEAD(&conf->hold_list);
4868        INIT_LIST_HEAD(&conf->delayed_list);
4869        INIT_LIST_HEAD(&conf->bitmap_list);
4870        INIT_LIST_HEAD(&conf->inactive_list);
4871        atomic_set(&conf->active_stripes, 0);
4872        atomic_set(&conf->preread_active_stripes, 0);
4873        atomic_set(&conf->active_aligned_reads, 0);
4874        conf->bypass_threshold = BYPASS_THRESHOLD;
4875
4876        conf->raid_disks = mddev->raid_disks;
4877        if (mddev->reshape_position == MaxSector)
4878                conf->previous_raid_disks = mddev->raid_disks;
4879        else
4880                conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4881        max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4882        conf->scribble_len = scribble_len(max_disks);
4883
4884        conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4885                              GFP_KERNEL);
4886        if (!conf->disks)
4887                goto abort;
4888
4889        conf->mddev = mddev;
4890
4891        if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4892                goto abort;
4893
4894        conf->level = mddev->new_level;
4895        if (raid5_alloc_percpu(conf) != 0)
4896                goto abort;
4897
4898        pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4899
4900        list_for_each_entry(rdev, &mddev->disks, same_set) {
4901                raid_disk = rdev->raid_disk;
4902                if (raid_disk >= max_disks
4903                    || raid_disk < 0)
4904                        continue;
4905                disk = conf->disks + raid_disk;
4906
4907                disk->rdev = rdev;
4908
4909                if (test_bit(In_sync, &rdev->flags)) {
4910                        char b[BDEVNAME_SIZE];
4911                        printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4912                               " disk %d\n",
4913                               mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4914                } else
4915                        /* Cannot rely on bitmap to complete recovery */
4916                        conf->fullsync = 1;
4917        }
4918
4919        conf->chunk_sectors = mddev->new_chunk_sectors;
4920        conf->level = mddev->new_level;
4921        if (conf->level == 6)
4922                conf->max_degraded = 2;
4923        else
4924                conf->max_degraded = 1;
4925        conf->algorithm = mddev->new_layout;
4926        conf->max_nr_stripes = NR_STRIPES;
4927        conf->reshape_progress = mddev->reshape_position;
4928        if (conf->reshape_progress != MaxSector) {
4929                conf->prev_chunk_sectors = mddev->chunk_sectors;
4930                conf->prev_algo = mddev->layout;
4931        }
4932
4933        memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4934                 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4935        if (grow_stripes(conf, conf->max_nr_stripes)) {
4936                printk(KERN_ERR
4937                       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4938                       mdname(mddev), memory);
4939                goto abort;
4940        } else
4941                printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4942                       mdname(mddev), memory);
4943
4944        conf->thread = md_register_thread(raid5d, mddev, NULL);
4945        if (!conf->thread) {
4946                printk(KERN_ERR
4947                       "md/raid:%s: couldn't allocate thread.\n",
4948                       mdname(mddev));
4949                goto abort;
4950        }
4951
4952        return conf;
4953
4954 abort:
4955        if (conf) {
4956                free_conf(conf);
4957                return ERR_PTR(-EIO);
4958        } else
4959                return ERR_PTR(-ENOMEM);
4960}
4961
4962
4963static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4964{
4965        switch (algo) {
4966        case ALGORITHM_PARITY_0:
4967                if (raid_disk < max_degraded)
4968                        return 1;
4969                break;
4970        case ALGORITHM_PARITY_N:
4971                if (raid_disk >= raid_disks - max_degraded)
4972                        return 1;
4973                break;
4974        case ALGORITHM_PARITY_0_6:
4975                if (raid_disk == 0 || 
4976                    raid_disk == raid_disks - 1)
4977                        return 1;
4978                break;
4979        case ALGORITHM_LEFT_ASYMMETRIC_6:
4980        case ALGORITHM_RIGHT_ASYMMETRIC_6:
4981        case ALGORITHM_LEFT_SYMMETRIC_6:
4982        case ALGORITHM_RIGHT_SYMMETRIC_6:
4983                if (raid_disk == raid_disks - 1)
4984                        return 1;
4985        }
4986        return 0;
4987}
4988
4989static int run(mddev_t *mddev)
4990{
4991        raid5_conf_t *conf;
4992        int working_disks = 0;
4993        int dirty_parity_disks = 0;
4994        mdk_rdev_t *rdev;
4995        sector_t reshape_offset = 0;
4996
4997        if (mddev->recovery_cp != MaxSector)
4998                printk(KERN_NOTICE "md/raid:%s: not clean"
4999                       " -- starting background reconstruction\n",
5000                       mdname(mddev));
5001        if (mddev->reshape_position != MaxSector) {
5002                /* Check that we can continue the reshape.
5003                 * Currently only disks can change, it must
5004                 * increase, and we must be past the point where
5005                 * a stripe over-writes itself
5006                 */
5007                sector_t here_new, here_old;
5008                int old_disks;
5009                int max_degraded = (mddev->level == 6 ? 2 : 1);
5010
5011                if (mddev->new_level != mddev->level) {
5012                        printk(KERN_ERR "md/raid:%s: unsupported reshape "
5013                               "required - aborting.\n",
5014                               mdname(mddev));
5015                        return -EINVAL;
5016                }
5017                old_disks = mddev->raid_disks - mddev->delta_disks;
5018                /* reshape_position must be on a new-stripe boundary, and one
5019                 * further up in new geometry must map after here in old
5020                 * geometry.
5021                 */
5022                here_new = mddev->reshape_position;
5023                if (sector_div(here_new, mddev->new_chunk_sectors *
5024                               (mddev->raid_disks - max_degraded))) {
5025                        printk(KERN_ERR "md/raid:%s: reshape_position not "
5026                               "on a stripe boundary\n", mdname(mddev));
5027                        return -EINVAL;
5028                }
5029                reshape_offset = here_new * mddev->new_chunk_sectors;
5030                /* here_new is the stripe we will write to */
5031                here_old = mddev->reshape_position;
5032                sector_div(here_old, mddev->chunk_sectors *
5033                           (old_disks-max_degraded));
5034                /* here_old is the first stripe that we might need to read
5035                 * from */
5036                if (mddev->delta_disks == 0) {
5037                        /* We cannot be sure it is safe to start an in-place
5038                         * reshape.  It is only safe if user-space if monitoring
5039                         * and taking constant backups.
5040                         * mdadm always starts a situation like this in
5041                         * readonly mode so it can take control before
5042                         * allowing any writes.  So just check for that.
5043                         */
5044                        if ((here_new * mddev->new_chunk_sectors != 
5045                             here_old * mddev->chunk_sectors) ||
5046                            mddev->ro == 0) {
5047                                printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5048                                       " in read-only mode - aborting\n",
5049                                       mdname(mddev));
5050                                return -EINVAL;
5051                        }
5052                } else if (mddev->delta_disks < 0
5053                    ? (here_new * mddev->new_chunk_sectors <=
5054                       here_old * mddev->chunk_sectors)
5055                    : (here_new * mddev->new_chunk_sectors >=
5056                       here_old * mddev->chunk_sectors)) {
5057                        /* Reading from the same stripe as writing to - bad */
5058                        printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5059                               "auto-recovery - aborting.\n",
5060                               mdname(mddev));
5061                        return -EINVAL;
5062                }
5063                printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5064                       mdname(mddev));
5065                /* OK, we should be able to continue; */
5066        } else {
5067                BUG_ON(mddev->level != mddev->new_level);
5068                BUG_ON(mddev->layout != mddev->new_layout);
5069                BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5070                BUG_ON(mddev->delta_disks != 0);
5071        }
5072
5073        if (mddev->private == NULL)
5074                conf = setup_conf(mddev);
5075        else
5076                conf = mddev->private;
5077
5078        if (IS_ERR(conf))
5079                return PTR_ERR(conf);
5080
5081        mddev->thread = conf->thread;
5082        conf->thread = NULL;
5083        mddev->private = conf;
5084
5085        /*
5086         * 0 for a fully functional array, 1 or 2 for a degraded array.
5087         */
5088        list_for_each_entry(rdev, &mddev->disks, same_set) {
5089                if (rdev->raid_disk < 0)
5090                        continue;
5091                if (test_bit(In_sync, &rdev->flags)) {
5092                        working_disks++;
5093                        continue;
5094                }
5095                /* This disc is not fully in-sync.  However if it
5096                 * just stored parity (beyond the recovery_offset),
5097                 * when we don't need to be concerned about the
5098                 * array being dirty.
5099                 * When reshape goes 'backwards', we never have
5100                 * partially completed devices, so we only need
5101                 * to worry about reshape going forwards.
5102                 */
5103                /* Hack because v0.91 doesn't store recovery_offset properly. */
5104                if (mddev->major_version == 0 &&
5105                    mddev->minor_version > 90)
5106                        rdev->recovery_offset = reshape_offset;
5107                        
5108                if (rdev->recovery_offset < reshape_offset) {
5109                        /* We need to check old and new layout */
5110                        if (!only_parity(rdev->raid_disk,
5111                                         conf->algorithm,
5112                                         conf->raid_disks,
5113                                         conf->max_degraded))
5114                                continue;
5115                }
5116                if (!only_parity(rdev->raid_disk,
5117                                 conf->prev_algo,
5118                                 conf->previous_raid_disks,
5119                                 conf->max_degraded))
5120                        continue;
5121                dirty_parity_disks++;
5122        }
5123
5124        mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5125                           - working_disks);
5126
5127        if (has_failed(conf)) {
5128                printk(KERN_ERR "md/raid:%s: not enough operational devices"
5129                        " (%d/%d failed)\n",
5130                        mdname(mddev), mddev->degraded, conf->raid_disks);
5131                goto abort;
5132        }
5133
5134        /* device size must be a multiple of chunk size */
5135        mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5136        mddev->resync_max_sectors = mddev->dev_sectors;
5137
5138        if (mddev->degraded > dirty_parity_disks &&
5139            mddev->recovery_cp != MaxSector) {
5140                if (mddev->ok_start_degraded)
5141                        printk(KERN_WARNING
5142                               "md/raid:%s: starting dirty degraded array"
5143                               " - data corruption possible.\n",
5144                               mdname(mddev));
5145                else {
5146                        printk(KERN_ERR
5147                               "md/raid:%s: cannot start dirty degraded array.\n",
5148                               mdname(mddev));
5149                        goto abort;
5150                }
5151        }
5152
5153        if (mddev->degraded == 0)
5154                printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5155                       " devices, algorithm %d\n", mdname(mddev), conf->level,
5156                       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5157                       mddev->new_layout);
5158        else
5159                printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5160                       " out of %d devices, algorithm %d\n",
5161                       mdname(mddev), conf->level,
5162                       mddev->raid_disks - mddev->degraded,
5163                       mddev->raid_disks, mddev->new_layout);
5164
5165        print_raid5_conf(conf);
5166
5167        if (conf->reshape_progress != MaxSector) {
5168                conf->reshape_safe = conf->reshape_progress;
5169                atomic_set(&conf->reshape_stripes, 0);
5170                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5171                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5172                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5173                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5174                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5175                                                        "reshape");
5176        }
5177
5178
5179        /* Ok, everything is just fine now */
5180        if (mddev->to_remove == &raid5_attrs_group)
5181                mddev->to_remove = NULL;
5182        else if (mddev->kobj.sd &&
5183            sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5184                printk(KERN_WARNING
5185                       "raid5: failed to create sysfs attributes for %s\n",
5186                       mdname(mddev));
5187        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5188
5189        plugger_init(&conf->plug, raid5_unplug);
5190        mddev->plug = &conf->plug;
5191        if (mddev->queue) {
5192                int chunk_size;
5193                /* read-ahead size must cover two whole stripes, which
5194                 * is 2 * (datadisks) * chunksize where 'n' is the
5195                 * number of raid devices
5196                 */
5197                int data_disks = conf->previous_raid_disks - conf->max_degraded;
5198                int stripe = data_disks *
5199                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5200                if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5201                        mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5202
5203                blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5204
5205                mddev->queue->backing_dev_info.congested_data = mddev;
5206                mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5207                mddev->queue->unplug_fn = raid5_unplug_queue;
5208
5209                chunk_size = mddev->chunk_sectors << 9;
5210                blk_queue_io_min(mddev->queue, chunk_size);
5211                blk_queue_io_opt(mddev->queue, chunk_size *
5212                                 (conf->raid_disks - conf->max_degraded));
5213
5214                list_for_each_entry(rdev, &mddev->disks, same_set)
5215                        disk_stack_limits(mddev->gendisk, rdev->bdev,
5216                                          rdev->data_offset << 9);
5217        }
5218
5219        return 0;
5220abort:
5221        md_unregister_thread(mddev->thread);
5222        mddev->thread = NULL;
5223        if (conf) {
5224                print_raid5_conf(conf);
5225                free_conf(conf);
5226        }
5227        mddev->private = NULL;
5228        printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5229        return -EIO;
5230}
5231
5232static int stop(mddev_t *mddev)
5233{
5234        raid5_conf_t *conf = mddev->private;
5235
5236        md_unregister_thread(mddev->thread);
5237        mddev->thread = NULL;
5238        if (mddev->queue)
5239                mddev->queue->backing_dev_info.congested_fn = NULL;
5240        plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/
5241        free_conf(conf);
5242        mddev->private = NULL;
5243        mddev->to_remove = &raid5_attrs_group;
5244        return 0;
5245}
5246
5247#ifdef DEBUG
5248static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5249{
5250        int i;
5251
5252        seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5253                   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5254        seq_printf(seq, "sh %llu,  count %d.\n",
5255                   (unsigned long long)sh->sector, atomic_read(&sh->count));
5256        seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5257        for (i = 0; i < sh->disks; i++) {
5258                seq_printf(seq, "(cache%d: %p %ld) ",
5259                           i, sh->dev[i].page, sh->dev[i].flags);
5260        }
5261        seq_printf(seq, "\n");
5262}
5263
5264static void printall(struct seq_file *seq, raid5_conf_t *conf)
5265{
5266        struct stripe_head *sh;
5267        struct hlist_node *hn;
5268        int i;
5269
5270        spin_lock_irq(&conf->device_lock);
5271        for (i = 0; i < NR_HASH; i++) {
5272                hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5273                        if (sh->raid_conf != conf)
5274                                continue;
5275                        print_sh(seq, sh);
5276                }
5277        }
5278        spin_unlock_irq(&conf->device_lock);
5279}
5280#endif
5281
5282static void status(struct seq_file *seq, mddev_t *mddev)
5283{
5284        raid5_conf_t *conf = mddev->private;
5285        int i;
5286
5287        seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5288                mddev->chunk_sectors / 2, mddev->layout);
5289        seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5290        for (i = 0; i < conf->raid_disks; i++)
5291                seq_printf (seq, "%s",
5292                               conf->disks[i].rdev &&
5293                               test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5294        seq_printf (seq, "]");
5295#ifdef DEBUG
5296        seq_printf (seq, "\n");
5297        printall(seq, conf);
5298#endif
5299}
5300
5301static void print_raid5_conf (raid5_conf_t *conf)
5302{
5303        int i;
5304        struct disk_info *tmp;
5305
5306        printk(KERN_DEBUG "RAID conf printout:\n");
5307        if (!conf) {
5308                printk("(conf==NULL)\n");
5309                return;
5310        }
5311        printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5312               conf->raid_disks,
5313               conf->raid_disks - conf->mddev->degraded);
5314
5315        for (i = 0; i < conf->raid_disks; i++) {
5316                char b[BDEVNAME_SIZE];
5317                tmp = conf->disks + i;
5318                if (tmp->rdev)
5319                        printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5320                               i, !test_bit(Faulty, &tmp->rdev->flags),
5321                               bdevname(tmp->rdev->bdev, b));
5322        }
5323}
5324
5325static int raid5_spare_active(mddev_t *mddev)
5326{
5327        int i;
5328        raid5_conf_t *conf = mddev->private;
5329        struct disk_info *tmp;
5330        int count = 0;
5331        unsigned long flags;
5332
5333        for (i = 0; i < conf->raid_disks; i++) {
5334                tmp = conf->disks + i;
5335                if (tmp->rdev
5336                    && tmp->rdev->recovery_offset == MaxSector
5337                    && !test_bit(Faulty, &tmp->rdev->flags)
5338                    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5339                        count++;
5340                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5341                }
5342        }
5343        spin_lock_irqsave(&conf->device_lock, flags);
5344        mddev->degraded -= count;
5345        spin_unlock_irqrestore(&conf->device_lock, flags);
5346        print_raid5_conf(conf);
5347        return count;
5348}
5349
5350static int raid5_remove_disk(mddev_t *mddev, int number)
5351{
5352        raid5_conf_t *conf = mddev->private;
5353        int err = 0;
5354        mdk_rdev_t *rdev;
5355        struct disk_info *p = conf->disks + number;
5356
5357        print_raid5_conf(conf);
5358        rdev = p->rdev;
5359        if (rdev) {
5360                if (number >= conf->raid_disks &&
5361                    conf->reshape_progress == MaxSector)
5362                        clear_bit(In_sync, &rdev->flags);
5363
5364                if (test_bit(In_sync, &rdev->flags) ||
5365                    atomic_read(&rdev->nr_pending)) {
5366                        err = -EBUSY;
5367                        goto abort;
5368                }
5369                /* Only remove non-faulty devices if recovery
5370                 * isn't possible.
5371                 */
5372                if (!test_bit(Faulty, &rdev->flags) &&
5373                    !has_failed(conf) &&
5374                    number < conf->raid_disks) {
5375                        err = -EBUSY;
5376                        goto abort;
5377                }
5378                p->rdev = NULL;
5379                synchronize_rcu();
5380                if (atomic_read(&rdev->nr_pending)) {
5381                        /* lost the race, try later */
5382                        err = -EBUSY;
5383                        p->rdev = rdev;
5384                }
5385        }
5386abort:
5387
5388        print_raid5_conf(conf);
5389        return err;
5390}
5391
5392static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5393{
5394        raid5_conf_t *conf = mddev->private;
5395        int err = -EEXIST;
5396        int disk;
5397        struct disk_info *p;
5398        int first = 0;
5399        int last = conf->raid_disks - 1;
5400
5401        if (has_failed(conf))
5402                /* no point adding a device */
5403                return -EINVAL;
5404
5405        if (rdev->raid_disk >= 0)
5406                first = last = rdev->raid_disk;
5407
5408        /*
5409         * find the disk ... but prefer rdev->saved_raid_disk
5410         * if possible.
5411         */
5412        if (rdev->saved_raid_disk >= 0 &&
5413            rdev->saved_raid_disk >= first &&
5414            conf->disks[rdev->saved_raid_disk].rdev == NULL)
5415                disk = rdev->saved_raid_disk;
5416        else
5417                disk = first;
5418        for ( ; disk <= last ; disk++)
5419                if ((p=conf->disks + disk)->rdev == NULL) {
5420                        clear_bit(In_sync, &rdev->flags);
5421                        rdev->raid_disk = disk;
5422                        err = 0;
5423                        if (rdev->saved_raid_disk != disk)
5424                                conf->fullsync = 1;
5425                        rcu_assign_pointer(p->rdev, rdev);
5426                        break;
5427                }
5428        print_raid5_conf(conf);
5429        return err;
5430}
5431
5432static int raid5_resize(mddev_t *mddev, sector_t sectors)
5433{
5434        /* no resync is happening, and there is enough space
5435         * on all devices, so we can resize.
5436         * We need to make sure resync covers any new space.
5437         * If the array is shrinking we should possibly wait until
5438         * any io in the removed space completes, but it hardly seems
5439         * worth it.
5440         */
5441        sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5442        md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5443                                               mddev->raid_disks));
5444        if (mddev->array_sectors >
5445            raid5_size(mddev, sectors, mddev->raid_disks))
5446                return -EINVAL;
5447        set_capacity(mddev->gendisk, mddev->array_sectors);
5448        revalidate_disk(mddev->gendisk);
5449        if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5450                mddev->recovery_cp = mddev->dev_sectors;
5451                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5452        }
5453        mddev->dev_sectors = sectors;
5454        mddev->resync_max_sectors = sectors;
5455        return 0;
5456}
5457
5458static int check_stripe_cache(mddev_t *mddev)
5459{
5460        /* Can only proceed if there are plenty of stripe_heads.
5461         * We need a minimum of one full stripe,, and for sensible progress
5462         * it is best to have about 4 times that.
5463         * If we require 4 times, then the default 256 4K stripe_heads will
5464         * allow for chunk sizes up to 256K, which is probably OK.
5465         * If the chunk size is greater, user-space should request more
5466         * stripe_heads first.
5467         */
5468        raid5_conf_t *conf = mddev->private;
5469        if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5470            > conf->max_nr_stripes ||
5471            ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5472            > conf->max_nr_stripes) {
5473                printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5474                       mdname(mddev),
5475                       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5476                        / STRIPE_SIZE)*4);
5477                return 0;
5478        }
5479        return 1;
5480}
5481
5482static int check_reshape(mddev_t *mddev)
5483{
5484        raid5_conf_t *conf = mddev->private;
5485
5486        if (mddev->delta_disks == 0 &&
5487            mddev->new_layout == mddev->layout &&
5488            mddev->new_chunk_sectors == mddev->chunk_sectors)
5489                return 0; /* nothing to do */
5490        if (mddev->bitmap)
5491                /* Cannot grow a bitmap yet */
5492                return -EBUSY;
5493        if (has_failed(conf))
5494                return -EINVAL;
5495        if (mddev->delta_disks < 0) {
5496                /* We might be able to shrink, but the devices must
5497                 * be made bigger first.
5498                 * For raid6, 4 is the minimum size.
5499                 * Otherwise 2 is the minimum
5500                 */
5501                int min = 2;
5502                if (mddev->level == 6)
5503                        min = 4;
5504                if (mddev->raid_disks + mddev->delta_disks < min)
5505                        return -EINVAL;
5506        }
5507
5508        if (!check_stripe_cache(mddev))
5509                return -ENOSPC;
5510
5511        return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5512}
5513
5514static int raid5_start_reshape(mddev_t *mddev)
5515{
5516        raid5_conf_t *conf = mddev->private;
5517        mdk_rdev_t *rdev;
5518        int spares = 0;
5519        unsigned long flags;
5520
5521        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5522                return -EBUSY;
5523
5524        if (!check_stripe_cache(mddev))
5525                return -ENOSPC;
5526
5527        list_for_each_entry(rdev, &mddev->disks, same_set)
5528                if (!test_bit(In_sync, &rdev->flags)
5529                    && !test_bit(Faulty, &rdev->flags))
5530                        spares++;
5531
5532        if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5533                /* Not enough devices even to make a degraded array
5534                 * of that size
5535                 */
5536                return -EINVAL;
5537
5538        /* Refuse to reduce size of the array.  Any reductions in
5539         * array size must be through explicit setting of array_size
5540         * attribute.
5541         */
5542        if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5543            < mddev->array_sectors) {
5544                printk(KERN_ERR "md/raid:%s: array size must be reduced "
5545                       "before number of disks\n", mdname(mddev));
5546                return -EINVAL;
5547        }
5548
5549        atomic_set(&conf->reshape_stripes, 0);
5550        spin_lock_irq(&conf->device_lock);
5551        conf->previous_raid_disks = conf->raid_disks;
5552        conf->raid_disks += mddev->delta_disks;
5553        conf->prev_chunk_sectors = conf->chunk_sectors;
5554        conf->chunk_sectors = mddev->new_chunk_sectors;
5555        conf->prev_algo = conf->algorithm;
5556        conf->algorithm = mddev->new_layout;
5557        if (mddev->delta_disks < 0)
5558                conf->reshape_progress = raid5_size(mddev, 0, 0);
5559        else
5560                conf->reshape_progress = 0;
5561        conf->reshape_safe = conf->reshape_progress;
5562        conf->generation++;
5563        spin_unlock_irq(&conf->device_lock);
5564
5565        /* Add some new drives, as many as will fit.
5566         * We know there are enough to make the newly sized array work.
5567         * Don't add devices if we are reducing the number of
5568         * devices in the array.  This is because it is not possible
5569         * to correctly record the "partially reconstructed" state of
5570         * such devices during the reshape and confusion could result.
5571         */
5572        if (mddev->delta_disks >= 0) {
5573                int added_devices = 0;
5574                list_for_each_entry(rdev, &mddev->disks, same_set)
5575                        if (rdev->raid_disk < 0 &&
5576                            !test_bit(Faulty, &rdev->flags)) {
5577                                if (raid5_add_disk(mddev, rdev) == 0) {
5578                                        char nm[20];
5579                                        if (rdev->raid_disk
5580                                            >= conf->previous_raid_disks) {
5581                                                set_bit(In_sync, &rdev->flags);
5582                                                added_devices++;
5583                                        } else
5584                                                rdev->recovery_offset = 0;
5585                                        sprintf(nm, "rd%d", rdev->raid_disk);
5586                                        if (sysfs_create_link(&mddev->kobj,
5587                                                              &rdev->kobj, nm))
5588                                                /* Failure here is OK */;
5589                                }
5590                        } else if (rdev->raid_disk >= conf->previous_raid_disks
5591                                   && !test_bit(Faulty, &rdev->flags)) {
5592                                /* This is a spare that was manually added */
5593                                set_bit(In_sync, &rdev->flags);
5594                                added_devices++;
5595                        }
5596
5597                /* When a reshape changes the number of devices,
5598                 * ->degraded is measured against the larger of the
5599                 * pre and post number of devices.
5600                 */
5601                spin_lock_irqsave(&conf->device_lock, flags);
5602                mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5603                        - added_devices;
5604                spin_unlock_irqrestore(&conf->device_lock, flags);
5605        }
5606        mddev->raid_disks = conf->raid_disks;
5607        mddev->reshape_position = conf->reshape_progress;
5608        set_bit(MD_CHANGE_DEVS, &mddev->flags);
5609
5610        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5611        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5612        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5613        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5614        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5615                                                "reshape");
5616        if (!mddev->sync_thread) {
5617                mddev->recovery = 0;
5618                spin_lock_irq(&conf->device_lock);
5619                mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5620                conf->reshape_progress = MaxSector;
5621                spin_unlock_irq(&conf->device_lock);
5622                return -EAGAIN;
5623        }
5624        conf->reshape_checkpoint = jiffies;
5625        md_wakeup_thread(mddev->sync_thread);
5626        md_new_event(mddev);
5627        return 0;
5628}
5629
5630/* This is called from the reshape thread and should make any
5631 * changes needed in 'conf'
5632 */
5633static void end_reshape(raid5_conf_t *conf)
5634{
5635
5636        if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5637
5638                spin_lock_irq(&conf->device_lock);
5639                conf->previous_raid_disks = conf->raid_disks;
5640                conf->reshape_progress = MaxSector;
5641                spin_unlock_irq(&conf->device_lock);
5642                wake_up(&conf->wait_for_overlap);
5643
5644                /* read-ahead size must cover two whole stripes, which is
5645                 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5646                 */
5647                if (conf->mddev->queue) {
5648                        int data_disks = conf->raid_disks - conf->max_degraded;
5649                        int stripe = data_disks * ((conf->chunk_sectors << 9)
5650                                                   / PAGE_SIZE);
5651                        if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5652                                conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5653                }
5654        }
5655}
5656
5657/* This is called from the raid5d thread with mddev_lock held.
5658 * It makes config changes to the device.
5659 */
5660static void raid5_finish_reshape(mddev_t *mddev)
5661{
5662        raid5_conf_t *conf = mddev->private;
5663
5664        if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5665
5666                if (mddev->delta_disks > 0) {
5667                        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5668                        set_capacity(mddev->gendisk, mddev->array_sectors);
5669                        revalidate_disk(mddev->gendisk);
5670                } else {
5671                        int d;
5672                        mddev->degraded = conf->raid_disks;
5673                        for (d = 0; d < conf->raid_disks ; d++)
5674                                if (conf->disks[d].rdev &&
5675                                    test_bit(In_sync,
5676                                             &conf->disks[d].rdev->flags))
5677                                        mddev->degraded--;
5678                        for (d = conf->raid_disks ;
5679                             d < conf->raid_disks - mddev->delta_disks;
5680                             d++) {
5681                                mdk_rdev_t *rdev = conf->disks[d].rdev;
5682                                if (rdev && raid5_remove_disk(mddev, d) == 0) {
5683                                        char nm[20];
5684                                        sprintf(nm, "rd%d", rdev->raid_disk);
5685                                        sysfs_remove_link(&mddev->kobj, nm);
5686                                        rdev->raid_disk = -1;
5687                                }
5688                        }
5689                }
5690                mddev->layout = conf->algorithm;
5691                mddev->chunk_sectors = conf->chunk_sectors;
5692                mddev->reshape_position = MaxSector;
5693                mddev->delta_disks = 0;
5694        }
5695}
5696
5697static void raid5_quiesce(mddev_t *mddev, int state)
5698{
5699        raid5_conf_t *conf = mddev->private;
5700
5701        switch(state) {
5702        case 2: /* resume for a suspend */
5703                wake_up(&conf->wait_for_overlap);
5704                break;
5705
5706        case 1: /* stop all writes */
5707                spin_lock_irq(&conf->device_lock);
5708                /* '2' tells resync/reshape to pause so that all
5709                 * active stripes can drain
5710                 */
5711                conf->quiesce = 2;
5712                wait_event_lock_irq(conf->wait_for_stripe,
5713                                    atomic_read(&conf->active_stripes) == 0 &&
5714                                    atomic_read(&conf->active_aligned_reads) == 0,
5715                                    conf->device_lock, /* nothing */);
5716                conf->quiesce = 1;
5717                spin_unlock_irq(&conf->device_lock);
5718                /* allow reshape to continue */
5719                wake_up(&conf->wait_for_overlap);
5720                break;
5721
5722        case 0: /* re-enable writes */
5723                spin_lock_irq(&conf->device_lock);
5724                conf->quiesce = 0;
5725                wake_up(&conf->wait_for_stripe);
5726                wake_up(&conf->wait_for_overlap);
5727                spin_unlock_irq(&conf->device_lock);
5728                break;
5729        }
5730}
5731
5732
5733static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5734{
5735        struct raid0_private_data *raid0_priv = mddev->private;
5736
5737        /* for raid0 takeover only one zone is supported */
5738        if (raid0_priv->nr_strip_zones > 1) {
5739                printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5740                       mdname(mddev));
5741                return ERR_PTR(-EINVAL);
5742        }
5743
5744        mddev->new_level = level;
5745        mddev->new_layout = ALGORITHM_PARITY_N;
5746        mddev->new_chunk_sectors = mddev->chunk_sectors;
5747        mddev->raid_disks += 1;
5748        mddev->delta_disks = 1;
5749        /* make sure it will be not marked as dirty */
5750        mddev->recovery_cp = MaxSector;
5751
5752        return setup_conf(mddev);
5753}
5754
5755
5756static void *raid5_takeover_raid1(mddev_t *mddev)
5757{
5758        int chunksect;
5759
5760        if (mddev->raid_disks != 2 ||
5761            mddev->degraded > 1)
5762                return ERR_PTR(-EINVAL);
5763
5764        /* Should check if there are write-behind devices? */
5765
5766        chunksect = 64*2; /* 64K by default */
5767
5768        /* The array must be an exact multiple of chunksize */
5769        while (chunksect && (mddev->array_sectors & (chunksect-1)))
5770                chunksect >>= 1;
5771
5772        if ((chunksect<<9) < STRIPE_SIZE)
5773                /* array size does not allow a suitable chunk size */
5774                return ERR_PTR(-EINVAL);
5775
5776        mddev->new_level = 5;
5777        mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5778        mddev->new_chunk_sectors = chunksect;
5779
5780        return setup_conf(mddev);
5781}
5782
5783static void *raid5_takeover_raid6(mddev_t *mddev)
5784{
5785        int new_layout;
5786
5787        switch (mddev->layout) {
5788        case ALGORITHM_LEFT_ASYMMETRIC_6:
5789                new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5790                break;
5791        case ALGORITHM_RIGHT_ASYMMETRIC_6:
5792                new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5793                break;
5794        case ALGORITHM_LEFT_SYMMETRIC_6:
5795                new_layout = ALGORITHM_LEFT_SYMMETRIC;
5796                break;
5797        case ALGORITHM_RIGHT_SYMMETRIC_6:
5798                new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5799                break;
5800        case ALGORITHM_PARITY_0_6:
5801                new_layout = ALGORITHM_PARITY_0;
5802                break;
5803        case ALGORITHM_PARITY_N:
5804                new_layout = ALGORITHM_PARITY_N;
5805                break;
5806        default:
5807                return ERR_PTR(-EINVAL);
5808        }
5809        mddev->new_level = 5;
5810        mddev->new_layout = new_layout;
5811        mddev->delta_disks = -1;
5812        mddev->raid_disks -= 1;
5813        return setup_conf(mddev);
5814}
5815
5816
5817static int raid5_check_reshape(mddev_t *mddev)
5818{
5819        /* For a 2-drive array, the layout and chunk size can be changed
5820         * immediately as not restriping is needed.
5821         * For larger arrays we record the new value - after validation
5822         * to be used by a reshape pass.
5823         */
5824        raid5_conf_t *conf = mddev->private;
5825        int new_chunk = mddev->new_chunk_sectors;
5826
5827        if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5828                return -EINVAL;
5829        if (new_chunk > 0) {
5830                if (!is_power_of_2(new_chunk))
5831                        return -EINVAL;
5832                if (new_chunk < (PAGE_SIZE>>9))
5833                        return -EINVAL;
5834                if (mddev->array_sectors & (new_chunk-1))
5835                        /* not factor of array size */
5836                        return -EINVAL;
5837        }
5838
5839        /* They look valid */
5840
5841        if (mddev->raid_disks == 2) {
5842                /* can make the change immediately */
5843                if (mddev->new_layout >= 0) {
5844                        conf->algorithm = mddev->new_layout;
5845                        mddev->layout = mddev->new_layout;
5846                }
5847                if (new_chunk > 0) {
5848                        conf->chunk_sectors = new_chunk ;
5849                        mddev->chunk_sectors = new_chunk;
5850                }
5851                set_bit(MD_CHANGE_DEVS, &mddev->flags);
5852                md_wakeup_thread(mddev->thread);
5853        }
5854        return check_reshape(mddev);
5855}
5856
5857static int raid6_check_reshape(mddev_t *mddev)
5858{
5859        int new_chunk = mddev->new_chunk_sectors;
5860
5861        if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5862                return -EINVAL;
5863        if (new_chunk > 0) {
5864                if (!is_power_of_2(new_chunk))
5865                        return -EINVAL;
5866                if (new_chunk < (PAGE_SIZE >> 9))
5867                        return -EINVAL;
5868                if (mddev->array_sectors & (new_chunk-1))
5869                        /* not factor of array size */
5870                        return -EINVAL;
5871        }
5872
5873        /* They look valid */
5874        return check_reshape(mddev);
5875}
5876
5877static void *raid5_takeover(mddev_t *mddev)
5878{
5879        /* raid5 can take over:
5880         *  raid0 - if there is only one strip zone - make it a raid4 layout
5881         *  raid1 - if there are two drives.  We need to know the chunk size
5882         *  raid4 - trivial - just use a raid4 layout.
5883         *  raid6 - Providing it is a *_6 layout
5884         */
5885        if (mddev->level == 0)
5886                return raid45_takeover_raid0(mddev, 5);
5887        if (mddev->level == 1)
5888                return raid5_takeover_raid1(mddev);
5889        if (mddev->level == 4) {
5890                mddev->new_layout = ALGORITHM_PARITY_N;
5891                mddev->new_level = 5;
5892                return setup_conf(mddev);
5893        }
5894        if (mddev->level == 6)
5895                return raid5_takeover_raid6(mddev);
5896
5897        return ERR_PTR(-EINVAL);
5898}
5899
5900static void *raid4_takeover(mddev_t *mddev)
5901{
5902        /* raid4 can take over:
5903         *  raid0 - if there is only one strip zone
5904         *  raid5 - if layout is right
5905         */
5906        if (mddev->level == 0)
5907                return raid45_takeover_raid0(mddev, 4);
5908        if (mddev->level == 5 &&
5909            mddev->layout == ALGORITHM_PARITY_N) {
5910                mddev->new_layout = 0;
5911                mddev->new_level = 4;
5912                return setup_conf(mddev);
5913        }
5914        return ERR_PTR(-EINVAL);
5915}
5916
5917static struct mdk_personality raid5_personality;
5918
5919static void *raid6_takeover(mddev_t *mddev)
5920{
5921        /* Currently can only take over a raid5.  We map the
5922         * personality to an equivalent raid6 personality
5923         * with the Q block at the end.
5924         */
5925        int new_layout;
5926
5927        if (mddev->pers != &raid5_personality)
5928                return ERR_PTR(-EINVAL);
5929        if (mddev->degraded > 1)
5930                return ERR_PTR(-EINVAL);
5931        if (mddev->raid_disks > 253)
5932                return ERR_PTR(-EINVAL);
5933        if (mddev->raid_disks < 3)
5934                return ERR_PTR(-EINVAL);
5935
5936        switch (mddev->layout) {
5937        case ALGORITHM_LEFT_ASYMMETRIC:
5938                new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5939                break;
5940        case ALGORITHM_RIGHT_ASYMMETRIC:
5941                new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5942                break;
5943        case ALGORITHM_LEFT_SYMMETRIC:
5944                new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5945                break;
5946        case ALGORITHM_RIGHT_SYMMETRIC:
5947                new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5948                break;
5949        case ALGORITHM_PARITY_0:
5950                new_layout = ALGORITHM_PARITY_0_6;
5951                break;
5952        case ALGORITHM_PARITY_N:
5953                new_layout = ALGORITHM_PARITY_N;
5954                break;
5955        default:
5956                return ERR_PTR(-EINVAL);
5957        }
5958        mddev->new_level = 6;
5959        mddev->new_layout = new_layout;
5960        mddev->delta_disks = 1;
5961        mddev->raid_disks += 1;
5962        return setup_conf(mddev);
5963}
5964
5965
5966static struct mdk_personality raid6_personality =
5967{
5968        .name           = "raid6",
5969        .level          = 6,
5970        .owner          = THIS_MODULE,
5971        .make_request   = make_request,
5972        .run            = run,
5973        .stop           = stop,
5974        .status         = status,
5975        .error_handler  = error,
5976        .hot_add_disk   = raid5_add_disk,
5977        .hot_remove_disk= raid5_remove_disk,
5978        .spare_active   = raid5_spare_active,
5979        .sync_request   = sync_request,
5980        .resize         = raid5_resize,
5981        .size           = raid5_size,
5982        .check_reshape  = raid6_check_reshape,
5983        .start_reshape  = raid5_start_reshape,
5984        .finish_reshape = raid5_finish_reshape,
5985        .quiesce        = raid5_quiesce,
5986        .takeover       = raid6_takeover,
5987};
5988static struct mdk_personality raid5_personality =
5989{
5990        .name           = "raid5",
5991        .level          = 5,
5992        .owner          = THIS_MODULE,
5993        .make_request   = make_request,
5994        .run            = run,
5995        .stop           = stop,
5996        .status         = status,
5997        .error_handler  = error,
5998        .hot_add_disk   = raid5_add_disk,
5999        .hot_remove_disk= raid5_remove_disk,
6000        .spare_active   = raid5_spare_active,
6001        .sync_request   = sync_request,
6002        .resize         = raid5_resize,
6003        .size           = raid5_size,
6004        .check_reshape  = raid5_check_reshape,
6005        .start_reshape  = raid5_start_reshape,
6006        .finish_reshape = raid5_finish_reshape,
6007        .quiesce        = raid5_quiesce,
6008        .takeover       = raid5_takeover,
6009};
6010
6011static struct mdk_personality raid4_personality =
6012{
6013        .name           = "raid4",
6014        .level          = 4,
6015        .owner          = THIS_MODULE,
6016        .make_request   = make_request,
6017        .run            = run,
6018        .stop           = stop,
6019        .status         = status,
6020        .error_handler  = error,
6021        .hot_add_disk   = raid5_add_disk,
6022        .hot_remove_disk= raid5_remove_disk,
6023        .spare_active   = raid5_spare_active,
6024        .sync_request   = sync_request,
6025        .resize         = raid5_resize,
6026        .size           = raid5_size,
6027        .check_reshape  = raid5_check_reshape,
6028        .start_reshape  = raid5_start_reshape,
6029        .finish_reshape = raid5_finish_reshape,
6030        .quiesce        = raid5_quiesce,
6031        .takeover       = raid4_takeover,
6032};
6033
6034static int __init raid5_init(void)
6035{
6036        register_md_personality(&raid6_personality);
6037        register_md_personality(&raid5_personality);
6038        register_md_personality(&raid4_personality);
6039        return 0;
6040}
6041
6042static void raid5_exit(void)
6043{
6044        unregister_md_personality(&raid6_personality);
6045        unregister_md_personality(&raid5_personality);
6046        unregister_md_personality(&raid4_personality);
6047}
6048
6049module_init(raid5_init);
6050module_exit(raid5_exit);
6051MODULE_LICENSE("GPL");
6052MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6053MODULE_ALIAS("md-personality-4"); /* RAID5 */
6054MODULE_ALIAS("md-raid5");
6055MODULE_ALIAS("md-raid4");
6056MODULE_ALIAS("md-level-5");
6057MODULE_ALIAS("md-level-4");
6058MODULE_ALIAS("md-personality-8"); /* RAID6 */
6059MODULE_ALIAS("md-raid6");
6060MODULE_ALIAS("md-level-6");
6061
6062/* This used to be two separate modules, they were: */
6063MODULE_ALIAS("raid5");
6064MODULE_ALIAS("raid6");
6065