linux/drivers/mtd/nand/nandsim.c
<<
>>
Prefs
   1/*
   2 * NAND flash simulator.
   3 *
   4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
   5 *
   6 * Copyright (C) 2004 Nokia Corporation
   7 *
   8 * Note: NS means "NAND Simulator".
   9 * Note: Input means input TO flash chip, output means output FROM chip.
  10 *
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the
  13 * Free Software Foundation; either version 2, or (at your option) any later
  14 * version.
  15 *
  16 * This program is distributed in the hope that it will be useful, but
  17 * WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
  19 * Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/types.h>
  28#include <linux/module.h>
  29#include <linux/moduleparam.h>
  30#include <linux/vmalloc.h>
  31#include <asm/div64.h>
  32#include <linux/slab.h>
  33#include <linux/errno.h>
  34#include <linux/string.h>
  35#include <linux/mtd/mtd.h>
  36#include <linux/mtd/nand.h>
  37#include <linux/mtd/partitions.h>
  38#include <linux/delay.h>
  39#include <linux/list.h>
  40#include <linux/random.h>
  41#include <linux/sched.h>
  42#include <linux/fs.h>
  43#include <linux/pagemap.h>
  44
  45/* Default simulator parameters values */
  46#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
  47    !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
  48    !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
  49    !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
  50#define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
  51#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
  52#define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
  53#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
  54#endif
  55
  56#ifndef CONFIG_NANDSIM_ACCESS_DELAY
  57#define CONFIG_NANDSIM_ACCESS_DELAY 25
  58#endif
  59#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
  60#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
  61#endif
  62#ifndef CONFIG_NANDSIM_ERASE_DELAY
  63#define CONFIG_NANDSIM_ERASE_DELAY 2
  64#endif
  65#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
  66#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
  67#endif
  68#ifndef CONFIG_NANDSIM_INPUT_CYCLE
  69#define CONFIG_NANDSIM_INPUT_CYCLE  50
  70#endif
  71#ifndef CONFIG_NANDSIM_BUS_WIDTH
  72#define CONFIG_NANDSIM_BUS_WIDTH  8
  73#endif
  74#ifndef CONFIG_NANDSIM_DO_DELAYS
  75#define CONFIG_NANDSIM_DO_DELAYS  0
  76#endif
  77#ifndef CONFIG_NANDSIM_LOG
  78#define CONFIG_NANDSIM_LOG        0
  79#endif
  80#ifndef CONFIG_NANDSIM_DBG
  81#define CONFIG_NANDSIM_DBG        0
  82#endif
  83#ifndef CONFIG_NANDSIM_MAX_PARTS
  84#define CONFIG_NANDSIM_MAX_PARTS  32
  85#endif
  86
  87static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
  88static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
  89static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
  90static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
  91static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
  92static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
  93static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
  94static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
  95static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
  96static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
  97static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
  98static uint log            = CONFIG_NANDSIM_LOG;
  99static uint dbg            = CONFIG_NANDSIM_DBG;
 100static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
 101static unsigned int parts_num;
 102static char *badblocks = NULL;
 103static char *weakblocks = NULL;
 104static char *weakpages = NULL;
 105static unsigned int bitflips = 0;
 106static char *gravepages = NULL;
 107static unsigned int rptwear = 0;
 108static unsigned int overridesize = 0;
 109static char *cache_file = NULL;
 110static unsigned int bbt;
 111
 112module_param(first_id_byte,  uint, 0400);
 113module_param(second_id_byte, uint, 0400);
 114module_param(third_id_byte,  uint, 0400);
 115module_param(fourth_id_byte, uint, 0400);
 116module_param(access_delay,   uint, 0400);
 117module_param(programm_delay, uint, 0400);
 118module_param(erase_delay,    uint, 0400);
 119module_param(output_cycle,   uint, 0400);
 120module_param(input_cycle,    uint, 0400);
 121module_param(bus_width,      uint, 0400);
 122module_param(do_delays,      uint, 0400);
 123module_param(log,            uint, 0400);
 124module_param(dbg,            uint, 0400);
 125module_param_array(parts, ulong, &parts_num, 0400);
 126module_param(badblocks,      charp, 0400);
 127module_param(weakblocks,     charp, 0400);
 128module_param(weakpages,      charp, 0400);
 129module_param(bitflips,       uint, 0400);
 130module_param(gravepages,     charp, 0400);
 131module_param(rptwear,        uint, 0400);
 132module_param(overridesize,   uint, 0400);
 133module_param(cache_file,     charp, 0400);
 134module_param(bbt,            uint, 0400);
 135
 136MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
 137MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
 138MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
 139MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
 140MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
 141MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
 142MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
 143MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
 144MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
 145MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
 146MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
 147MODULE_PARM_DESC(log,            "Perform logging if not zero");
 148MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
 149MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
 150/* Page and erase block positions for the following parameters are independent of any partitions */
 151MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
 152MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
 153                                 " separated by commas e.g. 113:2 means eb 113"
 154                                 " can be erased only twice before failing");
 155MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
 156                                 " separated by commas e.g. 1401:2 means page 1401"
 157                                 " can be written only twice before failing");
 158MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
 159MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
 160                                 " separated by commas e.g. 1401:2 means page 1401"
 161                                 " can be read only twice before failing");
 162MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
 163MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
 164                                 "The size is specified in erase blocks and as the exponent of a power of two"
 165                                 " e.g. 5 means a size of 32 erase blocks");
 166MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
 167MODULE_PARM_DESC(bbt,            "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
 168
 169/* The largest possible page size */
 170#define NS_LARGEST_PAGE_SIZE    4096
 171
 172/* The prefix for simulator output */
 173#define NS_OUTPUT_PREFIX "[nandsim]"
 174
 175/* Simulator's output macros (logging, debugging, warning, error) */
 176#define NS_LOG(args...) \
 177        do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
 178#define NS_DBG(args...) \
 179        do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
 180#define NS_WARN(args...) \
 181        do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
 182#define NS_ERR(args...) \
 183        do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
 184#define NS_INFO(args...) \
 185        do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
 186
 187/* Busy-wait delay macros (microseconds, milliseconds) */
 188#define NS_UDELAY(us) \
 189        do { if (do_delays) udelay(us); } while(0)
 190#define NS_MDELAY(us) \
 191        do { if (do_delays) mdelay(us); } while(0)
 192
 193/* Is the nandsim structure initialized ? */
 194#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
 195
 196/* Good operation completion status */
 197#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
 198
 199/* Operation failed completion status */
 200#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
 201
 202/* Calculate the page offset in flash RAM image by (row, column) address */
 203#define NS_RAW_OFFSET(ns) \
 204        (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
 205
 206/* Calculate the OOB offset in flash RAM image by (row, column) address */
 207#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
 208
 209/* After a command is input, the simulator goes to one of the following states */
 210#define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
 211#define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
 212#define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
 213#define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
 214#define STATE_CMD_READOOB      0x00000005 /* read OOB area */
 215#define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
 216#define STATE_CMD_STATUS       0x00000007 /* read status */
 217#define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
 218#define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
 219#define STATE_CMD_READID       0x0000000A /* read ID */
 220#define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
 221#define STATE_CMD_RESET        0x0000000C /* reset */
 222#define STATE_CMD_RNDOUT       0x0000000D /* random output command */
 223#define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
 224#define STATE_CMD_MASK         0x0000000F /* command states mask */
 225
 226/* After an address is input, the simulator goes to one of these states */
 227#define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
 228#define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
 229#define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
 230#define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
 231#define STATE_ADDR_MASK        0x00000070 /* address states mask */
 232
 233/* During data input/output the simulator is in these states */
 234#define STATE_DATAIN           0x00000100 /* waiting for data input */
 235#define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
 236
 237#define STATE_DATAOUT          0x00001000 /* waiting for page data output */
 238#define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
 239#define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
 240#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
 241#define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
 242
 243/* Previous operation is done, ready to accept new requests */
 244#define STATE_READY            0x00000000
 245
 246/* This state is used to mark that the next state isn't known yet */
 247#define STATE_UNKNOWN          0x10000000
 248
 249/* Simulator's actions bit masks */
 250#define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
 251#define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
 252#define ACTION_SECERASE  0x00300000 /* erase sector */
 253#define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
 254#define ACTION_HALFOFF   0x00500000 /* add to address half of page */
 255#define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
 256#define ACTION_MASK      0x00700000 /* action mask */
 257
 258#define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
 259#define NS_OPER_STATES   6  /* Maximum number of states in operation */
 260
 261#define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
 262#define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
 263#define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
 264#define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
 265#define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
 266#define OPT_AUTOINCR     0x00000020 /* page number auto incrementation is possible */
 267#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
 268#define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
 269#define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
 270#define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
 271
 272/* Remove action bits from state */
 273#define NS_STATE(x) ((x) & ~ACTION_MASK)
 274
 275/*
 276 * Maximum previous states which need to be saved. Currently saving is
 277 * only needed for page program operation with preceded read command
 278 * (which is only valid for 512-byte pages).
 279 */
 280#define NS_MAX_PREVSTATES 1
 281
 282/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
 283#define NS_MAX_HELD_PAGES 16
 284
 285/*
 286 * A union to represent flash memory contents and flash buffer.
 287 */
 288union ns_mem {
 289        u_char *byte;    /* for byte access */
 290        uint16_t *word;  /* for 16-bit word access */
 291};
 292
 293/*
 294 * The structure which describes all the internal simulator data.
 295 */
 296struct nandsim {
 297        struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
 298        unsigned int nbparts;
 299
 300        uint busw;              /* flash chip bus width (8 or 16) */
 301        u_char ids[4];          /* chip's ID bytes */
 302        uint32_t options;       /* chip's characteristic bits */
 303        uint32_t state;         /* current chip state */
 304        uint32_t nxstate;       /* next expected state */
 305
 306        uint32_t *op;           /* current operation, NULL operations isn't known yet  */
 307        uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
 308        uint16_t npstates;      /* number of previous states saved */
 309        uint16_t stateidx;      /* current state index */
 310
 311        /* The simulated NAND flash pages array */
 312        union ns_mem *pages;
 313
 314        /* Slab allocator for nand pages */
 315        struct kmem_cache *nand_pages_slab;
 316
 317        /* Internal buffer of page + OOB size bytes */
 318        union ns_mem buf;
 319
 320        /* NAND flash "geometry" */
 321        struct {
 322                uint64_t totsz;     /* total flash size, bytes */
 323                uint32_t secsz;     /* flash sector (erase block) size, bytes */
 324                uint pgsz;          /* NAND flash page size, bytes */
 325                uint oobsz;         /* page OOB area size, bytes */
 326                uint64_t totszoob;  /* total flash size including OOB, bytes */
 327                uint pgszoob;       /* page size including OOB , bytes*/
 328                uint secszoob;      /* sector size including OOB, bytes */
 329                uint pgnum;         /* total number of pages */
 330                uint pgsec;         /* number of pages per sector */
 331                uint secshift;      /* bits number in sector size */
 332                uint pgshift;       /* bits number in page size */
 333                uint oobshift;      /* bits number in OOB size */
 334                uint pgaddrbytes;   /* bytes per page address */
 335                uint secaddrbytes;  /* bytes per sector address */
 336                uint idbytes;       /* the number ID bytes that this chip outputs */
 337        } geom;
 338
 339        /* NAND flash internal registers */
 340        struct {
 341                unsigned command; /* the command register */
 342                u_char   status;  /* the status register */
 343                uint     row;     /* the page number */
 344                uint     column;  /* the offset within page */
 345                uint     count;   /* internal counter */
 346                uint     num;     /* number of bytes which must be processed */
 347                uint     off;     /* fixed page offset */
 348        } regs;
 349
 350        /* NAND flash lines state */
 351        struct {
 352                int ce;  /* chip Enable */
 353                int cle; /* command Latch Enable */
 354                int ale; /* address Latch Enable */
 355                int wp;  /* write Protect */
 356        } lines;
 357
 358        /* Fields needed when using a cache file */
 359        struct file *cfile; /* Open file */
 360        unsigned char *pages_written; /* Which pages have been written */
 361        void *file_buf;
 362        struct page *held_pages[NS_MAX_HELD_PAGES];
 363        int held_cnt;
 364};
 365
 366/*
 367 * Operations array. To perform any operation the simulator must pass
 368 * through the correspondent states chain.
 369 */
 370static struct nandsim_operations {
 371        uint32_t reqopts;  /* options which are required to perform the operation */
 372        uint32_t states[NS_OPER_STATES]; /* operation's states */
 373} ops[NS_OPER_NUM] = {
 374        /* Read page + OOB from the beginning */
 375        {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
 376                        STATE_DATAOUT, STATE_READY}},
 377        /* Read page + OOB from the second half */
 378        {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
 379                        STATE_DATAOUT, STATE_READY}},
 380        /* Read OOB */
 381        {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
 382                        STATE_DATAOUT, STATE_READY}},
 383        /* Program page starting from the beginning */
 384        {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
 385                        STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 386        /* Program page starting from the beginning */
 387        {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
 388                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 389        /* Program page starting from the second half */
 390        {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
 391                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 392        /* Program OOB */
 393        {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
 394                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 395        /* Erase sector */
 396        {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
 397        /* Read status */
 398        {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
 399        /* Read multi-plane status */
 400        {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
 401        /* Read ID */
 402        {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
 403        /* Large page devices read page */
 404        {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
 405                               STATE_DATAOUT, STATE_READY}},
 406        /* Large page devices random page read */
 407        {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
 408                               STATE_DATAOUT, STATE_READY}},
 409};
 410
 411struct weak_block {
 412        struct list_head list;
 413        unsigned int erase_block_no;
 414        unsigned int max_erases;
 415        unsigned int erases_done;
 416};
 417
 418static LIST_HEAD(weak_blocks);
 419
 420struct weak_page {
 421        struct list_head list;
 422        unsigned int page_no;
 423        unsigned int max_writes;
 424        unsigned int writes_done;
 425};
 426
 427static LIST_HEAD(weak_pages);
 428
 429struct grave_page {
 430        struct list_head list;
 431        unsigned int page_no;
 432        unsigned int max_reads;
 433        unsigned int reads_done;
 434};
 435
 436static LIST_HEAD(grave_pages);
 437
 438static unsigned long *erase_block_wear = NULL;
 439static unsigned int wear_eb_count = 0;
 440static unsigned long total_wear = 0;
 441static unsigned int rptwear_cnt = 0;
 442
 443/* MTD structure for NAND controller */
 444static struct mtd_info *nsmtd;
 445
 446static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
 447
 448/*
 449 * Allocate array of page pointers, create slab allocation for an array
 450 * and initialize the array by NULL pointers.
 451 *
 452 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
 453 */
 454static int alloc_device(struct nandsim *ns)
 455{
 456        struct file *cfile;
 457        int i, err;
 458
 459        if (cache_file) {
 460                cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
 461                if (IS_ERR(cfile))
 462                        return PTR_ERR(cfile);
 463                if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
 464                        NS_ERR("alloc_device: cache file not readable\n");
 465                        err = -EINVAL;
 466                        goto err_close;
 467                }
 468                if (!cfile->f_op->write && !cfile->f_op->aio_write) {
 469                        NS_ERR("alloc_device: cache file not writeable\n");
 470                        err = -EINVAL;
 471                        goto err_close;
 472                }
 473                ns->pages_written = vzalloc(ns->geom.pgnum);
 474                if (!ns->pages_written) {
 475                        NS_ERR("alloc_device: unable to allocate pages written array\n");
 476                        err = -ENOMEM;
 477                        goto err_close;
 478                }
 479                ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 480                if (!ns->file_buf) {
 481                        NS_ERR("alloc_device: unable to allocate file buf\n");
 482                        err = -ENOMEM;
 483                        goto err_free;
 484                }
 485                ns->cfile = cfile;
 486                return 0;
 487        }
 488
 489        ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
 490        if (!ns->pages) {
 491                NS_ERR("alloc_device: unable to allocate page array\n");
 492                return -ENOMEM;
 493        }
 494        for (i = 0; i < ns->geom.pgnum; i++) {
 495                ns->pages[i].byte = NULL;
 496        }
 497        ns->nand_pages_slab = kmem_cache_create("nandsim",
 498                                                ns->geom.pgszoob, 0, 0, NULL);
 499        if (!ns->nand_pages_slab) {
 500                NS_ERR("cache_create: unable to create kmem_cache\n");
 501                return -ENOMEM;
 502        }
 503
 504        return 0;
 505
 506err_free:
 507        vfree(ns->pages_written);
 508err_close:
 509        filp_close(cfile, NULL);
 510        return err;
 511}
 512
 513/*
 514 * Free any allocated pages, and free the array of page pointers.
 515 */
 516static void free_device(struct nandsim *ns)
 517{
 518        int i;
 519
 520        if (ns->cfile) {
 521                kfree(ns->file_buf);
 522                vfree(ns->pages_written);
 523                filp_close(ns->cfile, NULL);
 524                return;
 525        }
 526
 527        if (ns->pages) {
 528                for (i = 0; i < ns->geom.pgnum; i++) {
 529                        if (ns->pages[i].byte)
 530                                kmem_cache_free(ns->nand_pages_slab,
 531                                                ns->pages[i].byte);
 532                }
 533                kmem_cache_destroy(ns->nand_pages_slab);
 534                vfree(ns->pages);
 535        }
 536}
 537
 538static char *get_partition_name(int i)
 539{
 540        char buf[64];
 541        sprintf(buf, "NAND simulator partition %d", i);
 542        return kstrdup(buf, GFP_KERNEL);
 543}
 544
 545static uint64_t divide(uint64_t n, uint32_t d)
 546{
 547        do_div(n, d);
 548        return n;
 549}
 550
 551/*
 552 * Initialize the nandsim structure.
 553 *
 554 * RETURNS: 0 if success, -ERRNO if failure.
 555 */
 556static int init_nandsim(struct mtd_info *mtd)
 557{
 558        struct nand_chip *chip = mtd->priv;
 559        struct nandsim   *ns   = chip->priv;
 560        int i, ret = 0;
 561        uint64_t remains;
 562        uint64_t next_offset;
 563
 564        if (NS_IS_INITIALIZED(ns)) {
 565                NS_ERR("init_nandsim: nandsim is already initialized\n");
 566                return -EIO;
 567        }
 568
 569        /* Force mtd to not do delays */
 570        chip->chip_delay = 0;
 571
 572        /* Initialize the NAND flash parameters */
 573        ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
 574        ns->geom.totsz    = mtd->size;
 575        ns->geom.pgsz     = mtd->writesize;
 576        ns->geom.oobsz    = mtd->oobsize;
 577        ns->geom.secsz    = mtd->erasesize;
 578        ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
 579        ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
 580        ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
 581        ns->geom.secshift = ffs(ns->geom.secsz) - 1;
 582        ns->geom.pgshift  = chip->page_shift;
 583        ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
 584        ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
 585        ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
 586        ns->options = 0;
 587
 588        if (ns->geom.pgsz == 256) {
 589                ns->options |= OPT_PAGE256;
 590        }
 591        else if (ns->geom.pgsz == 512) {
 592                ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
 593                if (ns->busw == 8)
 594                        ns->options |= OPT_PAGE512_8BIT;
 595        } else if (ns->geom.pgsz == 2048) {
 596                ns->options |= OPT_PAGE2048;
 597        } else if (ns->geom.pgsz == 4096) {
 598                ns->options |= OPT_PAGE4096;
 599        } else {
 600                NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
 601                return -EIO;
 602        }
 603
 604        if (ns->options & OPT_SMALLPAGE) {
 605                if (ns->geom.totsz <= (32 << 20)) {
 606                        ns->geom.pgaddrbytes  = 3;
 607                        ns->geom.secaddrbytes = 2;
 608                } else {
 609                        ns->geom.pgaddrbytes  = 4;
 610                        ns->geom.secaddrbytes = 3;
 611                }
 612        } else {
 613                if (ns->geom.totsz <= (128 << 20)) {
 614                        ns->geom.pgaddrbytes  = 4;
 615                        ns->geom.secaddrbytes = 2;
 616                } else {
 617                        ns->geom.pgaddrbytes  = 5;
 618                        ns->geom.secaddrbytes = 3;
 619                }
 620        }
 621
 622        /* Fill the partition_info structure */
 623        if (parts_num > ARRAY_SIZE(ns->partitions)) {
 624                NS_ERR("too many partitions.\n");
 625                ret = -EINVAL;
 626                goto error;
 627        }
 628        remains = ns->geom.totsz;
 629        next_offset = 0;
 630        for (i = 0; i < parts_num; ++i) {
 631                uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
 632
 633                if (!part_sz || part_sz > remains) {
 634                        NS_ERR("bad partition size.\n");
 635                        ret = -EINVAL;
 636                        goto error;
 637                }
 638                ns->partitions[i].name   = get_partition_name(i);
 639                ns->partitions[i].offset = next_offset;
 640                ns->partitions[i].size   = part_sz;
 641                next_offset += ns->partitions[i].size;
 642                remains -= ns->partitions[i].size;
 643        }
 644        ns->nbparts = parts_num;
 645        if (remains) {
 646                if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
 647                        NS_ERR("too many partitions.\n");
 648                        ret = -EINVAL;
 649                        goto error;
 650                }
 651                ns->partitions[i].name   = get_partition_name(i);
 652                ns->partitions[i].offset = next_offset;
 653                ns->partitions[i].size   = remains;
 654                ns->nbparts += 1;
 655        }
 656
 657        /* Detect how many ID bytes the NAND chip outputs */
 658        for (i = 0; nand_flash_ids[i].name != NULL; i++) {
 659                if (second_id_byte != nand_flash_ids[i].id)
 660                        continue;
 661                if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
 662                        ns->options |= OPT_AUTOINCR;
 663        }
 664
 665        if (ns->busw == 16)
 666                NS_WARN("16-bit flashes support wasn't tested\n");
 667
 668        printk("flash size: %llu MiB\n",
 669                        (unsigned long long)ns->geom.totsz >> 20);
 670        printk("page size: %u bytes\n",         ns->geom.pgsz);
 671        printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
 672        printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
 673        printk("pages number: %u\n",            ns->geom.pgnum);
 674        printk("pages per sector: %u\n",        ns->geom.pgsec);
 675        printk("bus width: %u\n",               ns->busw);
 676        printk("bits in sector size: %u\n",     ns->geom.secshift);
 677        printk("bits in page size: %u\n",       ns->geom.pgshift);
 678        printk("bits in OOB size: %u\n",        ns->geom.oobshift);
 679        printk("flash size with OOB: %llu KiB\n",
 680                        (unsigned long long)ns->geom.totszoob >> 10);
 681        printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
 682        printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
 683        printk("options: %#x\n",                ns->options);
 684
 685        if ((ret = alloc_device(ns)) != 0)
 686                goto error;
 687
 688        /* Allocate / initialize the internal buffer */
 689        ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 690        if (!ns->buf.byte) {
 691                NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
 692                        ns->geom.pgszoob);
 693                ret = -ENOMEM;
 694                goto error;
 695        }
 696        memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
 697
 698        return 0;
 699
 700error:
 701        free_device(ns);
 702
 703        return ret;
 704}
 705
 706/*
 707 * Free the nandsim structure.
 708 */
 709static void free_nandsim(struct nandsim *ns)
 710{
 711        kfree(ns->buf.byte);
 712        free_device(ns);
 713
 714        return;
 715}
 716
 717static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
 718{
 719        char *w;
 720        int zero_ok;
 721        unsigned int erase_block_no;
 722        loff_t offset;
 723
 724        if (!badblocks)
 725                return 0;
 726        w = badblocks;
 727        do {
 728                zero_ok = (*w == '0' ? 1 : 0);
 729                erase_block_no = simple_strtoul(w, &w, 0);
 730                if (!zero_ok && !erase_block_no) {
 731                        NS_ERR("invalid badblocks.\n");
 732                        return -EINVAL;
 733                }
 734                offset = erase_block_no * ns->geom.secsz;
 735                if (mtd->block_markbad(mtd, offset)) {
 736                        NS_ERR("invalid badblocks.\n");
 737                        return -EINVAL;
 738                }
 739                if (*w == ',')
 740                        w += 1;
 741        } while (*w);
 742        return 0;
 743}
 744
 745static int parse_weakblocks(void)
 746{
 747        char *w;
 748        int zero_ok;
 749        unsigned int erase_block_no;
 750        unsigned int max_erases;
 751        struct weak_block *wb;
 752
 753        if (!weakblocks)
 754                return 0;
 755        w = weakblocks;
 756        do {
 757                zero_ok = (*w == '0' ? 1 : 0);
 758                erase_block_no = simple_strtoul(w, &w, 0);
 759                if (!zero_ok && !erase_block_no) {
 760                        NS_ERR("invalid weakblocks.\n");
 761                        return -EINVAL;
 762                }
 763                max_erases = 3;
 764                if (*w == ':') {
 765                        w += 1;
 766                        max_erases = simple_strtoul(w, &w, 0);
 767                }
 768                if (*w == ',')
 769                        w += 1;
 770                wb = kzalloc(sizeof(*wb), GFP_KERNEL);
 771                if (!wb) {
 772                        NS_ERR("unable to allocate memory.\n");
 773                        return -ENOMEM;
 774                }
 775                wb->erase_block_no = erase_block_no;
 776                wb->max_erases = max_erases;
 777                list_add(&wb->list, &weak_blocks);
 778        } while (*w);
 779        return 0;
 780}
 781
 782static int erase_error(unsigned int erase_block_no)
 783{
 784        struct weak_block *wb;
 785
 786        list_for_each_entry(wb, &weak_blocks, list)
 787                if (wb->erase_block_no == erase_block_no) {
 788                        if (wb->erases_done >= wb->max_erases)
 789                                return 1;
 790                        wb->erases_done += 1;
 791                        return 0;
 792                }
 793        return 0;
 794}
 795
 796static int parse_weakpages(void)
 797{
 798        char *w;
 799        int zero_ok;
 800        unsigned int page_no;
 801        unsigned int max_writes;
 802        struct weak_page *wp;
 803
 804        if (!weakpages)
 805                return 0;
 806        w = weakpages;
 807        do {
 808                zero_ok = (*w == '0' ? 1 : 0);
 809                page_no = simple_strtoul(w, &w, 0);
 810                if (!zero_ok && !page_no) {
 811                        NS_ERR("invalid weakpagess.\n");
 812                        return -EINVAL;
 813                }
 814                max_writes = 3;
 815                if (*w == ':') {
 816                        w += 1;
 817                        max_writes = simple_strtoul(w, &w, 0);
 818                }
 819                if (*w == ',')
 820                        w += 1;
 821                wp = kzalloc(sizeof(*wp), GFP_KERNEL);
 822                if (!wp) {
 823                        NS_ERR("unable to allocate memory.\n");
 824                        return -ENOMEM;
 825                }
 826                wp->page_no = page_no;
 827                wp->max_writes = max_writes;
 828                list_add(&wp->list, &weak_pages);
 829        } while (*w);
 830        return 0;
 831}
 832
 833static int write_error(unsigned int page_no)
 834{
 835        struct weak_page *wp;
 836
 837        list_for_each_entry(wp, &weak_pages, list)
 838                if (wp->page_no == page_no) {
 839                        if (wp->writes_done >= wp->max_writes)
 840                                return 1;
 841                        wp->writes_done += 1;
 842                        return 0;
 843                }
 844        return 0;
 845}
 846
 847static int parse_gravepages(void)
 848{
 849        char *g;
 850        int zero_ok;
 851        unsigned int page_no;
 852        unsigned int max_reads;
 853        struct grave_page *gp;
 854
 855        if (!gravepages)
 856                return 0;
 857        g = gravepages;
 858        do {
 859                zero_ok = (*g == '0' ? 1 : 0);
 860                page_no = simple_strtoul(g, &g, 0);
 861                if (!zero_ok && !page_no) {
 862                        NS_ERR("invalid gravepagess.\n");
 863                        return -EINVAL;
 864                }
 865                max_reads = 3;
 866                if (*g == ':') {
 867                        g += 1;
 868                        max_reads = simple_strtoul(g, &g, 0);
 869                }
 870                if (*g == ',')
 871                        g += 1;
 872                gp = kzalloc(sizeof(*gp), GFP_KERNEL);
 873                if (!gp) {
 874                        NS_ERR("unable to allocate memory.\n");
 875                        return -ENOMEM;
 876                }
 877                gp->page_no = page_no;
 878                gp->max_reads = max_reads;
 879                list_add(&gp->list, &grave_pages);
 880        } while (*g);
 881        return 0;
 882}
 883
 884static int read_error(unsigned int page_no)
 885{
 886        struct grave_page *gp;
 887
 888        list_for_each_entry(gp, &grave_pages, list)
 889                if (gp->page_no == page_no) {
 890                        if (gp->reads_done >= gp->max_reads)
 891                                return 1;
 892                        gp->reads_done += 1;
 893                        return 0;
 894                }
 895        return 0;
 896}
 897
 898static void free_lists(void)
 899{
 900        struct list_head *pos, *n;
 901        list_for_each_safe(pos, n, &weak_blocks) {
 902                list_del(pos);
 903                kfree(list_entry(pos, struct weak_block, list));
 904        }
 905        list_for_each_safe(pos, n, &weak_pages) {
 906                list_del(pos);
 907                kfree(list_entry(pos, struct weak_page, list));
 908        }
 909        list_for_each_safe(pos, n, &grave_pages) {
 910                list_del(pos);
 911                kfree(list_entry(pos, struct grave_page, list));
 912        }
 913        kfree(erase_block_wear);
 914}
 915
 916static int setup_wear_reporting(struct mtd_info *mtd)
 917{
 918        size_t mem;
 919
 920        if (!rptwear)
 921                return 0;
 922        wear_eb_count = divide(mtd->size, mtd->erasesize);
 923        mem = wear_eb_count * sizeof(unsigned long);
 924        if (mem / sizeof(unsigned long) != wear_eb_count) {
 925                NS_ERR("Too many erase blocks for wear reporting\n");
 926                return -ENOMEM;
 927        }
 928        erase_block_wear = kzalloc(mem, GFP_KERNEL);
 929        if (!erase_block_wear) {
 930                NS_ERR("Too many erase blocks for wear reporting\n");
 931                return -ENOMEM;
 932        }
 933        return 0;
 934}
 935
 936static void update_wear(unsigned int erase_block_no)
 937{
 938        unsigned long wmin = -1, wmax = 0, avg;
 939        unsigned long deciles[10], decile_max[10], tot = 0;
 940        unsigned int i;
 941
 942        if (!erase_block_wear)
 943                return;
 944        total_wear += 1;
 945        if (total_wear == 0)
 946                NS_ERR("Erase counter total overflow\n");
 947        erase_block_wear[erase_block_no] += 1;
 948        if (erase_block_wear[erase_block_no] == 0)
 949                NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
 950        rptwear_cnt += 1;
 951        if (rptwear_cnt < rptwear)
 952                return;
 953        rptwear_cnt = 0;
 954        /* Calc wear stats */
 955        for (i = 0; i < wear_eb_count; ++i) {
 956                unsigned long wear = erase_block_wear[i];
 957                if (wear < wmin)
 958                        wmin = wear;
 959                if (wear > wmax)
 960                        wmax = wear;
 961                tot += wear;
 962        }
 963        for (i = 0; i < 9; ++i) {
 964                deciles[i] = 0;
 965                decile_max[i] = (wmax * (i + 1) + 5) / 10;
 966        }
 967        deciles[9] = 0;
 968        decile_max[9] = wmax;
 969        for (i = 0; i < wear_eb_count; ++i) {
 970                int d;
 971                unsigned long wear = erase_block_wear[i];
 972                for (d = 0; d < 10; ++d)
 973                        if (wear <= decile_max[d]) {
 974                                deciles[d] += 1;
 975                                break;
 976                        }
 977        }
 978        avg = tot / wear_eb_count;
 979        /* Output wear report */
 980        NS_INFO("*** Wear Report ***\n");
 981        NS_INFO("Total numbers of erases:  %lu\n", tot);
 982        NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
 983        NS_INFO("Average number of erases: %lu\n", avg);
 984        NS_INFO("Maximum number of erases: %lu\n", wmax);
 985        NS_INFO("Minimum number of erases: %lu\n", wmin);
 986        for (i = 0; i < 10; ++i) {
 987                unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
 988                if (from > decile_max[i])
 989                        continue;
 990                NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
 991                        from,
 992                        decile_max[i],
 993                        deciles[i]);
 994        }
 995        NS_INFO("*** End of Wear Report ***\n");
 996}
 997
 998/*
 999 * Returns the string representation of 'state' state.
1000 */
1001static char *get_state_name(uint32_t state)
1002{
1003        switch (NS_STATE(state)) {
1004                case STATE_CMD_READ0:
1005                        return "STATE_CMD_READ0";
1006                case STATE_CMD_READ1:
1007                        return "STATE_CMD_READ1";
1008                case STATE_CMD_PAGEPROG:
1009                        return "STATE_CMD_PAGEPROG";
1010                case STATE_CMD_READOOB:
1011                        return "STATE_CMD_READOOB";
1012                case STATE_CMD_READSTART:
1013                        return "STATE_CMD_READSTART";
1014                case STATE_CMD_ERASE1:
1015                        return "STATE_CMD_ERASE1";
1016                case STATE_CMD_STATUS:
1017                        return "STATE_CMD_STATUS";
1018                case STATE_CMD_STATUS_M:
1019                        return "STATE_CMD_STATUS_M";
1020                case STATE_CMD_SEQIN:
1021                        return "STATE_CMD_SEQIN";
1022                case STATE_CMD_READID:
1023                        return "STATE_CMD_READID";
1024                case STATE_CMD_ERASE2:
1025                        return "STATE_CMD_ERASE2";
1026                case STATE_CMD_RESET:
1027                        return "STATE_CMD_RESET";
1028                case STATE_CMD_RNDOUT:
1029                        return "STATE_CMD_RNDOUT";
1030                case STATE_CMD_RNDOUTSTART:
1031                        return "STATE_CMD_RNDOUTSTART";
1032                case STATE_ADDR_PAGE:
1033                        return "STATE_ADDR_PAGE";
1034                case STATE_ADDR_SEC:
1035                        return "STATE_ADDR_SEC";
1036                case STATE_ADDR_ZERO:
1037                        return "STATE_ADDR_ZERO";
1038                case STATE_ADDR_COLUMN:
1039                        return "STATE_ADDR_COLUMN";
1040                case STATE_DATAIN:
1041                        return "STATE_DATAIN";
1042                case STATE_DATAOUT:
1043                        return "STATE_DATAOUT";
1044                case STATE_DATAOUT_ID:
1045                        return "STATE_DATAOUT_ID";
1046                case STATE_DATAOUT_STATUS:
1047                        return "STATE_DATAOUT_STATUS";
1048                case STATE_DATAOUT_STATUS_M:
1049                        return "STATE_DATAOUT_STATUS_M";
1050                case STATE_READY:
1051                        return "STATE_READY";
1052                case STATE_UNKNOWN:
1053                        return "STATE_UNKNOWN";
1054        }
1055
1056        NS_ERR("get_state_name: unknown state, BUG\n");
1057        return NULL;
1058}
1059
1060/*
1061 * Check if command is valid.
1062 *
1063 * RETURNS: 1 if wrong command, 0 if right.
1064 */
1065static int check_command(int cmd)
1066{
1067        switch (cmd) {
1068
1069        case NAND_CMD_READ0:
1070        case NAND_CMD_READ1:
1071        case NAND_CMD_READSTART:
1072        case NAND_CMD_PAGEPROG:
1073        case NAND_CMD_READOOB:
1074        case NAND_CMD_ERASE1:
1075        case NAND_CMD_STATUS:
1076        case NAND_CMD_SEQIN:
1077        case NAND_CMD_READID:
1078        case NAND_CMD_ERASE2:
1079        case NAND_CMD_RESET:
1080        case NAND_CMD_RNDOUT:
1081        case NAND_CMD_RNDOUTSTART:
1082                return 0;
1083
1084        case NAND_CMD_STATUS_MULTI:
1085        default:
1086                return 1;
1087        }
1088}
1089
1090/*
1091 * Returns state after command is accepted by command number.
1092 */
1093static uint32_t get_state_by_command(unsigned command)
1094{
1095        switch (command) {
1096                case NAND_CMD_READ0:
1097                        return STATE_CMD_READ0;
1098                case NAND_CMD_READ1:
1099                        return STATE_CMD_READ1;
1100                case NAND_CMD_PAGEPROG:
1101                        return STATE_CMD_PAGEPROG;
1102                case NAND_CMD_READSTART:
1103                        return STATE_CMD_READSTART;
1104                case NAND_CMD_READOOB:
1105                        return STATE_CMD_READOOB;
1106                case NAND_CMD_ERASE1:
1107                        return STATE_CMD_ERASE1;
1108                case NAND_CMD_STATUS:
1109                        return STATE_CMD_STATUS;
1110                case NAND_CMD_STATUS_MULTI:
1111                        return STATE_CMD_STATUS_M;
1112                case NAND_CMD_SEQIN:
1113                        return STATE_CMD_SEQIN;
1114                case NAND_CMD_READID:
1115                        return STATE_CMD_READID;
1116                case NAND_CMD_ERASE2:
1117                        return STATE_CMD_ERASE2;
1118                case NAND_CMD_RESET:
1119                        return STATE_CMD_RESET;
1120                case NAND_CMD_RNDOUT:
1121                        return STATE_CMD_RNDOUT;
1122                case NAND_CMD_RNDOUTSTART:
1123                        return STATE_CMD_RNDOUTSTART;
1124        }
1125
1126        NS_ERR("get_state_by_command: unknown command, BUG\n");
1127        return 0;
1128}
1129
1130/*
1131 * Move an address byte to the correspondent internal register.
1132 */
1133static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1134{
1135        uint byte = (uint)bt;
1136
1137        if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1138                ns->regs.column |= (byte << 8 * ns->regs.count);
1139        else {
1140                ns->regs.row |= (byte << 8 * (ns->regs.count -
1141                                                ns->geom.pgaddrbytes +
1142                                                ns->geom.secaddrbytes));
1143        }
1144
1145        return;
1146}
1147
1148/*
1149 * Switch to STATE_READY state.
1150 */
1151static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1152{
1153        NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1154
1155        ns->state       = STATE_READY;
1156        ns->nxstate     = STATE_UNKNOWN;
1157        ns->op          = NULL;
1158        ns->npstates    = 0;
1159        ns->stateidx    = 0;
1160        ns->regs.num    = 0;
1161        ns->regs.count  = 0;
1162        ns->regs.off    = 0;
1163        ns->regs.row    = 0;
1164        ns->regs.column = 0;
1165        ns->regs.status = status;
1166}
1167
1168/*
1169 * If the operation isn't known yet, try to find it in the global array
1170 * of supported operations.
1171 *
1172 * Operation can be unknown because of the following.
1173 *   1. New command was accepted and this is the first call to find the
1174 *      correspondent states chain. In this case ns->npstates = 0;
1175 *   2. There are several operations which begin with the same command(s)
1176 *      (for example program from the second half and read from the
1177 *      second half operations both begin with the READ1 command). In this
1178 *      case the ns->pstates[] array contains previous states.
1179 *
1180 * Thus, the function tries to find operation containing the following
1181 * states (if the 'flag' parameter is 0):
1182 *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1183 *
1184 * If (one and only one) matching operation is found, it is accepted (
1185 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1186 * zeroed).
1187 *
1188 * If there are several matches, the current state is pushed to the
1189 * ns->pstates.
1190 *
1191 * The operation can be unknown only while commands are input to the chip.
1192 * As soon as address command is accepted, the operation must be known.
1193 * In such situation the function is called with 'flag' != 0, and the
1194 * operation is searched using the following pattern:
1195 *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1196 *
1197 * It is supposed that this pattern must either match one operation or
1198 * none. There can't be ambiguity in that case.
1199 *
1200 * If no matches found, the function does the following:
1201 *   1. if there are saved states present, try to ignore them and search
1202 *      again only using the last command. If nothing was found, switch
1203 *      to the STATE_READY state.
1204 *   2. if there are no saved states, switch to the STATE_READY state.
1205 *
1206 * RETURNS: -2 - no matched operations found.
1207 *          -1 - several matches.
1208 *           0 - operation is found.
1209 */
1210static int find_operation(struct nandsim *ns, uint32_t flag)
1211{
1212        int opsfound = 0;
1213        int i, j, idx = 0;
1214
1215        for (i = 0; i < NS_OPER_NUM; i++) {
1216
1217                int found = 1;
1218
1219                if (!(ns->options & ops[i].reqopts))
1220                        /* Ignore operations we can't perform */
1221                        continue;
1222
1223                if (flag) {
1224                        if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1225                                continue;
1226                } else {
1227                        if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1228                                continue;
1229                }
1230
1231                for (j = 0; j < ns->npstates; j++)
1232                        if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1233                                && (ns->options & ops[idx].reqopts)) {
1234                                found = 0;
1235                                break;
1236                        }
1237
1238                if (found) {
1239                        idx = i;
1240                        opsfound += 1;
1241                }
1242        }
1243
1244        if (opsfound == 1) {
1245                /* Exact match */
1246                ns->op = &ops[idx].states[0];
1247                if (flag) {
1248                        /*
1249                         * In this case the find_operation function was
1250                         * called when address has just began input. But it isn't
1251                         * yet fully input and the current state must
1252                         * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1253                         * state must be the next state (ns->nxstate).
1254                         */
1255                        ns->stateidx = ns->npstates - 1;
1256                } else {
1257                        ns->stateidx = ns->npstates;
1258                }
1259                ns->npstates = 0;
1260                ns->state = ns->op[ns->stateidx];
1261                ns->nxstate = ns->op[ns->stateidx + 1];
1262                NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1263                                idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1264                return 0;
1265        }
1266
1267        if (opsfound == 0) {
1268                /* Nothing was found. Try to ignore previous commands (if any) and search again */
1269                if (ns->npstates != 0) {
1270                        NS_DBG("find_operation: no operation found, try again with state %s\n",
1271                                        get_state_name(ns->state));
1272                        ns->npstates = 0;
1273                        return find_operation(ns, 0);
1274
1275                }
1276                NS_DBG("find_operation: no operations found\n");
1277                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1278                return -2;
1279        }
1280
1281        if (flag) {
1282                /* This shouldn't happen */
1283                NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1284                return -2;
1285        }
1286
1287        NS_DBG("find_operation: there is still ambiguity\n");
1288
1289        ns->pstates[ns->npstates++] = ns->state;
1290
1291        return -1;
1292}
1293
1294static void put_pages(struct nandsim *ns)
1295{
1296        int i;
1297
1298        for (i = 0; i < ns->held_cnt; i++)
1299                page_cache_release(ns->held_pages[i]);
1300}
1301
1302/* Get page cache pages in advance to provide NOFS memory allocation */
1303static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1304{
1305        pgoff_t index, start_index, end_index;
1306        struct page *page;
1307        struct address_space *mapping = file->f_mapping;
1308
1309        start_index = pos >> PAGE_CACHE_SHIFT;
1310        end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1311        if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1312                return -EINVAL;
1313        ns->held_cnt = 0;
1314        for (index = start_index; index <= end_index; index++) {
1315                page = find_get_page(mapping, index);
1316                if (page == NULL) {
1317                        page = find_or_create_page(mapping, index, GFP_NOFS);
1318                        if (page == NULL) {
1319                                write_inode_now(mapping->host, 1);
1320                                page = find_or_create_page(mapping, index, GFP_NOFS);
1321                        }
1322                        if (page == NULL) {
1323                                put_pages(ns);
1324                                return -ENOMEM;
1325                        }
1326                        unlock_page(page);
1327                }
1328                ns->held_pages[ns->held_cnt++] = page;
1329        }
1330        return 0;
1331}
1332
1333static int set_memalloc(void)
1334{
1335        if (current->flags & PF_MEMALLOC)
1336                return 0;
1337        current->flags |= PF_MEMALLOC;
1338        return 1;
1339}
1340
1341static void clear_memalloc(int memalloc)
1342{
1343        if (memalloc)
1344                current->flags &= ~PF_MEMALLOC;
1345}
1346
1347static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1348{
1349        mm_segment_t old_fs;
1350        ssize_t tx;
1351        int err, memalloc;
1352
1353        err = get_pages(ns, file, count, *pos);
1354        if (err)
1355                return err;
1356        old_fs = get_fs();
1357        set_fs(get_ds());
1358        memalloc = set_memalloc();
1359        tx = vfs_read(file, (char __user *)buf, count, pos);
1360        clear_memalloc(memalloc);
1361        set_fs(old_fs);
1362        put_pages(ns);
1363        return tx;
1364}
1365
1366static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1367{
1368        mm_segment_t old_fs;
1369        ssize_t tx;
1370        int err, memalloc;
1371
1372        err = get_pages(ns, file, count, *pos);
1373        if (err)
1374                return err;
1375        old_fs = get_fs();
1376        set_fs(get_ds());
1377        memalloc = set_memalloc();
1378        tx = vfs_write(file, (char __user *)buf, count, pos);
1379        clear_memalloc(memalloc);
1380        set_fs(old_fs);
1381        put_pages(ns);
1382        return tx;
1383}
1384
1385/*
1386 * Returns a pointer to the current page.
1387 */
1388static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1389{
1390        return &(ns->pages[ns->regs.row]);
1391}
1392
1393/*
1394 * Retuns a pointer to the current byte, within the current page.
1395 */
1396static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1397{
1398        return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1399}
1400
1401int do_read_error(struct nandsim *ns, int num)
1402{
1403        unsigned int page_no = ns->regs.row;
1404
1405        if (read_error(page_no)) {
1406                int i;
1407                memset(ns->buf.byte, 0xFF, num);
1408                for (i = 0; i < num; ++i)
1409                        ns->buf.byte[i] = random32();
1410                NS_WARN("simulating read error in page %u\n", page_no);
1411                return 1;
1412        }
1413        return 0;
1414}
1415
1416void do_bit_flips(struct nandsim *ns, int num)
1417{
1418        if (bitflips && random32() < (1 << 22)) {
1419                int flips = 1;
1420                if (bitflips > 1)
1421                        flips = (random32() % (int) bitflips) + 1;
1422                while (flips--) {
1423                        int pos = random32() % (num * 8);
1424                        ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1425                        NS_WARN("read_page: flipping bit %d in page %d "
1426                                "reading from %d ecc: corrected=%u failed=%u\n",
1427                                pos, ns->regs.row, ns->regs.column + ns->regs.off,
1428                                nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1429                }
1430        }
1431}
1432
1433/*
1434 * Fill the NAND buffer with data read from the specified page.
1435 */
1436static void read_page(struct nandsim *ns, int num)
1437{
1438        union ns_mem *mypage;
1439
1440        if (ns->cfile) {
1441                if (!ns->pages_written[ns->regs.row]) {
1442                        NS_DBG("read_page: page %d not written\n", ns->regs.row);
1443                        memset(ns->buf.byte, 0xFF, num);
1444                } else {
1445                        loff_t pos;
1446                        ssize_t tx;
1447
1448                        NS_DBG("read_page: page %d written, reading from %d\n",
1449                                ns->regs.row, ns->regs.column + ns->regs.off);
1450                        if (do_read_error(ns, num))
1451                                return;
1452                        pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1453                        tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1454                        if (tx != num) {
1455                                NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1456                                return;
1457                        }
1458                        do_bit_flips(ns, num);
1459                }
1460                return;
1461        }
1462
1463        mypage = NS_GET_PAGE(ns);
1464        if (mypage->byte == NULL) {
1465                NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1466                memset(ns->buf.byte, 0xFF, num);
1467        } else {
1468                NS_DBG("read_page: page %d allocated, reading from %d\n",
1469                        ns->regs.row, ns->regs.column + ns->regs.off);
1470                if (do_read_error(ns, num))
1471                        return;
1472                memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1473                do_bit_flips(ns, num);
1474        }
1475}
1476
1477/*
1478 * Erase all pages in the specified sector.
1479 */
1480static void erase_sector(struct nandsim *ns)
1481{
1482        union ns_mem *mypage;
1483        int i;
1484
1485        if (ns->cfile) {
1486                for (i = 0; i < ns->geom.pgsec; i++)
1487                        if (ns->pages_written[ns->regs.row + i]) {
1488                                NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1489                                ns->pages_written[ns->regs.row + i] = 0;
1490                        }
1491                return;
1492        }
1493
1494        mypage = NS_GET_PAGE(ns);
1495        for (i = 0; i < ns->geom.pgsec; i++) {
1496                if (mypage->byte != NULL) {
1497                        NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1498                        kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1499                        mypage->byte = NULL;
1500                }
1501                mypage++;
1502        }
1503}
1504
1505/*
1506 * Program the specified page with the contents from the NAND buffer.
1507 */
1508static int prog_page(struct nandsim *ns, int num)
1509{
1510        int i;
1511        union ns_mem *mypage;
1512        u_char *pg_off;
1513
1514        if (ns->cfile) {
1515                loff_t off, pos;
1516                ssize_t tx;
1517                int all;
1518
1519                NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1520                pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1521                off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1522                if (!ns->pages_written[ns->regs.row]) {
1523                        all = 1;
1524                        memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1525                } else {
1526                        all = 0;
1527                        pos = off;
1528                        tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1529                        if (tx != num) {
1530                                NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1531                                return -1;
1532                        }
1533                }
1534                for (i = 0; i < num; i++)
1535                        pg_off[i] &= ns->buf.byte[i];
1536                if (all) {
1537                        pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1538                        tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1539                        if (tx != ns->geom.pgszoob) {
1540                                NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1541                                return -1;
1542                        }
1543                        ns->pages_written[ns->regs.row] = 1;
1544                } else {
1545                        pos = off;
1546                        tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1547                        if (tx != num) {
1548                                NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1549                                return -1;
1550                        }
1551                }
1552                return 0;
1553        }
1554
1555        mypage = NS_GET_PAGE(ns);
1556        if (mypage->byte == NULL) {
1557                NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1558                /*
1559                 * We allocate memory with GFP_NOFS because a flash FS may
1560                 * utilize this. If it is holding an FS lock, then gets here,
1561                 * then kernel memory alloc runs writeback which goes to the FS
1562                 * again and deadlocks. This was seen in practice.
1563                 */
1564                mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1565                if (mypage->byte == NULL) {
1566                        NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1567                        return -1;
1568                }
1569                memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1570        }
1571
1572        pg_off = NS_PAGE_BYTE_OFF(ns);
1573        for (i = 0; i < num; i++)
1574                pg_off[i] &= ns->buf.byte[i];
1575
1576        return 0;
1577}
1578
1579/*
1580 * If state has any action bit, perform this action.
1581 *
1582 * RETURNS: 0 if success, -1 if error.
1583 */
1584static int do_state_action(struct nandsim *ns, uint32_t action)
1585{
1586        int num;
1587        int busdiv = ns->busw == 8 ? 1 : 2;
1588        unsigned int erase_block_no, page_no;
1589
1590        action &= ACTION_MASK;
1591
1592        /* Check that page address input is correct */
1593        if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1594                NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1595                return -1;
1596        }
1597
1598        switch (action) {
1599
1600        case ACTION_CPY:
1601                /*
1602                 * Copy page data to the internal buffer.
1603                 */
1604
1605                /* Column shouldn't be very large */
1606                if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1607                        NS_ERR("do_state_action: column number is too large\n");
1608                        break;
1609                }
1610                num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1611                read_page(ns, num);
1612
1613                NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1614                        num, NS_RAW_OFFSET(ns) + ns->regs.off);
1615
1616                if (ns->regs.off == 0)
1617                        NS_LOG("read page %d\n", ns->regs.row);
1618                else if (ns->regs.off < ns->geom.pgsz)
1619                        NS_LOG("read page %d (second half)\n", ns->regs.row);
1620                else
1621                        NS_LOG("read OOB of page %d\n", ns->regs.row);
1622
1623                NS_UDELAY(access_delay);
1624                NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1625
1626                break;
1627
1628        case ACTION_SECERASE:
1629                /*
1630                 * Erase sector.
1631                 */
1632
1633                if (ns->lines.wp) {
1634                        NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1635                        return -1;
1636                }
1637
1638                if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1639                        || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1640                        NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1641                        return -1;
1642                }
1643
1644                ns->regs.row = (ns->regs.row <<
1645                                8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1646                ns->regs.column = 0;
1647
1648                erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1649
1650                NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1651                                ns->regs.row, NS_RAW_OFFSET(ns));
1652                NS_LOG("erase sector %u\n", erase_block_no);
1653
1654                erase_sector(ns);
1655
1656                NS_MDELAY(erase_delay);
1657
1658                if (erase_block_wear)
1659                        update_wear(erase_block_no);
1660
1661                if (erase_error(erase_block_no)) {
1662                        NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1663                        return -1;
1664                }
1665
1666                break;
1667
1668        case ACTION_PRGPAGE:
1669                /*
1670                 * Program page - move internal buffer data to the page.
1671                 */
1672
1673                if (ns->lines.wp) {
1674                        NS_WARN("do_state_action: device is write-protected, programm\n");
1675                        return -1;
1676                }
1677
1678                num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1679                if (num != ns->regs.count) {
1680                        NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1681                                        ns->regs.count, num);
1682                        return -1;
1683                }
1684
1685                if (prog_page(ns, num) == -1)
1686                        return -1;
1687
1688                page_no = ns->regs.row;
1689
1690                NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1691                        num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1692                NS_LOG("programm page %d\n", ns->regs.row);
1693
1694                NS_UDELAY(programm_delay);
1695                NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1696
1697                if (write_error(page_no)) {
1698                        NS_WARN("simulating write failure in page %u\n", page_no);
1699                        return -1;
1700                }
1701
1702                break;
1703
1704        case ACTION_ZEROOFF:
1705                NS_DBG("do_state_action: set internal offset to 0\n");
1706                ns->regs.off = 0;
1707                break;
1708
1709        case ACTION_HALFOFF:
1710                if (!(ns->options & OPT_PAGE512_8BIT)) {
1711                        NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1712                                "byte page size 8x chips\n");
1713                        return -1;
1714                }
1715                NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1716                ns->regs.off = ns->geom.pgsz/2;
1717                break;
1718
1719        case ACTION_OOBOFF:
1720                NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1721                ns->regs.off = ns->geom.pgsz;
1722                break;
1723
1724        default:
1725                NS_DBG("do_state_action: BUG! unknown action\n");
1726        }
1727
1728        return 0;
1729}
1730
1731/*
1732 * Switch simulator's state.
1733 */
1734static void switch_state(struct nandsim *ns)
1735{
1736        if (ns->op) {
1737                /*
1738                 * The current operation have already been identified.
1739                 * Just follow the states chain.
1740                 */
1741
1742                ns->stateidx += 1;
1743                ns->state = ns->nxstate;
1744                ns->nxstate = ns->op[ns->stateidx + 1];
1745
1746                NS_DBG("switch_state: operation is known, switch to the next state, "
1747                        "state: %s, nxstate: %s\n",
1748                        get_state_name(ns->state), get_state_name(ns->nxstate));
1749
1750                /* See, whether we need to do some action */
1751                if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1752                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1753                        return;
1754                }
1755
1756        } else {
1757                /*
1758                 * We don't yet know which operation we perform.
1759                 * Try to identify it.
1760                 */
1761
1762                /*
1763                 *  The only event causing the switch_state function to
1764                 *  be called with yet unknown operation is new command.
1765                 */
1766                ns->state = get_state_by_command(ns->regs.command);
1767
1768                NS_DBG("switch_state: operation is unknown, try to find it\n");
1769
1770                if (find_operation(ns, 0) != 0)
1771                        return;
1772
1773                if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1774                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1775                        return;
1776                }
1777        }
1778
1779        /* For 16x devices column means the page offset in words */
1780        if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1781                NS_DBG("switch_state: double the column number for 16x device\n");
1782                ns->regs.column <<= 1;
1783        }
1784
1785        if (NS_STATE(ns->nxstate) == STATE_READY) {
1786                /*
1787                 * The current state is the last. Return to STATE_READY
1788                 */
1789
1790                u_char status = NS_STATUS_OK(ns);
1791
1792                /* In case of data states, see if all bytes were input/output */
1793                if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1794                        && ns->regs.count != ns->regs.num) {
1795                        NS_WARN("switch_state: not all bytes were processed, %d left\n",
1796                                        ns->regs.num - ns->regs.count);
1797                        status = NS_STATUS_FAILED(ns);
1798                }
1799
1800                NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1801
1802                switch_to_ready_state(ns, status);
1803
1804                return;
1805        } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1806                /*
1807                 * If the next state is data input/output, switch to it now
1808                 */
1809
1810                ns->state      = ns->nxstate;
1811                ns->nxstate    = ns->op[++ns->stateidx + 1];
1812                ns->regs.num   = ns->regs.count = 0;
1813
1814                NS_DBG("switch_state: the next state is data I/O, switch, "
1815                        "state: %s, nxstate: %s\n",
1816                        get_state_name(ns->state), get_state_name(ns->nxstate));
1817
1818                /*
1819                 * Set the internal register to the count of bytes which
1820                 * are expected to be input or output
1821                 */
1822                switch (NS_STATE(ns->state)) {
1823                        case STATE_DATAIN:
1824                        case STATE_DATAOUT:
1825                                ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1826                                break;
1827
1828                        case STATE_DATAOUT_ID:
1829                                ns->regs.num = ns->geom.idbytes;
1830                                break;
1831
1832                        case STATE_DATAOUT_STATUS:
1833                        case STATE_DATAOUT_STATUS_M:
1834                                ns->regs.count = ns->regs.num = 0;
1835                                break;
1836
1837                        default:
1838                                NS_ERR("switch_state: BUG! unknown data state\n");
1839                }
1840
1841        } else if (ns->nxstate & STATE_ADDR_MASK) {
1842                /*
1843                 * If the next state is address input, set the internal
1844                 * register to the number of expected address bytes
1845                 */
1846
1847                ns->regs.count = 0;
1848
1849                switch (NS_STATE(ns->nxstate)) {
1850                        case STATE_ADDR_PAGE:
1851                                ns->regs.num = ns->geom.pgaddrbytes;
1852
1853                                break;
1854                        case STATE_ADDR_SEC:
1855                                ns->regs.num = ns->geom.secaddrbytes;
1856                                break;
1857
1858                        case STATE_ADDR_ZERO:
1859                                ns->regs.num = 1;
1860                                break;
1861
1862                        case STATE_ADDR_COLUMN:
1863                                /* Column address is always 2 bytes */
1864                                ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1865                                break;
1866
1867                        default:
1868                                NS_ERR("switch_state: BUG! unknown address state\n");
1869                }
1870        } else {
1871                /*
1872                 * Just reset internal counters.
1873                 */
1874
1875                ns->regs.num = 0;
1876                ns->regs.count = 0;
1877        }
1878}
1879
1880static u_char ns_nand_read_byte(struct mtd_info *mtd)
1881{
1882        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1883        u_char outb = 0x00;
1884
1885        /* Sanity and correctness checks */
1886        if (!ns->lines.ce) {
1887                NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1888                return outb;
1889        }
1890        if (ns->lines.ale || ns->lines.cle) {
1891                NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1892                return outb;
1893        }
1894        if (!(ns->state & STATE_DATAOUT_MASK)) {
1895                NS_WARN("read_byte: unexpected data output cycle, state is %s "
1896                        "return %#x\n", get_state_name(ns->state), (uint)outb);
1897                return outb;
1898        }
1899
1900        /* Status register may be read as many times as it is wanted */
1901        if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1902                NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1903                return ns->regs.status;
1904        }
1905
1906        /* Check if there is any data in the internal buffer which may be read */
1907        if (ns->regs.count == ns->regs.num) {
1908                NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1909                return outb;
1910        }
1911
1912        switch (NS_STATE(ns->state)) {
1913                case STATE_DATAOUT:
1914                        if (ns->busw == 8) {
1915                                outb = ns->buf.byte[ns->regs.count];
1916                                ns->regs.count += 1;
1917                        } else {
1918                                outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1919                                ns->regs.count += 2;
1920                        }
1921                        break;
1922                case STATE_DATAOUT_ID:
1923                        NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1924                        outb = ns->ids[ns->regs.count];
1925                        ns->regs.count += 1;
1926                        break;
1927                default:
1928                        BUG();
1929        }
1930
1931        if (ns->regs.count == ns->regs.num) {
1932                NS_DBG("read_byte: all bytes were read\n");
1933
1934                /*
1935                 * The OPT_AUTOINCR allows to read next consecutive pages without
1936                 * new read operation cycle.
1937                 */
1938                if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1939                        ns->regs.count = 0;
1940                        if (ns->regs.row + 1 < ns->geom.pgnum)
1941                                ns->regs.row += 1;
1942                        NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1943                        do_state_action(ns, ACTION_CPY);
1944                }
1945                else if (NS_STATE(ns->nxstate) == STATE_READY)
1946                        switch_state(ns);
1947
1948        }
1949
1950        return outb;
1951}
1952
1953static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1954{
1955        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1956
1957        /* Sanity and correctness checks */
1958        if (!ns->lines.ce) {
1959                NS_ERR("write_byte: chip is disabled, ignore write\n");
1960                return;
1961        }
1962        if (ns->lines.ale && ns->lines.cle) {
1963                NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1964                return;
1965        }
1966
1967        if (ns->lines.cle == 1) {
1968                /*
1969                 * The byte written is a command.
1970                 */
1971
1972                if (byte == NAND_CMD_RESET) {
1973                        NS_LOG("reset chip\n");
1974                        switch_to_ready_state(ns, NS_STATUS_OK(ns));
1975                        return;
1976                }
1977
1978                /* Check that the command byte is correct */
1979                if (check_command(byte)) {
1980                        NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1981                        return;
1982                }
1983
1984                if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1985                        || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1986                        || NS_STATE(ns->state) == STATE_DATAOUT) {
1987                        int row = ns->regs.row;
1988
1989                        switch_state(ns);
1990                        if (byte == NAND_CMD_RNDOUT)
1991                                ns->regs.row = row;
1992                }
1993
1994                /* Check if chip is expecting command */
1995                if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1996                        /* Do not warn if only 2 id bytes are read */
1997                        if (!(ns->regs.command == NAND_CMD_READID &&
1998                            NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1999                                /*
2000                                 * We are in situation when something else (not command)
2001                                 * was expected but command was input. In this case ignore
2002                                 * previous command(s)/state(s) and accept the last one.
2003                                 */
2004                                NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2005                                        "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2006                        }
2007                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2008                }
2009
2010                NS_DBG("command byte corresponding to %s state accepted\n",
2011                        get_state_name(get_state_by_command(byte)));
2012                ns->regs.command = byte;
2013                switch_state(ns);
2014
2015        } else if (ns->lines.ale == 1) {
2016                /*
2017                 * The byte written is an address.
2018                 */
2019
2020                if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2021
2022                        NS_DBG("write_byte: operation isn't known yet, identify it\n");
2023
2024                        if (find_operation(ns, 1) < 0)
2025                                return;
2026
2027                        if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2028                                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2029                                return;
2030                        }
2031
2032                        ns->regs.count = 0;
2033                        switch (NS_STATE(ns->nxstate)) {
2034                                case STATE_ADDR_PAGE:
2035                                        ns->regs.num = ns->geom.pgaddrbytes;
2036                                        break;
2037                                case STATE_ADDR_SEC:
2038                                        ns->regs.num = ns->geom.secaddrbytes;
2039                                        break;
2040                                case STATE_ADDR_ZERO:
2041                                        ns->regs.num = 1;
2042                                        break;
2043                                default:
2044                                        BUG();
2045                        }
2046                }
2047
2048                /* Check that chip is expecting address */
2049                if (!(ns->nxstate & STATE_ADDR_MASK)) {
2050                        NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2051                                "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2052                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2053                        return;
2054                }
2055
2056                /* Check if this is expected byte */
2057                if (ns->regs.count == ns->regs.num) {
2058                        NS_ERR("write_byte: no more address bytes expected\n");
2059                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2060                        return;
2061                }
2062
2063                accept_addr_byte(ns, byte);
2064
2065                ns->regs.count += 1;
2066
2067                NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2068                                (uint)byte, ns->regs.count, ns->regs.num);
2069
2070                if (ns->regs.count == ns->regs.num) {
2071                        NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2072                        switch_state(ns);
2073                }
2074
2075        } else {
2076                /*
2077                 * The byte written is an input data.
2078                 */
2079
2080                /* Check that chip is expecting data input */
2081                if (!(ns->state & STATE_DATAIN_MASK)) {
2082                        NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2083                                "switch to %s\n", (uint)byte,
2084                                get_state_name(ns->state), get_state_name(STATE_READY));
2085                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2086                        return;
2087                }
2088
2089                /* Check if this is expected byte */
2090                if (ns->regs.count == ns->regs.num) {
2091                        NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2092                                        ns->regs.num);
2093                        return;
2094                }
2095
2096                if (ns->busw == 8) {
2097                        ns->buf.byte[ns->regs.count] = byte;
2098                        ns->regs.count += 1;
2099                } else {
2100                        ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2101                        ns->regs.count += 2;
2102                }
2103        }
2104
2105        return;
2106}
2107
2108static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2109{
2110        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2111
2112        ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2113        ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2114        ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2115
2116        if (cmd != NAND_CMD_NONE)
2117                ns_nand_write_byte(mtd, cmd);
2118}
2119
2120static int ns_device_ready(struct mtd_info *mtd)
2121{
2122        NS_DBG("device_ready\n");
2123        return 1;
2124}
2125
2126static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2127{
2128        struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2129
2130        NS_DBG("read_word\n");
2131
2132        return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2133}
2134
2135static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2136{
2137        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2138
2139        /* Check that chip is expecting data input */
2140        if (!(ns->state & STATE_DATAIN_MASK)) {
2141                NS_ERR("write_buf: data input isn't expected, state is %s, "
2142                        "switch to STATE_READY\n", get_state_name(ns->state));
2143                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2144                return;
2145        }
2146
2147        /* Check if these are expected bytes */
2148        if (ns->regs.count + len > ns->regs.num) {
2149                NS_ERR("write_buf: too many input bytes\n");
2150                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2151                return;
2152        }
2153
2154        memcpy(ns->buf.byte + ns->regs.count, buf, len);
2155        ns->regs.count += len;
2156
2157        if (ns->regs.count == ns->regs.num) {
2158                NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2159        }
2160}
2161
2162static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2163{
2164        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2165
2166        /* Sanity and correctness checks */
2167        if (!ns->lines.ce) {
2168                NS_ERR("read_buf: chip is disabled\n");
2169                return;
2170        }
2171        if (ns->lines.ale || ns->lines.cle) {
2172                NS_ERR("read_buf: ALE or CLE pin is high\n");
2173                return;
2174        }
2175        if (!(ns->state & STATE_DATAOUT_MASK)) {
2176                NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2177                        get_state_name(ns->state));
2178                return;
2179        }
2180
2181        if (NS_STATE(ns->state) != STATE_DATAOUT) {
2182                int i;
2183
2184                for (i = 0; i < len; i++)
2185                        buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2186
2187                return;
2188        }
2189
2190        /* Check if these are expected bytes */
2191        if (ns->regs.count + len > ns->regs.num) {
2192                NS_ERR("read_buf: too many bytes to read\n");
2193                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2194                return;
2195        }
2196
2197        memcpy(buf, ns->buf.byte + ns->regs.count, len);
2198        ns->regs.count += len;
2199
2200        if (ns->regs.count == ns->regs.num) {
2201                if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
2202                        ns->regs.count = 0;
2203                        if (ns->regs.row + 1 < ns->geom.pgnum)
2204                                ns->regs.row += 1;
2205                        NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
2206                        do_state_action(ns, ACTION_CPY);
2207                }
2208                else if (NS_STATE(ns->nxstate) == STATE_READY)
2209                        switch_state(ns);
2210        }
2211
2212        return;
2213}
2214
2215static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2216{
2217        ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2218
2219        if (!memcmp(buf, &ns_verify_buf[0], len)) {
2220                NS_DBG("verify_buf: the buffer is OK\n");
2221                return 0;
2222        } else {
2223                NS_DBG("verify_buf: the buffer is wrong\n");
2224                return -EFAULT;
2225        }
2226}
2227
2228/*
2229 * Module initialization function
2230 */
2231static int __init ns_init_module(void)
2232{
2233        struct nand_chip *chip;
2234        struct nandsim *nand;
2235        int retval = -ENOMEM, i;
2236
2237        if (bus_width != 8 && bus_width != 16) {
2238                NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2239                return -EINVAL;
2240        }
2241
2242        /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2243        nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2244                                + sizeof(struct nandsim), GFP_KERNEL);
2245        if (!nsmtd) {
2246                NS_ERR("unable to allocate core structures.\n");
2247                return -ENOMEM;
2248        }
2249        chip        = (struct nand_chip *)(nsmtd + 1);
2250        nsmtd->priv = (void *)chip;
2251        nand        = (struct nandsim *)(chip + 1);
2252        chip->priv  = (void *)nand;
2253
2254        /*
2255         * Register simulator's callbacks.
2256         */
2257        chip->cmd_ctrl   = ns_hwcontrol;
2258        chip->read_byte  = ns_nand_read_byte;
2259        chip->dev_ready  = ns_device_ready;
2260        chip->write_buf  = ns_nand_write_buf;
2261        chip->read_buf   = ns_nand_read_buf;
2262        chip->verify_buf = ns_nand_verify_buf;
2263        chip->read_word  = ns_nand_read_word;
2264        chip->ecc.mode   = NAND_ECC_SOFT;
2265        /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2266        /* and 'badblocks' parameters to work */
2267        chip->options   |= NAND_SKIP_BBTSCAN;
2268
2269        switch (bbt) {
2270        case 2:
2271                 chip->options |= NAND_USE_FLASH_BBT_NO_OOB;
2272        case 1:
2273                 chip->options |= NAND_USE_FLASH_BBT;
2274        case 0:
2275                break;
2276        default:
2277                NS_ERR("bbt has to be 0..2\n");
2278                retval = -EINVAL;
2279                goto error;
2280        }
2281        /*
2282         * Perform minimum nandsim structure initialization to handle
2283         * the initial ID read command correctly
2284         */
2285        if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2286                nand->geom.idbytes = 4;
2287        else
2288                nand->geom.idbytes = 2;
2289        nand->regs.status = NS_STATUS_OK(nand);
2290        nand->nxstate = STATE_UNKNOWN;
2291        nand->options |= OPT_PAGE256; /* temporary value */
2292        nand->ids[0] = first_id_byte;
2293        nand->ids[1] = second_id_byte;
2294        nand->ids[2] = third_id_byte;
2295        nand->ids[3] = fourth_id_byte;
2296        if (bus_width == 16) {
2297                nand->busw = 16;
2298                chip->options |= NAND_BUSWIDTH_16;
2299        }
2300
2301        nsmtd->owner = THIS_MODULE;
2302
2303        if ((retval = parse_weakblocks()) != 0)
2304                goto error;
2305
2306        if ((retval = parse_weakpages()) != 0)
2307                goto error;
2308
2309        if ((retval = parse_gravepages()) != 0)
2310                goto error;
2311
2312        if ((retval = nand_scan(nsmtd, 1)) != 0) {
2313                NS_ERR("can't register NAND Simulator\n");
2314                if (retval > 0)
2315                        retval = -ENXIO;
2316                goto error;
2317        }
2318
2319        if (overridesize) {
2320                uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2321                if (new_size >> overridesize != nsmtd->erasesize) {
2322                        NS_ERR("overridesize is too big\n");
2323                        goto err_exit;
2324                }
2325                /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2326                nsmtd->size = new_size;
2327                chip->chipsize = new_size;
2328                chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2329                chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2330        }
2331
2332        if ((retval = setup_wear_reporting(nsmtd)) != 0)
2333                goto err_exit;
2334
2335        if ((retval = init_nandsim(nsmtd)) != 0)
2336                goto err_exit;
2337
2338        if ((retval = nand_default_bbt(nsmtd)) != 0)
2339                goto err_exit;
2340
2341        if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2342                goto err_exit;
2343
2344        /* Register NAND partitions */
2345        if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2346                goto err_exit;
2347
2348        return 0;
2349
2350err_exit:
2351        free_nandsim(nand);
2352        nand_release(nsmtd);
2353        for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2354                kfree(nand->partitions[i].name);
2355error:
2356        kfree(nsmtd);
2357        free_lists();
2358
2359        return retval;
2360}
2361
2362module_init(ns_init_module);
2363
2364/*
2365 * Module clean-up function
2366 */
2367static void __exit ns_cleanup_module(void)
2368{
2369        struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2370        int i;
2371
2372        free_nandsim(ns);    /* Free nandsim private resources */
2373        nand_release(nsmtd); /* Unregister driver */
2374        for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2375                kfree(ns->partitions[i].name);
2376        kfree(nsmtd);        /* Free other structures */
2377        free_lists();
2378}
2379
2380module_exit(ns_cleanup_module);
2381
2382MODULE_LICENSE ("GPL");
2383MODULE_AUTHOR ("Artem B. Bityuckiy");
2384MODULE_DESCRIPTION ("The NAND flash simulator");
2385