linux/drivers/mtd/onenand/onenand_base.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/mtd/onenand/onenand_base.c
   3 *
   4 *  Copyright © 2005-2009 Samsung Electronics
   5 *  Copyright © 2007 Nokia Corporation
   6 *
   7 *  Kyungmin Park <kyungmin.park@samsung.com>
   8 *
   9 *  Credits:
  10 *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
  11 *      auto-placement support, read-while load support, various fixes
  12 *
  13 *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
  14 *      Flex-OneNAND support
  15 *      Amul Kumar Saha <amul.saha at samsung.com>
  16 *      OTP support
  17 *
  18 * This program is free software; you can redistribute it and/or modify
  19 * it under the terms of the GNU General Public License version 2 as
  20 * published by the Free Software Foundation.
  21 */
  22
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/moduleparam.h>
  26#include <linux/slab.h>
  27#include <linux/init.h>
  28#include <linux/sched.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/jiffies.h>
  32#include <linux/mtd/mtd.h>
  33#include <linux/mtd/onenand.h>
  34#include <linux/mtd/partitions.h>
  35
  36#include <asm/io.h>
  37
  38/*
  39 * Multiblock erase if number of blocks to erase is 2 or more.
  40 * Maximum number of blocks for simultaneous erase is 64.
  41 */
  42#define MB_ERASE_MIN_BLK_COUNT 2
  43#define MB_ERASE_MAX_BLK_COUNT 64
  44
  45/* Default Flex-OneNAND boundary and lock respectively */
  46static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
  47
  48module_param_array(flex_bdry, int, NULL, 0400);
  49MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
  50                                "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
  51                                "DIE_BDRY: SLC boundary of the die"
  52                                "LOCK: Locking information for SLC boundary"
  53                                "    : 0->Set boundary in unlocked status"
  54                                "    : 1->Set boundary in locked status");
  55
  56/* Default OneNAND/Flex-OneNAND OTP options*/
  57static int otp;
  58
  59module_param(otp, int, 0400);
  60MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
  61                        "Syntax : otp=LOCK_TYPE"
  62                        "LOCK_TYPE : Keys issued, for specific OTP Lock type"
  63                        "          : 0 -> Default (No Blocks Locked)"
  64                        "          : 1 -> OTP Block lock"
  65                        "          : 2 -> 1st Block lock"
  66                        "          : 3 -> BOTH OTP Block and 1st Block lock");
  67
  68/**
  69 *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
  70 *  For now, we expose only 64 out of 80 ecc bytes
  71 */
  72static struct nand_ecclayout onenand_oob_128 = {
  73        .eccbytes       = 64,
  74        .eccpos         = {
  75                6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  76                22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  77                38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  78                54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  79                70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  80                86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
  81                102, 103, 104, 105
  82                },
  83        .oobfree        = {
  84                {2, 4}, {18, 4}, {34, 4}, {50, 4},
  85                {66, 4}, {82, 4}, {98, 4}, {114, 4}
  86        }
  87};
  88
  89/**
  90 * onenand_oob_64 - oob info for large (2KB) page
  91 */
  92static struct nand_ecclayout onenand_oob_64 = {
  93        .eccbytes       = 20,
  94        .eccpos         = {
  95                8, 9, 10, 11, 12,
  96                24, 25, 26, 27, 28,
  97                40, 41, 42, 43, 44,
  98                56, 57, 58, 59, 60,
  99                },
 100        .oobfree        = {
 101                {2, 3}, {14, 2}, {18, 3}, {30, 2},
 102                {34, 3}, {46, 2}, {50, 3}, {62, 2}
 103        }
 104};
 105
 106/**
 107 * onenand_oob_32 - oob info for middle (1KB) page
 108 */
 109static struct nand_ecclayout onenand_oob_32 = {
 110        .eccbytes       = 10,
 111        .eccpos         = {
 112                8, 9, 10, 11, 12,
 113                24, 25, 26, 27, 28,
 114                },
 115        .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
 116};
 117
 118static const unsigned char ffchars[] = {
 119        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 120        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
 121        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 122        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
 123        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 124        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
 125        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 126        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
 127        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 128        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
 129        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 130        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
 131        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 132        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
 133        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 134        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
 135};
 136
 137/**
 138 * onenand_readw - [OneNAND Interface] Read OneNAND register
 139 * @param addr          address to read
 140 *
 141 * Read OneNAND register
 142 */
 143static unsigned short onenand_readw(void __iomem *addr)
 144{
 145        return readw(addr);
 146}
 147
 148/**
 149 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
 150 * @param value         value to write
 151 * @param addr          address to write
 152 *
 153 * Write OneNAND register with value
 154 */
 155static void onenand_writew(unsigned short value, void __iomem *addr)
 156{
 157        writew(value, addr);
 158}
 159
 160/**
 161 * onenand_block_address - [DEFAULT] Get block address
 162 * @param this          onenand chip data structure
 163 * @param block         the block
 164 * @return              translated block address if DDP, otherwise same
 165 *
 166 * Setup Start Address 1 Register (F100h)
 167 */
 168static int onenand_block_address(struct onenand_chip *this, int block)
 169{
 170        /* Device Flash Core select, NAND Flash Block Address */
 171        if (block & this->density_mask)
 172                return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
 173
 174        return block;
 175}
 176
 177/**
 178 * onenand_bufferram_address - [DEFAULT] Get bufferram address
 179 * @param this          onenand chip data structure
 180 * @param block         the block
 181 * @return              set DBS value if DDP, otherwise 0
 182 *
 183 * Setup Start Address 2 Register (F101h) for DDP
 184 */
 185static int onenand_bufferram_address(struct onenand_chip *this, int block)
 186{
 187        /* Device BufferRAM Select */
 188        if (block & this->density_mask)
 189                return ONENAND_DDP_CHIP1;
 190
 191        return ONENAND_DDP_CHIP0;
 192}
 193
 194/**
 195 * onenand_page_address - [DEFAULT] Get page address
 196 * @param page          the page address
 197 * @param sector        the sector address
 198 * @return              combined page and sector address
 199 *
 200 * Setup Start Address 8 Register (F107h)
 201 */
 202static int onenand_page_address(int page, int sector)
 203{
 204        /* Flash Page Address, Flash Sector Address */
 205        int fpa, fsa;
 206
 207        fpa = page & ONENAND_FPA_MASK;
 208        fsa = sector & ONENAND_FSA_MASK;
 209
 210        return ((fpa << ONENAND_FPA_SHIFT) | fsa);
 211}
 212
 213/**
 214 * onenand_buffer_address - [DEFAULT] Get buffer address
 215 * @param dataram1      DataRAM index
 216 * @param sectors       the sector address
 217 * @param count         the number of sectors
 218 * @return              the start buffer value
 219 *
 220 * Setup Start Buffer Register (F200h)
 221 */
 222static int onenand_buffer_address(int dataram1, int sectors, int count)
 223{
 224        int bsa, bsc;
 225
 226        /* BufferRAM Sector Address */
 227        bsa = sectors & ONENAND_BSA_MASK;
 228
 229        if (dataram1)
 230                bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
 231        else
 232                bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
 233
 234        /* BufferRAM Sector Count */
 235        bsc = count & ONENAND_BSC_MASK;
 236
 237        return ((bsa << ONENAND_BSA_SHIFT) | bsc);
 238}
 239
 240/**
 241 * flexonenand_block- For given address return block number
 242 * @param this         - OneNAND device structure
 243 * @param addr          - Address for which block number is needed
 244 */
 245static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
 246{
 247        unsigned boundary, blk, die = 0;
 248
 249        if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
 250                die = 1;
 251                addr -= this->diesize[0];
 252        }
 253
 254        boundary = this->boundary[die];
 255
 256        blk = addr >> (this->erase_shift - 1);
 257        if (blk > boundary)
 258                blk = (blk + boundary + 1) >> 1;
 259
 260        blk += die ? this->density_mask : 0;
 261        return blk;
 262}
 263
 264inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
 265{
 266        if (!FLEXONENAND(this))
 267                return addr >> this->erase_shift;
 268        return flexonenand_block(this, addr);
 269}
 270
 271/**
 272 * flexonenand_addr - Return address of the block
 273 * @this:               OneNAND device structure
 274 * @block:              Block number on Flex-OneNAND
 275 *
 276 * Return address of the block
 277 */
 278static loff_t flexonenand_addr(struct onenand_chip *this, int block)
 279{
 280        loff_t ofs = 0;
 281        int die = 0, boundary;
 282
 283        if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
 284                block -= this->density_mask;
 285                die = 1;
 286                ofs = this->diesize[0];
 287        }
 288
 289        boundary = this->boundary[die];
 290        ofs += (loff_t)block << (this->erase_shift - 1);
 291        if (block > (boundary + 1))
 292                ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
 293        return ofs;
 294}
 295
 296loff_t onenand_addr(struct onenand_chip *this, int block)
 297{
 298        if (!FLEXONENAND(this))
 299                return (loff_t)block << this->erase_shift;
 300        return flexonenand_addr(this, block);
 301}
 302EXPORT_SYMBOL(onenand_addr);
 303
 304/**
 305 * onenand_get_density - [DEFAULT] Get OneNAND density
 306 * @param dev_id        OneNAND device ID
 307 *
 308 * Get OneNAND density from device ID
 309 */
 310static inline int onenand_get_density(int dev_id)
 311{
 312        int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
 313        return (density & ONENAND_DEVICE_DENSITY_MASK);
 314}
 315
 316/**
 317 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
 318 * @param mtd           MTD device structure
 319 * @param addr          address whose erase region needs to be identified
 320 */
 321int flexonenand_region(struct mtd_info *mtd, loff_t addr)
 322{
 323        int i;
 324
 325        for (i = 0; i < mtd->numeraseregions; i++)
 326                if (addr < mtd->eraseregions[i].offset)
 327                        break;
 328        return i - 1;
 329}
 330EXPORT_SYMBOL(flexonenand_region);
 331
 332/**
 333 * onenand_command - [DEFAULT] Send command to OneNAND device
 334 * @param mtd           MTD device structure
 335 * @param cmd           the command to be sent
 336 * @param addr          offset to read from or write to
 337 * @param len           number of bytes to read or write
 338 *
 339 * Send command to OneNAND device. This function is used for middle/large page
 340 * devices (1KB/2KB Bytes per page)
 341 */
 342static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
 343{
 344        struct onenand_chip *this = mtd->priv;
 345        int value, block, page;
 346
 347        /* Address translation */
 348        switch (cmd) {
 349        case ONENAND_CMD_UNLOCK:
 350        case ONENAND_CMD_LOCK:
 351        case ONENAND_CMD_LOCK_TIGHT:
 352        case ONENAND_CMD_UNLOCK_ALL:
 353                block = -1;
 354                page = -1;
 355                break;
 356
 357        case FLEXONENAND_CMD_PI_ACCESS:
 358                /* addr contains die index */
 359                block = addr * this->density_mask;
 360                page = -1;
 361                break;
 362
 363        case ONENAND_CMD_ERASE:
 364        case ONENAND_CMD_MULTIBLOCK_ERASE:
 365        case ONENAND_CMD_ERASE_VERIFY:
 366        case ONENAND_CMD_BUFFERRAM:
 367        case ONENAND_CMD_OTP_ACCESS:
 368                block = onenand_block(this, addr);
 369                page = -1;
 370                break;
 371
 372        case FLEXONENAND_CMD_READ_PI:
 373                cmd = ONENAND_CMD_READ;
 374                block = addr * this->density_mask;
 375                page = 0;
 376                break;
 377
 378        default:
 379                block = onenand_block(this, addr);
 380                if (FLEXONENAND(this))
 381                        page = (int) (addr - onenand_addr(this, block))>>\
 382                                this->page_shift;
 383                else
 384                        page = (int) (addr >> this->page_shift);
 385                if (ONENAND_IS_2PLANE(this)) {
 386                        /* Make the even block number */
 387                        block &= ~1;
 388                        /* Is it the odd plane? */
 389                        if (addr & this->writesize)
 390                                block++;
 391                        page >>= 1;
 392                }
 393                page &= this->page_mask;
 394                break;
 395        }
 396
 397        /* NOTE: The setting order of the registers is very important! */
 398        if (cmd == ONENAND_CMD_BUFFERRAM) {
 399                /* Select DataRAM for DDP */
 400                value = onenand_bufferram_address(this, block);
 401                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 402
 403                if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
 404                        /* It is always BufferRAM0 */
 405                        ONENAND_SET_BUFFERRAM0(this);
 406                else
 407                        /* Switch to the next data buffer */
 408                        ONENAND_SET_NEXT_BUFFERRAM(this);
 409
 410                return 0;
 411        }
 412
 413        if (block != -1) {
 414                /* Write 'DFS, FBA' of Flash */
 415                value = onenand_block_address(this, block);
 416                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
 417
 418                /* Select DataRAM for DDP */
 419                value = onenand_bufferram_address(this, block);
 420                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 421        }
 422
 423        if (page != -1) {
 424                /* Now we use page size operation */
 425                int sectors = 0, count = 0;
 426                int dataram;
 427
 428                switch (cmd) {
 429                case FLEXONENAND_CMD_RECOVER_LSB:
 430                case ONENAND_CMD_READ:
 431                case ONENAND_CMD_READOOB:
 432                        if (ONENAND_IS_4KB_PAGE(this))
 433                                /* It is always BufferRAM0 */
 434                                dataram = ONENAND_SET_BUFFERRAM0(this);
 435                        else
 436                                dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
 437                        break;
 438
 439                default:
 440                        if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
 441                                cmd = ONENAND_CMD_2X_PROG;
 442                        dataram = ONENAND_CURRENT_BUFFERRAM(this);
 443                        break;
 444                }
 445
 446                /* Write 'FPA, FSA' of Flash */
 447                value = onenand_page_address(page, sectors);
 448                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
 449
 450                /* Write 'BSA, BSC' of DataRAM */
 451                value = onenand_buffer_address(dataram, sectors, count);
 452                this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
 453        }
 454
 455        /* Interrupt clear */
 456        this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
 457
 458        /* Write command */
 459        this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
 460
 461        return 0;
 462}
 463
 464/**
 465 * onenand_read_ecc - return ecc status
 466 * @param this          onenand chip structure
 467 */
 468static inline int onenand_read_ecc(struct onenand_chip *this)
 469{
 470        int ecc, i, result = 0;
 471
 472        if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
 473                return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
 474
 475        for (i = 0; i < 4; i++) {
 476                ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
 477                if (likely(!ecc))
 478                        continue;
 479                if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
 480                        return ONENAND_ECC_2BIT_ALL;
 481                else
 482                        result = ONENAND_ECC_1BIT_ALL;
 483        }
 484
 485        return result;
 486}
 487
 488/**
 489 * onenand_wait - [DEFAULT] wait until the command is done
 490 * @param mtd           MTD device structure
 491 * @param state         state to select the max. timeout value
 492 *
 493 * Wait for command done. This applies to all OneNAND command
 494 * Read can take up to 30us, erase up to 2ms and program up to 350us
 495 * according to general OneNAND specs
 496 */
 497static int onenand_wait(struct mtd_info *mtd, int state)
 498{
 499        struct onenand_chip * this = mtd->priv;
 500        unsigned long timeout;
 501        unsigned int flags = ONENAND_INT_MASTER;
 502        unsigned int interrupt = 0;
 503        unsigned int ctrl;
 504
 505        /* The 20 msec is enough */
 506        timeout = jiffies + msecs_to_jiffies(20);
 507        while (time_before(jiffies, timeout)) {
 508                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
 509
 510                if (interrupt & flags)
 511                        break;
 512
 513                if (state != FL_READING && state != FL_PREPARING_ERASE)
 514                        cond_resched();
 515        }
 516        /* To get correct interrupt status in timeout case */
 517        interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
 518
 519        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
 520
 521        /*
 522         * In the Spec. it checks the controller status first
 523         * However if you get the correct information in case of
 524         * power off recovery (POR) test, it should read ECC status first
 525         */
 526        if (interrupt & ONENAND_INT_READ) {
 527                int ecc = onenand_read_ecc(this);
 528                if (ecc) {
 529                        if (ecc & ONENAND_ECC_2BIT_ALL) {
 530                                printk(KERN_ERR "%s: ECC error = 0x%04x\n",
 531                                        __func__, ecc);
 532                                mtd->ecc_stats.failed++;
 533                                return -EBADMSG;
 534                        } else if (ecc & ONENAND_ECC_1BIT_ALL) {
 535                                printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
 536                                        __func__, ecc);
 537                                mtd->ecc_stats.corrected++;
 538                        }
 539                }
 540        } else if (state == FL_READING) {
 541                printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
 542                        __func__, ctrl, interrupt);
 543                return -EIO;
 544        }
 545
 546        if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
 547                printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
 548                       __func__, ctrl, interrupt);
 549                return -EIO;
 550        }
 551
 552        if (!(interrupt & ONENAND_INT_MASTER)) {
 553                printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
 554                       __func__, ctrl, interrupt);
 555                return -EIO;
 556        }
 557
 558        /* If there's controller error, it's a real error */
 559        if (ctrl & ONENAND_CTRL_ERROR) {
 560                printk(KERN_ERR "%s: controller error = 0x%04x\n",
 561                        __func__, ctrl);
 562                if (ctrl & ONENAND_CTRL_LOCK)
 563                        printk(KERN_ERR "%s: it's locked error.\n", __func__);
 564                return -EIO;
 565        }
 566
 567        return 0;
 568}
 569
 570/*
 571 * onenand_interrupt - [DEFAULT] onenand interrupt handler
 572 * @param irq           onenand interrupt number
 573 * @param dev_id        interrupt data
 574 *
 575 * complete the work
 576 */
 577static irqreturn_t onenand_interrupt(int irq, void *data)
 578{
 579        struct onenand_chip *this = data;
 580
 581        /* To handle shared interrupt */
 582        if (!this->complete.done)
 583                complete(&this->complete);
 584
 585        return IRQ_HANDLED;
 586}
 587
 588/*
 589 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
 590 * @param mtd           MTD device structure
 591 * @param state         state to select the max. timeout value
 592 *
 593 * Wait for command done.
 594 */
 595static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
 596{
 597        struct onenand_chip *this = mtd->priv;
 598
 599        wait_for_completion(&this->complete);
 600
 601        return onenand_wait(mtd, state);
 602}
 603
 604/*
 605 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
 606 * @param mtd           MTD device structure
 607 * @param state         state to select the max. timeout value
 608 *
 609 * Try interrupt based wait (It is used one-time)
 610 */
 611static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
 612{
 613        struct onenand_chip *this = mtd->priv;
 614        unsigned long remain, timeout;
 615
 616        /* We use interrupt wait first */
 617        this->wait = onenand_interrupt_wait;
 618
 619        timeout = msecs_to_jiffies(100);
 620        remain = wait_for_completion_timeout(&this->complete, timeout);
 621        if (!remain) {
 622                printk(KERN_INFO "OneNAND: There's no interrupt. "
 623                                "We use the normal wait\n");
 624
 625                /* Release the irq */
 626                free_irq(this->irq, this);
 627
 628                this->wait = onenand_wait;
 629        }
 630
 631        return onenand_wait(mtd, state);
 632}
 633
 634/*
 635 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
 636 * @param mtd           MTD device structure
 637 *
 638 * There's two method to wait onenand work
 639 * 1. polling - read interrupt status register
 640 * 2. interrupt - use the kernel interrupt method
 641 */
 642static void onenand_setup_wait(struct mtd_info *mtd)
 643{
 644        struct onenand_chip *this = mtd->priv;
 645        int syscfg;
 646
 647        init_completion(&this->complete);
 648
 649        if (this->irq <= 0) {
 650                this->wait = onenand_wait;
 651                return;
 652        }
 653
 654        if (request_irq(this->irq, &onenand_interrupt,
 655                                IRQF_SHARED, "onenand", this)) {
 656                /* If we can't get irq, use the normal wait */
 657                this->wait = onenand_wait;
 658                return;
 659        }
 660
 661        /* Enable interrupt */
 662        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
 663        syscfg |= ONENAND_SYS_CFG1_IOBE;
 664        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
 665
 666        this->wait = onenand_try_interrupt_wait;
 667}
 668
 669/**
 670 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
 671 * @param mtd           MTD data structure
 672 * @param area          BufferRAM area
 673 * @return              offset given area
 674 *
 675 * Return BufferRAM offset given area
 676 */
 677static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
 678{
 679        struct onenand_chip *this = mtd->priv;
 680
 681        if (ONENAND_CURRENT_BUFFERRAM(this)) {
 682                /* Note: the 'this->writesize' is a real page size */
 683                if (area == ONENAND_DATARAM)
 684                        return this->writesize;
 685                if (area == ONENAND_SPARERAM)
 686                        return mtd->oobsize;
 687        }
 688
 689        return 0;
 690}
 691
 692/**
 693 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
 694 * @param mtd           MTD data structure
 695 * @param area          BufferRAM area
 696 * @param buffer        the databuffer to put/get data
 697 * @param offset        offset to read from or write to
 698 * @param count         number of bytes to read/write
 699 *
 700 * Read the BufferRAM area
 701 */
 702static int onenand_read_bufferram(struct mtd_info *mtd, int area,
 703                unsigned char *buffer, int offset, size_t count)
 704{
 705        struct onenand_chip *this = mtd->priv;
 706        void __iomem *bufferram;
 707
 708        bufferram = this->base + area;
 709
 710        bufferram += onenand_bufferram_offset(mtd, area);
 711
 712        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 713                unsigned short word;
 714
 715                /* Align with word(16-bit) size */
 716                count--;
 717
 718                /* Read word and save byte */
 719                word = this->read_word(bufferram + offset + count);
 720                buffer[count] = (word & 0xff);
 721        }
 722
 723        memcpy(buffer, bufferram + offset, count);
 724
 725        return 0;
 726}
 727
 728/**
 729 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
 730 * @param mtd           MTD data structure
 731 * @param area          BufferRAM area
 732 * @param buffer        the databuffer to put/get data
 733 * @param offset        offset to read from or write to
 734 * @param count         number of bytes to read/write
 735 *
 736 * Read the BufferRAM area with Sync. Burst Mode
 737 */
 738static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
 739                unsigned char *buffer, int offset, size_t count)
 740{
 741        struct onenand_chip *this = mtd->priv;
 742        void __iomem *bufferram;
 743
 744        bufferram = this->base + area;
 745
 746        bufferram += onenand_bufferram_offset(mtd, area);
 747
 748        this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
 749
 750        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 751                unsigned short word;
 752
 753                /* Align with word(16-bit) size */
 754                count--;
 755
 756                /* Read word and save byte */
 757                word = this->read_word(bufferram + offset + count);
 758                buffer[count] = (word & 0xff);
 759        }
 760
 761        memcpy(buffer, bufferram + offset, count);
 762
 763        this->mmcontrol(mtd, 0);
 764
 765        return 0;
 766}
 767
 768/**
 769 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
 770 * @param mtd           MTD data structure
 771 * @param area          BufferRAM area
 772 * @param buffer        the databuffer to put/get data
 773 * @param offset        offset to read from or write to
 774 * @param count         number of bytes to read/write
 775 *
 776 * Write the BufferRAM area
 777 */
 778static int onenand_write_bufferram(struct mtd_info *mtd, int area,
 779                const unsigned char *buffer, int offset, size_t count)
 780{
 781        struct onenand_chip *this = mtd->priv;
 782        void __iomem *bufferram;
 783
 784        bufferram = this->base + area;
 785
 786        bufferram += onenand_bufferram_offset(mtd, area);
 787
 788        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 789                unsigned short word;
 790                int byte_offset;
 791
 792                /* Align with word(16-bit) size */
 793                count--;
 794
 795                /* Calculate byte access offset */
 796                byte_offset = offset + count;
 797
 798                /* Read word and save byte */
 799                word = this->read_word(bufferram + byte_offset);
 800                word = (word & ~0xff) | buffer[count];
 801                this->write_word(word, bufferram + byte_offset);
 802        }
 803
 804        memcpy(bufferram + offset, buffer, count);
 805
 806        return 0;
 807}
 808
 809/**
 810 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
 811 * @param mtd           MTD data structure
 812 * @param addr          address to check
 813 * @return              blockpage address
 814 *
 815 * Get blockpage address at 2x program mode
 816 */
 817static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
 818{
 819        struct onenand_chip *this = mtd->priv;
 820        int blockpage, block, page;
 821
 822        /* Calculate the even block number */
 823        block = (int) (addr >> this->erase_shift) & ~1;
 824        /* Is it the odd plane? */
 825        if (addr & this->writesize)
 826                block++;
 827        page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
 828        blockpage = (block << 7) | page;
 829
 830        return blockpage;
 831}
 832
 833/**
 834 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
 835 * @param mtd           MTD data structure
 836 * @param addr          address to check
 837 * @return              1 if there are valid data, otherwise 0
 838 *
 839 * Check bufferram if there is data we required
 840 */
 841static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
 842{
 843        struct onenand_chip *this = mtd->priv;
 844        int blockpage, found = 0;
 845        unsigned int i;
 846
 847        if (ONENAND_IS_2PLANE(this))
 848                blockpage = onenand_get_2x_blockpage(mtd, addr);
 849        else
 850                blockpage = (int) (addr >> this->page_shift);
 851
 852        /* Is there valid data? */
 853        i = ONENAND_CURRENT_BUFFERRAM(this);
 854        if (this->bufferram[i].blockpage == blockpage)
 855                found = 1;
 856        else {
 857                /* Check another BufferRAM */
 858                i = ONENAND_NEXT_BUFFERRAM(this);
 859                if (this->bufferram[i].blockpage == blockpage) {
 860                        ONENAND_SET_NEXT_BUFFERRAM(this);
 861                        found = 1;
 862                }
 863        }
 864
 865        if (found && ONENAND_IS_DDP(this)) {
 866                /* Select DataRAM for DDP */
 867                int block = onenand_block(this, addr);
 868                int value = onenand_bufferram_address(this, block);
 869                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 870        }
 871
 872        return found;
 873}
 874
 875/**
 876 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
 877 * @param mtd           MTD data structure
 878 * @param addr          address to update
 879 * @param valid         valid flag
 880 *
 881 * Update BufferRAM information
 882 */
 883static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
 884                int valid)
 885{
 886        struct onenand_chip *this = mtd->priv;
 887        int blockpage;
 888        unsigned int i;
 889
 890        if (ONENAND_IS_2PLANE(this))
 891                blockpage = onenand_get_2x_blockpage(mtd, addr);
 892        else
 893                blockpage = (int) (addr >> this->page_shift);
 894
 895        /* Invalidate another BufferRAM */
 896        i = ONENAND_NEXT_BUFFERRAM(this);
 897        if (this->bufferram[i].blockpage == blockpage)
 898                this->bufferram[i].blockpage = -1;
 899
 900        /* Update BufferRAM */
 901        i = ONENAND_CURRENT_BUFFERRAM(this);
 902        if (valid)
 903                this->bufferram[i].blockpage = blockpage;
 904        else
 905                this->bufferram[i].blockpage = -1;
 906}
 907
 908/**
 909 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
 910 * @param mtd           MTD data structure
 911 * @param addr          start address to invalidate
 912 * @param len           length to invalidate
 913 *
 914 * Invalidate BufferRAM information
 915 */
 916static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
 917                unsigned int len)
 918{
 919        struct onenand_chip *this = mtd->priv;
 920        int i;
 921        loff_t end_addr = addr + len;
 922
 923        /* Invalidate BufferRAM */
 924        for (i = 0; i < MAX_BUFFERRAM; i++) {
 925                loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
 926                if (buf_addr >= addr && buf_addr < end_addr)
 927                        this->bufferram[i].blockpage = -1;
 928        }
 929}
 930
 931/**
 932 * onenand_get_device - [GENERIC] Get chip for selected access
 933 * @param mtd           MTD device structure
 934 * @param new_state     the state which is requested
 935 *
 936 * Get the device and lock it for exclusive access
 937 */
 938static int onenand_get_device(struct mtd_info *mtd, int new_state)
 939{
 940        struct onenand_chip *this = mtd->priv;
 941        DECLARE_WAITQUEUE(wait, current);
 942
 943        /*
 944         * Grab the lock and see if the device is available
 945         */
 946        while (1) {
 947                spin_lock(&this->chip_lock);
 948                if (this->state == FL_READY) {
 949                        this->state = new_state;
 950                        spin_unlock(&this->chip_lock);
 951                        if (new_state != FL_PM_SUSPENDED && this->enable)
 952                                this->enable(mtd);
 953                        break;
 954                }
 955                if (new_state == FL_PM_SUSPENDED) {
 956                        spin_unlock(&this->chip_lock);
 957                        return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
 958                }
 959                set_current_state(TASK_UNINTERRUPTIBLE);
 960                add_wait_queue(&this->wq, &wait);
 961                spin_unlock(&this->chip_lock);
 962                schedule();
 963                remove_wait_queue(&this->wq, &wait);
 964        }
 965
 966        return 0;
 967}
 968
 969/**
 970 * onenand_release_device - [GENERIC] release chip
 971 * @param mtd           MTD device structure
 972 *
 973 * Deselect, release chip lock and wake up anyone waiting on the device
 974 */
 975static void onenand_release_device(struct mtd_info *mtd)
 976{
 977        struct onenand_chip *this = mtd->priv;
 978
 979        if (this->state != FL_PM_SUSPENDED && this->disable)
 980                this->disable(mtd);
 981        /* Release the chip */
 982        spin_lock(&this->chip_lock);
 983        this->state = FL_READY;
 984        wake_up(&this->wq);
 985        spin_unlock(&this->chip_lock);
 986}
 987
 988/**
 989 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
 990 * @param mtd           MTD device structure
 991 * @param buf           destination address
 992 * @param column        oob offset to read from
 993 * @param thislen       oob length to read
 994 */
 995static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
 996                                int thislen)
 997{
 998        struct onenand_chip *this = mtd->priv;
 999        struct nand_oobfree *free;
1000        int readcol = column;
1001        int readend = column + thislen;
1002        int lastgap = 0;
1003        unsigned int i;
1004        uint8_t *oob_buf = this->oob_buf;
1005
1006        free = this->ecclayout->oobfree;
1007        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1008                if (readcol >= lastgap)
1009                        readcol += free->offset - lastgap;
1010                if (readend >= lastgap)
1011                        readend += free->offset - lastgap;
1012                lastgap = free->offset + free->length;
1013        }
1014        this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1015        free = this->ecclayout->oobfree;
1016        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1017                int free_end = free->offset + free->length;
1018                if (free->offset < readend && free_end > readcol) {
1019                        int st = max_t(int,free->offset,readcol);
1020                        int ed = min_t(int,free_end,readend);
1021                        int n = ed - st;
1022                        memcpy(buf, oob_buf + st, n);
1023                        buf += n;
1024                } else if (column == 0)
1025                        break;
1026        }
1027        return 0;
1028}
1029
1030/**
1031 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1032 * @param mtd           MTD device structure
1033 * @param addr          address to recover
1034 * @param status        return value from onenand_wait / onenand_bbt_wait
1035 *
1036 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1037 * lower page address and MSB page has higher page address in paired pages.
1038 * If power off occurs during MSB page program, the paired LSB page data can
1039 * become corrupt. LSB page recovery read is a way to read LSB page though page
1040 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1041 * read after power up, issue LSB page recovery read.
1042 */
1043static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1044{
1045        struct onenand_chip *this = mtd->priv;
1046        int i;
1047
1048        /* Recovery is only for Flex-OneNAND */
1049        if (!FLEXONENAND(this))
1050                return status;
1051
1052        /* check if we failed due to uncorrectable error */
1053        if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
1054                return status;
1055
1056        /* check if address lies in MLC region */
1057        i = flexonenand_region(mtd, addr);
1058        if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1059                return status;
1060
1061        /* We are attempting to reread, so decrement stats.failed
1062         * which was incremented by onenand_wait due to read failure
1063         */
1064        printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1065                __func__);
1066        mtd->ecc_stats.failed--;
1067
1068        /* Issue the LSB page recovery command */
1069        this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1070        return this->wait(mtd, FL_READING);
1071}
1072
1073/**
1074 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1075 * @param mtd           MTD device structure
1076 * @param from          offset to read from
1077 * @param ops:          oob operation description structure
1078 *
1079 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1080 * So, read-while-load is not present.
1081 */
1082static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1083                                struct mtd_oob_ops *ops)
1084{
1085        struct onenand_chip *this = mtd->priv;
1086        struct mtd_ecc_stats stats;
1087        size_t len = ops->len;
1088        size_t ooblen = ops->ooblen;
1089        u_char *buf = ops->datbuf;
1090        u_char *oobbuf = ops->oobbuf;
1091        int read = 0, column, thislen;
1092        int oobread = 0, oobcolumn, thisooblen, oobsize;
1093        int ret = 0;
1094        int writesize = this->writesize;
1095
1096        DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1097              __func__, (unsigned int) from, (int) len);
1098
1099        if (ops->mode == MTD_OOB_AUTO)
1100                oobsize = this->ecclayout->oobavail;
1101        else
1102                oobsize = mtd->oobsize;
1103
1104        oobcolumn = from & (mtd->oobsize - 1);
1105
1106        /* Do not allow reads past end of device */
1107        if (from + len > mtd->size) {
1108                printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1109                        __func__);
1110                ops->retlen = 0;
1111                ops->oobretlen = 0;
1112                return -EINVAL;
1113        }
1114
1115        stats = mtd->ecc_stats;
1116
1117        while (read < len) {
1118                cond_resched();
1119
1120                thislen = min_t(int, writesize, len - read);
1121
1122                column = from & (writesize - 1);
1123                if (column + thislen > writesize)
1124                        thislen = writesize - column;
1125
1126                if (!onenand_check_bufferram(mtd, from)) {
1127                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1128
1129                        ret = this->wait(mtd, FL_READING);
1130                        if (unlikely(ret))
1131                                ret = onenand_recover_lsb(mtd, from, ret);
1132                        onenand_update_bufferram(mtd, from, !ret);
1133                        if (ret == -EBADMSG)
1134                                ret = 0;
1135                }
1136
1137                this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1138                if (oobbuf) {
1139                        thisooblen = oobsize - oobcolumn;
1140                        thisooblen = min_t(int, thisooblen, ooblen - oobread);
1141
1142                        if (ops->mode == MTD_OOB_AUTO)
1143                                onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1144                        else
1145                                this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1146                        oobread += thisooblen;
1147                        oobbuf += thisooblen;
1148                        oobcolumn = 0;
1149                }
1150
1151                read += thislen;
1152                if (read == len)
1153                        break;
1154
1155                from += thislen;
1156                buf += thislen;
1157        }
1158
1159        /*
1160         * Return success, if no ECC failures, else -EBADMSG
1161         * fs driver will take care of that, because
1162         * retlen == desired len and result == -EBADMSG
1163         */
1164        ops->retlen = read;
1165        ops->oobretlen = oobread;
1166
1167        if (ret)
1168                return ret;
1169
1170        if (mtd->ecc_stats.failed - stats.failed)
1171                return -EBADMSG;
1172
1173        return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1174}
1175
1176/**
1177 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1178 * @param mtd           MTD device structure
1179 * @param from          offset to read from
1180 * @param ops:          oob operation description structure
1181 *
1182 * OneNAND read main and/or out-of-band data
1183 */
1184static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1185                                struct mtd_oob_ops *ops)
1186{
1187        struct onenand_chip *this = mtd->priv;
1188        struct mtd_ecc_stats stats;
1189        size_t len = ops->len;
1190        size_t ooblen = ops->ooblen;
1191        u_char *buf = ops->datbuf;
1192        u_char *oobbuf = ops->oobbuf;
1193        int read = 0, column, thislen;
1194        int oobread = 0, oobcolumn, thisooblen, oobsize;
1195        int ret = 0, boundary = 0;
1196        int writesize = this->writesize;
1197
1198        DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1199                        __func__, (unsigned int) from, (int) len);
1200
1201        if (ops->mode == MTD_OOB_AUTO)
1202                oobsize = this->ecclayout->oobavail;
1203        else
1204                oobsize = mtd->oobsize;
1205
1206        oobcolumn = from & (mtd->oobsize - 1);
1207
1208        /* Do not allow reads past end of device */
1209        if ((from + len) > mtd->size) {
1210                printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1211                        __func__);
1212                ops->retlen = 0;
1213                ops->oobretlen = 0;
1214                return -EINVAL;
1215        }
1216
1217        stats = mtd->ecc_stats;
1218
1219        /* Read-while-load method */
1220
1221        /* Do first load to bufferRAM */
1222        if (read < len) {
1223                if (!onenand_check_bufferram(mtd, from)) {
1224                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1225                        ret = this->wait(mtd, FL_READING);
1226                        onenand_update_bufferram(mtd, from, !ret);
1227                        if (ret == -EBADMSG)
1228                                ret = 0;
1229                }
1230        }
1231
1232        thislen = min_t(int, writesize, len - read);
1233        column = from & (writesize - 1);
1234        if (column + thislen > writesize)
1235                thislen = writesize - column;
1236
1237        while (!ret) {
1238                /* If there is more to load then start next load */
1239                from += thislen;
1240                if (read + thislen < len) {
1241                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1242                        /*
1243                         * Chip boundary handling in DDP
1244                         * Now we issued chip 1 read and pointed chip 1
1245                         * bufferram so we have to point chip 0 bufferram.
1246                         */
1247                        if (ONENAND_IS_DDP(this) &&
1248                            unlikely(from == (this->chipsize >> 1))) {
1249                                this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1250                                boundary = 1;
1251                        } else
1252                                boundary = 0;
1253                        ONENAND_SET_PREV_BUFFERRAM(this);
1254                }
1255                /* While load is going, read from last bufferRAM */
1256                this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1257
1258                /* Read oob area if needed */
1259                if (oobbuf) {
1260                        thisooblen = oobsize - oobcolumn;
1261                        thisooblen = min_t(int, thisooblen, ooblen - oobread);
1262
1263                        if (ops->mode == MTD_OOB_AUTO)
1264                                onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1265                        else
1266                                this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1267                        oobread += thisooblen;
1268                        oobbuf += thisooblen;
1269                        oobcolumn = 0;
1270                }
1271
1272                /* See if we are done */
1273                read += thislen;
1274                if (read == len)
1275                        break;
1276                /* Set up for next read from bufferRAM */
1277                if (unlikely(boundary))
1278                        this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1279                ONENAND_SET_NEXT_BUFFERRAM(this);
1280                buf += thislen;
1281                thislen = min_t(int, writesize, len - read);
1282                column = 0;
1283                cond_resched();
1284                /* Now wait for load */
1285                ret = this->wait(mtd, FL_READING);
1286                onenand_update_bufferram(mtd, from, !ret);
1287                if (ret == -EBADMSG)
1288                        ret = 0;
1289        }
1290
1291        /*
1292         * Return success, if no ECC failures, else -EBADMSG
1293         * fs driver will take care of that, because
1294         * retlen == desired len and result == -EBADMSG
1295         */
1296        ops->retlen = read;
1297        ops->oobretlen = oobread;
1298
1299        if (ret)
1300                return ret;
1301
1302        if (mtd->ecc_stats.failed - stats.failed)
1303                return -EBADMSG;
1304
1305        return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1306}
1307
1308/**
1309 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1310 * @param mtd           MTD device structure
1311 * @param from          offset to read from
1312 * @param ops:          oob operation description structure
1313 *
1314 * OneNAND read out-of-band data from the spare area
1315 */
1316static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1317                        struct mtd_oob_ops *ops)
1318{
1319        struct onenand_chip *this = mtd->priv;
1320        struct mtd_ecc_stats stats;
1321        int read = 0, thislen, column, oobsize;
1322        size_t len = ops->ooblen;
1323        mtd_oob_mode_t mode = ops->mode;
1324        u_char *buf = ops->oobbuf;
1325        int ret = 0, readcmd;
1326
1327        from += ops->ooboffs;
1328
1329        DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1330                __func__, (unsigned int) from, (int) len);
1331
1332        /* Initialize return length value */
1333        ops->oobretlen = 0;
1334
1335        if (mode == MTD_OOB_AUTO)
1336                oobsize = this->ecclayout->oobavail;
1337        else
1338                oobsize = mtd->oobsize;
1339
1340        column = from & (mtd->oobsize - 1);
1341
1342        if (unlikely(column >= oobsize)) {
1343                printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1344                        __func__);
1345                return -EINVAL;
1346        }
1347
1348        /* Do not allow reads past end of device */
1349        if (unlikely(from >= mtd->size ||
1350                     column + len > ((mtd->size >> this->page_shift) -
1351                                     (from >> this->page_shift)) * oobsize)) {
1352                printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1353                        __func__);
1354                return -EINVAL;
1355        }
1356
1357        stats = mtd->ecc_stats;
1358
1359        readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1360
1361        while (read < len) {
1362                cond_resched();
1363
1364                thislen = oobsize - column;
1365                thislen = min_t(int, thislen, len);
1366
1367                this->command(mtd, readcmd, from, mtd->oobsize);
1368
1369                onenand_update_bufferram(mtd, from, 0);
1370
1371                ret = this->wait(mtd, FL_READING);
1372                if (unlikely(ret))
1373                        ret = onenand_recover_lsb(mtd, from, ret);
1374
1375                if (ret && ret != -EBADMSG) {
1376                        printk(KERN_ERR "%s: read failed = 0x%x\n",
1377                                __func__, ret);
1378                        break;
1379                }
1380
1381                if (mode == MTD_OOB_AUTO)
1382                        onenand_transfer_auto_oob(mtd, buf, column, thislen);
1383                else
1384                        this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1385
1386                read += thislen;
1387
1388                if (read == len)
1389                        break;
1390
1391                buf += thislen;
1392
1393                /* Read more? */
1394                if (read < len) {
1395                        /* Page size */
1396                        from += mtd->writesize;
1397                        column = 0;
1398                }
1399        }
1400
1401        ops->oobretlen = read;
1402
1403        if (ret)
1404                return ret;
1405
1406        if (mtd->ecc_stats.failed - stats.failed)
1407                return -EBADMSG;
1408
1409        return 0;
1410}
1411
1412/**
1413 * onenand_read - [MTD Interface] Read data from flash
1414 * @param mtd           MTD device structure
1415 * @param from          offset to read from
1416 * @param len           number of bytes to read
1417 * @param retlen        pointer to variable to store the number of read bytes
1418 * @param buf           the databuffer to put data
1419 *
1420 * Read with ecc
1421*/
1422static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1423        size_t *retlen, u_char *buf)
1424{
1425        struct onenand_chip *this = mtd->priv;
1426        struct mtd_oob_ops ops = {
1427                .len    = len,
1428                .ooblen = 0,
1429                .datbuf = buf,
1430                .oobbuf = NULL,
1431        };
1432        int ret;
1433
1434        onenand_get_device(mtd, FL_READING);
1435        ret = ONENAND_IS_4KB_PAGE(this) ?
1436                onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1437                onenand_read_ops_nolock(mtd, from, &ops);
1438        onenand_release_device(mtd);
1439
1440        *retlen = ops.retlen;
1441        return ret;
1442}
1443
1444/**
1445 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1446 * @param mtd:          MTD device structure
1447 * @param from:         offset to read from
1448 * @param ops:          oob operation description structure
1449
1450 * Read main and/or out-of-band
1451 */
1452static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1453                            struct mtd_oob_ops *ops)
1454{
1455        struct onenand_chip *this = mtd->priv;
1456        int ret;
1457
1458        switch (ops->mode) {
1459        case MTD_OOB_PLACE:
1460        case MTD_OOB_AUTO:
1461                break;
1462        case MTD_OOB_RAW:
1463                /* Not implemented yet */
1464        default:
1465                return -EINVAL;
1466        }
1467
1468        onenand_get_device(mtd, FL_READING);
1469        if (ops->datbuf)
1470                ret = ONENAND_IS_4KB_PAGE(this) ?
1471                        onenand_mlc_read_ops_nolock(mtd, from, ops) :
1472                        onenand_read_ops_nolock(mtd, from, ops);
1473        else
1474                ret = onenand_read_oob_nolock(mtd, from, ops);
1475        onenand_release_device(mtd);
1476
1477        return ret;
1478}
1479
1480/**
1481 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1482 * @param mtd           MTD device structure
1483 * @param state         state to select the max. timeout value
1484 *
1485 * Wait for command done.
1486 */
1487static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1488{
1489        struct onenand_chip *this = mtd->priv;
1490        unsigned long timeout;
1491        unsigned int interrupt, ctrl, ecc, addr1, addr8;
1492
1493        /* The 20 msec is enough */
1494        timeout = jiffies + msecs_to_jiffies(20);
1495        while (time_before(jiffies, timeout)) {
1496                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1497                if (interrupt & ONENAND_INT_MASTER)
1498                        break;
1499        }
1500        /* To get correct interrupt status in timeout case */
1501        interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1502        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1503        addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1504        addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1505
1506        if (interrupt & ONENAND_INT_READ) {
1507                ecc = onenand_read_ecc(this);
1508                if (ecc & ONENAND_ECC_2BIT_ALL) {
1509                        printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1510                               "intr 0x%04x addr1 %#x addr8 %#x\n",
1511                               __func__, ecc, ctrl, interrupt, addr1, addr8);
1512                        return ONENAND_BBT_READ_ECC_ERROR;
1513                }
1514        } else {
1515                printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1516                       "intr 0x%04x addr1 %#x addr8 %#x\n",
1517                       __func__, ctrl, interrupt, addr1, addr8);
1518                return ONENAND_BBT_READ_FATAL_ERROR;
1519        }
1520
1521        /* Initial bad block case: 0x2400 or 0x0400 */
1522        if (ctrl & ONENAND_CTRL_ERROR) {
1523                printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1524                       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1525                return ONENAND_BBT_READ_ERROR;
1526        }
1527
1528        return 0;
1529}
1530
1531/**
1532 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1533 * @param mtd           MTD device structure
1534 * @param from          offset to read from
1535 * @param ops           oob operation description structure
1536 *
1537 * OneNAND read out-of-band data from the spare area for bbt scan
1538 */
1539int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1540                            struct mtd_oob_ops *ops)
1541{
1542        struct onenand_chip *this = mtd->priv;
1543        int read = 0, thislen, column;
1544        int ret = 0, readcmd;
1545        size_t len = ops->ooblen;
1546        u_char *buf = ops->oobbuf;
1547
1548        DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %zi\n",
1549                __func__, (unsigned int) from, len);
1550
1551        /* Initialize return value */
1552        ops->oobretlen = 0;
1553
1554        /* Do not allow reads past end of device */
1555        if (unlikely((from + len) > mtd->size)) {
1556                printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1557                        __func__);
1558                return ONENAND_BBT_READ_FATAL_ERROR;
1559        }
1560
1561        /* Grab the lock and see if the device is available */
1562        onenand_get_device(mtd, FL_READING);
1563
1564        column = from & (mtd->oobsize - 1);
1565
1566        readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1567
1568        while (read < len) {
1569                cond_resched();
1570
1571                thislen = mtd->oobsize - column;
1572                thislen = min_t(int, thislen, len);
1573
1574                this->command(mtd, readcmd, from, mtd->oobsize);
1575
1576                onenand_update_bufferram(mtd, from, 0);
1577
1578                ret = this->bbt_wait(mtd, FL_READING);
1579                if (unlikely(ret))
1580                        ret = onenand_recover_lsb(mtd, from, ret);
1581
1582                if (ret)
1583                        break;
1584
1585                this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1586                read += thislen;
1587                if (read == len)
1588                        break;
1589
1590                buf += thislen;
1591
1592                /* Read more? */
1593                if (read < len) {
1594                        /* Update Page size */
1595                        from += this->writesize;
1596                        column = 0;
1597                }
1598        }
1599
1600        /* Deselect and wake up anyone waiting on the device */
1601        onenand_release_device(mtd);
1602
1603        ops->oobretlen = read;
1604        return ret;
1605}
1606
1607#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1608/**
1609 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1610 * @param mtd           MTD device structure
1611 * @param buf           the databuffer to verify
1612 * @param to            offset to read from
1613 */
1614static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1615{
1616        struct onenand_chip *this = mtd->priv;
1617        u_char *oob_buf = this->oob_buf;
1618        int status, i, readcmd;
1619
1620        readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1621
1622        this->command(mtd, readcmd, to, mtd->oobsize);
1623        onenand_update_bufferram(mtd, to, 0);
1624        status = this->wait(mtd, FL_READING);
1625        if (status)
1626                return status;
1627
1628        this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1629        for (i = 0; i < mtd->oobsize; i++)
1630                if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1631                        return -EBADMSG;
1632
1633        return 0;
1634}
1635
1636/**
1637 * onenand_verify - [GENERIC] verify the chip contents after a write
1638 * @param mtd          MTD device structure
1639 * @param buf          the databuffer to verify
1640 * @param addr         offset to read from
1641 * @param len          number of bytes to read and compare
1642 */
1643static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1644{
1645        struct onenand_chip *this = mtd->priv;
1646        int ret = 0;
1647        int thislen, column;
1648
1649        while (len != 0) {
1650                thislen = min_t(int, this->writesize, len);
1651                column = addr & (this->writesize - 1);
1652                if (column + thislen > this->writesize)
1653                        thislen = this->writesize - column;
1654
1655                this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1656
1657                onenand_update_bufferram(mtd, addr, 0);
1658
1659                ret = this->wait(mtd, FL_READING);
1660                if (ret)
1661                        return ret;
1662
1663                onenand_update_bufferram(mtd, addr, 1);
1664
1665                this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1666
1667                if (memcmp(buf, this->verify_buf, thislen))
1668                        return -EBADMSG;
1669
1670                len -= thislen;
1671                buf += thislen;
1672                addr += thislen;
1673        }
1674
1675        return 0;
1676}
1677#else
1678#define onenand_verify(...)             (0)
1679#define onenand_verify_oob(...)         (0)
1680#endif
1681
1682#define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1683
1684static void onenand_panic_wait(struct mtd_info *mtd)
1685{
1686        struct onenand_chip *this = mtd->priv;
1687        unsigned int interrupt;
1688        int i;
1689        
1690        for (i = 0; i < 2000; i++) {
1691                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1692                if (interrupt & ONENAND_INT_MASTER)
1693                        break;
1694                udelay(10);
1695        }
1696}
1697
1698/**
1699 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1700 * @param mtd           MTD device structure
1701 * @param to            offset to write to
1702 * @param len           number of bytes to write
1703 * @param retlen        pointer to variable to store the number of written bytes
1704 * @param buf           the data to write
1705 *
1706 * Write with ECC
1707 */
1708static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1709                         size_t *retlen, const u_char *buf)
1710{
1711        struct onenand_chip *this = mtd->priv;
1712        int column, subpage;
1713        int written = 0;
1714        int ret = 0;
1715
1716        if (this->state == FL_PM_SUSPENDED)
1717                return -EBUSY;
1718
1719        /* Wait for any existing operation to clear */
1720        onenand_panic_wait(mtd);
1721
1722        DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1723                __func__, (unsigned int) to, (int) len);
1724
1725        /* Initialize retlen, in case of early exit */
1726        *retlen = 0;
1727
1728        /* Do not allow writes past end of device */
1729        if (unlikely((to + len) > mtd->size)) {
1730                printk(KERN_ERR "%s: Attempt write to past end of device\n",
1731                        __func__);
1732                return -EINVAL;
1733        }
1734
1735        /* Reject writes, which are not page aligned */
1736        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1737                printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1738                        __func__);
1739                return -EINVAL;
1740        }
1741
1742        column = to & (mtd->writesize - 1);
1743
1744        /* Loop until all data write */
1745        while (written < len) {
1746                int thislen = min_t(int, mtd->writesize - column, len - written);
1747                u_char *wbuf = (u_char *) buf;
1748
1749                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1750
1751                /* Partial page write */
1752                subpage = thislen < mtd->writesize;
1753                if (subpage) {
1754                        memset(this->page_buf, 0xff, mtd->writesize);
1755                        memcpy(this->page_buf + column, buf, thislen);
1756                        wbuf = this->page_buf;
1757                }
1758
1759                this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1760                this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1761
1762                this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1763
1764                onenand_panic_wait(mtd);
1765
1766                /* In partial page write we don't update bufferram */
1767                onenand_update_bufferram(mtd, to, !ret && !subpage);
1768                if (ONENAND_IS_2PLANE(this)) {
1769                        ONENAND_SET_BUFFERRAM1(this);
1770                        onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1771                }
1772
1773                if (ret) {
1774                        printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
1775                        break;
1776                }
1777
1778                written += thislen;
1779
1780                if (written == len)
1781                        break;
1782
1783                column = 0;
1784                to += thislen;
1785                buf += thislen;
1786        }
1787
1788        *retlen = written;
1789        return ret;
1790}
1791
1792/**
1793 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1794 * @param mtd           MTD device structure
1795 * @param oob_buf       oob buffer
1796 * @param buf           source address
1797 * @param column        oob offset to write to
1798 * @param thislen       oob length to write
1799 */
1800static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1801                                  const u_char *buf, int column, int thislen)
1802{
1803        struct onenand_chip *this = mtd->priv;
1804        struct nand_oobfree *free;
1805        int writecol = column;
1806        int writeend = column + thislen;
1807        int lastgap = 0;
1808        unsigned int i;
1809
1810        free = this->ecclayout->oobfree;
1811        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1812                if (writecol >= lastgap)
1813                        writecol += free->offset - lastgap;
1814                if (writeend >= lastgap)
1815                        writeend += free->offset - lastgap;
1816                lastgap = free->offset + free->length;
1817        }
1818        free = this->ecclayout->oobfree;
1819        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1820                int free_end = free->offset + free->length;
1821                if (free->offset < writeend && free_end > writecol) {
1822                        int st = max_t(int,free->offset,writecol);
1823                        int ed = min_t(int,free_end,writeend);
1824                        int n = ed - st;
1825                        memcpy(oob_buf + st, buf, n);
1826                        buf += n;
1827                } else if (column == 0)
1828                        break;
1829        }
1830        return 0;
1831}
1832
1833/**
1834 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1835 * @param mtd           MTD device structure
1836 * @param to            offset to write to
1837 * @param ops           oob operation description structure
1838 *
1839 * Write main and/or oob with ECC
1840 */
1841static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1842                                struct mtd_oob_ops *ops)
1843{
1844        struct onenand_chip *this = mtd->priv;
1845        int written = 0, column, thislen = 0, subpage = 0;
1846        int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1847        int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1848        size_t len = ops->len;
1849        size_t ooblen = ops->ooblen;
1850        const u_char *buf = ops->datbuf;
1851        const u_char *oob = ops->oobbuf;
1852        u_char *oobbuf;
1853        int ret = 0, cmd;
1854
1855        DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1856                __func__, (unsigned int) to, (int) len);
1857
1858        /* Initialize retlen, in case of early exit */
1859        ops->retlen = 0;
1860        ops->oobretlen = 0;
1861
1862        /* Do not allow writes past end of device */
1863        if (unlikely((to + len) > mtd->size)) {
1864                printk(KERN_ERR "%s: Attempt write to past end of device\n",
1865                        __func__);
1866                return -EINVAL;
1867        }
1868
1869        /* Reject writes, which are not page aligned */
1870        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1871                printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1872                        __func__);
1873                return -EINVAL;
1874        }
1875
1876        /* Check zero length */
1877        if (!len)
1878                return 0;
1879
1880        if (ops->mode == MTD_OOB_AUTO)
1881                oobsize = this->ecclayout->oobavail;
1882        else
1883                oobsize = mtd->oobsize;
1884
1885        oobcolumn = to & (mtd->oobsize - 1);
1886
1887        column = to & (mtd->writesize - 1);
1888
1889        /* Loop until all data write */
1890        while (1) {
1891                if (written < len) {
1892                        u_char *wbuf = (u_char *) buf;
1893
1894                        thislen = min_t(int, mtd->writesize - column, len - written);
1895                        thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1896
1897                        cond_resched();
1898
1899                        this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1900
1901                        /* Partial page write */
1902                        subpage = thislen < mtd->writesize;
1903                        if (subpage) {
1904                                memset(this->page_buf, 0xff, mtd->writesize);
1905                                memcpy(this->page_buf + column, buf, thislen);
1906                                wbuf = this->page_buf;
1907                        }
1908
1909                        this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1910
1911                        if (oob) {
1912                                oobbuf = this->oob_buf;
1913
1914                                /* We send data to spare ram with oobsize
1915                                 * to prevent byte access */
1916                                memset(oobbuf, 0xff, mtd->oobsize);
1917                                if (ops->mode == MTD_OOB_AUTO)
1918                                        onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1919                                else
1920                                        memcpy(oobbuf + oobcolumn, oob, thisooblen);
1921
1922                                oobwritten += thisooblen;
1923                                oob += thisooblen;
1924                                oobcolumn = 0;
1925                        } else
1926                                oobbuf = (u_char *) ffchars;
1927
1928                        this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1929                } else
1930                        ONENAND_SET_NEXT_BUFFERRAM(this);
1931
1932                /*
1933                 * 2 PLANE, MLC, and Flex-OneNAND do not support
1934                 * write-while-program feature.
1935                 */
1936                if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1937                        ONENAND_SET_PREV_BUFFERRAM(this);
1938
1939                        ret = this->wait(mtd, FL_WRITING);
1940
1941                        /* In partial page write we don't update bufferram */
1942                        onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1943                        if (ret) {
1944                                written -= prevlen;
1945                                printk(KERN_ERR "%s: write failed %d\n",
1946                                        __func__, ret);
1947                                break;
1948                        }
1949
1950                        if (written == len) {
1951                                /* Only check verify write turn on */
1952                                ret = onenand_verify(mtd, buf - len, to - len, len);
1953                                if (ret)
1954                                        printk(KERN_ERR "%s: verify failed %d\n",
1955                                                __func__, ret);
1956                                break;
1957                        }
1958
1959                        ONENAND_SET_NEXT_BUFFERRAM(this);
1960                }
1961
1962                this->ongoing = 0;
1963                cmd = ONENAND_CMD_PROG;
1964
1965                /* Exclude 1st OTP and OTP blocks for cache program feature */
1966                if (ONENAND_IS_CACHE_PROGRAM(this) &&
1967                    likely(onenand_block(this, to) != 0) &&
1968                    ONENAND_IS_4KB_PAGE(this) &&
1969                    ((written + thislen) < len)) {
1970                        cmd = ONENAND_CMD_2X_CACHE_PROG;
1971                        this->ongoing = 1;
1972                }
1973
1974                this->command(mtd, cmd, to, mtd->writesize);
1975
1976                /*
1977                 * 2 PLANE, MLC, and Flex-OneNAND wait here
1978                 */
1979                if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1980                        ret = this->wait(mtd, FL_WRITING);
1981
1982                        /* In partial page write we don't update bufferram */
1983                        onenand_update_bufferram(mtd, to, !ret && !subpage);
1984                        if (ret) {
1985                                printk(KERN_ERR "%s: write failed %d\n",
1986                                        __func__, ret);
1987                                break;
1988                        }
1989
1990                        /* Only check verify write turn on */
1991                        ret = onenand_verify(mtd, buf, to, thislen);
1992                        if (ret) {
1993                                printk(KERN_ERR "%s: verify failed %d\n",
1994                                        __func__, ret);
1995                                break;
1996                        }
1997
1998                        written += thislen;
1999
2000                        if (written == len)
2001                                break;
2002
2003                } else
2004                        written += thislen;
2005
2006                column = 0;
2007                prev_subpage = subpage;
2008                prev = to;
2009                prevlen = thislen;
2010                to += thislen;
2011                buf += thislen;
2012                first = 0;
2013        }
2014
2015        /* In error case, clear all bufferrams */
2016        if (written != len)
2017                onenand_invalidate_bufferram(mtd, 0, -1);
2018
2019        ops->retlen = written;
2020        ops->oobretlen = oobwritten;
2021
2022        return ret;
2023}
2024
2025
2026/**
2027 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
2028 * @param mtd           MTD device structure
2029 * @param to            offset to write to
2030 * @param len           number of bytes to write
2031 * @param retlen        pointer to variable to store the number of written bytes
2032 * @param buf           the data to write
2033 * @param mode          operation mode
2034 *
2035 * OneNAND write out-of-band
2036 */
2037static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2038                                    struct mtd_oob_ops *ops)
2039{
2040        struct onenand_chip *this = mtd->priv;
2041        int column, ret = 0, oobsize;
2042        int written = 0, oobcmd;
2043        u_char *oobbuf;
2044        size_t len = ops->ooblen;
2045        const u_char *buf = ops->oobbuf;
2046        mtd_oob_mode_t mode = ops->mode;
2047
2048        to += ops->ooboffs;
2049
2050        DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2051                __func__, (unsigned int) to, (int) len);
2052
2053        /* Initialize retlen, in case of early exit */
2054        ops->oobretlen = 0;
2055
2056        if (mode == MTD_OOB_AUTO)
2057                oobsize = this->ecclayout->oobavail;
2058        else
2059                oobsize = mtd->oobsize;
2060
2061        column = to & (mtd->oobsize - 1);
2062
2063        if (unlikely(column >= oobsize)) {
2064                printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2065                        __func__);
2066                return -EINVAL;
2067        }
2068
2069        /* For compatibility with NAND: Do not allow write past end of page */
2070        if (unlikely(column + len > oobsize)) {
2071                printk(KERN_ERR "%s: Attempt to write past end of page\n",
2072                        __func__);
2073                return -EINVAL;
2074        }
2075
2076        /* Do not allow reads past end of device */
2077        if (unlikely(to >= mtd->size ||
2078                     column + len > ((mtd->size >> this->page_shift) -
2079                                     (to >> this->page_shift)) * oobsize)) {
2080                printk(KERN_ERR "%s: Attempted to write past end of device\n",
2081                       __func__);
2082                return -EINVAL;
2083        }
2084
2085        oobbuf = this->oob_buf;
2086
2087        oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2088
2089        /* Loop until all data write */
2090        while (written < len) {
2091                int thislen = min_t(int, oobsize, len - written);
2092
2093                cond_resched();
2094
2095                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2096
2097                /* We send data to spare ram with oobsize
2098                 * to prevent byte access */
2099                memset(oobbuf, 0xff, mtd->oobsize);
2100                if (mode == MTD_OOB_AUTO)
2101                        onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2102                else
2103                        memcpy(oobbuf + column, buf, thislen);
2104                this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2105
2106                if (ONENAND_IS_4KB_PAGE(this)) {
2107                        /* Set main area of DataRAM to 0xff*/
2108                        memset(this->page_buf, 0xff, mtd->writesize);
2109                        this->write_bufferram(mtd, ONENAND_DATARAM,
2110                                         this->page_buf, 0, mtd->writesize);
2111                }
2112
2113                this->command(mtd, oobcmd, to, mtd->oobsize);
2114
2115                onenand_update_bufferram(mtd, to, 0);
2116                if (ONENAND_IS_2PLANE(this)) {
2117                        ONENAND_SET_BUFFERRAM1(this);
2118                        onenand_update_bufferram(mtd, to + this->writesize, 0);
2119                }
2120
2121                ret = this->wait(mtd, FL_WRITING);
2122                if (ret) {
2123                        printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2124                        break;
2125                }
2126
2127                ret = onenand_verify_oob(mtd, oobbuf, to);
2128                if (ret) {
2129                        printk(KERN_ERR "%s: verify failed %d\n",
2130                                __func__, ret);
2131                        break;
2132                }
2133
2134                written += thislen;
2135                if (written == len)
2136                        break;
2137
2138                to += mtd->writesize;
2139                buf += thislen;
2140                column = 0;
2141        }
2142
2143        ops->oobretlen = written;
2144
2145        return ret;
2146}
2147
2148/**
2149 * onenand_write - [MTD Interface] write buffer to FLASH
2150 * @param mtd           MTD device structure
2151 * @param to            offset to write to
2152 * @param len           number of bytes to write
2153 * @param retlen        pointer to variable to store the number of written bytes
2154 * @param buf           the data to write
2155 *
2156 * Write with ECC
2157 */
2158static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2159        size_t *retlen, const u_char *buf)
2160{
2161        struct mtd_oob_ops ops = {
2162                .len    = len,
2163                .ooblen = 0,
2164                .datbuf = (u_char *) buf,
2165                .oobbuf = NULL,
2166        };
2167        int ret;
2168
2169        onenand_get_device(mtd, FL_WRITING);
2170        ret = onenand_write_ops_nolock(mtd, to, &ops);
2171        onenand_release_device(mtd);
2172
2173        *retlen = ops.retlen;
2174        return ret;
2175}
2176
2177/**
2178 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2179 * @param mtd:          MTD device structure
2180 * @param to:           offset to write
2181 * @param ops:          oob operation description structure
2182 */
2183static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2184                             struct mtd_oob_ops *ops)
2185{
2186        int ret;
2187
2188        switch (ops->mode) {
2189        case MTD_OOB_PLACE:
2190        case MTD_OOB_AUTO:
2191                break;
2192        case MTD_OOB_RAW:
2193                /* Not implemented yet */
2194        default:
2195                return -EINVAL;
2196        }
2197
2198        onenand_get_device(mtd, FL_WRITING);
2199        if (ops->datbuf)
2200                ret = onenand_write_ops_nolock(mtd, to, ops);
2201        else
2202                ret = onenand_write_oob_nolock(mtd, to, ops);
2203        onenand_release_device(mtd);
2204
2205        return ret;
2206}
2207
2208/**
2209 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2210 * @param mtd           MTD device structure
2211 * @param ofs           offset from device start
2212 * @param allowbbt      1, if its allowed to access the bbt area
2213 *
2214 * Check, if the block is bad. Either by reading the bad block table or
2215 * calling of the scan function.
2216 */
2217static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2218{
2219        struct onenand_chip *this = mtd->priv;
2220        struct bbm_info *bbm = this->bbm;
2221
2222        /* Return info from the table */
2223        return bbm->isbad_bbt(mtd, ofs, allowbbt);
2224}
2225
2226
2227static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2228                                           struct erase_info *instr)
2229{
2230        struct onenand_chip *this = mtd->priv;
2231        loff_t addr = instr->addr;
2232        int len = instr->len;
2233        unsigned int block_size = (1 << this->erase_shift);
2234        int ret = 0;
2235
2236        while (len) {
2237                this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2238                ret = this->wait(mtd, FL_VERIFYING_ERASE);
2239                if (ret) {
2240                        printk(KERN_ERR "%s: Failed verify, block %d\n",
2241                               __func__, onenand_block(this, addr));
2242                        instr->state = MTD_ERASE_FAILED;
2243                        instr->fail_addr = addr;
2244                        return -1;
2245                }
2246                len -= block_size;
2247                addr += block_size;
2248        }
2249        return 0;
2250}
2251
2252/**
2253 * onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase
2254 * @param mtd           MTD device structure
2255 * @param instr         erase instruction
2256 * @param region        erase region
2257 *
2258 * Erase one or more blocks up to 64 block at a time
2259 */
2260static int onenand_multiblock_erase(struct mtd_info *mtd,
2261                                    struct erase_info *instr,
2262                                    unsigned int block_size)
2263{
2264        struct onenand_chip *this = mtd->priv;
2265        loff_t addr = instr->addr;
2266        int len = instr->len;
2267        int eb_count = 0;
2268        int ret = 0;
2269        int bdry_block = 0;
2270
2271        instr->state = MTD_ERASING;
2272
2273        if (ONENAND_IS_DDP(this)) {
2274                loff_t bdry_addr = this->chipsize >> 1;
2275                if (addr < bdry_addr && (addr + len) > bdry_addr)
2276                        bdry_block = bdry_addr >> this->erase_shift;
2277        }
2278
2279        /* Pre-check bbs */
2280        while (len) {
2281                /* Check if we have a bad block, we do not erase bad blocks */
2282                if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2283                        printk(KERN_WARNING "%s: attempt to erase a bad block "
2284                               "at addr 0x%012llx\n",
2285                               __func__, (unsigned long long) addr);
2286                        instr->state = MTD_ERASE_FAILED;
2287                        return -EIO;
2288                }
2289                len -= block_size;
2290                addr += block_size;
2291        }
2292
2293        len = instr->len;
2294        addr = instr->addr;
2295
2296        /* loop over 64 eb batches */
2297        while (len) {
2298                struct erase_info verify_instr = *instr;
2299                int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2300
2301                verify_instr.addr = addr;
2302                verify_instr.len = 0;
2303
2304                /* do not cross chip boundary */
2305                if (bdry_block) {
2306                        int this_block = (addr >> this->erase_shift);
2307
2308                        if (this_block < bdry_block) {
2309                                max_eb_count = min(max_eb_count,
2310                                                   (bdry_block - this_block));
2311                        }
2312                }
2313
2314                eb_count = 0;
2315
2316                while (len > block_size && eb_count < (max_eb_count - 1)) {
2317                        this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2318                                      addr, block_size);
2319                        onenand_invalidate_bufferram(mtd, addr, block_size);
2320
2321                        ret = this->wait(mtd, FL_PREPARING_ERASE);
2322                        if (ret) {
2323                                printk(KERN_ERR "%s: Failed multiblock erase, "
2324                                       "block %d\n", __func__,
2325                                       onenand_block(this, addr));
2326                                instr->state = MTD_ERASE_FAILED;
2327                                instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2328                                return -EIO;
2329                        }
2330
2331                        len -= block_size;
2332                        addr += block_size;
2333                        eb_count++;
2334                }
2335
2336                /* last block of 64-eb series */
2337                cond_resched();
2338                this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2339                onenand_invalidate_bufferram(mtd, addr, block_size);
2340
2341                ret = this->wait(mtd, FL_ERASING);
2342                /* Check if it is write protected */
2343                if (ret) {
2344                        printk(KERN_ERR "%s: Failed erase, block %d\n",
2345                               __func__, onenand_block(this, addr));
2346                        instr->state = MTD_ERASE_FAILED;
2347                        instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2348                        return -EIO;
2349                }
2350
2351                len -= block_size;
2352                addr += block_size;
2353                eb_count++;
2354
2355                /* verify */
2356                verify_instr.len = eb_count * block_size;
2357                if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2358                        instr->state = verify_instr.state;
2359                        instr->fail_addr = verify_instr.fail_addr;
2360                        return -EIO;
2361                }
2362
2363        }
2364        return 0;
2365}
2366
2367
2368/**
2369 * onenand_block_by_block_erase - [Internal] erase block(s) using regular erase
2370 * @param mtd           MTD device structure
2371 * @param instr         erase instruction
2372 * @param region        erase region
2373 * @param block_size    erase block size
2374 *
2375 * Erase one or more blocks one block at a time
2376 */
2377static int onenand_block_by_block_erase(struct mtd_info *mtd,
2378                                        struct erase_info *instr,
2379                                        struct mtd_erase_region_info *region,
2380                                        unsigned int block_size)
2381{
2382        struct onenand_chip *this = mtd->priv;
2383        loff_t addr = instr->addr;
2384        int len = instr->len;
2385        loff_t region_end = 0;
2386        int ret = 0;
2387
2388        if (region) {
2389                /* region is set for Flex-OneNAND */
2390                region_end = region->offset + region->erasesize * region->numblocks;
2391        }
2392
2393        instr->state = MTD_ERASING;
2394
2395        /* Loop through the blocks */
2396        while (len) {
2397                cond_resched();
2398
2399                /* Check if we have a bad block, we do not erase bad blocks */
2400                if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2401                        printk(KERN_WARNING "%s: attempt to erase a bad block "
2402                                        "at addr 0x%012llx\n",
2403                                        __func__, (unsigned long long) addr);
2404                        instr->state = MTD_ERASE_FAILED;
2405                        return -EIO;
2406                }
2407
2408                this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2409
2410                onenand_invalidate_bufferram(mtd, addr, block_size);
2411
2412                ret = this->wait(mtd, FL_ERASING);
2413                /* Check, if it is write protected */
2414                if (ret) {
2415                        printk(KERN_ERR "%s: Failed erase, block %d\n",
2416                                __func__, onenand_block(this, addr));
2417                        instr->state = MTD_ERASE_FAILED;
2418                        instr->fail_addr = addr;
2419                        return -EIO;
2420                }
2421
2422                len -= block_size;
2423                addr += block_size;
2424
2425                if (addr == region_end) {
2426                        if (!len)
2427                                break;
2428                        region++;
2429
2430                        block_size = region->erasesize;
2431                        region_end = region->offset + region->erasesize * region->numblocks;
2432
2433                        if (len & (block_size - 1)) {
2434                                /* FIXME: This should be handled at MTD partitioning level. */
2435                                printk(KERN_ERR "%s: Unaligned address\n",
2436                                        __func__);
2437                                return -EIO;
2438                        }
2439                }
2440        }
2441        return 0;
2442}
2443
2444/**
2445 * onenand_erase - [MTD Interface] erase block(s)
2446 * @param mtd           MTD device structure
2447 * @param instr         erase instruction
2448 *
2449 * Erase one or more blocks
2450 */
2451static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2452{
2453        struct onenand_chip *this = mtd->priv;
2454        unsigned int block_size;
2455        loff_t addr = instr->addr;
2456        loff_t len = instr->len;
2457        int ret = 0;
2458        struct mtd_erase_region_info *region = NULL;
2459        loff_t region_offset = 0;
2460
2461        DEBUG(MTD_DEBUG_LEVEL3, "%s: start=0x%012llx, len=%llu\n", __func__,
2462              (unsigned long long) instr->addr, (unsigned long long) instr->len);
2463
2464        /* Do not allow erase past end of device */
2465        if (unlikely((len + addr) > mtd->size)) {
2466                printk(KERN_ERR "%s: Erase past end of device\n", __func__);
2467                return -EINVAL;
2468        }
2469
2470        if (FLEXONENAND(this)) {
2471                /* Find the eraseregion of this address */
2472                int i = flexonenand_region(mtd, addr);
2473
2474                region = &mtd->eraseregions[i];
2475                block_size = region->erasesize;
2476
2477                /* Start address within region must align on block boundary.
2478                 * Erase region's start offset is always block start address.
2479                 */
2480                region_offset = region->offset;
2481        } else
2482                block_size = 1 << this->erase_shift;
2483
2484        /* Start address must align on block boundary */
2485        if (unlikely((addr - region_offset) & (block_size - 1))) {
2486                printk(KERN_ERR "%s: Unaligned address\n", __func__);
2487                return -EINVAL;
2488        }
2489
2490        /* Length must align on block boundary */
2491        if (unlikely(len & (block_size - 1))) {
2492                printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2493                return -EINVAL;
2494        }
2495
2496        instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2497
2498        /* Grab the lock and see if the device is available */
2499        onenand_get_device(mtd, FL_ERASING);
2500
2501        if (ONENAND_IS_4KB_PAGE(this) || region ||
2502            instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2503                /* region is set for Flex-OneNAND (no mb erase) */
2504                ret = onenand_block_by_block_erase(mtd, instr,
2505                                                   region, block_size);
2506        } else {
2507                ret = onenand_multiblock_erase(mtd, instr, block_size);
2508        }
2509
2510        /* Deselect and wake up anyone waiting on the device */
2511        onenand_release_device(mtd);
2512
2513        /* Do call back function */
2514        if (!ret) {
2515                instr->state = MTD_ERASE_DONE;
2516                mtd_erase_callback(instr);
2517        }
2518
2519        return ret;
2520}
2521
2522/**
2523 * onenand_sync - [MTD Interface] sync
2524 * @param mtd           MTD device structure
2525 *
2526 * Sync is actually a wait for chip ready function
2527 */
2528static void onenand_sync(struct mtd_info *mtd)
2529{
2530        DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2531
2532        /* Grab the lock and see if the device is available */
2533        onenand_get_device(mtd, FL_SYNCING);
2534
2535        /* Release it and go back */
2536        onenand_release_device(mtd);
2537}
2538
2539/**
2540 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2541 * @param mtd           MTD device structure
2542 * @param ofs           offset relative to mtd start
2543 *
2544 * Check whether the block is bad
2545 */
2546static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2547{
2548        int ret;
2549
2550        /* Check for invalid offset */
2551        if (ofs > mtd->size)
2552                return -EINVAL;
2553
2554        onenand_get_device(mtd, FL_READING);
2555        ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2556        onenand_release_device(mtd);
2557        return ret;
2558}
2559
2560/**
2561 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2562 * @param mtd           MTD device structure
2563 * @param ofs           offset from device start
2564 *
2565 * This is the default implementation, which can be overridden by
2566 * a hardware specific driver.
2567 */
2568static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2569{
2570        struct onenand_chip *this = mtd->priv;
2571        struct bbm_info *bbm = this->bbm;
2572        u_char buf[2] = {0, 0};
2573        struct mtd_oob_ops ops = {
2574                .mode = MTD_OOB_PLACE,
2575                .ooblen = 2,
2576                .oobbuf = buf,
2577                .ooboffs = 0,
2578        };
2579        int block;
2580
2581        /* Get block number */
2582        block = onenand_block(this, ofs);
2583        if (bbm->bbt)
2584                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2585
2586        /* We write two bytes, so we don't have to mess with 16-bit access */
2587        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2588        /* FIXME : What to do when marking SLC block in partition
2589         *         with MLC erasesize? For now, it is not advisable to
2590         *         create partitions containing both SLC and MLC regions.
2591         */
2592        return onenand_write_oob_nolock(mtd, ofs, &ops);
2593}
2594
2595/**
2596 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2597 * @param mtd           MTD device structure
2598 * @param ofs           offset relative to mtd start
2599 *
2600 * Mark the block as bad
2601 */
2602static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2603{
2604        struct onenand_chip *this = mtd->priv;
2605        int ret;
2606
2607        ret = onenand_block_isbad(mtd, ofs);
2608        if (ret) {
2609                /* If it was bad already, return success and do nothing */
2610                if (ret > 0)
2611                        return 0;
2612                return ret;
2613        }
2614
2615        onenand_get_device(mtd, FL_WRITING);
2616        ret = this->block_markbad(mtd, ofs);
2617        onenand_release_device(mtd);
2618        return ret;
2619}
2620
2621/**
2622 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2623 * @param mtd           MTD device structure
2624 * @param ofs           offset relative to mtd start
2625 * @param len           number of bytes to lock or unlock
2626 * @param cmd           lock or unlock command
2627 *
2628 * Lock or unlock one or more blocks
2629 */
2630static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2631{
2632        struct onenand_chip *this = mtd->priv;
2633        int start, end, block, value, status;
2634        int wp_status_mask;
2635
2636        start = onenand_block(this, ofs);
2637        end = onenand_block(this, ofs + len) - 1;
2638
2639        if (cmd == ONENAND_CMD_LOCK)
2640                wp_status_mask = ONENAND_WP_LS;
2641        else
2642                wp_status_mask = ONENAND_WP_US;
2643
2644        /* Continuous lock scheme */
2645        if (this->options & ONENAND_HAS_CONT_LOCK) {
2646                /* Set start block address */
2647                this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2648                /* Set end block address */
2649                this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2650                /* Write lock command */
2651                this->command(mtd, cmd, 0, 0);
2652
2653                /* There's no return value */
2654                this->wait(mtd, FL_LOCKING);
2655
2656                /* Sanity check */
2657                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2658                    & ONENAND_CTRL_ONGO)
2659                        continue;
2660
2661                /* Check lock status */
2662                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2663                if (!(status & wp_status_mask))
2664                        printk(KERN_ERR "%s: wp status = 0x%x\n",
2665                                __func__, status);
2666
2667                return 0;
2668        }
2669
2670        /* Block lock scheme */
2671        for (block = start; block < end + 1; block++) {
2672                /* Set block address */
2673                value = onenand_block_address(this, block);
2674                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2675                /* Select DataRAM for DDP */
2676                value = onenand_bufferram_address(this, block);
2677                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2678                /* Set start block address */
2679                this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2680                /* Write lock command */
2681                this->command(mtd, cmd, 0, 0);
2682
2683                /* There's no return value */
2684                this->wait(mtd, FL_LOCKING);
2685
2686                /* Sanity check */
2687                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2688                    & ONENAND_CTRL_ONGO)
2689                        continue;
2690
2691                /* Check lock status */
2692                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2693                if (!(status & wp_status_mask))
2694                        printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2695                                __func__, block, status);
2696        }
2697
2698        return 0;
2699}
2700
2701/**
2702 * onenand_lock - [MTD Interface] Lock block(s)
2703 * @param mtd           MTD device structure
2704 * @param ofs           offset relative to mtd start
2705 * @param len           number of bytes to unlock
2706 *
2707 * Lock one or more blocks
2708 */
2709static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2710{
2711        int ret;
2712
2713        onenand_get_device(mtd, FL_LOCKING);
2714        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2715        onenand_release_device(mtd);
2716        return ret;
2717}
2718
2719/**
2720 * onenand_unlock - [MTD Interface] Unlock block(s)
2721 * @param mtd           MTD device structure
2722 * @param ofs           offset relative to mtd start
2723 * @param len           number of bytes to unlock
2724 *
2725 * Unlock one or more blocks
2726 */
2727static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2728{
2729        int ret;
2730
2731        onenand_get_device(mtd, FL_LOCKING);
2732        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2733        onenand_release_device(mtd);
2734        return ret;
2735}
2736
2737/**
2738 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2739 * @param this          onenand chip data structure
2740 *
2741 * Check lock status
2742 */
2743static int onenand_check_lock_status(struct onenand_chip *this)
2744{
2745        unsigned int value, block, status;
2746        unsigned int end;
2747
2748        end = this->chipsize >> this->erase_shift;
2749        for (block = 0; block < end; block++) {
2750                /* Set block address */
2751                value = onenand_block_address(this, block);
2752                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2753                /* Select DataRAM for DDP */
2754                value = onenand_bufferram_address(this, block);
2755                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2756                /* Set start block address */
2757                this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2758
2759                /* Check lock status */
2760                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2761                if (!(status & ONENAND_WP_US)) {
2762                        printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2763                                __func__, block, status);
2764                        return 0;
2765                }
2766        }
2767
2768        return 1;
2769}
2770
2771/**
2772 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2773 * @param mtd           MTD device structure
2774 *
2775 * Unlock all blocks
2776 */
2777static void onenand_unlock_all(struct mtd_info *mtd)
2778{
2779        struct onenand_chip *this = mtd->priv;
2780        loff_t ofs = 0;
2781        loff_t len = mtd->size;
2782
2783        if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2784                /* Set start block address */
2785                this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2786                /* Write unlock command */
2787                this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2788
2789                /* There's no return value */
2790                this->wait(mtd, FL_LOCKING);
2791
2792                /* Sanity check */
2793                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2794                    & ONENAND_CTRL_ONGO)
2795                        continue;
2796
2797                /* Don't check lock status */
2798                if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2799                        return;
2800
2801                /* Check lock status */
2802                if (onenand_check_lock_status(this))
2803                        return;
2804
2805                /* Workaround for all block unlock in DDP */
2806                if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2807                        /* All blocks on another chip */
2808                        ofs = this->chipsize >> 1;
2809                        len = this->chipsize >> 1;
2810                }
2811        }
2812
2813        onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2814}
2815
2816#ifdef CONFIG_MTD_ONENAND_OTP
2817
2818/**
2819 * onenand_otp_command - Send OTP specific command to OneNAND device
2820 * @param mtd    MTD device structure
2821 * @param cmd    the command to be sent
2822 * @param addr   offset to read from or write to
2823 * @param len    number of bytes to read or write
2824 */
2825static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2826                                size_t len)
2827{
2828        struct onenand_chip *this = mtd->priv;
2829        int value, block, page;
2830
2831        /* Address translation */
2832        switch (cmd) {
2833        case ONENAND_CMD_OTP_ACCESS:
2834                block = (int) (addr >> this->erase_shift);
2835                page = -1;
2836                break;
2837
2838        default:
2839                block = (int) (addr >> this->erase_shift);
2840                page = (int) (addr >> this->page_shift);
2841
2842                if (ONENAND_IS_2PLANE(this)) {
2843                        /* Make the even block number */
2844                        block &= ~1;
2845                        /* Is it the odd plane? */
2846                        if (addr & this->writesize)
2847                                block++;
2848                        page >>= 1;
2849                }
2850                page &= this->page_mask;
2851                break;
2852        }
2853
2854        if (block != -1) {
2855                /* Write 'DFS, FBA' of Flash */
2856                value = onenand_block_address(this, block);
2857                this->write_word(value, this->base +
2858                                ONENAND_REG_START_ADDRESS1);
2859        }
2860
2861        if (page != -1) {
2862                /* Now we use page size operation */
2863                int sectors = 4, count = 4;
2864                int dataram;
2865
2866                switch (cmd) {
2867                default:
2868                        if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2869                                cmd = ONENAND_CMD_2X_PROG;
2870                        dataram = ONENAND_CURRENT_BUFFERRAM(this);
2871                        break;
2872                }
2873
2874                /* Write 'FPA, FSA' of Flash */
2875                value = onenand_page_address(page, sectors);
2876                this->write_word(value, this->base +
2877                                ONENAND_REG_START_ADDRESS8);
2878
2879                /* Write 'BSA, BSC' of DataRAM */
2880                value = onenand_buffer_address(dataram, sectors, count);
2881                this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2882        }
2883
2884        /* Interrupt clear */
2885        this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2886
2887        /* Write command */
2888        this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2889
2890        return 0;
2891}
2892
2893/**
2894 * onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP
2895 * @param mtd           MTD device structure
2896 * @param to            offset to write to
2897 * @param len           number of bytes to write
2898 * @param retlen        pointer to variable to store the number of written bytes
2899 * @param buf           the data to write
2900 *
2901 * OneNAND write out-of-band only for OTP
2902 */
2903static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2904                                    struct mtd_oob_ops *ops)
2905{
2906        struct onenand_chip *this = mtd->priv;
2907        int column, ret = 0, oobsize;
2908        int written = 0;
2909        u_char *oobbuf;
2910        size_t len = ops->ooblen;
2911        const u_char *buf = ops->oobbuf;
2912        int block, value, status;
2913
2914        to += ops->ooboffs;
2915
2916        /* Initialize retlen, in case of early exit */
2917        ops->oobretlen = 0;
2918
2919        oobsize = mtd->oobsize;
2920
2921        column = to & (mtd->oobsize - 1);
2922
2923        oobbuf = this->oob_buf;
2924
2925        /* Loop until all data write */
2926        while (written < len) {
2927                int thislen = min_t(int, oobsize, len - written);
2928
2929                cond_resched();
2930
2931                block = (int) (to >> this->erase_shift);
2932                /*
2933                 * Write 'DFS, FBA' of Flash
2934                 * Add: F100h DQ=DFS, FBA
2935                 */
2936
2937                value = onenand_block_address(this, block);
2938                this->write_word(value, this->base +
2939                                ONENAND_REG_START_ADDRESS1);
2940
2941                /*
2942                 * Select DataRAM for DDP
2943                 * Add: F101h DQ=DBS
2944                 */
2945
2946                value = onenand_bufferram_address(this, block);
2947                this->write_word(value, this->base +
2948                                ONENAND_REG_START_ADDRESS2);
2949                ONENAND_SET_NEXT_BUFFERRAM(this);
2950
2951                /*
2952                 * Enter OTP access mode
2953                 */
2954                this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2955                this->wait(mtd, FL_OTPING);
2956
2957                /* We send data to spare ram with oobsize
2958                 * to prevent byte access */
2959                memcpy(oobbuf + column, buf, thislen);
2960
2961                /*
2962                 * Write Data into DataRAM
2963                 * Add: 8th Word
2964                 * in sector0/spare/page0
2965                 * DQ=XXFCh
2966                 */
2967                this->write_bufferram(mtd, ONENAND_SPARERAM,
2968                                        oobbuf, 0, mtd->oobsize);
2969
2970                onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2971                onenand_update_bufferram(mtd, to, 0);
2972                if (ONENAND_IS_2PLANE(this)) {
2973                        ONENAND_SET_BUFFERRAM1(this);
2974                        onenand_update_bufferram(mtd, to + this->writesize, 0);
2975                }
2976
2977                ret = this->wait(mtd, FL_WRITING);
2978                if (ret) {
2979                        printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2980                        break;
2981                }
2982
2983                /* Exit OTP access mode */
2984                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2985                this->wait(mtd, FL_RESETING);
2986
2987                status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2988                status &= 0x60;
2989
2990                if (status == 0x60) {
2991                        printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2992                        printk(KERN_DEBUG "1st Block\tLOCKED\n");
2993                        printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2994                } else if (status == 0x20) {
2995                        printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2996                        printk(KERN_DEBUG "1st Block\tLOCKED\n");
2997                        printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2998                } else if (status == 0x40) {
2999                        printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
3000                        printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
3001                        printk(KERN_DEBUG "OTP Block\tLOCKED\n");
3002                } else {
3003                        printk(KERN_DEBUG "Reboot to check\n");
3004                }
3005
3006                written += thislen;
3007                if (written == len)
3008                        break;
3009
3010                to += mtd->writesize;
3011                buf += thislen;
3012                column = 0;
3013        }
3014
3015        ops->oobretlen = written;
3016
3017        return ret;
3018}
3019
3020/* Internal OTP operation */
3021typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
3022                size_t *retlen, u_char *buf);
3023
3024/**
3025 * do_otp_read - [DEFAULT] Read OTP block area
3026 * @param mtd           MTD device structure
3027 * @param from          The offset to read
3028 * @param len           number of bytes to read
3029 * @param retlen        pointer to variable to store the number of readbytes
3030 * @param buf           the databuffer to put/get data
3031 *
3032 * Read OTP block area.
3033 */
3034static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3035                size_t *retlen, u_char *buf)
3036{
3037        struct onenand_chip *this = mtd->priv;
3038        struct mtd_oob_ops ops = {
3039                .len    = len,
3040                .ooblen = 0,
3041                .datbuf = buf,
3042                .oobbuf = NULL,
3043        };
3044        int ret;
3045
3046        /* Enter OTP access mode */
3047        this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3048        this->wait(mtd, FL_OTPING);
3049
3050        ret = ONENAND_IS_4KB_PAGE(this) ?
3051                onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3052                onenand_read_ops_nolock(mtd, from, &ops);
3053
3054        /* Exit OTP access mode */
3055        this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3056        this->wait(mtd, FL_RESETING);
3057
3058        return ret;
3059}
3060
3061/**
3062 * do_otp_write - [DEFAULT] Write OTP block area
3063 * @param mtd           MTD device structure
3064 * @param to            The offset to write
3065 * @param len           number of bytes to write
3066 * @param retlen        pointer to variable to store the number of write bytes
3067 * @param buf           the databuffer to put/get data
3068 *
3069 * Write OTP block area.
3070 */
3071static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3072                size_t *retlen, u_char *buf)
3073{
3074        struct onenand_chip *this = mtd->priv;
3075        unsigned char *pbuf = buf;
3076        int ret;
3077        struct mtd_oob_ops ops;
3078
3079        /* Force buffer page aligned */
3080        if (len < mtd->writesize) {
3081                memcpy(this->page_buf, buf, len);
3082                memset(this->page_buf + len, 0xff, mtd->writesize - len);
3083                pbuf = this->page_buf;
3084                len = mtd->writesize;
3085        }
3086
3087        /* Enter OTP access mode */
3088        this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3089        this->wait(mtd, FL_OTPING);
3090
3091        ops.len = len;
3092        ops.ooblen = 0;
3093        ops.datbuf = pbuf;
3094        ops.oobbuf = NULL;
3095        ret = onenand_write_ops_nolock(mtd, to, &ops);
3096        *retlen = ops.retlen;
3097
3098        /* Exit OTP access mode */
3099        this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3100        this->wait(mtd, FL_RESETING);
3101
3102        return ret;
3103}
3104
3105/**
3106 * do_otp_lock - [DEFAULT] Lock OTP block area
3107 * @param mtd           MTD device structure
3108 * @param from          The offset to lock
3109 * @param len           number of bytes to lock
3110 * @param retlen        pointer to variable to store the number of lock bytes
3111 * @param buf           the databuffer to put/get data
3112 *
3113 * Lock OTP block area.
3114 */
3115static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3116                size_t *retlen, u_char *buf)
3117{
3118        struct onenand_chip *this = mtd->priv;
3119        struct mtd_oob_ops ops;
3120        int ret;
3121
3122        if (FLEXONENAND(this)) {
3123
3124                /* Enter OTP access mode */
3125                this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3126                this->wait(mtd, FL_OTPING);
3127                /*
3128                 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3129                 * main area of page 49.
3130                 */
3131                ops.len = mtd->writesize;
3132                ops.ooblen = 0;
3133                ops.datbuf = buf;
3134                ops.oobbuf = NULL;
3135                ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3136                *retlen = ops.retlen;
3137
3138                /* Exit OTP access mode */
3139                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3140                this->wait(mtd, FL_RESETING);
3141        } else {
3142                ops.mode = MTD_OOB_PLACE;
3143                ops.ooblen = len;
3144                ops.oobbuf = buf;
3145                ops.ooboffs = 0;
3146                ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3147                *retlen = ops.oobretlen;
3148        }
3149
3150        return ret;
3151}
3152
3153/**
3154 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3155 * @param mtd           MTD device structure
3156 * @param from          The offset to read/write
3157 * @param len           number of bytes to read/write
3158 * @param retlen        pointer to variable to store the number of read bytes
3159 * @param buf           the databuffer to put/get data
3160 * @param action        do given action
3161 * @param mode          specify user and factory
3162 *
3163 * Handle OTP operation.
3164 */
3165static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3166                        size_t *retlen, u_char *buf,
3167                        otp_op_t action, int mode)
3168{
3169        struct onenand_chip *this = mtd->priv;
3170        int otp_pages;
3171        int density;
3172        int ret = 0;
3173
3174        *retlen = 0;
3175
3176        density = onenand_get_density(this->device_id);
3177        if (density < ONENAND_DEVICE_DENSITY_512Mb)
3178                otp_pages = 20;
3179        else
3180                otp_pages = 50;
3181
3182        if (mode == MTD_OTP_FACTORY) {
3183                from += mtd->writesize * otp_pages;
3184                otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3185        }
3186
3187        /* Check User/Factory boundary */
3188        if (mode == MTD_OTP_USER) {
3189                if (mtd->writesize * otp_pages < from + len)
3190                        return 0;
3191        } else {
3192                if (mtd->writesize * otp_pages <  len)
3193                        return 0;
3194        }
3195
3196        onenand_get_device(mtd, FL_OTPING);
3197        while (len > 0 && otp_pages > 0) {
3198                if (!action) {  /* OTP Info functions */
3199                        struct otp_info *otpinfo;
3200
3201                        len -= sizeof(struct otp_info);
3202                        if (len <= 0) {
3203                                ret = -ENOSPC;
3204                                break;
3205                        }
3206
3207                        otpinfo = (struct otp_info *) buf;
3208                        otpinfo->start = from;
3209                        otpinfo->length = mtd->writesize;
3210                        otpinfo->locked = 0;
3211
3212                        from += mtd->writesize;
3213                        buf += sizeof(struct otp_info);
3214                        *retlen += sizeof(struct otp_info);
3215                } else {
3216                        size_t tmp_retlen;
3217
3218                        ret = action(mtd, from, len, &tmp_retlen, buf);
3219
3220                        buf += tmp_retlen;
3221                        len -= tmp_retlen;
3222                        *retlen += tmp_retlen;
3223
3224                        if (ret)
3225                                break;
3226                }
3227                otp_pages--;
3228        }
3229        onenand_release_device(mtd);
3230
3231        return ret;
3232}
3233
3234/**
3235 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3236 * @param mtd           MTD device structure
3237 * @param buf           the databuffer to put/get data
3238 * @param len           number of bytes to read
3239 *
3240 * Read factory OTP info.
3241 */
3242static int onenand_get_fact_prot_info(struct mtd_info *mtd,
3243                        struct otp_info *buf, size_t len)
3244{
3245        size_t retlen;
3246        int ret;
3247
3248        ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
3249
3250        return ret ? : retlen;
3251}
3252
3253/**
3254 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3255 * @param mtd           MTD device structure
3256 * @param from          The offset to read
3257 * @param len           number of bytes to read
3258 * @param retlen        pointer to variable to store the number of read bytes
3259 * @param buf           the databuffer to put/get data
3260 *
3261 * Read factory OTP area.
3262 */
3263static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3264                        size_t len, size_t *retlen, u_char *buf)
3265{
3266        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3267}
3268
3269/**
3270 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3271 * @param mtd           MTD device structure
3272 * @param buf           the databuffer to put/get data
3273 * @param len           number of bytes to read
3274 *
3275 * Read user OTP info.
3276 */
3277static int onenand_get_user_prot_info(struct mtd_info *mtd,
3278                        struct otp_info *buf, size_t len)
3279{
3280        size_t retlen;
3281        int ret;
3282
3283        ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
3284
3285        return ret ? : retlen;
3286}
3287
3288/**
3289 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3290 * @param mtd           MTD device structure
3291 * @param from          The offset to read
3292 * @param len           number of bytes to read
3293 * @param retlen        pointer to variable to store the number of read bytes
3294 * @param buf           the databuffer to put/get data
3295 *
3296 * Read user OTP area.
3297 */
3298static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3299                        size_t len, size_t *retlen, u_char *buf)
3300{
3301        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3302}
3303
3304/**
3305 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3306 * @param mtd           MTD device structure
3307 * @param from          The offset to write
3308 * @param len           number of bytes to write
3309 * @param retlen        pointer to variable to store the number of write bytes
3310 * @param buf           the databuffer to put/get data
3311 *
3312 * Write user OTP area.
3313 */
3314static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3315                        size_t len, size_t *retlen, u_char *buf)
3316{
3317        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3318}
3319
3320/**
3321 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3322 * @param mtd           MTD device structure
3323 * @param from          The offset to lock
3324 * @param len           number of bytes to unlock
3325 *
3326 * Write lock mark on spare area in page 0 in OTP block
3327 */
3328static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3329                        size_t len)
3330{
3331        struct onenand_chip *this = mtd->priv;
3332        u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3333        size_t retlen;
3334        int ret;
3335        unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3336
3337        memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3338                                                 : mtd->oobsize);
3339        /*
3340         * Write lock mark to 8th word of sector0 of page0 of the spare0.
3341         * We write 16 bytes spare area instead of 2 bytes.
3342         * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3343         * main area of page 49.
3344         */
3345
3346        from = 0;
3347        len = FLEXONENAND(this) ? mtd->writesize : 16;
3348
3349        /*
3350         * Note: OTP lock operation
3351         *       OTP block : 0xXXFC                     XX 1111 1100
3352         *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3353         *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3354         */
3355        if (FLEXONENAND(this))
3356                otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3357
3358        /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3359        if (otp == 1)
3360                buf[otp_lock_offset] = 0xFC;
3361        else if (otp == 2)
3362                buf[otp_lock_offset] = 0xF3;
3363        else if (otp == 3)
3364                buf[otp_lock_offset] = 0xF0;
3365        else if (otp != 0)
3366                printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3367
3368        ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3369
3370        return ret ? : retlen;
3371}
3372
3373#endif  /* CONFIG_MTD_ONENAND_OTP */
3374
3375/**
3376 * onenand_check_features - Check and set OneNAND features
3377 * @param mtd           MTD data structure
3378 *
3379 * Check and set OneNAND features
3380 * - lock scheme
3381 * - two plane
3382 */
3383static void onenand_check_features(struct mtd_info *mtd)
3384{
3385        struct onenand_chip *this = mtd->priv;
3386        unsigned int density, process, numbufs;
3387
3388        /* Lock scheme depends on density and process */
3389        density = onenand_get_density(this->device_id);
3390        process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3391        numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3392
3393        /* Lock scheme */
3394        switch (density) {
3395        case ONENAND_DEVICE_DENSITY_4Gb:
3396                if (ONENAND_IS_DDP(this))
3397                        this->options |= ONENAND_HAS_2PLANE;
3398                else if (numbufs == 1) {
3399                        this->options |= ONENAND_HAS_4KB_PAGE;
3400                        this->options |= ONENAND_HAS_CACHE_PROGRAM;
3401                }
3402
3403        case ONENAND_DEVICE_DENSITY_2Gb:
3404                /* 2Gb DDP does not have 2 plane */
3405                if (!ONENAND_IS_DDP(this))
3406                        this->options |= ONENAND_HAS_2PLANE;
3407                this->options |= ONENAND_HAS_UNLOCK_ALL;
3408
3409        case ONENAND_DEVICE_DENSITY_1Gb:
3410                /* A-Die has all block unlock */
3411                if (process)
3412                        this->options |= ONENAND_HAS_UNLOCK_ALL;
3413                break;
3414
3415        default:
3416                /* Some OneNAND has continuous lock scheme */
3417                if (!process)
3418                        this->options |= ONENAND_HAS_CONT_LOCK;
3419                break;
3420        }
3421
3422        /* The MLC has 4KiB pagesize. */
3423        if (ONENAND_IS_MLC(this))
3424                this->options |= ONENAND_HAS_4KB_PAGE;
3425
3426        if (ONENAND_IS_4KB_PAGE(this))
3427                this->options &= ~ONENAND_HAS_2PLANE;
3428
3429        if (FLEXONENAND(this)) {
3430                this->options &= ~ONENAND_HAS_CONT_LOCK;
3431                this->options |= ONENAND_HAS_UNLOCK_ALL;
3432        }
3433
3434        if (this->options & ONENAND_HAS_CONT_LOCK)
3435                printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3436        if (this->options & ONENAND_HAS_UNLOCK_ALL)
3437                printk(KERN_DEBUG "Chip support all block unlock\n");
3438        if (this->options & ONENAND_HAS_2PLANE)
3439                printk(KERN_DEBUG "Chip has 2 plane\n");
3440        if (this->options & ONENAND_HAS_4KB_PAGE)
3441                printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3442        if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3443                printk(KERN_DEBUG "Chip has cache program feature\n");
3444}
3445
3446/**
3447 * onenand_print_device_info - Print device & version ID
3448 * @param device        device ID
3449 * @param version       version ID
3450 *
3451 * Print device & version ID
3452 */
3453static void onenand_print_device_info(int device, int version)
3454{
3455        int vcc, demuxed, ddp, density, flexonenand;
3456
3457        vcc = device & ONENAND_DEVICE_VCC_MASK;
3458        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3459        ddp = device & ONENAND_DEVICE_IS_DDP;
3460        density = onenand_get_density(device);
3461        flexonenand = device & DEVICE_IS_FLEXONENAND;
3462        printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3463                demuxed ? "" : "Muxed ",
3464                flexonenand ? "Flex-" : "",
3465                ddp ? "(DDP)" : "",
3466                (16 << density),
3467                vcc ? "2.65/3.3" : "1.8",
3468                device);
3469        printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3470}
3471
3472static const struct onenand_manufacturers onenand_manuf_ids[] = {
3473        {ONENAND_MFR_SAMSUNG, "Samsung"},
3474        {ONENAND_MFR_NUMONYX, "Numonyx"},
3475};
3476
3477/**
3478 * onenand_check_maf - Check manufacturer ID
3479 * @param manuf         manufacturer ID
3480 *
3481 * Check manufacturer ID
3482 */
3483static int onenand_check_maf(int manuf)
3484{
3485        int size = ARRAY_SIZE(onenand_manuf_ids);
3486        char *name;
3487        int i;
3488
3489        for (i = 0; i < size; i++)
3490                if (manuf == onenand_manuf_ids[i].id)
3491                        break;
3492
3493        if (i < size)
3494                name = onenand_manuf_ids[i].name;
3495        else
3496                name = "Unknown";
3497
3498        printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3499
3500        return (i == size);
3501}
3502
3503/**
3504* flexonenand_get_boundary      - Reads the SLC boundary
3505* @param onenand_info           - onenand info structure
3506**/
3507static int flexonenand_get_boundary(struct mtd_info *mtd)
3508{
3509        struct onenand_chip *this = mtd->priv;
3510        unsigned die, bdry;
3511        int ret, syscfg, locked;
3512
3513        /* Disable ECC */
3514        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3515        this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3516
3517        for (die = 0; die < this->dies; die++) {
3518                this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3519                this->wait(mtd, FL_SYNCING);
3520
3521                this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3522                ret = this->wait(mtd, FL_READING);
3523
3524                bdry = this->read_word(this->base + ONENAND_DATARAM);
3525                if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3526                        locked = 0;
3527                else
3528                        locked = 1;
3529                this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3530
3531                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3532                ret = this->wait(mtd, FL_RESETING);
3533
3534                printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3535                       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3536        }
3537
3538        /* Enable ECC */
3539        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3540        return 0;
3541}
3542
3543/**
3544 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3545 *                        boundary[], diesize[], mtd->size, mtd->erasesize
3546 * @param mtd           - MTD device structure
3547 */
3548static void flexonenand_get_size(struct mtd_info *mtd)
3549{
3550        struct onenand_chip *this = mtd->priv;
3551        int die, i, eraseshift, density;
3552        int blksperdie, maxbdry;
3553        loff_t ofs;
3554
3555        density = onenand_get_density(this->device_id);
3556        blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3557        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3558        maxbdry = blksperdie - 1;
3559        eraseshift = this->erase_shift - 1;
3560
3561        mtd->numeraseregions = this->dies << 1;
3562
3563        /* This fills up the device boundary */
3564        flexonenand_get_boundary(mtd);
3565        die = ofs = 0;
3566        i = -1;
3567        for (; die < this->dies; die++) {
3568                if (!die || this->boundary[die-1] != maxbdry) {
3569                        i++;
3570                        mtd->eraseregions[i].offset = ofs;
3571                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
3572                        mtd->eraseregions[i].numblocks =
3573                                                        this->boundary[die] + 1;
3574                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
3575                        eraseshift++;
3576                } else {
3577                        mtd->numeraseregions -= 1;
3578                        mtd->eraseregions[i].numblocks +=
3579                                                        this->boundary[die] + 1;
3580                        ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3581                }
3582                if (this->boundary[die] != maxbdry) {
3583                        i++;
3584                        mtd->eraseregions[i].offset = ofs;
3585                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
3586                        mtd->eraseregions[i].numblocks = maxbdry ^
3587                                                         this->boundary[die];
3588                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
3589                        eraseshift--;
3590                } else
3591                        mtd->numeraseregions -= 1;
3592        }
3593
3594        /* Expose MLC erase size except when all blocks are SLC */
3595        mtd->erasesize = 1 << this->erase_shift;
3596        if (mtd->numeraseregions == 1)
3597                mtd->erasesize >>= 1;
3598
3599        printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3600        for (i = 0; i < mtd->numeraseregions; i++)
3601                printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3602                        " numblocks: %04u]\n",
3603                        (unsigned int) mtd->eraseregions[i].offset,
3604                        mtd->eraseregions[i].erasesize,
3605                        mtd->eraseregions[i].numblocks);
3606
3607        for (die = 0, mtd->size = 0; die < this->dies; die++) {
3608                this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3609                this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3610                                                 << (this->erase_shift - 1);
3611                mtd->size += this->diesize[die];
3612        }
3613}
3614
3615/**
3616 * flexonenand_check_blocks_erased - Check if blocks are erased
3617 * @param mtd_info      - mtd info structure
3618 * @param start         - first erase block to check
3619 * @param end           - last erase block to check
3620 *
3621 * Converting an unerased block from MLC to SLC
3622 * causes byte values to change. Since both data and its ECC
3623 * have changed, reads on the block give uncorrectable error.
3624 * This might lead to the block being detected as bad.
3625 *
3626 * Avoid this by ensuring that the block to be converted is
3627 * erased.
3628 */
3629static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3630{
3631        struct onenand_chip *this = mtd->priv;
3632        int i, ret;
3633        int block;
3634        struct mtd_oob_ops ops = {
3635                .mode = MTD_OOB_PLACE,
3636                .ooboffs = 0,
3637                .ooblen = mtd->oobsize,
3638                .datbuf = NULL,
3639                .oobbuf = this->oob_buf,
3640        };
3641        loff_t addr;
3642
3643        printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3644
3645        for (block = start; block <= end; block++) {
3646                addr = flexonenand_addr(this, block);
3647                if (onenand_block_isbad_nolock(mtd, addr, 0))
3648                        continue;
3649
3650                /*
3651                 * Since main area write results in ECC write to spare,
3652                 * it is sufficient to check only ECC bytes for change.
3653                 */
3654                ret = onenand_read_oob_nolock(mtd, addr, &ops);
3655                if (ret)
3656                        return ret;
3657
3658                for (i = 0; i < mtd->oobsize; i++)
3659                        if (this->oob_buf[i] != 0xff)
3660                                break;
3661
3662                if (i != mtd->oobsize) {
3663                        printk(KERN_WARNING "%s: Block %d not erased.\n",
3664                                __func__, block);
3665                        return 1;
3666                }
3667        }
3668
3669        return 0;
3670}
3671
3672/**
3673 * flexonenand_set_boundary     - Writes the SLC boundary
3674 * @param mtd                   - mtd info structure
3675 */
3676int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3677                                    int boundary, int lock)
3678{
3679        struct onenand_chip *this = mtd->priv;
3680        int ret, density, blksperdie, old, new, thisboundary;
3681        loff_t addr;
3682
3683        /* Change only once for SDP Flex-OneNAND */
3684        if (die && (!ONENAND_IS_DDP(this)))
3685                return 0;
3686
3687        /* boundary value of -1 indicates no required change */
3688        if (boundary < 0 || boundary == this->boundary[die])
3689                return 0;
3690
3691        density = onenand_get_density(this->device_id);
3692        blksperdie = ((16 << density) << 20) >> this->erase_shift;
3693        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3694
3695        if (boundary >= blksperdie) {
3696                printk(KERN_ERR "%s: Invalid boundary value. "
3697                                "Boundary not changed.\n", __func__);
3698                return -EINVAL;
3699        }
3700
3701        /* Check if converting blocks are erased */
3702        old = this->boundary[die] + (die * this->density_mask);
3703        new = boundary + (die * this->density_mask);
3704        ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3705        if (ret) {
3706                printk(KERN_ERR "%s: Please erase blocks "
3707                                "before boundary change\n", __func__);
3708                return ret;
3709        }
3710
3711        this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3712        this->wait(mtd, FL_SYNCING);
3713
3714        /* Check is boundary is locked */
3715        this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3716        ret = this->wait(mtd, FL_READING);
3717
3718        thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3719        if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3720                printk(KERN_ERR "%s: boundary locked\n", __func__);
3721                ret = 1;
3722                goto out;
3723        }
3724
3725        printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3726                        die, boundary, lock ? "(Locked)" : "(Unlocked)");
3727
3728        addr = die ? this->diesize[0] : 0;
3729
3730        boundary &= FLEXONENAND_PI_MASK;
3731        boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3732
3733        this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3734        ret = this->wait(mtd, FL_ERASING);
3735        if (ret) {
3736                printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3737                       __func__, die);
3738                goto out;
3739        }
3740
3741        this->write_word(boundary, this->base + ONENAND_DATARAM);
3742        this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3743        ret = this->wait(mtd, FL_WRITING);
3744        if (ret) {
3745                printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3746                        __func__, die);
3747                goto out;
3748        }
3749
3750        this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3751        ret = this->wait(mtd, FL_WRITING);
3752out:
3753        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3754        this->wait(mtd, FL_RESETING);
3755        if (!ret)
3756                /* Recalculate device size on boundary change*/
3757                flexonenand_get_size(mtd);
3758
3759        return ret;
3760}
3761
3762/**
3763 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3764 * @param mtd           MTD device structure
3765 *
3766 * OneNAND detection method:
3767 *   Compare the values from command with ones from register
3768 */
3769static int onenand_chip_probe(struct mtd_info *mtd)
3770{
3771        struct onenand_chip *this = mtd->priv;
3772        int bram_maf_id, bram_dev_id, maf_id, dev_id;
3773        int syscfg;
3774
3775        /* Save system configuration 1 */
3776        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3777        /* Clear Sync. Burst Read mode to read BootRAM */
3778        this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3779
3780        /* Send the command for reading device ID from BootRAM */
3781        this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3782
3783        /* Read manufacturer and device IDs from BootRAM */
3784        bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3785        bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3786
3787        /* Reset OneNAND to read default register values */
3788        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3789        /* Wait reset */
3790        this->wait(mtd, FL_RESETING);
3791
3792        /* Restore system configuration 1 */
3793        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3794
3795        /* Check manufacturer ID */
3796        if (onenand_check_maf(bram_maf_id))
3797                return -ENXIO;
3798
3799        /* Read manufacturer and device IDs from Register */
3800        maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3801        dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3802
3803        /* Check OneNAND device */
3804        if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3805                return -ENXIO;
3806
3807        return 0;
3808}
3809
3810/**
3811 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3812 * @param mtd           MTD device structure
3813 */
3814static int onenand_probe(struct mtd_info *mtd)
3815{
3816        struct onenand_chip *this = mtd->priv;
3817        int maf_id, dev_id, ver_id;
3818        int density;
3819        int ret;
3820
3821        ret = this->chip_probe(mtd);
3822        if (ret)
3823                return ret;
3824
3825        /* Read manufacturer and device IDs from Register */
3826        maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3827        dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3828        ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3829        this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3830
3831        /* Flash device information */
3832        onenand_print_device_info(dev_id, ver_id);
3833        this->device_id = dev_id;
3834        this->version_id = ver_id;
3835
3836        /* Check OneNAND features */
3837        onenand_check_features(mtd);
3838
3839        density = onenand_get_density(dev_id);
3840        if (FLEXONENAND(this)) {
3841                this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3842                /* Maximum possible erase regions */
3843                mtd->numeraseregions = this->dies << 1;
3844                mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3845                                        * (this->dies << 1), GFP_KERNEL);
3846                if (!mtd->eraseregions)
3847                        return -ENOMEM;
3848        }
3849
3850        /*
3851         * For Flex-OneNAND, chipsize represents maximum possible device size.
3852         * mtd->size represents the actual device size.
3853         */
3854        this->chipsize = (16 << density) << 20;
3855
3856        /* OneNAND page size & block size */
3857        /* The data buffer size is equal to page size */
3858        mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3859        /* We use the full BufferRAM */
3860        if (ONENAND_IS_4KB_PAGE(this))
3861                mtd->writesize <<= 1;
3862
3863        mtd->oobsize = mtd->writesize >> 5;
3864        /* Pages per a block are always 64 in OneNAND */
3865        mtd->erasesize = mtd->writesize << 6;
3866        /*
3867         * Flex-OneNAND SLC area has 64 pages per block.
3868         * Flex-OneNAND MLC area has 128 pages per block.
3869         * Expose MLC erase size to find erase_shift and page_mask.
3870         */
3871        if (FLEXONENAND(this))
3872                mtd->erasesize <<= 1;
3873
3874        this->erase_shift = ffs(mtd->erasesize) - 1;
3875        this->page_shift = ffs(mtd->writesize) - 1;
3876        this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3877        /* Set density mask. it is used for DDP */
3878        if (ONENAND_IS_DDP(this))
3879                this->density_mask = this->chipsize >> (this->erase_shift + 1);
3880        /* It's real page size */
3881        this->writesize = mtd->writesize;
3882
3883        /* REVISIT: Multichip handling */
3884
3885        if (FLEXONENAND(this))
3886                flexonenand_get_size(mtd);
3887        else
3888                mtd->size = this->chipsize;
3889
3890        /*
3891         * We emulate the 4KiB page and 256KiB erase block size
3892         * But oobsize is still 64 bytes.
3893         * It is only valid if you turn on 2X program support,
3894         * Otherwise it will be ignored by compiler.
3895         */
3896        if (ONENAND_IS_2PLANE(this)) {
3897                mtd->writesize <<= 1;
3898                mtd->erasesize <<= 1;
3899        }
3900
3901        return 0;
3902}
3903
3904/**
3905 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3906 * @param mtd           MTD device structure
3907 */
3908static int onenand_suspend(struct mtd_info *mtd)
3909{
3910        return onenand_get_device(mtd, FL_PM_SUSPENDED);
3911}
3912
3913/**
3914 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3915 * @param mtd           MTD device structure
3916 */
3917static void onenand_resume(struct mtd_info *mtd)
3918{
3919        struct onenand_chip *this = mtd->priv;
3920
3921        if (this->state == FL_PM_SUSPENDED)
3922                onenand_release_device(mtd);
3923        else
3924                printk(KERN_ERR "%s: resume() called for the chip which is not "
3925                                "in suspended state\n", __func__);
3926}
3927
3928/**
3929 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3930 * @param mtd           MTD device structure
3931 * @param maxchips      Number of chips to scan for
3932 *
3933 * This fills out all the not initialized function pointers
3934 * with the defaults.
3935 * The flash ID is read and the mtd/chip structures are
3936 * filled with the appropriate values.
3937 */
3938int onenand_scan(struct mtd_info *mtd, int maxchips)
3939{
3940        int i, ret;
3941        struct onenand_chip *this = mtd->priv;
3942
3943        if (!this->read_word)
3944                this->read_word = onenand_readw;
3945        if (!this->write_word)
3946                this->write_word = onenand_writew;
3947
3948        if (!this->command)
3949                this->command = onenand_command;
3950        if (!this->wait)
3951                onenand_setup_wait(mtd);
3952        if (!this->bbt_wait)
3953                this->bbt_wait = onenand_bbt_wait;
3954        if (!this->unlock_all)
3955                this->unlock_all = onenand_unlock_all;
3956
3957        if (!this->chip_probe)
3958                this->chip_probe = onenand_chip_probe;
3959
3960        if (!this->read_bufferram)
3961                this->read_bufferram = onenand_read_bufferram;
3962        if (!this->write_bufferram)
3963                this->write_bufferram = onenand_write_bufferram;
3964
3965        if (!this->block_markbad)
3966                this->block_markbad = onenand_default_block_markbad;
3967        if (!this->scan_bbt)
3968                this->scan_bbt = onenand_default_bbt;
3969
3970        if (onenand_probe(mtd))
3971                return -ENXIO;
3972
3973        /* Set Sync. Burst Read after probing */
3974        if (this->mmcontrol) {
3975                printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3976                this->read_bufferram = onenand_sync_read_bufferram;
3977        }
3978
3979        /* Allocate buffers, if necessary */
3980        if (!this->page_buf) {
3981                this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3982                if (!this->page_buf) {
3983                        printk(KERN_ERR "%s: Can't allocate page_buf\n",
3984                                __func__);
3985                        return -ENOMEM;
3986                }
3987#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3988                this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3989                if (!this->verify_buf) {
3990                        kfree(this->page_buf);
3991                        return -ENOMEM;
3992                }
3993#endif
3994                this->options |= ONENAND_PAGEBUF_ALLOC;
3995        }
3996        if (!this->oob_buf) {
3997                this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3998                if (!this->oob_buf) {
3999                        printk(KERN_ERR "%s: Can't allocate oob_buf\n",
4000                                __func__);
4001                        if (this->options & ONENAND_PAGEBUF_ALLOC) {
4002                                this->options &= ~ONENAND_PAGEBUF_ALLOC;
4003                                kfree(this->page_buf);
4004                        }
4005                        return -ENOMEM;
4006                }
4007                this->options |= ONENAND_OOBBUF_ALLOC;
4008        }
4009
4010        this->state = FL_READY;
4011        init_waitqueue_head(&this->wq);
4012        spin_lock_init(&this->chip_lock);
4013
4014        /*
4015         * Allow subpage writes up to oobsize.
4016         */
4017        switch (mtd->oobsize) {
4018        case 128:
4019                this->ecclayout = &onenand_oob_128;
4020                mtd->subpage_sft = 0;
4021                break;
4022        case 64:
4023                this->ecclayout = &onenand_oob_64;
4024                mtd->subpage_sft = 2;
4025                break;
4026
4027        case 32:
4028                this->ecclayout = &onenand_oob_32;
4029                mtd->subpage_sft = 1;
4030                break;
4031
4032        default:
4033                printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
4034                        __func__, mtd->oobsize);
4035                mtd->subpage_sft = 0;
4036                /* To prevent kernel oops */
4037                this->ecclayout = &onenand_oob_32;
4038                break;
4039        }
4040
4041        this->subpagesize = mtd->writesize >> mtd->subpage_sft;
4042
4043        /*
4044         * The number of bytes available for a client to place data into
4045         * the out of band area
4046         */
4047        this->ecclayout->oobavail = 0;
4048        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
4049            this->ecclayout->oobfree[i].length; i++)
4050                this->ecclayout->oobavail +=
4051                        this->ecclayout->oobfree[i].length;
4052        mtd->oobavail = this->ecclayout->oobavail;
4053
4054        mtd->ecclayout = this->ecclayout;
4055
4056        /* Fill in remaining MTD driver data */
4057        mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
4058        mtd->flags = MTD_CAP_NANDFLASH;
4059        mtd->erase = onenand_erase;
4060        mtd->point = NULL;
4061        mtd->unpoint = NULL;
4062        mtd->read = onenand_read;
4063        mtd->write = onenand_write;
4064        mtd->read_oob = onenand_read_oob;
4065        mtd->write_oob = onenand_write_oob;
4066        mtd->panic_write = onenand_panic_write;
4067#ifdef CONFIG_MTD_ONENAND_OTP
4068        mtd->get_fact_prot_info = onenand_get_fact_prot_info;
4069        mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
4070        mtd->get_user_prot_info = onenand_get_user_prot_info;
4071        mtd->read_user_prot_reg = onenand_read_user_prot_reg;
4072        mtd->write_user_prot_reg = onenand_write_user_prot_reg;
4073        mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
4074#endif
4075        mtd->sync = onenand_sync;
4076        mtd->lock = onenand_lock;
4077        mtd->unlock = onenand_unlock;
4078        mtd->suspend = onenand_suspend;
4079        mtd->resume = onenand_resume;
4080        mtd->block_isbad = onenand_block_isbad;
4081        mtd->block_markbad = onenand_block_markbad;
4082        mtd->owner = THIS_MODULE;
4083        mtd->writebufsize = mtd->writesize;
4084
4085        /* Unlock whole block */
4086        this->unlock_all(mtd);
4087
4088        ret = this->scan_bbt(mtd);
4089        if ((!FLEXONENAND(this)) || ret)
4090                return ret;
4091
4092        /* Change Flex-OneNAND boundaries if required */
4093        for (i = 0; i < MAX_DIES; i++)
4094                flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4095                                                 flex_bdry[(2 * i) + 1]);
4096
4097        return 0;
4098}
4099
4100/**
4101 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4102 * @param mtd           MTD device structure
4103 */
4104void onenand_release(struct mtd_info *mtd)
4105{
4106        struct onenand_chip *this = mtd->priv;
4107
4108#ifdef CONFIG_MTD_PARTITIONS
4109        /* Deregister partitions */
4110        del_mtd_partitions (mtd);
4111#endif
4112        /* Deregister the device */
4113        del_mtd_device (mtd);
4114
4115        /* Free bad block table memory, if allocated */
4116        if (this->bbm) {
4117                struct bbm_info *bbm = this->bbm;
4118                kfree(bbm->bbt);
4119                kfree(this->bbm);
4120        }
4121        /* Buffers allocated by onenand_scan */
4122        if (this->options & ONENAND_PAGEBUF_ALLOC) {
4123                kfree(this->page_buf);
4124#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4125                kfree(this->verify_buf);
4126#endif
4127        }
4128        if (this->options & ONENAND_OOBBUF_ALLOC)
4129                kfree(this->oob_buf);
4130        kfree(mtd->eraseregions);
4131}
4132
4133EXPORT_SYMBOL_GPL(onenand_scan);
4134EXPORT_SYMBOL_GPL(onenand_release);
4135
4136MODULE_LICENSE("GPL");
4137MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4138MODULE_DESCRIPTION("Generic OneNAND flash driver code");
4139