linux/drivers/mtd/ubi/io.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2006, 2007
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Author: Artem Bityutskiy (Битюцкий Артём)
  20 */
  21
  22/*
  23 * UBI input/output sub-system.
  24 *
  25 * This sub-system provides a uniform way to work with all kinds of the
  26 * underlying MTD devices. It also implements handy functions for reading and
  27 * writing UBI headers.
  28 *
  29 * We are trying to have a paranoid mindset and not to trust to what we read
  30 * from the flash media in order to be more secure and robust. So this
  31 * sub-system validates every single header it reads from the flash media.
  32 *
  33 * Some words about how the eraseblock headers are stored.
  34 *
  35 * The erase counter header is always stored at offset zero. By default, the
  36 * VID header is stored after the EC header at the closest aligned offset
  37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  38 * header at the closest aligned offset. But this default layout may be
  39 * changed. For example, for different reasons (e.g., optimization) UBI may be
  40 * asked to put the VID header at further offset, and even at an unaligned
  41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  42 * proper padding in front of it. Data offset may also be changed but it has to
  43 * be aligned.
  44 *
  45 * About minimal I/O units. In general, UBI assumes flash device model where
  46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
  49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  50 * to do different optimizations.
  51 *
  52 * This is extremely useful in case of NAND flashes which admit of several
  53 * write operations to one NAND page. In this case UBI can fit EC and VID
  54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  57 * users.
  58 *
  59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  61 * headers.
  62 *
  63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
  65 *
  66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
  67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
  68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
  69 * Thus, we prefer to use sub-pages only for EC and VID headers.
  70 *
  71 * As it was noted above, the VID header may start at a non-aligned offset.
  72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
  74 * last sub-page (EC header is always at offset zero). This causes some
  75 * difficulties when reading and writing VID headers.
  76 *
  77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  78 * the data and want to write this VID header out. As we can only write in
  79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  80 * to offset 448 of this buffer.
  81 *
  82 * The I/O sub-system does the following trick in order to avoid this extra
  83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  85 * When the VID header is being written out, it shifts the VID header pointer
  86 * back and writes the whole sub-page.
  87 */
  88
  89#include <linux/crc32.h>
  90#include <linux/err.h>
  91#include <linux/slab.h>
  92#include "ubi.h"
  93
  94#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  95static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
  96static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  97static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  98                                 const struct ubi_ec_hdr *ec_hdr);
  99static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
 100static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
 101                                  const struct ubi_vid_hdr *vid_hdr);
 102#else
 103#define paranoid_check_not_bad(ubi, pnum) 0
 104#define paranoid_check_peb_ec_hdr(ubi, pnum)  0
 105#define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
 106#define paranoid_check_peb_vid_hdr(ubi, pnum) 0
 107#define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
 108#endif
 109
 110/**
 111 * ubi_io_read - read data from a physical eraseblock.
 112 * @ubi: UBI device description object
 113 * @buf: buffer where to store the read data
 114 * @pnum: physical eraseblock number to read from
 115 * @offset: offset within the physical eraseblock from where to read
 116 * @len: how many bytes to read
 117 *
 118 * This function reads data from offset @offset of physical eraseblock @pnum
 119 * and stores the read data in the @buf buffer. The following return codes are
 120 * possible:
 121 *
 122 * o %0 if all the requested data were successfully read;
 123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
 124 *   correctable bit-flips were detected; this is harmless but may indicate
 125 *   that this eraseblock may become bad soon (but do not have to);
 126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
 127 *   example it can be an ECC error in case of NAND; this most probably means
 128 *   that the data is corrupted;
 129 * o %-EIO if some I/O error occurred;
 130 * o other negative error codes in case of other errors.
 131 */
 132int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
 133                int len)
 134{
 135        int err, retries = 0;
 136        size_t read;
 137        loff_t addr;
 138
 139        dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
 140
 141        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 142        ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
 143        ubi_assert(len > 0);
 144
 145        err = paranoid_check_not_bad(ubi, pnum);
 146        if (err)
 147                return err;
 148
 149        addr = (loff_t)pnum * ubi->peb_size + offset;
 150retry:
 151        err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
 152        if (err) {
 153                const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
 154
 155                if (err == -EUCLEAN) {
 156                        /*
 157                         * -EUCLEAN is reported if there was a bit-flip which
 158                         * was corrected, so this is harmless.
 159                         *
 160                         * We do not report about it here unless debugging is
 161                         * enabled. A corresponding message will be printed
 162                         * later, when it is has been scrubbed.
 163                         */
 164                        dbg_msg("fixable bit-flip detected at PEB %d", pnum);
 165                        ubi_assert(len == read);
 166                        return UBI_IO_BITFLIPS;
 167                }
 168
 169                if (read != len && retries++ < UBI_IO_RETRIES) {
 170                        dbg_io("error %d%s while reading %d bytes from PEB %d:%d,"
 171                               " read only %zd bytes, retry",
 172                               err, errstr, len, pnum, offset, read);
 173                        yield();
 174                        goto retry;
 175                }
 176
 177                ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
 178                        "read %zd bytes", err, errstr, len, pnum, offset, read);
 179                ubi_dbg_dump_stack();
 180
 181                /*
 182                 * The driver should never return -EBADMSG if it failed to read
 183                 * all the requested data. But some buggy drivers might do
 184                 * this, so we change it to -EIO.
 185                 */
 186                if (read != len && err == -EBADMSG) {
 187                        ubi_assert(0);
 188                        err = -EIO;
 189                }
 190        } else {
 191                ubi_assert(len == read);
 192
 193                if (ubi_dbg_is_bitflip()) {
 194                        dbg_gen("bit-flip (emulated)");
 195                        err = UBI_IO_BITFLIPS;
 196                }
 197        }
 198
 199        return err;
 200}
 201
 202/**
 203 * ubi_io_write - write data to a physical eraseblock.
 204 * @ubi: UBI device description object
 205 * @buf: buffer with the data to write
 206 * @pnum: physical eraseblock number to write to
 207 * @offset: offset within the physical eraseblock where to write
 208 * @len: how many bytes to write
 209 *
 210 * This function writes @len bytes of data from buffer @buf to offset @offset
 211 * of physical eraseblock @pnum. If all the data were successfully written,
 212 * zero is returned. If an error occurred, this function returns a negative
 213 * error code. If %-EIO is returned, the physical eraseblock most probably went
 214 * bad.
 215 *
 216 * Note, in case of an error, it is possible that something was still written
 217 * to the flash media, but may be some garbage.
 218 */
 219int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
 220                 int len)
 221{
 222        int err;
 223        size_t written;
 224        loff_t addr;
 225
 226        dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
 227
 228        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 229        ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
 230        ubi_assert(offset % ubi->hdrs_min_io_size == 0);
 231        ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
 232
 233        if (ubi->ro_mode) {
 234                ubi_err("read-only mode");
 235                return -EROFS;
 236        }
 237
 238        /* The below has to be compiled out if paranoid checks are disabled */
 239
 240        err = paranoid_check_not_bad(ubi, pnum);
 241        if (err)
 242                return err;
 243
 244        /* The area we are writing to has to contain all 0xFF bytes */
 245        err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
 246        if (err)
 247                return err;
 248
 249        if (offset >= ubi->leb_start) {
 250                /*
 251                 * We write to the data area of the physical eraseblock. Make
 252                 * sure it has valid EC and VID headers.
 253                 */
 254                err = paranoid_check_peb_ec_hdr(ubi, pnum);
 255                if (err)
 256                        return err;
 257                err = paranoid_check_peb_vid_hdr(ubi, pnum);
 258                if (err)
 259                        return err;
 260        }
 261
 262        if (ubi_dbg_is_write_failure()) {
 263                dbg_err("cannot write %d bytes to PEB %d:%d "
 264                        "(emulated)", len, pnum, offset);
 265                ubi_dbg_dump_stack();
 266                return -EIO;
 267        }
 268
 269        addr = (loff_t)pnum * ubi->peb_size + offset;
 270        err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
 271        if (err) {
 272                ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
 273                        "%zd bytes", err, len, pnum, offset, written);
 274                ubi_dbg_dump_stack();
 275                ubi_dbg_dump_flash(ubi, pnum, offset, len);
 276        } else
 277                ubi_assert(written == len);
 278
 279        if (!err) {
 280                err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
 281                if (err)
 282                        return err;
 283
 284                /*
 285                 * Since we always write sequentially, the rest of the PEB has
 286                 * to contain only 0xFF bytes.
 287                 */
 288                offset += len;
 289                len = ubi->peb_size - offset;
 290                if (len)
 291                        err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
 292        }
 293
 294        return err;
 295}
 296
 297/**
 298 * erase_callback - MTD erasure call-back.
 299 * @ei: MTD erase information object.
 300 *
 301 * Note, even though MTD erase interface is asynchronous, all the current
 302 * implementations are synchronous anyway.
 303 */
 304static void erase_callback(struct erase_info *ei)
 305{
 306        wake_up_interruptible((wait_queue_head_t *)ei->priv);
 307}
 308
 309/**
 310 * do_sync_erase - synchronously erase a physical eraseblock.
 311 * @ubi: UBI device description object
 312 * @pnum: the physical eraseblock number to erase
 313 *
 314 * This function synchronously erases physical eraseblock @pnum and returns
 315 * zero in case of success and a negative error code in case of failure. If
 316 * %-EIO is returned, the physical eraseblock most probably went bad.
 317 */
 318static int do_sync_erase(struct ubi_device *ubi, int pnum)
 319{
 320        int err, retries = 0;
 321        struct erase_info ei;
 322        wait_queue_head_t wq;
 323
 324        dbg_io("erase PEB %d", pnum);
 325
 326retry:
 327        init_waitqueue_head(&wq);
 328        memset(&ei, 0, sizeof(struct erase_info));
 329
 330        ei.mtd      = ubi->mtd;
 331        ei.addr     = (loff_t)pnum * ubi->peb_size;
 332        ei.len      = ubi->peb_size;
 333        ei.callback = erase_callback;
 334        ei.priv     = (unsigned long)&wq;
 335
 336        err = ubi->mtd->erase(ubi->mtd, &ei);
 337        if (err) {
 338                if (retries++ < UBI_IO_RETRIES) {
 339                        dbg_io("error %d while erasing PEB %d, retry",
 340                               err, pnum);
 341                        yield();
 342                        goto retry;
 343                }
 344                ubi_err("cannot erase PEB %d, error %d", pnum, err);
 345                ubi_dbg_dump_stack();
 346                return err;
 347        }
 348
 349        err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
 350                                           ei.state == MTD_ERASE_FAILED);
 351        if (err) {
 352                ubi_err("interrupted PEB %d erasure", pnum);
 353                return -EINTR;
 354        }
 355
 356        if (ei.state == MTD_ERASE_FAILED) {
 357                if (retries++ < UBI_IO_RETRIES) {
 358                        dbg_io("error while erasing PEB %d, retry", pnum);
 359                        yield();
 360                        goto retry;
 361                }
 362                ubi_err("cannot erase PEB %d", pnum);
 363                ubi_dbg_dump_stack();
 364                return -EIO;
 365        }
 366
 367        err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
 368        if (err)
 369                return err;
 370
 371        if (ubi_dbg_is_erase_failure() && !err) {
 372                dbg_err("cannot erase PEB %d (emulated)", pnum);
 373                return -EIO;
 374        }
 375
 376        return 0;
 377}
 378
 379/* Patterns to write to a physical eraseblock when torturing it */
 380static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
 381
 382/**
 383 * torture_peb - test a supposedly bad physical eraseblock.
 384 * @ubi: UBI device description object
 385 * @pnum: the physical eraseblock number to test
 386 *
 387 * This function returns %-EIO if the physical eraseblock did not pass the
 388 * test, a positive number of erase operations done if the test was
 389 * successfully passed, and other negative error codes in case of other errors.
 390 */
 391static int torture_peb(struct ubi_device *ubi, int pnum)
 392{
 393        int err, i, patt_count;
 394
 395        ubi_msg("run torture test for PEB %d", pnum);
 396        patt_count = ARRAY_SIZE(patterns);
 397        ubi_assert(patt_count > 0);
 398
 399        mutex_lock(&ubi->buf_mutex);
 400        for (i = 0; i < patt_count; i++) {
 401                err = do_sync_erase(ubi, pnum);
 402                if (err)
 403                        goto out;
 404
 405                /* Make sure the PEB contains only 0xFF bytes */
 406                err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
 407                if (err)
 408                        goto out;
 409
 410                err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
 411                if (err == 0) {
 412                        ubi_err("erased PEB %d, but a non-0xFF byte found",
 413                                pnum);
 414                        err = -EIO;
 415                        goto out;
 416                }
 417
 418                /* Write a pattern and check it */
 419                memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
 420                err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
 421                if (err)
 422                        goto out;
 423
 424                memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
 425                err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
 426                if (err)
 427                        goto out;
 428
 429                err = ubi_check_pattern(ubi->peb_buf1, patterns[i],
 430                                        ubi->peb_size);
 431                if (err == 0) {
 432                        ubi_err("pattern %x checking failed for PEB %d",
 433                                patterns[i], pnum);
 434                        err = -EIO;
 435                        goto out;
 436                }
 437        }
 438
 439        err = patt_count;
 440        ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
 441
 442out:
 443        mutex_unlock(&ubi->buf_mutex);
 444        if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
 445                /*
 446                 * If a bit-flip or data integrity error was detected, the test
 447                 * has not passed because it happened on a freshly erased
 448                 * physical eraseblock which means something is wrong with it.
 449                 */
 450                ubi_err("read problems on freshly erased PEB %d, must be bad",
 451                        pnum);
 452                err = -EIO;
 453        }
 454        return err;
 455}
 456
 457/**
 458 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
 459 * @ubi: UBI device description object
 460 * @pnum: physical eraseblock number to prepare
 461 *
 462 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
 463 * algorithm: the PEB is first filled with zeroes, then it is erased. And
 464 * filling with zeroes starts from the end of the PEB. This was observed with
 465 * Spansion S29GL512N NOR flash.
 466 *
 467 * This means that in case of a power cut we may end up with intact data at the
 468 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
 469 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
 470 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
 471 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
 472 *
 473 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
 474 * magic numbers in order to invalidate them and prevent the failures. Returns
 475 * zero in case of success and a negative error code in case of failure.
 476 */
 477static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
 478{
 479        int err, err1;
 480        size_t written;
 481        loff_t addr;
 482        uint32_t data = 0;
 483        struct ubi_vid_hdr vid_hdr;
 484
 485        /*
 486         * It is important to first invalidate the EC header, and then the VID
 487         * header. Otherwise a power cut may lead to valid EC header and
 488         * invalid VID header, in which case UBI will treat this PEB as
 489         * corrupted and will try to preserve it, and print scary warnings (see
 490         * the header comment in scan.c for more information).
 491         */
 492        addr = (loff_t)pnum * ubi->peb_size;
 493        err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
 494        if (!err) {
 495                addr += ubi->vid_hdr_aloffset;
 496                err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
 497                                      (void *)&data);
 498                if (!err)
 499                        return 0;
 500        }
 501
 502        /*
 503         * We failed to write to the media. This was observed with Spansion
 504         * S29GL512N NOR flash. Most probably the previously eraseblock erasure
 505         * was interrupted at a very inappropriate moment, so it became
 506         * unwritable. In this case we probably anyway have garbage in this
 507         * PEB.
 508         */
 509        err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
 510        if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR) {
 511                struct ubi_ec_hdr ec_hdr;
 512
 513                err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
 514                if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR)
 515                        /*
 516                         * Both VID and EC headers are corrupted, so we can
 517                         * safely erase this PEB and not afraid that it will be
 518                         * treated as a valid PEB in case of an unclean reboot.
 519                         */
 520                        return 0;
 521        }
 522
 523        /*
 524         * The PEB contains a valid VID header, but we cannot invalidate it.
 525         * Supposedly the flash media or the driver is screwed up, so return an
 526         * error.
 527         */
 528        ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
 529                pnum, err, err1);
 530        ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
 531        return -EIO;
 532}
 533
 534/**
 535 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
 536 * @ubi: UBI device description object
 537 * @pnum: physical eraseblock number to erase
 538 * @torture: if this physical eraseblock has to be tortured
 539 *
 540 * This function synchronously erases physical eraseblock @pnum. If @torture
 541 * flag is not zero, the physical eraseblock is checked by means of writing
 542 * different patterns to it and reading them back. If the torturing is enabled,
 543 * the physical eraseblock is erased more than once.
 544 *
 545 * This function returns the number of erasures made in case of success, %-EIO
 546 * if the erasure failed or the torturing test failed, and other negative error
 547 * codes in case of other errors. Note, %-EIO means that the physical
 548 * eraseblock is bad.
 549 */
 550int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
 551{
 552        int err, ret = 0;
 553
 554        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 555
 556        err = paranoid_check_not_bad(ubi, pnum);
 557        if (err != 0)
 558                return err;
 559
 560        if (ubi->ro_mode) {
 561                ubi_err("read-only mode");
 562                return -EROFS;
 563        }
 564
 565        if (ubi->nor_flash) {
 566                err = nor_erase_prepare(ubi, pnum);
 567                if (err)
 568                        return err;
 569        }
 570
 571        if (torture) {
 572                ret = torture_peb(ubi, pnum);
 573                if (ret < 0)
 574                        return ret;
 575        }
 576
 577        err = do_sync_erase(ubi, pnum);
 578        if (err)
 579                return err;
 580
 581        return ret + 1;
 582}
 583
 584/**
 585 * ubi_io_is_bad - check if a physical eraseblock is bad.
 586 * @ubi: UBI device description object
 587 * @pnum: the physical eraseblock number to check
 588 *
 589 * This function returns a positive number if the physical eraseblock is bad,
 590 * zero if not, and a negative error code if an error occurred.
 591 */
 592int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
 593{
 594        struct mtd_info *mtd = ubi->mtd;
 595
 596        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 597
 598        if (ubi->bad_allowed) {
 599                int ret;
 600
 601                ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
 602                if (ret < 0)
 603                        ubi_err("error %d while checking if PEB %d is bad",
 604                                ret, pnum);
 605                else if (ret)
 606                        dbg_io("PEB %d is bad", pnum);
 607                return ret;
 608        }
 609
 610        return 0;
 611}
 612
 613/**
 614 * ubi_io_mark_bad - mark a physical eraseblock as bad.
 615 * @ubi: UBI device description object
 616 * @pnum: the physical eraseblock number to mark
 617 *
 618 * This function returns zero in case of success and a negative error code in
 619 * case of failure.
 620 */
 621int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
 622{
 623        int err;
 624        struct mtd_info *mtd = ubi->mtd;
 625
 626        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 627
 628        if (ubi->ro_mode) {
 629                ubi_err("read-only mode");
 630                return -EROFS;
 631        }
 632
 633        if (!ubi->bad_allowed)
 634                return 0;
 635
 636        err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
 637        if (err)
 638                ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
 639        return err;
 640}
 641
 642/**
 643 * validate_ec_hdr - validate an erase counter header.
 644 * @ubi: UBI device description object
 645 * @ec_hdr: the erase counter header to check
 646 *
 647 * This function returns zero if the erase counter header is OK, and %1 if
 648 * not.
 649 */
 650static int validate_ec_hdr(const struct ubi_device *ubi,
 651                           const struct ubi_ec_hdr *ec_hdr)
 652{
 653        long long ec;
 654        int vid_hdr_offset, leb_start;
 655
 656        ec = be64_to_cpu(ec_hdr->ec);
 657        vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
 658        leb_start = be32_to_cpu(ec_hdr->data_offset);
 659
 660        if (ec_hdr->version != UBI_VERSION) {
 661                ubi_err("node with incompatible UBI version found: "
 662                        "this UBI version is %d, image version is %d",
 663                        UBI_VERSION, (int)ec_hdr->version);
 664                goto bad;
 665        }
 666
 667        if (vid_hdr_offset != ubi->vid_hdr_offset) {
 668                ubi_err("bad VID header offset %d, expected %d",
 669                        vid_hdr_offset, ubi->vid_hdr_offset);
 670                goto bad;
 671        }
 672
 673        if (leb_start != ubi->leb_start) {
 674                ubi_err("bad data offset %d, expected %d",
 675                        leb_start, ubi->leb_start);
 676                goto bad;
 677        }
 678
 679        if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
 680                ubi_err("bad erase counter %lld", ec);
 681                goto bad;
 682        }
 683
 684        return 0;
 685
 686bad:
 687        ubi_err("bad EC header");
 688        ubi_dbg_dump_ec_hdr(ec_hdr);
 689        ubi_dbg_dump_stack();
 690        return 1;
 691}
 692
 693/**
 694 * ubi_io_read_ec_hdr - read and check an erase counter header.
 695 * @ubi: UBI device description object
 696 * @pnum: physical eraseblock to read from
 697 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
 698 * header
 699 * @verbose: be verbose if the header is corrupted or was not found
 700 *
 701 * This function reads erase counter header from physical eraseblock @pnum and
 702 * stores it in @ec_hdr. This function also checks CRC checksum of the read
 703 * erase counter header. The following codes may be returned:
 704 *
 705 * o %0 if the CRC checksum is correct and the header was successfully read;
 706 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
 707 *   and corrected by the flash driver; this is harmless but may indicate that
 708 *   this eraseblock may become bad soon (but may be not);
 709 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
 710 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
 711 *   a data integrity error (uncorrectable ECC error in case of NAND);
 712 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
 713 * o a negative error code in case of failure.
 714 */
 715int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
 716                       struct ubi_ec_hdr *ec_hdr, int verbose)
 717{
 718        int err, read_err;
 719        uint32_t crc, magic, hdr_crc;
 720
 721        dbg_io("read EC header from PEB %d", pnum);
 722        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 723
 724        read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
 725        if (read_err) {
 726                if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
 727                        return read_err;
 728
 729                /*
 730                 * We read all the data, but either a correctable bit-flip
 731                 * occurred, or MTD reported a data integrity error
 732                 * (uncorrectable ECC error in case of NAND). The former is
 733                 * harmless, the later may mean that the read data is
 734                 * corrupted. But we have a CRC check-sum and we will detect
 735                 * this. If the EC header is still OK, we just report this as
 736                 * there was a bit-flip, to force scrubbing.
 737                 */
 738        }
 739
 740        magic = be32_to_cpu(ec_hdr->magic);
 741        if (magic != UBI_EC_HDR_MAGIC) {
 742                if (read_err == -EBADMSG)
 743                        return UBI_IO_BAD_HDR_EBADMSG;
 744
 745                /*
 746                 * The magic field is wrong. Let's check if we have read all
 747                 * 0xFF. If yes, this physical eraseblock is assumed to be
 748                 * empty.
 749                 */
 750                if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
 751                        /* The physical eraseblock is supposedly empty */
 752                        if (verbose)
 753                                ubi_warn("no EC header found at PEB %d, "
 754                                         "only 0xFF bytes", pnum);
 755                        else if (UBI_IO_DEBUG)
 756                                dbg_msg("no EC header found at PEB %d, "
 757                                        "only 0xFF bytes", pnum);
 758                        if (!read_err)
 759                                return UBI_IO_FF;
 760                        else
 761                                return UBI_IO_FF_BITFLIPS;
 762                }
 763
 764                /*
 765                 * This is not a valid erase counter header, and these are not
 766                 * 0xFF bytes. Report that the header is corrupted.
 767                 */
 768                if (verbose) {
 769                        ubi_warn("bad magic number at PEB %d: %08x instead of "
 770                                 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
 771                        ubi_dbg_dump_ec_hdr(ec_hdr);
 772                } else if (UBI_IO_DEBUG)
 773                        dbg_msg("bad magic number at PEB %d: %08x instead of "
 774                                "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
 775                return UBI_IO_BAD_HDR;
 776        }
 777
 778        crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
 779        hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
 780
 781        if (hdr_crc != crc) {
 782                if (verbose) {
 783                        ubi_warn("bad EC header CRC at PEB %d, calculated "
 784                                 "%#08x, read %#08x", pnum, crc, hdr_crc);
 785                        ubi_dbg_dump_ec_hdr(ec_hdr);
 786                } else if (UBI_IO_DEBUG)
 787                        dbg_msg("bad EC header CRC at PEB %d, calculated "
 788                                "%#08x, read %#08x", pnum, crc, hdr_crc);
 789
 790                if (!read_err)
 791                        return UBI_IO_BAD_HDR;
 792                else
 793                        return UBI_IO_BAD_HDR_EBADMSG;
 794        }
 795
 796        /* And of course validate what has just been read from the media */
 797        err = validate_ec_hdr(ubi, ec_hdr);
 798        if (err) {
 799                ubi_err("validation failed for PEB %d", pnum);
 800                return -EINVAL;
 801        }
 802
 803        /*
 804         * If there was %-EBADMSG, but the header CRC is still OK, report about
 805         * a bit-flip to force scrubbing on this PEB.
 806         */
 807        return read_err ? UBI_IO_BITFLIPS : 0;
 808}
 809
 810/**
 811 * ubi_io_write_ec_hdr - write an erase counter header.
 812 * @ubi: UBI device description object
 813 * @pnum: physical eraseblock to write to
 814 * @ec_hdr: the erase counter header to write
 815 *
 816 * This function writes erase counter header described by @ec_hdr to physical
 817 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
 818 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
 819 * field.
 820 *
 821 * This function returns zero in case of success and a negative error code in
 822 * case of failure. If %-EIO is returned, the physical eraseblock most probably
 823 * went bad.
 824 */
 825int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
 826                        struct ubi_ec_hdr *ec_hdr)
 827{
 828        int err;
 829        uint32_t crc;
 830
 831        dbg_io("write EC header to PEB %d", pnum);
 832        ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
 833
 834        ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
 835        ec_hdr->version = UBI_VERSION;
 836        ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
 837        ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
 838        ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
 839        crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
 840        ec_hdr->hdr_crc = cpu_to_be32(crc);
 841
 842        err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
 843        if (err)
 844                return err;
 845
 846        err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
 847        return err;
 848}
 849
 850/**
 851 * validate_vid_hdr - validate a volume identifier header.
 852 * @ubi: UBI device description object
 853 * @vid_hdr: the volume identifier header to check
 854 *
 855 * This function checks that data stored in the volume identifier header
 856 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
 857 */
 858static int validate_vid_hdr(const struct ubi_device *ubi,
 859                            const struct ubi_vid_hdr *vid_hdr)
 860{
 861        int vol_type = vid_hdr->vol_type;
 862        int copy_flag = vid_hdr->copy_flag;
 863        int vol_id = be32_to_cpu(vid_hdr->vol_id);
 864        int lnum = be32_to_cpu(vid_hdr->lnum);
 865        int compat = vid_hdr->compat;
 866        int data_size = be32_to_cpu(vid_hdr->data_size);
 867        int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 868        int data_pad = be32_to_cpu(vid_hdr->data_pad);
 869        int data_crc = be32_to_cpu(vid_hdr->data_crc);
 870        int usable_leb_size = ubi->leb_size - data_pad;
 871
 872        if (copy_flag != 0 && copy_flag != 1) {
 873                dbg_err("bad copy_flag");
 874                goto bad;
 875        }
 876
 877        if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
 878            data_pad < 0) {
 879                dbg_err("negative values");
 880                goto bad;
 881        }
 882
 883        if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
 884                dbg_err("bad vol_id");
 885                goto bad;
 886        }
 887
 888        if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
 889                dbg_err("bad compat");
 890                goto bad;
 891        }
 892
 893        if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
 894            compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
 895            compat != UBI_COMPAT_REJECT) {
 896                dbg_err("bad compat");
 897                goto bad;
 898        }
 899
 900        if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
 901                dbg_err("bad vol_type");
 902                goto bad;
 903        }
 904
 905        if (data_pad >= ubi->leb_size / 2) {
 906                dbg_err("bad data_pad");
 907                goto bad;
 908        }
 909
 910        if (vol_type == UBI_VID_STATIC) {
 911                /*
 912                 * Although from high-level point of view static volumes may
 913                 * contain zero bytes of data, but no VID headers can contain
 914                 * zero at these fields, because they empty volumes do not have
 915                 * mapped logical eraseblocks.
 916                 */
 917                if (used_ebs == 0) {
 918                        dbg_err("zero used_ebs");
 919                        goto bad;
 920                }
 921                if (data_size == 0) {
 922                        dbg_err("zero data_size");
 923                        goto bad;
 924                }
 925                if (lnum < used_ebs - 1) {
 926                        if (data_size != usable_leb_size) {
 927                                dbg_err("bad data_size");
 928                                goto bad;
 929                        }
 930                } else if (lnum == used_ebs - 1) {
 931                        if (data_size == 0) {
 932                                dbg_err("bad data_size at last LEB");
 933                                goto bad;
 934                        }
 935                } else {
 936                        dbg_err("too high lnum");
 937                        goto bad;
 938                }
 939        } else {
 940                if (copy_flag == 0) {
 941                        if (data_crc != 0) {
 942                                dbg_err("non-zero data CRC");
 943                                goto bad;
 944                        }
 945                        if (data_size != 0) {
 946                                dbg_err("non-zero data_size");
 947                                goto bad;
 948                        }
 949                } else {
 950                        if (data_size == 0) {
 951                                dbg_err("zero data_size of copy");
 952                                goto bad;
 953                        }
 954                }
 955                if (used_ebs != 0) {
 956                        dbg_err("bad used_ebs");
 957                        goto bad;
 958                }
 959        }
 960
 961        return 0;
 962
 963bad:
 964        ubi_err("bad VID header");
 965        ubi_dbg_dump_vid_hdr(vid_hdr);
 966        ubi_dbg_dump_stack();
 967        return 1;
 968}
 969
 970/**
 971 * ubi_io_read_vid_hdr - read and check a volume identifier header.
 972 * @ubi: UBI device description object
 973 * @pnum: physical eraseblock number to read from
 974 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
 975 * identifier header
 976 * @verbose: be verbose if the header is corrupted or wasn't found
 977 *
 978 * This function reads the volume identifier header from physical eraseblock
 979 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
 980 * volume identifier header. The error codes are the same as in
 981 * 'ubi_io_read_ec_hdr()'.
 982 *
 983 * Note, the implementation of this function is also very similar to
 984 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
 985 */
 986int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
 987                        struct ubi_vid_hdr *vid_hdr, int verbose)
 988{
 989        int err, read_err;
 990        uint32_t crc, magic, hdr_crc;
 991        void *p;
 992
 993        dbg_io("read VID header from PEB %d", pnum);
 994        ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
 995
 996        p = (char *)vid_hdr - ubi->vid_hdr_shift;
 997        read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
 998                          ubi->vid_hdr_alsize);
 999        if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
1000                return read_err;
1001
1002        magic = be32_to_cpu(vid_hdr->magic);
1003        if (magic != UBI_VID_HDR_MAGIC) {
1004                if (read_err == -EBADMSG)
1005                        return UBI_IO_BAD_HDR_EBADMSG;
1006
1007                if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1008                        if (verbose)
1009                                ubi_warn("no VID header found at PEB %d, "
1010                                         "only 0xFF bytes", pnum);
1011                        else if (UBI_IO_DEBUG)
1012                                dbg_msg("no VID header found at PEB %d, "
1013                                        "only 0xFF bytes", pnum);
1014                        if (!read_err)
1015                                return UBI_IO_FF;
1016                        else
1017                                return UBI_IO_FF_BITFLIPS;
1018                }
1019
1020                if (verbose) {
1021                        ubi_warn("bad magic number at PEB %d: %08x instead of "
1022                                 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1023                        ubi_dbg_dump_vid_hdr(vid_hdr);
1024                } else if (UBI_IO_DEBUG)
1025                        dbg_msg("bad magic number at PEB %d: %08x instead of "
1026                                "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1027                return UBI_IO_BAD_HDR;
1028        }
1029
1030        crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1031        hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1032
1033        if (hdr_crc != crc) {
1034                if (verbose) {
1035                        ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1036                                 "read %#08x", pnum, crc, hdr_crc);
1037                        ubi_dbg_dump_vid_hdr(vid_hdr);
1038                } else if (UBI_IO_DEBUG)
1039                        dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1040                                "read %#08x", pnum, crc, hdr_crc);
1041                if (!read_err)
1042                        return UBI_IO_BAD_HDR;
1043                else
1044                        return UBI_IO_BAD_HDR_EBADMSG;
1045        }
1046
1047        err = validate_vid_hdr(ubi, vid_hdr);
1048        if (err) {
1049                ubi_err("validation failed for PEB %d", pnum);
1050                return -EINVAL;
1051        }
1052
1053        return read_err ? UBI_IO_BITFLIPS : 0;
1054}
1055
1056/**
1057 * ubi_io_write_vid_hdr - write a volume identifier header.
1058 * @ubi: UBI device description object
1059 * @pnum: the physical eraseblock number to write to
1060 * @vid_hdr: the volume identifier header to write
1061 *
1062 * This function writes the volume identifier header described by @vid_hdr to
1063 * physical eraseblock @pnum. This function automatically fills the
1064 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1065 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1066 *
1067 * This function returns zero in case of success and a negative error code in
1068 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1069 * bad.
1070 */
1071int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1072                         struct ubi_vid_hdr *vid_hdr)
1073{
1074        int err;
1075        uint32_t crc;
1076        void *p;
1077
1078        dbg_io("write VID header to PEB %d", pnum);
1079        ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1080
1081        err = paranoid_check_peb_ec_hdr(ubi, pnum);
1082        if (err)
1083                return err;
1084
1085        vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1086        vid_hdr->version = UBI_VERSION;
1087        crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1088        vid_hdr->hdr_crc = cpu_to_be32(crc);
1089
1090        err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1091        if (err)
1092                return err;
1093
1094        p = (char *)vid_hdr - ubi->vid_hdr_shift;
1095        err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1096                           ubi->vid_hdr_alsize);
1097        return err;
1098}
1099
1100#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1101
1102/**
1103 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1104 * @ubi: UBI device description object
1105 * @pnum: physical eraseblock number to check
1106 *
1107 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1108 * it is bad and a negative error code if an error occurred.
1109 */
1110static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1111{
1112        int err;
1113
1114        err = ubi_io_is_bad(ubi, pnum);
1115        if (!err)
1116                return err;
1117
1118        ubi_err("paranoid check failed for PEB %d", pnum);
1119        ubi_dbg_dump_stack();
1120        return err > 0 ? -EINVAL : err;
1121}
1122
1123/**
1124 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1125 * @ubi: UBI device description object
1126 * @pnum: physical eraseblock number the erase counter header belongs to
1127 * @ec_hdr: the erase counter header to check
1128 *
1129 * This function returns zero if the erase counter header contains valid
1130 * values, and %-EINVAL if not.
1131 */
1132static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1133                                 const struct ubi_ec_hdr *ec_hdr)
1134{
1135        int err;
1136        uint32_t magic;
1137
1138        magic = be32_to_cpu(ec_hdr->magic);
1139        if (magic != UBI_EC_HDR_MAGIC) {
1140                ubi_err("bad magic %#08x, must be %#08x",
1141                        magic, UBI_EC_HDR_MAGIC);
1142                goto fail;
1143        }
1144
1145        err = validate_ec_hdr(ubi, ec_hdr);
1146        if (err) {
1147                ubi_err("paranoid check failed for PEB %d", pnum);
1148                goto fail;
1149        }
1150
1151        return 0;
1152
1153fail:
1154        ubi_dbg_dump_ec_hdr(ec_hdr);
1155        ubi_dbg_dump_stack();
1156        return -EINVAL;
1157}
1158
1159/**
1160 * paranoid_check_peb_ec_hdr - check erase counter header.
1161 * @ubi: UBI device description object
1162 * @pnum: the physical eraseblock number to check
1163 *
1164 * This function returns zero if the erase counter header is all right and and
1165 * a negative error code if not or if an error occurred.
1166 */
1167static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1168{
1169        int err;
1170        uint32_t crc, hdr_crc;
1171        struct ubi_ec_hdr *ec_hdr;
1172
1173        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1174        if (!ec_hdr)
1175                return -ENOMEM;
1176
1177        err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1178        if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1179                goto exit;
1180
1181        crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1182        hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1183        if (hdr_crc != crc) {
1184                ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1185                ubi_err("paranoid check failed for PEB %d", pnum);
1186                ubi_dbg_dump_ec_hdr(ec_hdr);
1187                ubi_dbg_dump_stack();
1188                err = -EINVAL;
1189                goto exit;
1190        }
1191
1192        err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1193
1194exit:
1195        kfree(ec_hdr);
1196        return err;
1197}
1198
1199/**
1200 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1201 * @ubi: UBI device description object
1202 * @pnum: physical eraseblock number the volume identifier header belongs to
1203 * @vid_hdr: the volume identifier header to check
1204 *
1205 * This function returns zero if the volume identifier header is all right, and
1206 * %-EINVAL if not.
1207 */
1208static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1209                                  const struct ubi_vid_hdr *vid_hdr)
1210{
1211        int err;
1212        uint32_t magic;
1213
1214        magic = be32_to_cpu(vid_hdr->magic);
1215        if (magic != UBI_VID_HDR_MAGIC) {
1216                ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1217                        magic, pnum, UBI_VID_HDR_MAGIC);
1218                goto fail;
1219        }
1220
1221        err = validate_vid_hdr(ubi, vid_hdr);
1222        if (err) {
1223                ubi_err("paranoid check failed for PEB %d", pnum);
1224                goto fail;
1225        }
1226
1227        return err;
1228
1229fail:
1230        ubi_err("paranoid check failed for PEB %d", pnum);
1231        ubi_dbg_dump_vid_hdr(vid_hdr);
1232        ubi_dbg_dump_stack();
1233        return -EINVAL;
1234
1235}
1236
1237/**
1238 * paranoid_check_peb_vid_hdr - check volume identifier header.
1239 * @ubi: UBI device description object
1240 * @pnum: the physical eraseblock number to check
1241 *
1242 * This function returns zero if the volume identifier header is all right,
1243 * and a negative error code if not or if an error occurred.
1244 */
1245static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1246{
1247        int err;
1248        uint32_t crc, hdr_crc;
1249        struct ubi_vid_hdr *vid_hdr;
1250        void *p;
1251
1252        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1253        if (!vid_hdr)
1254                return -ENOMEM;
1255
1256        p = (char *)vid_hdr - ubi->vid_hdr_shift;
1257        err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1258                          ubi->vid_hdr_alsize);
1259        if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1260                goto exit;
1261
1262        crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1263        hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1264        if (hdr_crc != crc) {
1265                ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1266                        "read %#08x", pnum, crc, hdr_crc);
1267                ubi_err("paranoid check failed for PEB %d", pnum);
1268                ubi_dbg_dump_vid_hdr(vid_hdr);
1269                ubi_dbg_dump_stack();
1270                err = -EINVAL;
1271                goto exit;
1272        }
1273
1274        err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1275
1276exit:
1277        ubi_free_vid_hdr(ubi, vid_hdr);
1278        return err;
1279}
1280
1281/**
1282 * ubi_dbg_check_write - make sure write succeeded.
1283 * @ubi: UBI device description object
1284 * @buf: buffer with data which were written
1285 * @pnum: physical eraseblock number the data were written to
1286 * @offset: offset within the physical eraseblock the data were written to
1287 * @len: how many bytes were written
1288 *
1289 * This functions reads data which were recently written and compares it with
1290 * the original data buffer - the data have to match. Returns zero if the data
1291 * match and a negative error code if not or in case of failure.
1292 */
1293int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1294                        int offset, int len)
1295{
1296        int err, i;
1297
1298        mutex_lock(&ubi->dbg_buf_mutex);
1299        err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
1300        if (err)
1301                goto out_unlock;
1302
1303        for (i = 0; i < len; i++) {
1304                uint8_t c = ((uint8_t *)buf)[i];
1305                uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
1306                int dump_len;
1307
1308                if (c == c1)
1309                        continue;
1310
1311                ubi_err("paranoid check failed for PEB %d:%d, len %d",
1312                        pnum, offset, len);
1313                ubi_msg("data differ at position %d", i);
1314                dump_len = max_t(int, 128, len - i);
1315                ubi_msg("hex dump of the original buffer from %d to %d",
1316                        i, i + dump_len);
1317                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1318                               buf + i, dump_len, 1);
1319                ubi_msg("hex dump of the read buffer from %d to %d",
1320                        i, i + dump_len);
1321                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1322                               ubi->dbg_peb_buf + i, dump_len, 1);
1323                ubi_dbg_dump_stack();
1324                err = -EINVAL;
1325                goto out_unlock;
1326        }
1327        mutex_unlock(&ubi->dbg_buf_mutex);
1328
1329        return 0;
1330
1331out_unlock:
1332        mutex_unlock(&ubi->dbg_buf_mutex);
1333        return err;
1334}
1335
1336/**
1337 * ubi_dbg_check_all_ff - check that a region of flash is empty.
1338 * @ubi: UBI device description object
1339 * @pnum: the physical eraseblock number to check
1340 * @offset: the starting offset within the physical eraseblock to check
1341 * @len: the length of the region to check
1342 *
1343 * This function returns zero if only 0xFF bytes are present at offset
1344 * @offset of the physical eraseblock @pnum, and a negative error code if not
1345 * or if an error occurred.
1346 */
1347int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1348{
1349        size_t read;
1350        int err;
1351        loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1352
1353        mutex_lock(&ubi->dbg_buf_mutex);
1354        err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1355        if (err && err != -EUCLEAN) {
1356                ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1357                        "read %zd bytes", err, len, pnum, offset, read);
1358                goto error;
1359        }
1360
1361        err = ubi_check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1362        if (err == 0) {
1363                ubi_err("flash region at PEB %d:%d, length %d does not "
1364                        "contain all 0xFF bytes", pnum, offset, len);
1365                goto fail;
1366        }
1367        mutex_unlock(&ubi->dbg_buf_mutex);
1368
1369        return 0;
1370
1371fail:
1372        ubi_err("paranoid check failed for PEB %d", pnum);
1373        ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1374        print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1375                       ubi->dbg_peb_buf, len, 1);
1376        err = -EINVAL;
1377error:
1378        ubi_dbg_dump_stack();
1379        mutex_unlock(&ubi->dbg_buf_mutex);
1380        return err;
1381}
1382
1383#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1384