linux/drivers/net/can/mcp251x.c
<<
>>
Prefs
   1/*
   2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
  20 *
  21 * This program is free software; you can redistribute it and/or modify
  22 * it under the terms of the version 2 of the GNU General Public License
  23 * as published by the Free Software Foundation
  24 *
  25 * This program is distributed in the hope that it will be useful,
  26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28 * GNU General Public License for more details.
  29 *
  30 * You should have received a copy of the GNU General Public License
  31 * along with this program; if not, write to the Free Software
  32 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  33 *
  34 *
  35 *
  36 * Your platform definition file should specify something like:
  37 *
  38 * static struct mcp251x_platform_data mcp251x_info = {
  39 *         .oscillator_frequency = 8000000,
  40 *         .board_specific_setup = &mcp251x_setup,
  41 *         .power_enable = mcp251x_power_enable,
  42 *         .transceiver_enable = NULL,
  43 * };
  44 *
  45 * static struct spi_board_info spi_board_info[] = {
  46 *         {
  47 *                 .modalias = "mcp2510",
  48 *                      // or "mcp2515" depending on your controller
  49 *                 .platform_data = &mcp251x_info,
  50 *                 .irq = IRQ_EINT13,
  51 *                 .max_speed_hz = 2*1000*1000,
  52 *                 .chip_select = 2,
  53 *         },
  54 * };
  55 *
  56 * Please see mcp251x.h for a description of the fields in
  57 * struct mcp251x_platform_data.
  58 *
  59 */
  60
  61#include <linux/can/core.h>
  62#include <linux/can/dev.h>
  63#include <linux/can/platform/mcp251x.h>
  64#include <linux/completion.h>
  65#include <linux/delay.h>
  66#include <linux/device.h>
  67#include <linux/dma-mapping.h>
  68#include <linux/freezer.h>
  69#include <linux/interrupt.h>
  70#include <linux/io.h>
  71#include <linux/kernel.h>
  72#include <linux/module.h>
  73#include <linux/netdevice.h>
  74#include <linux/platform_device.h>
  75#include <linux/slab.h>
  76#include <linux/spi/spi.h>
  77#include <linux/uaccess.h>
  78
  79/* SPI interface instruction set */
  80#define INSTRUCTION_WRITE       0x02
  81#define INSTRUCTION_READ        0x03
  82#define INSTRUCTION_BIT_MODIFY  0x05
  83#define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  84#define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  85#define INSTRUCTION_RESET       0xC0
  86
  87/* MPC251x registers */
  88#define CANSTAT       0x0e
  89#define CANCTRL       0x0f
  90#  define CANCTRL_REQOP_MASK        0xe0
  91#  define CANCTRL_REQOP_CONF        0x80
  92#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  93#  define CANCTRL_REQOP_LOOPBACK    0x40
  94#  define CANCTRL_REQOP_SLEEP       0x20
  95#  define CANCTRL_REQOP_NORMAL      0x00
  96#  define CANCTRL_OSM               0x08
  97#  define CANCTRL_ABAT              0x10
  98#define TEC           0x1c
  99#define REC           0x1d
 100#define CNF1          0x2a
 101#  define CNF1_SJW_SHIFT   6
 102#define CNF2          0x29
 103#  define CNF2_BTLMODE     0x80
 104#  define CNF2_SAM         0x40
 105#  define CNF2_PS1_SHIFT   3
 106#define CNF3          0x28
 107#  define CNF3_SOF         0x08
 108#  define CNF3_WAKFIL      0x04
 109#  define CNF3_PHSEG2_MASK 0x07
 110#define CANINTE       0x2b
 111#  define CANINTE_MERRE 0x80
 112#  define CANINTE_WAKIE 0x40
 113#  define CANINTE_ERRIE 0x20
 114#  define CANINTE_TX2IE 0x10
 115#  define CANINTE_TX1IE 0x08
 116#  define CANINTE_TX0IE 0x04
 117#  define CANINTE_RX1IE 0x02
 118#  define CANINTE_RX0IE 0x01
 119#define CANINTF       0x2c
 120#  define CANINTF_MERRF 0x80
 121#  define CANINTF_WAKIF 0x40
 122#  define CANINTF_ERRIF 0x20
 123#  define CANINTF_TX2IF 0x10
 124#  define CANINTF_TX1IF 0x08
 125#  define CANINTF_TX0IF 0x04
 126#  define CANINTF_RX1IF 0x02
 127#  define CANINTF_RX0IF 0x01
 128#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
 129#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
 130#  define CANINTF_ERR (CANINTF_ERRIF)
 131#define EFLG          0x2d
 132#  define EFLG_EWARN    0x01
 133#  define EFLG_RXWAR    0x02
 134#  define EFLG_TXWAR    0x04
 135#  define EFLG_RXEP     0x08
 136#  define EFLG_TXEP     0x10
 137#  define EFLG_TXBO     0x20
 138#  define EFLG_RX0OVR   0x40
 139#  define EFLG_RX1OVR   0x80
 140#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 141#  define TXBCTRL_ABTF  0x40
 142#  define TXBCTRL_MLOA  0x20
 143#  define TXBCTRL_TXERR 0x10
 144#  define TXBCTRL_TXREQ 0x08
 145#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 146#  define SIDH_SHIFT    3
 147#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 148#  define SIDL_SID_MASK    7
 149#  define SIDL_SID_SHIFT   5
 150#  define SIDL_EXIDE_SHIFT 3
 151#  define SIDL_EID_SHIFT   16
 152#  define SIDL_EID_MASK    3
 153#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 154#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 155#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 156#  define DLC_RTR_SHIFT    6
 157#define TXBCTRL_OFF 0
 158#define TXBSIDH_OFF 1
 159#define TXBSIDL_OFF 2
 160#define TXBEID8_OFF 3
 161#define TXBEID0_OFF 4
 162#define TXBDLC_OFF  5
 163#define TXBDAT_OFF  6
 164#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 165#  define RXBCTRL_BUKT  0x04
 166#  define RXBCTRL_RXM0  0x20
 167#  define RXBCTRL_RXM1  0x40
 168#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 169#  define RXBSIDH_SHIFT 3
 170#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 171#  define RXBSIDL_IDE   0x08
 172#  define RXBSIDL_SRR   0x10
 173#  define RXBSIDL_EID   3
 174#  define RXBSIDL_SHIFT 5
 175#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 176#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 177#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 178#  define RXBDLC_LEN_MASK  0x0f
 179#  define RXBDLC_RTR       0x40
 180#define RXBCTRL_OFF 0
 181#define RXBSIDH_OFF 1
 182#define RXBSIDL_OFF 2
 183#define RXBEID8_OFF 3
 184#define RXBEID0_OFF 4
 185#define RXBDLC_OFF  5
 186#define RXBDAT_OFF  6
 187#define RXFSIDH(n) ((n) * 4)
 188#define RXFSIDL(n) ((n) * 4 + 1)
 189#define RXFEID8(n) ((n) * 4 + 2)
 190#define RXFEID0(n) ((n) * 4 + 3)
 191#define RXMSIDH(n) ((n) * 4 + 0x20)
 192#define RXMSIDL(n) ((n) * 4 + 0x21)
 193#define RXMEID8(n) ((n) * 4 + 0x22)
 194#define RXMEID0(n) ((n) * 4 + 0x23)
 195
 196#define GET_BYTE(val, byte)                     \
 197        (((val) >> ((byte) * 8)) & 0xff)
 198#define SET_BYTE(val, byte)                     \
 199        (((val) & 0xff) << ((byte) * 8))
 200
 201/*
 202 * Buffer size required for the largest SPI transfer (i.e., reading a
 203 * frame)
 204 */
 205#define CAN_FRAME_MAX_DATA_LEN  8
 206#define SPI_TRANSFER_BUF_LEN    (6 + CAN_FRAME_MAX_DATA_LEN)
 207#define CAN_FRAME_MAX_BITS      128
 208
 209#define TX_ECHO_SKB_MAX 1
 210
 211#define DEVICE_NAME "mcp251x"
 212
 213static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
 214module_param(mcp251x_enable_dma, int, S_IRUGO);
 215MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
 216
 217static struct can_bittiming_const mcp251x_bittiming_const = {
 218        .name = DEVICE_NAME,
 219        .tseg1_min = 3,
 220        .tseg1_max = 16,
 221        .tseg2_min = 2,
 222        .tseg2_max = 8,
 223        .sjw_max = 4,
 224        .brp_min = 1,
 225        .brp_max = 64,
 226        .brp_inc = 1,
 227};
 228
 229enum mcp251x_model {
 230        CAN_MCP251X_MCP2510     = 0x2510,
 231        CAN_MCP251X_MCP2515     = 0x2515,
 232};
 233
 234struct mcp251x_priv {
 235        struct can_priv    can;
 236        struct net_device *net;
 237        struct spi_device *spi;
 238        enum mcp251x_model model;
 239
 240        struct mutex mcp_lock; /* SPI device lock */
 241
 242        u8 *spi_tx_buf;
 243        u8 *spi_rx_buf;
 244        dma_addr_t spi_tx_dma;
 245        dma_addr_t spi_rx_dma;
 246
 247        struct sk_buff *tx_skb;
 248        int tx_len;
 249
 250        struct workqueue_struct *wq;
 251        struct work_struct tx_work;
 252        struct work_struct restart_work;
 253
 254        int force_quit;
 255        int after_suspend;
 256#define AFTER_SUSPEND_UP 1
 257#define AFTER_SUSPEND_DOWN 2
 258#define AFTER_SUSPEND_POWER 4
 259#define AFTER_SUSPEND_RESTART 8
 260        int restart_tx;
 261};
 262
 263#define MCP251X_IS(_model) \
 264static inline int mcp251x_is_##_model(struct spi_device *spi) \
 265{ \
 266        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev); \
 267        return priv->model == CAN_MCP251X_MCP##_model; \
 268}
 269
 270MCP251X_IS(2510);
 271MCP251X_IS(2515);
 272
 273static void mcp251x_clean(struct net_device *net)
 274{
 275        struct mcp251x_priv *priv = netdev_priv(net);
 276
 277        if (priv->tx_skb || priv->tx_len)
 278                net->stats.tx_errors++;
 279        if (priv->tx_skb)
 280                dev_kfree_skb(priv->tx_skb);
 281        if (priv->tx_len)
 282                can_free_echo_skb(priv->net, 0);
 283        priv->tx_skb = NULL;
 284        priv->tx_len = 0;
 285}
 286
 287/*
 288 * Note about handling of error return of mcp251x_spi_trans: accessing
 289 * registers via SPI is not really different conceptually than using
 290 * normal I/O assembler instructions, although it's much more
 291 * complicated from a practical POV. So it's not advisable to always
 292 * check the return value of this function. Imagine that every
 293 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 294 * error();", it would be a great mess (well there are some situation
 295 * when exception handling C++ like could be useful after all). So we
 296 * just check that transfers are OK at the beginning of our
 297 * conversation with the chip and to avoid doing really nasty things
 298 * (like injecting bogus packets in the network stack).
 299 */
 300static int mcp251x_spi_trans(struct spi_device *spi, int len)
 301{
 302        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 303        struct spi_transfer t = {
 304                .tx_buf = priv->spi_tx_buf,
 305                .rx_buf = priv->spi_rx_buf,
 306                .len = len,
 307                .cs_change = 0,
 308        };
 309        struct spi_message m;
 310        int ret;
 311
 312        spi_message_init(&m);
 313
 314        if (mcp251x_enable_dma) {
 315                t.tx_dma = priv->spi_tx_dma;
 316                t.rx_dma = priv->spi_rx_dma;
 317                m.is_dma_mapped = 1;
 318        }
 319
 320        spi_message_add_tail(&t, &m);
 321
 322        ret = spi_sync(spi, &m);
 323        if (ret)
 324                dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 325        return ret;
 326}
 327
 328static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
 329{
 330        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 331        u8 val = 0;
 332
 333        priv->spi_tx_buf[0] = INSTRUCTION_READ;
 334        priv->spi_tx_buf[1] = reg;
 335
 336        mcp251x_spi_trans(spi, 3);
 337        val = priv->spi_rx_buf[2];
 338
 339        return val;
 340}
 341
 342static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
 343                uint8_t *v1, uint8_t *v2)
 344{
 345        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 346
 347        priv->spi_tx_buf[0] = INSTRUCTION_READ;
 348        priv->spi_tx_buf[1] = reg;
 349
 350        mcp251x_spi_trans(spi, 4);
 351
 352        *v1 = priv->spi_rx_buf[2];
 353        *v2 = priv->spi_rx_buf[3];
 354}
 355
 356static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
 357{
 358        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 359
 360        priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 361        priv->spi_tx_buf[1] = reg;
 362        priv->spi_tx_buf[2] = val;
 363
 364        mcp251x_spi_trans(spi, 3);
 365}
 366
 367static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 368                               u8 mask, uint8_t val)
 369{
 370        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 371
 372        priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 373        priv->spi_tx_buf[1] = reg;
 374        priv->spi_tx_buf[2] = mask;
 375        priv->spi_tx_buf[3] = val;
 376
 377        mcp251x_spi_trans(spi, 4);
 378}
 379
 380static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 381                                int len, int tx_buf_idx)
 382{
 383        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 384
 385        if (mcp251x_is_2510(spi)) {
 386                int i;
 387
 388                for (i = 1; i < TXBDAT_OFF + len; i++)
 389                        mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 390                                          buf[i]);
 391        } else {
 392                memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 393                mcp251x_spi_trans(spi, TXBDAT_OFF + len);
 394        }
 395}
 396
 397static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 398                          int tx_buf_idx)
 399{
 400        u32 sid, eid, exide, rtr;
 401        u8 buf[SPI_TRANSFER_BUF_LEN];
 402
 403        exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 404        if (exide)
 405                sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 406        else
 407                sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 408        eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 409        rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 410
 411        buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 412        buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 413        buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 414                (exide << SIDL_EXIDE_SHIFT) |
 415                ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 416        buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 417        buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 418        buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
 419        memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
 420        mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
 421        mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
 422}
 423
 424static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 425                                int buf_idx)
 426{
 427        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 428
 429        if (mcp251x_is_2510(spi)) {
 430                int i, len;
 431
 432                for (i = 1; i < RXBDAT_OFF; i++)
 433                        buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 434
 435                len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 436                for (; i < (RXBDAT_OFF + len); i++)
 437                        buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 438        } else {
 439                priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 440                mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 441                memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 442        }
 443}
 444
 445static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 446{
 447        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 448        struct sk_buff *skb;
 449        struct can_frame *frame;
 450        u8 buf[SPI_TRANSFER_BUF_LEN];
 451
 452        skb = alloc_can_skb(priv->net, &frame);
 453        if (!skb) {
 454                dev_err(&spi->dev, "cannot allocate RX skb\n");
 455                priv->net->stats.rx_dropped++;
 456                return;
 457        }
 458
 459        mcp251x_hw_rx_frame(spi, buf, buf_idx);
 460        if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 461                /* Extended ID format */
 462                frame->can_id = CAN_EFF_FLAG;
 463                frame->can_id |=
 464                        /* Extended ID part */
 465                        SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 466                        SET_BYTE(buf[RXBEID8_OFF], 1) |
 467                        SET_BYTE(buf[RXBEID0_OFF], 0) |
 468                        /* Standard ID part */
 469                        (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 470                          (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 471                /* Remote transmission request */
 472                if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 473                        frame->can_id |= CAN_RTR_FLAG;
 474        } else {
 475                /* Standard ID format */
 476                frame->can_id =
 477                        (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 478                        (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 479                if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 480                        frame->can_id |= CAN_RTR_FLAG;
 481        }
 482        /* Data length */
 483        frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 484        memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
 485
 486        priv->net->stats.rx_packets++;
 487        priv->net->stats.rx_bytes += frame->can_dlc;
 488        netif_rx_ni(skb);
 489}
 490
 491static void mcp251x_hw_sleep(struct spi_device *spi)
 492{
 493        mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 494}
 495
 496static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 497                                           struct net_device *net)
 498{
 499        struct mcp251x_priv *priv = netdev_priv(net);
 500        struct spi_device *spi = priv->spi;
 501
 502        if (priv->tx_skb || priv->tx_len) {
 503                dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 504                return NETDEV_TX_BUSY;
 505        }
 506
 507        if (can_dropped_invalid_skb(net, skb))
 508                return NETDEV_TX_OK;
 509
 510        netif_stop_queue(net);
 511        priv->tx_skb = skb;
 512        queue_work(priv->wq, &priv->tx_work);
 513
 514        return NETDEV_TX_OK;
 515}
 516
 517static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 518{
 519        struct mcp251x_priv *priv = netdev_priv(net);
 520
 521        switch (mode) {
 522        case CAN_MODE_START:
 523                mcp251x_clean(net);
 524                /* We have to delay work since SPI I/O may sleep */
 525                priv->can.state = CAN_STATE_ERROR_ACTIVE;
 526                priv->restart_tx = 1;
 527                if (priv->can.restart_ms == 0)
 528                        priv->after_suspend = AFTER_SUSPEND_RESTART;
 529                queue_work(priv->wq, &priv->restart_work);
 530                break;
 531        default:
 532                return -EOPNOTSUPP;
 533        }
 534
 535        return 0;
 536}
 537
 538static int mcp251x_set_normal_mode(struct spi_device *spi)
 539{
 540        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 541        unsigned long timeout;
 542
 543        /* Enable interrupts */
 544        mcp251x_write_reg(spi, CANINTE,
 545                          CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 546                          CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 547
 548        if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 549                /* Put device into loopback mode */
 550                mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 551        } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 552                /* Put device into listen-only mode */
 553                mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 554        } else {
 555                /* Put device into normal mode */
 556                mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 557
 558                /* Wait for the device to enter normal mode */
 559                timeout = jiffies + HZ;
 560                while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
 561                        schedule();
 562                        if (time_after(jiffies, timeout)) {
 563                                dev_err(&spi->dev, "MCP251x didn't"
 564                                        " enter in normal mode\n");
 565                                return -EBUSY;
 566                        }
 567                }
 568        }
 569        priv->can.state = CAN_STATE_ERROR_ACTIVE;
 570        return 0;
 571}
 572
 573static int mcp251x_do_set_bittiming(struct net_device *net)
 574{
 575        struct mcp251x_priv *priv = netdev_priv(net);
 576        struct can_bittiming *bt = &priv->can.bittiming;
 577        struct spi_device *spi = priv->spi;
 578
 579        mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 580                          (bt->brp - 1));
 581        mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 582                          (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 583                           CNF2_SAM : 0) |
 584                          ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 585                          (bt->prop_seg - 1));
 586        mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 587                           (bt->phase_seg2 - 1));
 588        dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 589                 mcp251x_read_reg(spi, CNF1),
 590                 mcp251x_read_reg(spi, CNF2),
 591                 mcp251x_read_reg(spi, CNF3));
 592
 593        return 0;
 594}
 595
 596static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
 597                         struct spi_device *spi)
 598{
 599        mcp251x_do_set_bittiming(net);
 600
 601        mcp251x_write_reg(spi, RXBCTRL(0),
 602                          RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 603        mcp251x_write_reg(spi, RXBCTRL(1),
 604                          RXBCTRL_RXM0 | RXBCTRL_RXM1);
 605        return 0;
 606}
 607
 608static int mcp251x_hw_reset(struct spi_device *spi)
 609{
 610        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
 611        int ret;
 612        unsigned long timeout;
 613
 614        priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 615        ret = spi_write(spi, priv->spi_tx_buf, 1);
 616        if (ret) {
 617                dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
 618                return -EIO;
 619        }
 620
 621        /* Wait for reset to finish */
 622        timeout = jiffies + HZ;
 623        mdelay(10);
 624        while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
 625               != CANCTRL_REQOP_CONF) {
 626                schedule();
 627                if (time_after(jiffies, timeout)) {
 628                        dev_err(&spi->dev, "MCP251x didn't"
 629                                " enter in conf mode after reset\n");
 630                        return -EBUSY;
 631                }
 632        }
 633        return 0;
 634}
 635
 636static int mcp251x_hw_probe(struct spi_device *spi)
 637{
 638        int st1, st2;
 639
 640        mcp251x_hw_reset(spi);
 641
 642        /*
 643         * Please note that these are "magic values" based on after
 644         * reset defaults taken from data sheet which allows us to see
 645         * if we really have a chip on the bus (we avoid common all
 646         * zeroes or all ones situations)
 647         */
 648        st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
 649        st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
 650
 651        dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
 652
 653        /* Check for power up default values */
 654        return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
 655}
 656
 657static void mcp251x_open_clean(struct net_device *net)
 658{
 659        struct mcp251x_priv *priv = netdev_priv(net);
 660        struct spi_device *spi = priv->spi;
 661        struct mcp251x_platform_data *pdata = spi->dev.platform_data;
 662
 663        free_irq(spi->irq, priv);
 664        mcp251x_hw_sleep(spi);
 665        if (pdata->transceiver_enable)
 666                pdata->transceiver_enable(0);
 667        close_candev(net);
 668}
 669
 670static int mcp251x_stop(struct net_device *net)
 671{
 672        struct mcp251x_priv *priv = netdev_priv(net);
 673        struct spi_device *spi = priv->spi;
 674        struct mcp251x_platform_data *pdata = spi->dev.platform_data;
 675
 676        close_candev(net);
 677
 678        priv->force_quit = 1;
 679        free_irq(spi->irq, priv);
 680        destroy_workqueue(priv->wq);
 681        priv->wq = NULL;
 682
 683        mutex_lock(&priv->mcp_lock);
 684
 685        /* Disable and clear pending interrupts */
 686        mcp251x_write_reg(spi, CANINTE, 0x00);
 687        mcp251x_write_reg(spi, CANINTF, 0x00);
 688
 689        mcp251x_write_reg(spi, TXBCTRL(0), 0);
 690        mcp251x_clean(net);
 691
 692        mcp251x_hw_sleep(spi);
 693
 694        if (pdata->transceiver_enable)
 695                pdata->transceiver_enable(0);
 696
 697        priv->can.state = CAN_STATE_STOPPED;
 698
 699        mutex_unlock(&priv->mcp_lock);
 700
 701        return 0;
 702}
 703
 704static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 705{
 706        struct sk_buff *skb;
 707        struct can_frame *frame;
 708
 709        skb = alloc_can_err_skb(net, &frame);
 710        if (skb) {
 711                frame->can_id |= can_id;
 712                frame->data[1] = data1;
 713                netif_rx_ni(skb);
 714        } else {
 715                dev_err(&net->dev,
 716                        "cannot allocate error skb\n");
 717        }
 718}
 719
 720static void mcp251x_tx_work_handler(struct work_struct *ws)
 721{
 722        struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 723                                                 tx_work);
 724        struct spi_device *spi = priv->spi;
 725        struct net_device *net = priv->net;
 726        struct can_frame *frame;
 727
 728        mutex_lock(&priv->mcp_lock);
 729        if (priv->tx_skb) {
 730                if (priv->can.state == CAN_STATE_BUS_OFF) {
 731                        mcp251x_clean(net);
 732                } else {
 733                        frame = (struct can_frame *)priv->tx_skb->data;
 734
 735                        if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
 736                                frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
 737                        mcp251x_hw_tx(spi, frame, 0);
 738                        priv->tx_len = 1 + frame->can_dlc;
 739                        can_put_echo_skb(priv->tx_skb, net, 0);
 740                        priv->tx_skb = NULL;
 741                }
 742        }
 743        mutex_unlock(&priv->mcp_lock);
 744}
 745
 746static void mcp251x_restart_work_handler(struct work_struct *ws)
 747{
 748        struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 749                                                 restart_work);
 750        struct spi_device *spi = priv->spi;
 751        struct net_device *net = priv->net;
 752
 753        mutex_lock(&priv->mcp_lock);
 754        if (priv->after_suspend) {
 755                mdelay(10);
 756                mcp251x_hw_reset(spi);
 757                mcp251x_setup(net, priv, spi);
 758                if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
 759                        mcp251x_set_normal_mode(spi);
 760                } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
 761                        netif_device_attach(net);
 762                        mcp251x_clean(net);
 763                        mcp251x_set_normal_mode(spi);
 764                        netif_wake_queue(net);
 765                } else {
 766                        mcp251x_hw_sleep(spi);
 767                }
 768                priv->after_suspend = 0;
 769                priv->force_quit = 0;
 770        }
 771
 772        if (priv->restart_tx) {
 773                priv->restart_tx = 0;
 774                mcp251x_write_reg(spi, TXBCTRL(0), 0);
 775                mcp251x_clean(net);
 776                netif_wake_queue(net);
 777                mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
 778        }
 779        mutex_unlock(&priv->mcp_lock);
 780}
 781
 782static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
 783{
 784        struct mcp251x_priv *priv = dev_id;
 785        struct spi_device *spi = priv->spi;
 786        struct net_device *net = priv->net;
 787
 788        mutex_lock(&priv->mcp_lock);
 789        while (!priv->force_quit) {
 790                enum can_state new_state;
 791                u8 intf, eflag;
 792                u8 clear_intf = 0;
 793                int can_id = 0, data1 = 0;
 794
 795                mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
 796
 797                /* mask out flags we don't care about */
 798                intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
 799
 800                /* receive buffer 0 */
 801                if (intf & CANINTF_RX0IF) {
 802                        mcp251x_hw_rx(spi, 0);
 803                        /*
 804                         * Free one buffer ASAP
 805                         * (The MCP2515 does this automatically.)
 806                         */
 807                        if (mcp251x_is_2510(spi))
 808                                mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
 809                }
 810
 811                /* receive buffer 1 */
 812                if (intf & CANINTF_RX1IF) {
 813                        mcp251x_hw_rx(spi, 1);
 814                        /* the MCP2515 does this automatically */
 815                        if (mcp251x_is_2510(spi))
 816                                clear_intf |= CANINTF_RX1IF;
 817                }
 818
 819                /* any error or tx interrupt we need to clear? */
 820                if (intf & (CANINTF_ERR | CANINTF_TX))
 821                        clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
 822                if (clear_intf)
 823                        mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
 824
 825                if (eflag)
 826                        mcp251x_write_bits(spi, EFLG, eflag, 0x00);
 827
 828                /* Update can state */
 829                if (eflag & EFLG_TXBO) {
 830                        new_state = CAN_STATE_BUS_OFF;
 831                        can_id |= CAN_ERR_BUSOFF;
 832                } else if (eflag & EFLG_TXEP) {
 833                        new_state = CAN_STATE_ERROR_PASSIVE;
 834                        can_id |= CAN_ERR_CRTL;
 835                        data1 |= CAN_ERR_CRTL_TX_PASSIVE;
 836                } else if (eflag & EFLG_RXEP) {
 837                        new_state = CAN_STATE_ERROR_PASSIVE;
 838                        can_id |= CAN_ERR_CRTL;
 839                        data1 |= CAN_ERR_CRTL_RX_PASSIVE;
 840                } else if (eflag & EFLG_TXWAR) {
 841                        new_state = CAN_STATE_ERROR_WARNING;
 842                        can_id |= CAN_ERR_CRTL;
 843                        data1 |= CAN_ERR_CRTL_TX_WARNING;
 844                } else if (eflag & EFLG_RXWAR) {
 845                        new_state = CAN_STATE_ERROR_WARNING;
 846                        can_id |= CAN_ERR_CRTL;
 847                        data1 |= CAN_ERR_CRTL_RX_WARNING;
 848                } else {
 849                        new_state = CAN_STATE_ERROR_ACTIVE;
 850                }
 851
 852                /* Update can state statistics */
 853                switch (priv->can.state) {
 854                case CAN_STATE_ERROR_ACTIVE:
 855                        if (new_state >= CAN_STATE_ERROR_WARNING &&
 856                            new_state <= CAN_STATE_BUS_OFF)
 857                                priv->can.can_stats.error_warning++;
 858                case CAN_STATE_ERROR_WARNING:   /* fallthrough */
 859                        if (new_state >= CAN_STATE_ERROR_PASSIVE &&
 860                            new_state <= CAN_STATE_BUS_OFF)
 861                                priv->can.can_stats.error_passive++;
 862                        break;
 863                default:
 864                        break;
 865                }
 866                priv->can.state = new_state;
 867
 868                if (intf & CANINTF_ERRIF) {
 869                        /* Handle overflow counters */
 870                        if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
 871                                if (eflag & EFLG_RX0OVR) {
 872                                        net->stats.rx_over_errors++;
 873                                        net->stats.rx_errors++;
 874                                }
 875                                if (eflag & EFLG_RX1OVR) {
 876                                        net->stats.rx_over_errors++;
 877                                        net->stats.rx_errors++;
 878                                }
 879                                can_id |= CAN_ERR_CRTL;
 880                                data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
 881                        }
 882                        mcp251x_error_skb(net, can_id, data1);
 883                }
 884
 885                if (priv->can.state == CAN_STATE_BUS_OFF) {
 886                        if (priv->can.restart_ms == 0) {
 887                                priv->force_quit = 1;
 888                                can_bus_off(net);
 889                                mcp251x_hw_sleep(spi);
 890                                break;
 891                        }
 892                }
 893
 894                if (intf == 0)
 895                        break;
 896
 897                if (intf & CANINTF_TX) {
 898                        net->stats.tx_packets++;
 899                        net->stats.tx_bytes += priv->tx_len - 1;
 900                        if (priv->tx_len) {
 901                                can_get_echo_skb(net, 0);
 902                                priv->tx_len = 0;
 903                        }
 904                        netif_wake_queue(net);
 905                }
 906
 907        }
 908        mutex_unlock(&priv->mcp_lock);
 909        return IRQ_HANDLED;
 910}
 911
 912static int mcp251x_open(struct net_device *net)
 913{
 914        struct mcp251x_priv *priv = netdev_priv(net);
 915        struct spi_device *spi = priv->spi;
 916        struct mcp251x_platform_data *pdata = spi->dev.platform_data;
 917        int ret;
 918
 919        ret = open_candev(net);
 920        if (ret) {
 921                dev_err(&spi->dev, "unable to set initial baudrate!\n");
 922                return ret;
 923        }
 924
 925        mutex_lock(&priv->mcp_lock);
 926        if (pdata->transceiver_enable)
 927                pdata->transceiver_enable(1);
 928
 929        priv->force_quit = 0;
 930        priv->tx_skb = NULL;
 931        priv->tx_len = 0;
 932
 933        ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
 934                          IRQF_TRIGGER_FALLING, DEVICE_NAME, priv);
 935        if (ret) {
 936                dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
 937                if (pdata->transceiver_enable)
 938                        pdata->transceiver_enable(0);
 939                close_candev(net);
 940                goto open_unlock;
 941        }
 942
 943        priv->wq = create_freezable_workqueue("mcp251x_wq");
 944        INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
 945        INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
 946
 947        ret = mcp251x_hw_reset(spi);
 948        if (ret) {
 949                mcp251x_open_clean(net);
 950                goto open_unlock;
 951        }
 952        ret = mcp251x_setup(net, priv, spi);
 953        if (ret) {
 954                mcp251x_open_clean(net);
 955                goto open_unlock;
 956        }
 957        ret = mcp251x_set_normal_mode(spi);
 958        if (ret) {
 959                mcp251x_open_clean(net);
 960                goto open_unlock;
 961        }
 962        netif_wake_queue(net);
 963
 964open_unlock:
 965        mutex_unlock(&priv->mcp_lock);
 966        return ret;
 967}
 968
 969static const struct net_device_ops mcp251x_netdev_ops = {
 970        .ndo_open = mcp251x_open,
 971        .ndo_stop = mcp251x_stop,
 972        .ndo_start_xmit = mcp251x_hard_start_xmit,
 973};
 974
 975static int __devinit mcp251x_can_probe(struct spi_device *spi)
 976{
 977        struct net_device *net;
 978        struct mcp251x_priv *priv;
 979        struct mcp251x_platform_data *pdata = spi->dev.platform_data;
 980        int ret = -ENODEV;
 981
 982        if (!pdata)
 983                /* Platform data is required for osc freq */
 984                goto error_out;
 985
 986        /* Allocate can/net device */
 987        net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
 988        if (!net) {
 989                ret = -ENOMEM;
 990                goto error_alloc;
 991        }
 992
 993        net->netdev_ops = &mcp251x_netdev_ops;
 994        net->flags |= IFF_ECHO;
 995
 996        priv = netdev_priv(net);
 997        priv->can.bittiming_const = &mcp251x_bittiming_const;
 998        priv->can.do_set_mode = mcp251x_do_set_mode;
 999        priv->can.clock.freq = pdata->oscillator_frequency / 2;
1000        priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1001                CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1002        priv->model = spi_get_device_id(spi)->driver_data;
1003        priv->net = net;
1004        dev_set_drvdata(&spi->dev, priv);
1005
1006        priv->spi = spi;
1007        mutex_init(&priv->mcp_lock);
1008
1009        /* If requested, allocate DMA buffers */
1010        if (mcp251x_enable_dma) {
1011                spi->dev.coherent_dma_mask = ~0;
1012
1013                /*
1014                 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1015                 * that much and share it between Tx and Rx DMA buffers.
1016                 */
1017                priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
1018                                                      PAGE_SIZE,
1019                                                      &priv->spi_tx_dma,
1020                                                      GFP_DMA);
1021
1022                if (priv->spi_tx_buf) {
1023                        priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
1024                                                  (PAGE_SIZE / 2));
1025                        priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1026                                                        (PAGE_SIZE / 2));
1027                } else {
1028                        /* Fall back to non-DMA */
1029                        mcp251x_enable_dma = 0;
1030                }
1031        }
1032
1033        /* Allocate non-DMA buffers */
1034        if (!mcp251x_enable_dma) {
1035                priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1036                if (!priv->spi_tx_buf) {
1037                        ret = -ENOMEM;
1038                        goto error_tx_buf;
1039                }
1040                priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1041                if (!priv->spi_rx_buf) {
1042                        ret = -ENOMEM;
1043                        goto error_rx_buf;
1044                }
1045        }
1046
1047        if (pdata->power_enable)
1048                pdata->power_enable(1);
1049
1050        /* Call out to platform specific setup */
1051        if (pdata->board_specific_setup)
1052                pdata->board_specific_setup(spi);
1053
1054        SET_NETDEV_DEV(net, &spi->dev);
1055
1056        /* Configure the SPI bus */
1057        spi->mode = SPI_MODE_0;
1058        spi->bits_per_word = 8;
1059        spi_setup(spi);
1060
1061        /* Here is OK to not lock the MCP, no one knows about it yet */
1062        if (!mcp251x_hw_probe(spi)) {
1063                dev_info(&spi->dev, "Probe failed\n");
1064                goto error_probe;
1065        }
1066        mcp251x_hw_sleep(spi);
1067
1068        if (pdata->transceiver_enable)
1069                pdata->transceiver_enable(0);
1070
1071        ret = register_candev(net);
1072        if (!ret) {
1073                dev_info(&spi->dev, "probed\n");
1074                return ret;
1075        }
1076error_probe:
1077        if (!mcp251x_enable_dma)
1078                kfree(priv->spi_rx_buf);
1079error_rx_buf:
1080        if (!mcp251x_enable_dma)
1081                kfree(priv->spi_tx_buf);
1082error_tx_buf:
1083        free_candev(net);
1084        if (mcp251x_enable_dma)
1085                dma_free_coherent(&spi->dev, PAGE_SIZE,
1086                                  priv->spi_tx_buf, priv->spi_tx_dma);
1087error_alloc:
1088        if (pdata->power_enable)
1089                pdata->power_enable(0);
1090        dev_err(&spi->dev, "probe failed\n");
1091error_out:
1092        return ret;
1093}
1094
1095static int __devexit mcp251x_can_remove(struct spi_device *spi)
1096{
1097        struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1098        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1099        struct net_device *net = priv->net;
1100
1101        unregister_candev(net);
1102        free_candev(net);
1103
1104        if (mcp251x_enable_dma) {
1105                dma_free_coherent(&spi->dev, PAGE_SIZE,
1106                                  priv->spi_tx_buf, priv->spi_tx_dma);
1107        } else {
1108                kfree(priv->spi_tx_buf);
1109                kfree(priv->spi_rx_buf);
1110        }
1111
1112        if (pdata->power_enable)
1113                pdata->power_enable(0);
1114
1115        return 0;
1116}
1117
1118#ifdef CONFIG_PM
1119static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
1120{
1121        struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1122        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1123        struct net_device *net = priv->net;
1124
1125        priv->force_quit = 1;
1126        disable_irq(spi->irq);
1127        /*
1128         * Note: at this point neither IST nor workqueues are running.
1129         * open/stop cannot be called anyway so locking is not needed
1130         */
1131        if (netif_running(net)) {
1132                netif_device_detach(net);
1133
1134                mcp251x_hw_sleep(spi);
1135                if (pdata->transceiver_enable)
1136                        pdata->transceiver_enable(0);
1137                priv->after_suspend = AFTER_SUSPEND_UP;
1138        } else {
1139                priv->after_suspend = AFTER_SUSPEND_DOWN;
1140        }
1141
1142        if (pdata->power_enable) {
1143                pdata->power_enable(0);
1144                priv->after_suspend |= AFTER_SUSPEND_POWER;
1145        }
1146
1147        return 0;
1148}
1149
1150static int mcp251x_can_resume(struct spi_device *spi)
1151{
1152        struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1153        struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1154
1155        if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1156                pdata->power_enable(1);
1157                queue_work(priv->wq, &priv->restart_work);
1158        } else {
1159                if (priv->after_suspend & AFTER_SUSPEND_UP) {
1160                        if (pdata->transceiver_enable)
1161                                pdata->transceiver_enable(1);
1162                        queue_work(priv->wq, &priv->restart_work);
1163                } else {
1164                        priv->after_suspend = 0;
1165                }
1166        }
1167        priv->force_quit = 0;
1168        enable_irq(spi->irq);
1169        return 0;
1170}
1171#else
1172#define mcp251x_can_suspend NULL
1173#define mcp251x_can_resume NULL
1174#endif
1175
1176static const struct spi_device_id mcp251x_id_table[] = {
1177        { "mcp2510",    CAN_MCP251X_MCP2510 },
1178        { "mcp2515",    CAN_MCP251X_MCP2515 },
1179        { },
1180};
1181
1182MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1183
1184static struct spi_driver mcp251x_can_driver = {
1185        .driver = {
1186                .name = DEVICE_NAME,
1187                .bus = &spi_bus_type,
1188                .owner = THIS_MODULE,
1189        },
1190
1191        .id_table = mcp251x_id_table,
1192        .probe = mcp251x_can_probe,
1193        .remove = __devexit_p(mcp251x_can_remove),
1194        .suspend = mcp251x_can_suspend,
1195        .resume = mcp251x_can_resume,
1196};
1197
1198static int __init mcp251x_can_init(void)
1199{
1200        return spi_register_driver(&mcp251x_can_driver);
1201}
1202
1203static void __exit mcp251x_can_exit(void)
1204{
1205        spi_unregister_driver(&mcp251x_can_driver);
1206}
1207
1208module_init(mcp251x_can_init);
1209module_exit(mcp251x_can_exit);
1210
1211MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1212              "Christian Pellegrin <chripell@evolware.org>");
1213MODULE_DESCRIPTION("Microchip 251x CAN driver");
1214MODULE_LICENSE("GPL v2");
1215