linux/drivers/net/cxgb4/sge.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/skbuff.h>
  36#include <linux/netdevice.h>
  37#include <linux/etherdevice.h>
  38#include <linux/if_vlan.h>
  39#include <linux/ip.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/jiffies.h>
  42#include <net/ipv6.h>
  43#include <net/tcp.h>
  44#include "cxgb4.h"
  45#include "t4_regs.h"
  46#include "t4_msg.h"
  47#include "t4fw_api.h"
  48
  49/*
  50 * Rx buffer size.  We use largish buffers if possible but settle for single
  51 * pages under memory shortage.
  52 */
  53#if PAGE_SHIFT >= 16
  54# define FL_PG_ORDER 0
  55#else
  56# define FL_PG_ORDER (16 - PAGE_SHIFT)
  57#endif
  58
  59/* RX_PULL_LEN should be <= RX_COPY_THRES */
  60#define RX_COPY_THRES    256
  61#define RX_PULL_LEN      128
  62
  63/*
  64 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
  65 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
  66 */
  67#define RX_PKT_SKB_LEN   512
  68
  69/* Ethernet header padding prepended to RX_PKTs */
  70#define RX_PKT_PAD 2
  71
  72/*
  73 * Max number of Tx descriptors we clean up at a time.  Should be modest as
  74 * freeing skbs isn't cheap and it happens while holding locks.  We just need
  75 * to free packets faster than they arrive, we eventually catch up and keep
  76 * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
  77 */
  78#define MAX_TX_RECLAIM 16
  79
  80/*
  81 * Max number of Rx buffers we replenish at a time.  Again keep this modest,
  82 * allocating buffers isn't cheap either.
  83 */
  84#define MAX_RX_REFILL 16U
  85
  86/*
  87 * Period of the Rx queue check timer.  This timer is infrequent as it has
  88 * something to do only when the system experiences severe memory shortage.
  89 */
  90#define RX_QCHECK_PERIOD (HZ / 2)
  91
  92/*
  93 * Period of the Tx queue check timer.
  94 */
  95#define TX_QCHECK_PERIOD (HZ / 2)
  96
  97/*
  98 * Max number of Tx descriptors to be reclaimed by the Tx timer.
  99 */
 100#define MAX_TIMER_TX_RECLAIM 100
 101
 102/*
 103 * Timer index used when backing off due to memory shortage.
 104 */
 105#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
 106
 107/*
 108 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
 109 * attempt to refill it.
 110 */
 111#define FL_STARVE_THRES 4
 112
 113/*
 114 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
 115 * This is the same as calc_tx_descs() for a TSO packet with
 116 * nr_frags == MAX_SKB_FRAGS.
 117 */
 118#define ETHTXQ_STOP_THRES \
 119        (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
 120
 121/*
 122 * Suspension threshold for non-Ethernet Tx queues.  We require enough room
 123 * for a full sized WR.
 124 */
 125#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
 126
 127/*
 128 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
 129 * into a WR.
 130 */
 131#define MAX_IMM_TX_PKT_LEN 128
 132
 133/*
 134 * Max size of a WR sent through a control Tx queue.
 135 */
 136#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
 137
 138enum {
 139        /* packet alignment in FL buffers */
 140        FL_ALIGN = L1_CACHE_BYTES < 32 ? 32 : L1_CACHE_BYTES,
 141        /* egress status entry size */
 142        STAT_LEN = L1_CACHE_BYTES > 64 ? 128 : 64
 143};
 144
 145struct tx_sw_desc {                /* SW state per Tx descriptor */
 146        struct sk_buff *skb;
 147        struct ulptx_sgl *sgl;
 148};
 149
 150struct rx_sw_desc {                /* SW state per Rx descriptor */
 151        struct page *page;
 152        dma_addr_t dma_addr;
 153};
 154
 155/*
 156 * The low bits of rx_sw_desc.dma_addr have special meaning.
 157 */
 158enum {
 159        RX_LARGE_BUF    = 1 << 0, /* buffer is larger than PAGE_SIZE */
 160        RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
 161};
 162
 163static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
 164{
 165        return d->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
 166}
 167
 168static inline bool is_buf_mapped(const struct rx_sw_desc *d)
 169{
 170        return !(d->dma_addr & RX_UNMAPPED_BUF);
 171}
 172
 173/**
 174 *      txq_avail - return the number of available slots in a Tx queue
 175 *      @q: the Tx queue
 176 *
 177 *      Returns the number of descriptors in a Tx queue available to write new
 178 *      packets.
 179 */
 180static inline unsigned int txq_avail(const struct sge_txq *q)
 181{
 182        return q->size - 1 - q->in_use;
 183}
 184
 185/**
 186 *      fl_cap - return the capacity of a free-buffer list
 187 *      @fl: the FL
 188 *
 189 *      Returns the capacity of a free-buffer list.  The capacity is less than
 190 *      the size because one descriptor needs to be left unpopulated, otherwise
 191 *      HW will think the FL is empty.
 192 */
 193static inline unsigned int fl_cap(const struct sge_fl *fl)
 194{
 195        return fl->size - 8;   /* 1 descriptor = 8 buffers */
 196}
 197
 198static inline bool fl_starving(const struct sge_fl *fl)
 199{
 200        return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
 201}
 202
 203static int map_skb(struct device *dev, const struct sk_buff *skb,
 204                   dma_addr_t *addr)
 205{
 206        const skb_frag_t *fp, *end;
 207        const struct skb_shared_info *si;
 208
 209        *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
 210        if (dma_mapping_error(dev, *addr))
 211                goto out_err;
 212
 213        si = skb_shinfo(skb);
 214        end = &si->frags[si->nr_frags];
 215
 216        for (fp = si->frags; fp < end; fp++) {
 217                *++addr = dma_map_page(dev, fp->page, fp->page_offset, fp->size,
 218                                       DMA_TO_DEVICE);
 219                if (dma_mapping_error(dev, *addr))
 220                        goto unwind;
 221        }
 222        return 0;
 223
 224unwind:
 225        while (fp-- > si->frags)
 226                dma_unmap_page(dev, *--addr, fp->size, DMA_TO_DEVICE);
 227
 228        dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
 229out_err:
 230        return -ENOMEM;
 231}
 232
 233#ifdef CONFIG_NEED_DMA_MAP_STATE
 234static void unmap_skb(struct device *dev, const struct sk_buff *skb,
 235                      const dma_addr_t *addr)
 236{
 237        const skb_frag_t *fp, *end;
 238        const struct skb_shared_info *si;
 239
 240        dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
 241
 242        si = skb_shinfo(skb);
 243        end = &si->frags[si->nr_frags];
 244        for (fp = si->frags; fp < end; fp++)
 245                dma_unmap_page(dev, *addr++, fp->size, DMA_TO_DEVICE);
 246}
 247
 248/**
 249 *      deferred_unmap_destructor - unmap a packet when it is freed
 250 *      @skb: the packet
 251 *
 252 *      This is the packet destructor used for Tx packets that need to remain
 253 *      mapped until they are freed rather than until their Tx descriptors are
 254 *      freed.
 255 */
 256static void deferred_unmap_destructor(struct sk_buff *skb)
 257{
 258        unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
 259}
 260#endif
 261
 262static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
 263                      const struct ulptx_sgl *sgl, const struct sge_txq *q)
 264{
 265        const struct ulptx_sge_pair *p;
 266        unsigned int nfrags = skb_shinfo(skb)->nr_frags;
 267
 268        if (likely(skb_headlen(skb)))
 269                dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
 270                                 DMA_TO_DEVICE);
 271        else {
 272                dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
 273                               DMA_TO_DEVICE);
 274                nfrags--;
 275        }
 276
 277        /*
 278         * the complexity below is because of the possibility of a wrap-around
 279         * in the middle of an SGL
 280         */
 281        for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
 282                if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
 283unmap:                  dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 284                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 285                        dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
 286                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 287                        p++;
 288                } else if ((u8 *)p == (u8 *)q->stat) {
 289                        p = (const struct ulptx_sge_pair *)q->desc;
 290                        goto unmap;
 291                } else if ((u8 *)p + 8 == (u8 *)q->stat) {
 292                        const __be64 *addr = (const __be64 *)q->desc;
 293
 294                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 295                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 296                        dma_unmap_page(dev, be64_to_cpu(addr[1]),
 297                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 298                        p = (const struct ulptx_sge_pair *)&addr[2];
 299                } else {
 300                        const __be64 *addr = (const __be64 *)q->desc;
 301
 302                        dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 303                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 304                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 305                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 306                        p = (const struct ulptx_sge_pair *)&addr[1];
 307                }
 308        }
 309        if (nfrags) {
 310                __be64 addr;
 311
 312                if ((u8 *)p == (u8 *)q->stat)
 313                        p = (const struct ulptx_sge_pair *)q->desc;
 314                addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
 315                                                       *(const __be64 *)q->desc;
 316                dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
 317                               DMA_TO_DEVICE);
 318        }
 319}
 320
 321/**
 322 *      free_tx_desc - reclaims Tx descriptors and their buffers
 323 *      @adapter: the adapter
 324 *      @q: the Tx queue to reclaim descriptors from
 325 *      @n: the number of descriptors to reclaim
 326 *      @unmap: whether the buffers should be unmapped for DMA
 327 *
 328 *      Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 329 *      Tx buffers.  Called with the Tx queue lock held.
 330 */
 331static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
 332                         unsigned int n, bool unmap)
 333{
 334        struct tx_sw_desc *d;
 335        unsigned int cidx = q->cidx;
 336        struct device *dev = adap->pdev_dev;
 337
 338        d = &q->sdesc[cidx];
 339        while (n--) {
 340                if (d->skb) {                       /* an SGL is present */
 341                        if (unmap)
 342                                unmap_sgl(dev, d->skb, d->sgl, q);
 343                        kfree_skb(d->skb);
 344                        d->skb = NULL;
 345                }
 346                ++d;
 347                if (++cidx == q->size) {
 348                        cidx = 0;
 349                        d = q->sdesc;
 350                }
 351        }
 352        q->cidx = cidx;
 353}
 354
 355/*
 356 * Return the number of reclaimable descriptors in a Tx queue.
 357 */
 358static inline int reclaimable(const struct sge_txq *q)
 359{
 360        int hw_cidx = ntohs(q->stat->cidx);
 361        hw_cidx -= q->cidx;
 362        return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
 363}
 364
 365/**
 366 *      reclaim_completed_tx - reclaims completed Tx descriptors
 367 *      @adap: the adapter
 368 *      @q: the Tx queue to reclaim completed descriptors from
 369 *      @unmap: whether the buffers should be unmapped for DMA
 370 *
 371 *      Reclaims Tx descriptors that the SGE has indicated it has processed,
 372 *      and frees the associated buffers if possible.  Called with the Tx
 373 *      queue locked.
 374 */
 375static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
 376                                        bool unmap)
 377{
 378        int avail = reclaimable(q);
 379
 380        if (avail) {
 381                /*
 382                 * Limit the amount of clean up work we do at a time to keep
 383                 * the Tx lock hold time O(1).
 384                 */
 385                if (avail > MAX_TX_RECLAIM)
 386                        avail = MAX_TX_RECLAIM;
 387
 388                free_tx_desc(adap, q, avail, unmap);
 389                q->in_use -= avail;
 390        }
 391}
 392
 393static inline int get_buf_size(const struct rx_sw_desc *d)
 394{
 395#if FL_PG_ORDER > 0
 396        return (d->dma_addr & RX_LARGE_BUF) ? (PAGE_SIZE << FL_PG_ORDER) :
 397                                              PAGE_SIZE;
 398#else
 399        return PAGE_SIZE;
 400#endif
 401}
 402
 403/**
 404 *      free_rx_bufs - free the Rx buffers on an SGE free list
 405 *      @adap: the adapter
 406 *      @q: the SGE free list to free buffers from
 407 *      @n: how many buffers to free
 408 *
 409 *      Release the next @n buffers on an SGE free-buffer Rx queue.   The
 410 *      buffers must be made inaccessible to HW before calling this function.
 411 */
 412static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
 413{
 414        while (n--) {
 415                struct rx_sw_desc *d = &q->sdesc[q->cidx];
 416
 417                if (is_buf_mapped(d))
 418                        dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 419                                       get_buf_size(d), PCI_DMA_FROMDEVICE);
 420                put_page(d->page);
 421                d->page = NULL;
 422                if (++q->cidx == q->size)
 423                        q->cidx = 0;
 424                q->avail--;
 425        }
 426}
 427
 428/**
 429 *      unmap_rx_buf - unmap the current Rx buffer on an SGE free list
 430 *      @adap: the adapter
 431 *      @q: the SGE free list
 432 *
 433 *      Unmap the current buffer on an SGE free-buffer Rx queue.   The
 434 *      buffer must be made inaccessible to HW before calling this function.
 435 *
 436 *      This is similar to @free_rx_bufs above but does not free the buffer.
 437 *      Do note that the FL still loses any further access to the buffer.
 438 */
 439static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
 440{
 441        struct rx_sw_desc *d = &q->sdesc[q->cidx];
 442
 443        if (is_buf_mapped(d))
 444                dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 445                               get_buf_size(d), PCI_DMA_FROMDEVICE);
 446        d->page = NULL;
 447        if (++q->cidx == q->size)
 448                q->cidx = 0;
 449        q->avail--;
 450}
 451
 452static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
 453{
 454        if (q->pend_cred >= 8) {
 455                wmb();
 456                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO |
 457                             QID(q->cntxt_id) | PIDX(q->pend_cred / 8));
 458                q->pend_cred &= 7;
 459        }
 460}
 461
 462static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
 463                                  dma_addr_t mapping)
 464{
 465        sd->page = pg;
 466        sd->dma_addr = mapping;      /* includes size low bits */
 467}
 468
 469/**
 470 *      refill_fl - refill an SGE Rx buffer ring
 471 *      @adap: the adapter
 472 *      @q: the ring to refill
 473 *      @n: the number of new buffers to allocate
 474 *      @gfp: the gfp flags for the allocations
 475 *
 476 *      (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 477 *      allocated with the supplied gfp flags.  The caller must assure that
 478 *      @n does not exceed the queue's capacity.  If afterwards the queue is
 479 *      found critically low mark it as starving in the bitmap of starving FLs.
 480 *
 481 *      Returns the number of buffers allocated.
 482 */
 483static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
 484                              gfp_t gfp)
 485{
 486        struct page *pg;
 487        dma_addr_t mapping;
 488        unsigned int cred = q->avail;
 489        __be64 *d = &q->desc[q->pidx];
 490        struct rx_sw_desc *sd = &q->sdesc[q->pidx];
 491
 492        gfp |= __GFP_NOWARN;         /* failures are expected */
 493
 494#if FL_PG_ORDER > 0
 495        /*
 496         * Prefer large buffers
 497         */
 498        while (n) {
 499                pg = alloc_pages(gfp | __GFP_COMP, FL_PG_ORDER);
 500                if (unlikely(!pg)) {
 501                        q->large_alloc_failed++;
 502                        break;       /* fall back to single pages */
 503                }
 504
 505                mapping = dma_map_page(adap->pdev_dev, pg, 0,
 506                                       PAGE_SIZE << FL_PG_ORDER,
 507                                       PCI_DMA_FROMDEVICE);
 508                if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 509                        __free_pages(pg, FL_PG_ORDER);
 510                        goto out;   /* do not try small pages for this error */
 511                }
 512                mapping |= RX_LARGE_BUF;
 513                *d++ = cpu_to_be64(mapping);
 514
 515                set_rx_sw_desc(sd, pg, mapping);
 516                sd++;
 517
 518                q->avail++;
 519                if (++q->pidx == q->size) {
 520                        q->pidx = 0;
 521                        sd = q->sdesc;
 522                        d = q->desc;
 523                }
 524                n--;
 525        }
 526#endif
 527
 528        while (n--) {
 529                pg = __netdev_alloc_page(adap->port[0], gfp);
 530                if (unlikely(!pg)) {
 531                        q->alloc_failed++;
 532                        break;
 533                }
 534
 535                mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
 536                                       PCI_DMA_FROMDEVICE);
 537                if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 538                        netdev_free_page(adap->port[0], pg);
 539                        goto out;
 540                }
 541                *d++ = cpu_to_be64(mapping);
 542
 543                set_rx_sw_desc(sd, pg, mapping);
 544                sd++;
 545
 546                q->avail++;
 547                if (++q->pidx == q->size) {
 548                        q->pidx = 0;
 549                        sd = q->sdesc;
 550                        d = q->desc;
 551                }
 552        }
 553
 554out:    cred = q->avail - cred;
 555        q->pend_cred += cred;
 556        ring_fl_db(adap, q);
 557
 558        if (unlikely(fl_starving(q))) {
 559                smp_wmb();
 560                set_bit(q->cntxt_id - adap->sge.egr_start,
 561                        adap->sge.starving_fl);
 562        }
 563
 564        return cred;
 565}
 566
 567static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
 568{
 569        refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
 570                  GFP_ATOMIC);
 571}
 572
 573/**
 574 *      alloc_ring - allocate resources for an SGE descriptor ring
 575 *      @dev: the PCI device's core device
 576 *      @nelem: the number of descriptors
 577 *      @elem_size: the size of each descriptor
 578 *      @sw_size: the size of the SW state associated with each ring element
 579 *      @phys: the physical address of the allocated ring
 580 *      @metadata: address of the array holding the SW state for the ring
 581 *      @stat_size: extra space in HW ring for status information
 582 *      @node: preferred node for memory allocations
 583 *
 584 *      Allocates resources for an SGE descriptor ring, such as Tx queues,
 585 *      free buffer lists, or response queues.  Each SGE ring requires
 586 *      space for its HW descriptors plus, optionally, space for the SW state
 587 *      associated with each HW entry (the metadata).  The function returns
 588 *      three values: the virtual address for the HW ring (the return value
 589 *      of the function), the bus address of the HW ring, and the address
 590 *      of the SW ring.
 591 */
 592static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
 593                        size_t sw_size, dma_addr_t *phys, void *metadata,
 594                        size_t stat_size, int node)
 595{
 596        size_t len = nelem * elem_size + stat_size;
 597        void *s = NULL;
 598        void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
 599
 600        if (!p)
 601                return NULL;
 602        if (sw_size) {
 603                s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
 604
 605                if (!s) {
 606                        dma_free_coherent(dev, len, p, *phys);
 607                        return NULL;
 608                }
 609        }
 610        if (metadata)
 611                *(void **)metadata = s;
 612        memset(p, 0, len);
 613        return p;
 614}
 615
 616/**
 617 *      sgl_len - calculates the size of an SGL of the given capacity
 618 *      @n: the number of SGL entries
 619 *
 620 *      Calculates the number of flits needed for a scatter/gather list that
 621 *      can hold the given number of entries.
 622 */
 623static inline unsigned int sgl_len(unsigned int n)
 624{
 625        n--;
 626        return (3 * n) / 2 + (n & 1) + 2;
 627}
 628
 629/**
 630 *      flits_to_desc - returns the num of Tx descriptors for the given flits
 631 *      @n: the number of flits
 632 *
 633 *      Returns the number of Tx descriptors needed for the supplied number
 634 *      of flits.
 635 */
 636static inline unsigned int flits_to_desc(unsigned int n)
 637{
 638        BUG_ON(n > SGE_MAX_WR_LEN / 8);
 639        return DIV_ROUND_UP(n, 8);
 640}
 641
 642/**
 643 *      is_eth_imm - can an Ethernet packet be sent as immediate data?
 644 *      @skb: the packet
 645 *
 646 *      Returns whether an Ethernet packet is small enough to fit as
 647 *      immediate data.
 648 */
 649static inline int is_eth_imm(const struct sk_buff *skb)
 650{
 651        return skb->len <= MAX_IMM_TX_PKT_LEN - sizeof(struct cpl_tx_pkt);
 652}
 653
 654/**
 655 *      calc_tx_flits - calculate the number of flits for a packet Tx WR
 656 *      @skb: the packet
 657 *
 658 *      Returns the number of flits needed for a Tx WR for the given Ethernet
 659 *      packet, including the needed WR and CPL headers.
 660 */
 661static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
 662{
 663        unsigned int flits;
 664
 665        if (is_eth_imm(skb))
 666                return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 8);
 667
 668        flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
 669        if (skb_shinfo(skb)->gso_size)
 670                flits += 2;
 671        return flits;
 672}
 673
 674/**
 675 *      calc_tx_descs - calculate the number of Tx descriptors for a packet
 676 *      @skb: the packet
 677 *
 678 *      Returns the number of Tx descriptors needed for the given Ethernet
 679 *      packet, including the needed WR and CPL headers.
 680 */
 681static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
 682{
 683        return flits_to_desc(calc_tx_flits(skb));
 684}
 685
 686/**
 687 *      write_sgl - populate a scatter/gather list for a packet
 688 *      @skb: the packet
 689 *      @q: the Tx queue we are writing into
 690 *      @sgl: starting location for writing the SGL
 691 *      @end: points right after the end of the SGL
 692 *      @start: start offset into skb main-body data to include in the SGL
 693 *      @addr: the list of bus addresses for the SGL elements
 694 *
 695 *      Generates a gather list for the buffers that make up a packet.
 696 *      The caller must provide adequate space for the SGL that will be written.
 697 *      The SGL includes all of the packet's page fragments and the data in its
 698 *      main body except for the first @start bytes.  @sgl must be 16-byte
 699 *      aligned and within a Tx descriptor with available space.  @end points
 700 *      right after the end of the SGL but does not account for any potential
 701 *      wrap around, i.e., @end > @sgl.
 702 */
 703static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
 704                      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
 705                      const dma_addr_t *addr)
 706{
 707        unsigned int i, len;
 708        struct ulptx_sge_pair *to;
 709        const struct skb_shared_info *si = skb_shinfo(skb);
 710        unsigned int nfrags = si->nr_frags;
 711        struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
 712
 713        len = skb_headlen(skb) - start;
 714        if (likely(len)) {
 715                sgl->len0 = htonl(len);
 716                sgl->addr0 = cpu_to_be64(addr[0] + start);
 717                nfrags++;
 718        } else {
 719                sgl->len0 = htonl(si->frags[0].size);
 720                sgl->addr0 = cpu_to_be64(addr[1]);
 721        }
 722
 723        sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
 724        if (likely(--nfrags == 0))
 725                return;
 726        /*
 727         * Most of the complexity below deals with the possibility we hit the
 728         * end of the queue in the middle of writing the SGL.  For this case
 729         * only we create the SGL in a temporary buffer and then copy it.
 730         */
 731        to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
 732
 733        for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
 734                to->len[0] = cpu_to_be32(si->frags[i].size);
 735                to->len[1] = cpu_to_be32(si->frags[++i].size);
 736                to->addr[0] = cpu_to_be64(addr[i]);
 737                to->addr[1] = cpu_to_be64(addr[++i]);
 738        }
 739        if (nfrags) {
 740                to->len[0] = cpu_to_be32(si->frags[i].size);
 741                to->len[1] = cpu_to_be32(0);
 742                to->addr[0] = cpu_to_be64(addr[i + 1]);
 743        }
 744        if (unlikely((u8 *)end > (u8 *)q->stat)) {
 745                unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
 746
 747                if (likely(part0))
 748                        memcpy(sgl->sge, buf, part0);
 749                part1 = (u8 *)end - (u8 *)q->stat;
 750                memcpy(q->desc, (u8 *)buf + part0, part1);
 751                end = (void *)q->desc + part1;
 752        }
 753        if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
 754                *(u64 *)end = 0;
 755}
 756
 757/**
 758 *      ring_tx_db - check and potentially ring a Tx queue's doorbell
 759 *      @adap: the adapter
 760 *      @q: the Tx queue
 761 *      @n: number of new descriptors to give to HW
 762 *
 763 *      Ring the doorbel for a Tx queue.
 764 */
 765static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
 766{
 767        wmb();            /* write descriptors before telling HW */
 768        t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
 769                     QID(q->cntxt_id) | PIDX(n));
 770}
 771
 772/**
 773 *      inline_tx_skb - inline a packet's data into Tx descriptors
 774 *      @skb: the packet
 775 *      @q: the Tx queue where the packet will be inlined
 776 *      @pos: starting position in the Tx queue where to inline the packet
 777 *
 778 *      Inline a packet's contents directly into Tx descriptors, starting at
 779 *      the given position within the Tx DMA ring.
 780 *      Most of the complexity of this operation is dealing with wrap arounds
 781 *      in the middle of the packet we want to inline.
 782 */
 783static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
 784                          void *pos)
 785{
 786        u64 *p;
 787        int left = (void *)q->stat - pos;
 788
 789        if (likely(skb->len <= left)) {
 790                if (likely(!skb->data_len))
 791                        skb_copy_from_linear_data(skb, pos, skb->len);
 792                else
 793                        skb_copy_bits(skb, 0, pos, skb->len);
 794                pos += skb->len;
 795        } else {
 796                skb_copy_bits(skb, 0, pos, left);
 797                skb_copy_bits(skb, left, q->desc, skb->len - left);
 798                pos = (void *)q->desc + (skb->len - left);
 799        }
 800
 801        /* 0-pad to multiple of 16 */
 802        p = PTR_ALIGN(pos, 8);
 803        if ((uintptr_t)p & 8)
 804                *p = 0;
 805}
 806
 807/*
 808 * Figure out what HW csum a packet wants and return the appropriate control
 809 * bits.
 810 */
 811static u64 hwcsum(const struct sk_buff *skb)
 812{
 813        int csum_type;
 814        const struct iphdr *iph = ip_hdr(skb);
 815
 816        if (iph->version == 4) {
 817                if (iph->protocol == IPPROTO_TCP)
 818                        csum_type = TX_CSUM_TCPIP;
 819                else if (iph->protocol == IPPROTO_UDP)
 820                        csum_type = TX_CSUM_UDPIP;
 821                else {
 822nocsum:                 /*
 823                         * unknown protocol, disable HW csum
 824                         * and hope a bad packet is detected
 825                         */
 826                        return TXPKT_L4CSUM_DIS;
 827                }
 828        } else {
 829                /*
 830                 * this doesn't work with extension headers
 831                 */
 832                const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
 833
 834                if (ip6h->nexthdr == IPPROTO_TCP)
 835                        csum_type = TX_CSUM_TCPIP6;
 836                else if (ip6h->nexthdr == IPPROTO_UDP)
 837                        csum_type = TX_CSUM_UDPIP6;
 838                else
 839                        goto nocsum;
 840        }
 841
 842        if (likely(csum_type >= TX_CSUM_TCPIP))
 843                return TXPKT_CSUM_TYPE(csum_type) |
 844                        TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
 845                        TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
 846        else {
 847                int start = skb_transport_offset(skb);
 848
 849                return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
 850                        TXPKT_CSUM_LOC(start + skb->csum_offset);
 851        }
 852}
 853
 854static void eth_txq_stop(struct sge_eth_txq *q)
 855{
 856        netif_tx_stop_queue(q->txq);
 857        q->q.stops++;
 858}
 859
 860static inline void txq_advance(struct sge_txq *q, unsigned int n)
 861{
 862        q->in_use += n;
 863        q->pidx += n;
 864        if (q->pidx >= q->size)
 865                q->pidx -= q->size;
 866}
 867
 868/**
 869 *      t4_eth_xmit - add a packet to an Ethernet Tx queue
 870 *      @skb: the packet
 871 *      @dev: the egress net device
 872 *
 873 *      Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
 874 */
 875netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
 876{
 877        u32 wr_mid;
 878        u64 cntrl, *end;
 879        int qidx, credits;
 880        unsigned int flits, ndesc;
 881        struct adapter *adap;
 882        struct sge_eth_txq *q;
 883        const struct port_info *pi;
 884        struct fw_eth_tx_pkt_wr *wr;
 885        struct cpl_tx_pkt_core *cpl;
 886        const struct skb_shared_info *ssi;
 887        dma_addr_t addr[MAX_SKB_FRAGS + 1];
 888
 889        /*
 890         * The chip min packet length is 10 octets but play safe and reject
 891         * anything shorter than an Ethernet header.
 892         */
 893        if (unlikely(skb->len < ETH_HLEN)) {
 894out_free:       dev_kfree_skb(skb);
 895                return NETDEV_TX_OK;
 896        }
 897
 898        pi = netdev_priv(dev);
 899        adap = pi->adapter;
 900        qidx = skb_get_queue_mapping(skb);
 901        q = &adap->sge.ethtxq[qidx + pi->first_qset];
 902
 903        reclaim_completed_tx(adap, &q->q, true);
 904
 905        flits = calc_tx_flits(skb);
 906        ndesc = flits_to_desc(flits);
 907        credits = txq_avail(&q->q) - ndesc;
 908
 909        if (unlikely(credits < 0)) {
 910                eth_txq_stop(q);
 911                dev_err(adap->pdev_dev,
 912                        "%s: Tx ring %u full while queue awake!\n",
 913                        dev->name, qidx);
 914                return NETDEV_TX_BUSY;
 915        }
 916
 917        if (!is_eth_imm(skb) &&
 918            unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
 919                q->mapping_err++;
 920                goto out_free;
 921        }
 922
 923        wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
 924        if (unlikely(credits < ETHTXQ_STOP_THRES)) {
 925                eth_txq_stop(q);
 926                wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
 927        }
 928
 929        wr = (void *)&q->q.desc[q->q.pidx];
 930        wr->equiq_to_len16 = htonl(wr_mid);
 931        wr->r3 = cpu_to_be64(0);
 932        end = (u64 *)wr + flits;
 933
 934        ssi = skb_shinfo(skb);
 935        if (ssi->gso_size) {
 936                struct cpl_tx_pkt_lso *lso = (void *)wr;
 937                bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
 938                int l3hdr_len = skb_network_header_len(skb);
 939                int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
 940
 941                wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
 942                                       FW_WR_IMMDLEN(sizeof(*lso)));
 943                lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
 944                                        LSO_FIRST_SLICE | LSO_LAST_SLICE |
 945                                        LSO_IPV6(v6) |
 946                                        LSO_ETHHDR_LEN(eth_xtra_len / 4) |
 947                                        LSO_IPHDR_LEN(l3hdr_len / 4) |
 948                                        LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
 949                lso->c.ipid_ofst = htons(0);
 950                lso->c.mss = htons(ssi->gso_size);
 951                lso->c.seqno_offset = htonl(0);
 952                lso->c.len = htonl(skb->len);
 953                cpl = (void *)(lso + 1);
 954                cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
 955                        TXPKT_IPHDR_LEN(l3hdr_len) |
 956                        TXPKT_ETHHDR_LEN(eth_xtra_len);
 957                q->tso++;
 958                q->tx_cso += ssi->gso_segs;
 959        } else {
 960                int len;
 961
 962                len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
 963                wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
 964                                       FW_WR_IMMDLEN(len));
 965                cpl = (void *)(wr + 1);
 966                if (skb->ip_summed == CHECKSUM_PARTIAL) {
 967                        cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
 968                        q->tx_cso++;
 969                } else
 970                        cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
 971        }
 972
 973        if (vlan_tx_tag_present(skb)) {
 974                q->vlan_ins++;
 975                cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
 976        }
 977
 978        cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
 979                           TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
 980        cpl->pack = htons(0);
 981        cpl->len = htons(skb->len);
 982        cpl->ctrl1 = cpu_to_be64(cntrl);
 983
 984        if (is_eth_imm(skb)) {
 985                inline_tx_skb(skb, &q->q, cpl + 1);
 986                dev_kfree_skb(skb);
 987        } else {
 988                int last_desc;
 989
 990                write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
 991                          addr);
 992                skb_orphan(skb);
 993
 994                last_desc = q->q.pidx + ndesc - 1;
 995                if (last_desc >= q->q.size)
 996                        last_desc -= q->q.size;
 997                q->q.sdesc[last_desc].skb = skb;
 998                q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
 999        }
1000
1001        txq_advance(&q->q, ndesc);
1002
1003        ring_tx_db(adap, &q->q, ndesc);
1004        return NETDEV_TX_OK;
1005}
1006
1007/**
1008 *      reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1009 *      @q: the SGE control Tx queue
1010 *
1011 *      This is a variant of reclaim_completed_tx() that is used for Tx queues
1012 *      that send only immediate data (presently just the control queues) and
1013 *      thus do not have any sk_buffs to release.
1014 */
1015static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1016{
1017        int hw_cidx = ntohs(q->stat->cidx);
1018        int reclaim = hw_cidx - q->cidx;
1019
1020        if (reclaim < 0)
1021                reclaim += q->size;
1022
1023        q->in_use -= reclaim;
1024        q->cidx = hw_cidx;
1025}
1026
1027/**
1028 *      is_imm - check whether a packet can be sent as immediate data
1029 *      @skb: the packet
1030 *
1031 *      Returns true if a packet can be sent as a WR with immediate data.
1032 */
1033static inline int is_imm(const struct sk_buff *skb)
1034{
1035        return skb->len <= MAX_CTRL_WR_LEN;
1036}
1037
1038/**
1039 *      ctrlq_check_stop - check if a control queue is full and should stop
1040 *      @q: the queue
1041 *      @wr: most recent WR written to the queue
1042 *
1043 *      Check if a control queue has become full and should be stopped.
1044 *      We clean up control queue descriptors very lazily, only when we are out.
1045 *      If the queue is still full after reclaiming any completed descriptors
1046 *      we suspend it and have the last WR wake it up.
1047 */
1048static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1049{
1050        reclaim_completed_tx_imm(&q->q);
1051        if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1052                wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1053                q->q.stops++;
1054                q->full = 1;
1055        }
1056}
1057
1058/**
1059 *      ctrl_xmit - send a packet through an SGE control Tx queue
1060 *      @q: the control queue
1061 *      @skb: the packet
1062 *
1063 *      Send a packet through an SGE control Tx queue.  Packets sent through
1064 *      a control queue must fit entirely as immediate data.
1065 */
1066static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1067{
1068        unsigned int ndesc;
1069        struct fw_wr_hdr *wr;
1070
1071        if (unlikely(!is_imm(skb))) {
1072                WARN_ON(1);
1073                dev_kfree_skb(skb);
1074                return NET_XMIT_DROP;
1075        }
1076
1077        ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1078        spin_lock(&q->sendq.lock);
1079
1080        if (unlikely(q->full)) {
1081                skb->priority = ndesc;                  /* save for restart */
1082                __skb_queue_tail(&q->sendq, skb);
1083                spin_unlock(&q->sendq.lock);
1084                return NET_XMIT_CN;
1085        }
1086
1087        wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1088        inline_tx_skb(skb, &q->q, wr);
1089
1090        txq_advance(&q->q, ndesc);
1091        if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1092                ctrlq_check_stop(q, wr);
1093
1094        ring_tx_db(q->adap, &q->q, ndesc);
1095        spin_unlock(&q->sendq.lock);
1096
1097        kfree_skb(skb);
1098        return NET_XMIT_SUCCESS;
1099}
1100
1101/**
1102 *      restart_ctrlq - restart a suspended control queue
1103 *      @data: the control queue to restart
1104 *
1105 *      Resumes transmission on a suspended Tx control queue.
1106 */
1107static void restart_ctrlq(unsigned long data)
1108{
1109        struct sk_buff *skb;
1110        unsigned int written = 0;
1111        struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1112
1113        spin_lock(&q->sendq.lock);
1114        reclaim_completed_tx_imm(&q->q);
1115        BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
1116
1117        while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1118                struct fw_wr_hdr *wr;
1119                unsigned int ndesc = skb->priority;     /* previously saved */
1120
1121                /*
1122                 * Write descriptors and free skbs outside the lock to limit
1123                 * wait times.  q->full is still set so new skbs will be queued.
1124                 */
1125                spin_unlock(&q->sendq.lock);
1126
1127                wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1128                inline_tx_skb(skb, &q->q, wr);
1129                kfree_skb(skb);
1130
1131                written += ndesc;
1132                txq_advance(&q->q, ndesc);
1133                if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1134                        unsigned long old = q->q.stops;
1135
1136                        ctrlq_check_stop(q, wr);
1137                        if (q->q.stops != old) {          /* suspended anew */
1138                                spin_lock(&q->sendq.lock);
1139                                goto ringdb;
1140                        }
1141                }
1142                if (written > 16) {
1143                        ring_tx_db(q->adap, &q->q, written);
1144                        written = 0;
1145                }
1146                spin_lock(&q->sendq.lock);
1147        }
1148        q->full = 0;
1149ringdb: if (written)
1150                ring_tx_db(q->adap, &q->q, written);
1151        spin_unlock(&q->sendq.lock);
1152}
1153
1154/**
1155 *      t4_mgmt_tx - send a management message
1156 *      @adap: the adapter
1157 *      @skb: the packet containing the management message
1158 *
1159 *      Send a management message through control queue 0.
1160 */
1161int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1162{
1163        int ret;
1164
1165        local_bh_disable();
1166        ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1167        local_bh_enable();
1168        return ret;
1169}
1170
1171/**
1172 *      is_ofld_imm - check whether a packet can be sent as immediate data
1173 *      @skb: the packet
1174 *
1175 *      Returns true if a packet can be sent as an offload WR with immediate
1176 *      data.  We currently use the same limit as for Ethernet packets.
1177 */
1178static inline int is_ofld_imm(const struct sk_buff *skb)
1179{
1180        return skb->len <= MAX_IMM_TX_PKT_LEN;
1181}
1182
1183/**
1184 *      calc_tx_flits_ofld - calculate # of flits for an offload packet
1185 *      @skb: the packet
1186 *
1187 *      Returns the number of flits needed for the given offload packet.
1188 *      These packets are already fully constructed and no additional headers
1189 *      will be added.
1190 */
1191static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1192{
1193        unsigned int flits, cnt;
1194
1195        if (is_ofld_imm(skb))
1196                return DIV_ROUND_UP(skb->len, 8);
1197
1198        flits = skb_transport_offset(skb) / 8U;   /* headers */
1199        cnt = skb_shinfo(skb)->nr_frags;
1200        if (skb->tail != skb->transport_header)
1201                cnt++;
1202        return flits + sgl_len(cnt);
1203}
1204
1205/**
1206 *      txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1207 *      @adap: the adapter
1208 *      @q: the queue to stop
1209 *
1210 *      Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1211 *      inability to map packets.  A periodic timer attempts to restart
1212 *      queues so marked.
1213 */
1214static void txq_stop_maperr(struct sge_ofld_txq *q)
1215{
1216        q->mapping_err++;
1217        q->q.stops++;
1218        set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1219                q->adap->sge.txq_maperr);
1220}
1221
1222/**
1223 *      ofldtxq_stop - stop an offload Tx queue that has become full
1224 *      @q: the queue to stop
1225 *      @skb: the packet causing the queue to become full
1226 *
1227 *      Stops an offload Tx queue that has become full and modifies the packet
1228 *      being written to request a wakeup.
1229 */
1230static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1231{
1232        struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1233
1234        wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1235        q->q.stops++;
1236        q->full = 1;
1237}
1238
1239/**
1240 *      service_ofldq - restart a suspended offload queue
1241 *      @q: the offload queue
1242 *
1243 *      Services an offload Tx queue by moving packets from its packet queue
1244 *      to the HW Tx ring.  The function starts and ends with the queue locked.
1245 */
1246static void service_ofldq(struct sge_ofld_txq *q)
1247{
1248        u64 *pos;
1249        int credits;
1250        struct sk_buff *skb;
1251        unsigned int written = 0;
1252        unsigned int flits, ndesc;
1253
1254        while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1255                /*
1256                 * We drop the lock but leave skb on sendq, thus retaining
1257                 * exclusive access to the state of the queue.
1258                 */
1259                spin_unlock(&q->sendq.lock);
1260
1261                reclaim_completed_tx(q->adap, &q->q, false);
1262
1263                flits = skb->priority;                /* previously saved */
1264                ndesc = flits_to_desc(flits);
1265                credits = txq_avail(&q->q) - ndesc;
1266                BUG_ON(credits < 0);
1267                if (unlikely(credits < TXQ_STOP_THRES))
1268                        ofldtxq_stop(q, skb);
1269
1270                pos = (u64 *)&q->q.desc[q->q.pidx];
1271                if (is_ofld_imm(skb))
1272                        inline_tx_skb(skb, &q->q, pos);
1273                else if (map_skb(q->adap->pdev_dev, skb,
1274                                 (dma_addr_t *)skb->head)) {
1275                        txq_stop_maperr(q);
1276                        spin_lock(&q->sendq.lock);
1277                        break;
1278                } else {
1279                        int last_desc, hdr_len = skb_transport_offset(skb);
1280
1281                        memcpy(pos, skb->data, hdr_len);
1282                        write_sgl(skb, &q->q, (void *)pos + hdr_len,
1283                                  pos + flits, hdr_len,
1284                                  (dma_addr_t *)skb->head);
1285#ifdef CONFIG_NEED_DMA_MAP_STATE
1286                        skb->dev = q->adap->port[0];
1287                        skb->destructor = deferred_unmap_destructor;
1288#endif
1289                        last_desc = q->q.pidx + ndesc - 1;
1290                        if (last_desc >= q->q.size)
1291                                last_desc -= q->q.size;
1292                        q->q.sdesc[last_desc].skb = skb;
1293                }
1294
1295                txq_advance(&q->q, ndesc);
1296                written += ndesc;
1297                if (unlikely(written > 32)) {
1298                        ring_tx_db(q->adap, &q->q, written);
1299                        written = 0;
1300                }
1301
1302                spin_lock(&q->sendq.lock);
1303                __skb_unlink(skb, &q->sendq);
1304                if (is_ofld_imm(skb))
1305                        kfree_skb(skb);
1306        }
1307        if (likely(written))
1308                ring_tx_db(q->adap, &q->q, written);
1309}
1310
1311/**
1312 *      ofld_xmit - send a packet through an offload queue
1313 *      @q: the Tx offload queue
1314 *      @skb: the packet
1315 *
1316 *      Send an offload packet through an SGE offload queue.
1317 */
1318static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1319{
1320        skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
1321        spin_lock(&q->sendq.lock);
1322        __skb_queue_tail(&q->sendq, skb);
1323        if (q->sendq.qlen == 1)
1324                service_ofldq(q);
1325        spin_unlock(&q->sendq.lock);
1326        return NET_XMIT_SUCCESS;
1327}
1328
1329/**
1330 *      restart_ofldq - restart a suspended offload queue
1331 *      @data: the offload queue to restart
1332 *
1333 *      Resumes transmission on a suspended Tx offload queue.
1334 */
1335static void restart_ofldq(unsigned long data)
1336{
1337        struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1338
1339        spin_lock(&q->sendq.lock);
1340        q->full = 0;            /* the queue actually is completely empty now */
1341        service_ofldq(q);
1342        spin_unlock(&q->sendq.lock);
1343}
1344
1345/**
1346 *      skb_txq - return the Tx queue an offload packet should use
1347 *      @skb: the packet
1348 *
1349 *      Returns the Tx queue an offload packet should use as indicated by bits
1350 *      1-15 in the packet's queue_mapping.
1351 */
1352static inline unsigned int skb_txq(const struct sk_buff *skb)
1353{
1354        return skb->queue_mapping >> 1;
1355}
1356
1357/**
1358 *      is_ctrl_pkt - return whether an offload packet is a control packet
1359 *      @skb: the packet
1360 *
1361 *      Returns whether an offload packet should use an OFLD or a CTRL
1362 *      Tx queue as indicated by bit 0 in the packet's queue_mapping.
1363 */
1364static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1365{
1366        return skb->queue_mapping & 1;
1367}
1368
1369static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1370{
1371        unsigned int idx = skb_txq(skb);
1372
1373        if (unlikely(is_ctrl_pkt(skb)))
1374                return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1375        return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1376}
1377
1378/**
1379 *      t4_ofld_send - send an offload packet
1380 *      @adap: the adapter
1381 *      @skb: the packet
1382 *
1383 *      Sends an offload packet.  We use the packet queue_mapping to select the
1384 *      appropriate Tx queue as follows: bit 0 indicates whether the packet
1385 *      should be sent as regular or control, bits 1-15 select the queue.
1386 */
1387int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1388{
1389        int ret;
1390
1391        local_bh_disable();
1392        ret = ofld_send(adap, skb);
1393        local_bh_enable();
1394        return ret;
1395}
1396
1397/**
1398 *      cxgb4_ofld_send - send an offload packet
1399 *      @dev: the net device
1400 *      @skb: the packet
1401 *
1402 *      Sends an offload packet.  This is an exported version of @t4_ofld_send,
1403 *      intended for ULDs.
1404 */
1405int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1406{
1407        return t4_ofld_send(netdev2adap(dev), skb);
1408}
1409EXPORT_SYMBOL(cxgb4_ofld_send);
1410
1411static inline void copy_frags(struct skb_shared_info *ssi,
1412                              const struct pkt_gl *gl, unsigned int offset)
1413{
1414        unsigned int n;
1415
1416        /* usually there's just one frag */
1417        ssi->frags[0].page = gl->frags[0].page;
1418        ssi->frags[0].page_offset = gl->frags[0].page_offset + offset;
1419        ssi->frags[0].size = gl->frags[0].size - offset;
1420        ssi->nr_frags = gl->nfrags;
1421        n = gl->nfrags - 1;
1422        if (n)
1423                memcpy(&ssi->frags[1], &gl->frags[1], n * sizeof(skb_frag_t));
1424
1425        /* get a reference to the last page, we don't own it */
1426        get_page(gl->frags[n].page);
1427}
1428
1429/**
1430 *      cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1431 *      @gl: the gather list
1432 *      @skb_len: size of sk_buff main body if it carries fragments
1433 *      @pull_len: amount of data to move to the sk_buff's main body
1434 *
1435 *      Builds an sk_buff from the given packet gather list.  Returns the
1436 *      sk_buff or %NULL if sk_buff allocation failed.
1437 */
1438struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1439                                   unsigned int skb_len, unsigned int pull_len)
1440{
1441        struct sk_buff *skb;
1442
1443        /*
1444         * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1445         * size, which is expected since buffers are at least PAGE_SIZEd.
1446         * In this case packets up to RX_COPY_THRES have only one fragment.
1447         */
1448        if (gl->tot_len <= RX_COPY_THRES) {
1449                skb = dev_alloc_skb(gl->tot_len);
1450                if (unlikely(!skb))
1451                        goto out;
1452                __skb_put(skb, gl->tot_len);
1453                skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1454        } else {
1455                skb = dev_alloc_skb(skb_len);
1456                if (unlikely(!skb))
1457                        goto out;
1458                __skb_put(skb, pull_len);
1459                skb_copy_to_linear_data(skb, gl->va, pull_len);
1460
1461                copy_frags(skb_shinfo(skb), gl, pull_len);
1462                skb->len = gl->tot_len;
1463                skb->data_len = skb->len - pull_len;
1464                skb->truesize += skb->data_len;
1465        }
1466out:    return skb;
1467}
1468EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1469
1470/**
1471 *      t4_pktgl_free - free a packet gather list
1472 *      @gl: the gather list
1473 *
1474 *      Releases the pages of a packet gather list.  We do not own the last
1475 *      page on the list and do not free it.
1476 */
1477static void t4_pktgl_free(const struct pkt_gl *gl)
1478{
1479        int n;
1480        const skb_frag_t *p;
1481
1482        for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1483                put_page(p->page);
1484}
1485
1486/*
1487 * Process an MPS trace packet.  Give it an unused protocol number so it won't
1488 * be delivered to anyone and send it to the stack for capture.
1489 */
1490static noinline int handle_trace_pkt(struct adapter *adap,
1491                                     const struct pkt_gl *gl)
1492{
1493        struct sk_buff *skb;
1494        struct cpl_trace_pkt *p;
1495
1496        skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1497        if (unlikely(!skb)) {
1498                t4_pktgl_free(gl);
1499                return 0;
1500        }
1501
1502        p = (struct cpl_trace_pkt *)skb->data;
1503        __skb_pull(skb, sizeof(*p));
1504        skb_reset_mac_header(skb);
1505        skb->protocol = htons(0xffff);
1506        skb->dev = adap->port[0];
1507        netif_receive_skb(skb);
1508        return 0;
1509}
1510
1511static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1512                   const struct cpl_rx_pkt *pkt)
1513{
1514        int ret;
1515        struct sk_buff *skb;
1516
1517        skb = napi_get_frags(&rxq->rspq.napi);
1518        if (unlikely(!skb)) {
1519                t4_pktgl_free(gl);
1520                rxq->stats.rx_drops++;
1521                return;
1522        }
1523
1524        copy_frags(skb_shinfo(skb), gl, RX_PKT_PAD);
1525        skb->len = gl->tot_len - RX_PKT_PAD;
1526        skb->data_len = skb->len;
1527        skb->truesize += skb->data_len;
1528        skb->ip_summed = CHECKSUM_UNNECESSARY;
1529        skb_record_rx_queue(skb, rxq->rspq.idx);
1530        if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1531                skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
1532
1533        if (unlikely(pkt->vlan_ex)) {
1534                __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan));
1535                rxq->stats.vlan_ex++;
1536        }
1537        ret = napi_gro_frags(&rxq->rspq.napi);
1538        if (ret == GRO_HELD)
1539                rxq->stats.lro_pkts++;
1540        else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1541                rxq->stats.lro_merged++;
1542        rxq->stats.pkts++;
1543        rxq->stats.rx_cso++;
1544}
1545
1546/**
1547 *      t4_ethrx_handler - process an ingress ethernet packet
1548 *      @q: the response queue that received the packet
1549 *      @rsp: the response queue descriptor holding the RX_PKT message
1550 *      @si: the gather list of packet fragments
1551 *
1552 *      Process an ingress ethernet packet and deliver it to the stack.
1553 */
1554int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1555                     const struct pkt_gl *si)
1556{
1557        bool csum_ok;
1558        struct sk_buff *skb;
1559        struct port_info *pi;
1560        const struct cpl_rx_pkt *pkt;
1561        struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1562
1563        if (unlikely(*(u8 *)rsp == CPL_TRACE_PKT))
1564                return handle_trace_pkt(q->adap, si);
1565
1566        pkt = (const struct cpl_rx_pkt *)rsp;
1567        csum_ok = pkt->csum_calc && !pkt->err_vec;
1568        if ((pkt->l2info & htonl(RXF_TCP)) &&
1569            (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1570                do_gro(rxq, si, pkt);
1571                return 0;
1572        }
1573
1574        skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1575        if (unlikely(!skb)) {
1576                t4_pktgl_free(si);
1577                rxq->stats.rx_drops++;
1578                return 0;
1579        }
1580
1581        __skb_pull(skb, RX_PKT_PAD);      /* remove ethernet header padding */
1582        skb->protocol = eth_type_trans(skb, q->netdev);
1583        skb_record_rx_queue(skb, q->idx);
1584        if (skb->dev->features & NETIF_F_RXHASH)
1585                skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
1586
1587        pi = netdev_priv(skb->dev);
1588        rxq->stats.pkts++;
1589
1590        if (csum_ok && (pi->rx_offload & RX_CSO) &&
1591            (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
1592                if (!pkt->ip_frag) {
1593                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1594                        rxq->stats.rx_cso++;
1595                } else if (pkt->l2info & htonl(RXF_IP)) {
1596                        __sum16 c = (__force __sum16)pkt->csum;
1597                        skb->csum = csum_unfold(c);
1598                        skb->ip_summed = CHECKSUM_COMPLETE;
1599                        rxq->stats.rx_cso++;
1600                }
1601        } else
1602                skb_checksum_none_assert(skb);
1603
1604        if (unlikely(pkt->vlan_ex)) {
1605                __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan));
1606                rxq->stats.vlan_ex++;
1607        }
1608        netif_receive_skb(skb);
1609        return 0;
1610}
1611
1612/**
1613 *      restore_rx_bufs - put back a packet's Rx buffers
1614 *      @si: the packet gather list
1615 *      @q: the SGE free list
1616 *      @frags: number of FL buffers to restore
1617 *
1618 *      Puts back on an FL the Rx buffers associated with @si.  The buffers
1619 *      have already been unmapped and are left unmapped, we mark them so to
1620 *      prevent further unmapping attempts.
1621 *
1622 *      This function undoes a series of @unmap_rx_buf calls when we find out
1623 *      that the current packet can't be processed right away afterall and we
1624 *      need to come back to it later.  This is a very rare event and there's
1625 *      no effort to make this particularly efficient.
1626 */
1627static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1628                            int frags)
1629{
1630        struct rx_sw_desc *d;
1631
1632        while (frags--) {
1633                if (q->cidx == 0)
1634                        q->cidx = q->size - 1;
1635                else
1636                        q->cidx--;
1637                d = &q->sdesc[q->cidx];
1638                d->page = si->frags[frags].page;
1639                d->dma_addr |= RX_UNMAPPED_BUF;
1640                q->avail++;
1641        }
1642}
1643
1644/**
1645 *      is_new_response - check if a response is newly written
1646 *      @r: the response descriptor
1647 *      @q: the response queue
1648 *
1649 *      Returns true if a response descriptor contains a yet unprocessed
1650 *      response.
1651 */
1652static inline bool is_new_response(const struct rsp_ctrl *r,
1653                                   const struct sge_rspq *q)
1654{
1655        return RSPD_GEN(r->type_gen) == q->gen;
1656}
1657
1658/**
1659 *      rspq_next - advance to the next entry in a response queue
1660 *      @q: the queue
1661 *
1662 *      Updates the state of a response queue to advance it to the next entry.
1663 */
1664static inline void rspq_next(struct sge_rspq *q)
1665{
1666        q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1667        if (unlikely(++q->cidx == q->size)) {
1668                q->cidx = 0;
1669                q->gen ^= 1;
1670                q->cur_desc = q->desc;
1671        }
1672}
1673
1674/**
1675 *      process_responses - process responses from an SGE response queue
1676 *      @q: the ingress queue to process
1677 *      @budget: how many responses can be processed in this round
1678 *
1679 *      Process responses from an SGE response queue up to the supplied budget.
1680 *      Responses include received packets as well as control messages from FW
1681 *      or HW.
1682 *
1683 *      Additionally choose the interrupt holdoff time for the next interrupt
1684 *      on this queue.  If the system is under memory shortage use a fairly
1685 *      long delay to help recovery.
1686 */
1687static int process_responses(struct sge_rspq *q, int budget)
1688{
1689        int ret, rsp_type;
1690        int budget_left = budget;
1691        const struct rsp_ctrl *rc;
1692        struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1693
1694        while (likely(budget_left)) {
1695                rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1696                if (!is_new_response(rc, q))
1697                        break;
1698
1699                rmb();
1700                rsp_type = RSPD_TYPE(rc->type_gen);
1701                if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1702                        skb_frag_t *fp;
1703                        struct pkt_gl si;
1704                        const struct rx_sw_desc *rsd;
1705                        u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
1706
1707                        if (len & RSPD_NEWBUF) {
1708                                if (likely(q->offset > 0)) {
1709                                        free_rx_bufs(q->adap, &rxq->fl, 1);
1710                                        q->offset = 0;
1711                                }
1712                                len = RSPD_LEN(len);
1713                        }
1714                        si.tot_len = len;
1715
1716                        /* gather packet fragments */
1717                        for (frags = 0, fp = si.frags; ; frags++, fp++) {
1718                                rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1719                                bufsz = get_buf_size(rsd);
1720                                fp->page = rsd->page;
1721                                fp->page_offset = q->offset;
1722                                fp->size = min(bufsz, len);
1723                                len -= fp->size;
1724                                if (!len)
1725                                        break;
1726                                unmap_rx_buf(q->adap, &rxq->fl);
1727                        }
1728
1729                        /*
1730                         * Last buffer remains mapped so explicitly make it
1731                         * coherent for CPU access.
1732                         */
1733                        dma_sync_single_for_cpu(q->adap->pdev_dev,
1734                                                get_buf_addr(rsd),
1735                                                fp->size, DMA_FROM_DEVICE);
1736
1737                        si.va = page_address(si.frags[0].page) +
1738                                si.frags[0].page_offset;
1739                        prefetch(si.va);
1740
1741                        si.nfrags = frags + 1;
1742                        ret = q->handler(q, q->cur_desc, &si);
1743                        if (likely(ret == 0))
1744                                q->offset += ALIGN(fp->size, FL_ALIGN);
1745                        else
1746                                restore_rx_bufs(&si, &rxq->fl, frags);
1747                } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1748                        ret = q->handler(q, q->cur_desc, NULL);
1749                } else {
1750                        ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1751                }
1752
1753                if (unlikely(ret)) {
1754                        /* couldn't process descriptor, back off for recovery */
1755                        q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1756                        break;
1757                }
1758
1759                rspq_next(q);
1760                budget_left--;
1761        }
1762
1763        if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
1764                __refill_fl(q->adap, &rxq->fl);
1765        return budget - budget_left;
1766}
1767
1768/**
1769 *      napi_rx_handler - the NAPI handler for Rx processing
1770 *      @napi: the napi instance
1771 *      @budget: how many packets we can process in this round
1772 *
1773 *      Handler for new data events when using NAPI.  This does not need any
1774 *      locking or protection from interrupts as data interrupts are off at
1775 *      this point and other adapter interrupts do not interfere (the latter
1776 *      in not a concern at all with MSI-X as non-data interrupts then have
1777 *      a separate handler).
1778 */
1779static int napi_rx_handler(struct napi_struct *napi, int budget)
1780{
1781        unsigned int params;
1782        struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
1783        int work_done = process_responses(q, budget);
1784
1785        if (likely(work_done < budget)) {
1786                napi_complete(napi);
1787                params = q->next_intr_params;
1788                q->next_intr_params = q->intr_params;
1789        } else
1790                params = QINTR_TIMER_IDX(7);
1791
1792        t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) |
1793                     INGRESSQID((u32)q->cntxt_id) | SEINTARM(params));
1794        return work_done;
1795}
1796
1797/*
1798 * The MSI-X interrupt handler for an SGE response queue.
1799 */
1800irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
1801{
1802        struct sge_rspq *q = cookie;
1803
1804        napi_schedule(&q->napi);
1805        return IRQ_HANDLED;
1806}
1807
1808/*
1809 * Process the indirect interrupt entries in the interrupt queue and kick off
1810 * NAPI for each queue that has generated an entry.
1811 */
1812static unsigned int process_intrq(struct adapter *adap)
1813{
1814        unsigned int credits;
1815        const struct rsp_ctrl *rc;
1816        struct sge_rspq *q = &adap->sge.intrq;
1817
1818        spin_lock(&adap->sge.intrq_lock);
1819        for (credits = 0; ; credits++) {
1820                rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1821                if (!is_new_response(rc, q))
1822                        break;
1823
1824                rmb();
1825                if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
1826                        unsigned int qid = ntohl(rc->pldbuflen_qid);
1827
1828                        qid -= adap->sge.ingr_start;
1829                        napi_schedule(&adap->sge.ingr_map[qid]->napi);
1830                }
1831
1832                rspq_next(q);
1833        }
1834
1835        t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) |
1836                     INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params));
1837        spin_unlock(&adap->sge.intrq_lock);
1838        return credits;
1839}
1840
1841/*
1842 * The MSI interrupt handler, which handles data events from SGE response queues
1843 * as well as error and other async events as they all use the same MSI vector.
1844 */
1845static irqreturn_t t4_intr_msi(int irq, void *cookie)
1846{
1847        struct adapter *adap = cookie;
1848
1849        t4_slow_intr_handler(adap);
1850        process_intrq(adap);
1851        return IRQ_HANDLED;
1852}
1853
1854/*
1855 * Interrupt handler for legacy INTx interrupts.
1856 * Handles data events from SGE response queues as well as error and other
1857 * async events as they all use the same interrupt line.
1858 */
1859static irqreturn_t t4_intr_intx(int irq, void *cookie)
1860{
1861        struct adapter *adap = cookie;
1862
1863        t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
1864        if (t4_slow_intr_handler(adap) | process_intrq(adap))
1865                return IRQ_HANDLED;
1866        return IRQ_NONE;             /* probably shared interrupt */
1867}
1868
1869/**
1870 *      t4_intr_handler - select the top-level interrupt handler
1871 *      @adap: the adapter
1872 *
1873 *      Selects the top-level interrupt handler based on the type of interrupts
1874 *      (MSI-X, MSI, or INTx).
1875 */
1876irq_handler_t t4_intr_handler(struct adapter *adap)
1877{
1878        if (adap->flags & USING_MSIX)
1879                return t4_sge_intr_msix;
1880        if (adap->flags & USING_MSI)
1881                return t4_intr_msi;
1882        return t4_intr_intx;
1883}
1884
1885static void sge_rx_timer_cb(unsigned long data)
1886{
1887        unsigned long m;
1888        unsigned int i, cnt[2];
1889        struct adapter *adap = (struct adapter *)data;
1890        struct sge *s = &adap->sge;
1891
1892        for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
1893                for (m = s->starving_fl[i]; m; m &= m - 1) {
1894                        struct sge_eth_rxq *rxq;
1895                        unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1896                        struct sge_fl *fl = s->egr_map[id];
1897
1898                        clear_bit(id, s->starving_fl);
1899                        smp_mb__after_clear_bit();
1900
1901                        if (fl_starving(fl)) {
1902                                rxq = container_of(fl, struct sge_eth_rxq, fl);
1903                                if (napi_reschedule(&rxq->rspq.napi))
1904                                        fl->starving++;
1905                                else
1906                                        set_bit(id, s->starving_fl);
1907                        }
1908                }
1909
1910        t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
1911        cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
1912        cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
1913
1914        for (i = 0; i < 2; i++)
1915                if (cnt[i] >= s->starve_thres) {
1916                        if (s->idma_state[i] || cnt[i] == 0xffffffff)
1917                                continue;
1918                        s->idma_state[i] = 1;
1919                        t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
1920                        m = t4_read_reg(adap, SGE_DEBUG_DATA_LOW) >> (i * 16);
1921                        dev_warn(adap->pdev_dev,
1922                                 "SGE idma%u starvation detected for "
1923                                 "queue %lu\n", i, m & 0xffff);
1924                } else if (s->idma_state[i])
1925                        s->idma_state[i] = 0;
1926
1927        mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
1928}
1929
1930static void sge_tx_timer_cb(unsigned long data)
1931{
1932        unsigned long m;
1933        unsigned int i, budget;
1934        struct adapter *adap = (struct adapter *)data;
1935        struct sge *s = &adap->sge;
1936
1937        for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
1938                for (m = s->txq_maperr[i]; m; m &= m - 1) {
1939                        unsigned long id = __ffs(m) + i * BITS_PER_LONG;
1940                        struct sge_ofld_txq *txq = s->egr_map[id];
1941
1942                        clear_bit(id, s->txq_maperr);
1943                        tasklet_schedule(&txq->qresume_tsk);
1944                }
1945
1946        budget = MAX_TIMER_TX_RECLAIM;
1947        i = s->ethtxq_rover;
1948        do {
1949                struct sge_eth_txq *q = &s->ethtxq[i];
1950
1951                if (q->q.in_use &&
1952                    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
1953                    __netif_tx_trylock(q->txq)) {
1954                        int avail = reclaimable(&q->q);
1955
1956                        if (avail) {
1957                                if (avail > budget)
1958                                        avail = budget;
1959
1960                                free_tx_desc(adap, &q->q, avail, true);
1961                                q->q.in_use -= avail;
1962                                budget -= avail;
1963                        }
1964                        __netif_tx_unlock(q->txq);
1965                }
1966
1967                if (++i >= s->ethqsets)
1968                        i = 0;
1969        } while (budget && i != s->ethtxq_rover);
1970        s->ethtxq_rover = i;
1971        mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
1972}
1973
1974int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
1975                     struct net_device *dev, int intr_idx,
1976                     struct sge_fl *fl, rspq_handler_t hnd)
1977{
1978        int ret, flsz = 0;
1979        struct fw_iq_cmd c;
1980        struct port_info *pi = netdev_priv(dev);
1981
1982        /* Size needs to be multiple of 16, including status entry. */
1983        iq->size = roundup(iq->size, 16);
1984
1985        iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
1986                              &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
1987        if (!iq->desc)
1988                return -ENOMEM;
1989
1990        memset(&c, 0, sizeof(c));
1991        c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
1992                            FW_CMD_WRITE | FW_CMD_EXEC |
1993                            FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0));
1994        c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) |
1995                                 FW_LEN16(c));
1996        c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1997                FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) |
1998                FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) |
1999                FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
2000                                                        -intr_idx - 1));
2001        c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2002                FW_IQ_CMD_IQGTSMODE |
2003                FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
2004                FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
2005        c.iqsize = htons(iq->size);
2006        c.iqaddr = cpu_to_be64(iq->phys_addr);
2007
2008        if (fl) {
2009                fl->size = roundup(fl->size, 8);
2010                fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2011                                      sizeof(struct rx_sw_desc), &fl->addr,
2012                                      &fl->sdesc, STAT_LEN, NUMA_NO_NODE);
2013                if (!fl->desc)
2014                        goto fl_nomem;
2015
2016                flsz = fl->size / 8 + STAT_LEN / sizeof(struct tx_desc);
2017                c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN |
2018                                            FW_IQ_CMD_FL0FETCHRO(1) |
2019                                            FW_IQ_CMD_FL0DATARO(1) |
2020                                            FW_IQ_CMD_FL0PADEN);
2021                c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) |
2022                                FW_IQ_CMD_FL0FBMAX(3));
2023                c.fl0size = htons(flsz);
2024                c.fl0addr = cpu_to_be64(fl->addr);
2025        }
2026
2027        ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2028        if (ret)
2029                goto err;
2030
2031        netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2032        iq->cur_desc = iq->desc;
2033        iq->cidx = 0;
2034        iq->gen = 1;
2035        iq->next_intr_params = iq->intr_params;
2036        iq->cntxt_id = ntohs(c.iqid);
2037        iq->abs_id = ntohs(c.physiqid);
2038        iq->size--;                           /* subtract status entry */
2039        iq->adap = adap;
2040        iq->netdev = dev;
2041        iq->handler = hnd;
2042
2043        /* set offset to -1 to distinguish ingress queues without FL */
2044        iq->offset = fl ? 0 : -1;
2045
2046        adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2047
2048        if (fl) {
2049                fl->cntxt_id = ntohs(c.fl0id);
2050                fl->avail = fl->pend_cred = 0;
2051                fl->pidx = fl->cidx = 0;
2052                fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2053                adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2054                refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2055        }
2056        return 0;
2057
2058fl_nomem:
2059        ret = -ENOMEM;
2060err:
2061        if (iq->desc) {
2062                dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2063                                  iq->desc, iq->phys_addr);
2064                iq->desc = NULL;
2065        }
2066        if (fl && fl->desc) {
2067                kfree(fl->sdesc);
2068                fl->sdesc = NULL;
2069                dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2070                                  fl->desc, fl->addr);
2071                fl->desc = NULL;
2072        }
2073        return ret;
2074}
2075
2076static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2077{
2078        q->in_use = 0;
2079        q->cidx = q->pidx = 0;
2080        q->stops = q->restarts = 0;
2081        q->stat = (void *)&q->desc[q->size];
2082        q->cntxt_id = id;
2083        adap->sge.egr_map[id - adap->sge.egr_start] = q;
2084}
2085
2086int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2087                         struct net_device *dev, struct netdev_queue *netdevq,
2088                         unsigned int iqid)
2089{
2090        int ret, nentries;
2091        struct fw_eq_eth_cmd c;
2092        struct port_info *pi = netdev_priv(dev);
2093
2094        /* Add status entries */
2095        nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2096
2097        txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2098                        sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2099                        &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN,
2100                        netdev_queue_numa_node_read(netdevq));
2101        if (!txq->q.desc)
2102                return -ENOMEM;
2103
2104        memset(&c, 0, sizeof(c));
2105        c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
2106                            FW_CMD_WRITE | FW_CMD_EXEC |
2107                            FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0));
2108        c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC |
2109                                 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2110        c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid));
2111        c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
2112                                   FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
2113                                   FW_EQ_ETH_CMD_FETCHRO(1) |
2114                                   FW_EQ_ETH_CMD_IQID(iqid));
2115        c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) |
2116                                  FW_EQ_ETH_CMD_FBMAX(3) |
2117                                  FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
2118                                  FW_EQ_ETH_CMD_EQSIZE(nentries));
2119        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2120
2121        ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2122        if (ret) {
2123                kfree(txq->q.sdesc);
2124                txq->q.sdesc = NULL;
2125                dma_free_coherent(adap->pdev_dev,
2126                                  nentries * sizeof(struct tx_desc),
2127                                  txq->q.desc, txq->q.phys_addr);
2128                txq->q.desc = NULL;
2129                return ret;
2130        }
2131
2132        init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2133        txq->txq = netdevq;
2134        txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2135        txq->mapping_err = 0;
2136        return 0;
2137}
2138
2139int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2140                          struct net_device *dev, unsigned int iqid,
2141                          unsigned int cmplqid)
2142{
2143        int ret, nentries;
2144        struct fw_eq_ctrl_cmd c;
2145        struct port_info *pi = netdev_priv(dev);
2146
2147        /* Add status entries */
2148        nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2149
2150        txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2151                                 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2152                                 NULL, 0, NUMA_NO_NODE);
2153        if (!txq->q.desc)
2154                return -ENOMEM;
2155
2156        c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
2157                            FW_CMD_WRITE | FW_CMD_EXEC |
2158                            FW_EQ_CTRL_CMD_PFN(adap->fn) |
2159                            FW_EQ_CTRL_CMD_VFN(0));
2160        c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC |
2161                                 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2162        c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
2163        c.physeqid_pkd = htonl(0);
2164        c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
2165                                   FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
2166                                   FW_EQ_CTRL_CMD_FETCHRO |
2167                                   FW_EQ_CTRL_CMD_IQID(iqid));
2168        c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
2169                                  FW_EQ_CTRL_CMD_FBMAX(3) |
2170                                  FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
2171                                  FW_EQ_CTRL_CMD_EQSIZE(nentries));
2172        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2173
2174        ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2175        if (ret) {
2176                dma_free_coherent(adap->pdev_dev,
2177                                  nentries * sizeof(struct tx_desc),
2178                                  txq->q.desc, txq->q.phys_addr);
2179                txq->q.desc = NULL;
2180                return ret;
2181        }
2182
2183        init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid)));
2184        txq->adap = adap;
2185        skb_queue_head_init(&txq->sendq);
2186        tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2187        txq->full = 0;
2188        return 0;
2189}
2190
2191int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2192                          struct net_device *dev, unsigned int iqid)
2193{
2194        int ret, nentries;
2195        struct fw_eq_ofld_cmd c;
2196        struct port_info *pi = netdev_priv(dev);
2197
2198        /* Add status entries */
2199        nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2200
2201        txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2202                        sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2203                        &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN,
2204                        NUMA_NO_NODE);
2205        if (!txq->q.desc)
2206                return -ENOMEM;
2207
2208        memset(&c, 0, sizeof(c));
2209        c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
2210                            FW_CMD_WRITE | FW_CMD_EXEC |
2211                            FW_EQ_OFLD_CMD_PFN(adap->fn) |
2212                            FW_EQ_OFLD_CMD_VFN(0));
2213        c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC |
2214                                 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2215        c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
2216                                   FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
2217                                   FW_EQ_OFLD_CMD_FETCHRO(1) |
2218                                   FW_EQ_OFLD_CMD_IQID(iqid));
2219        c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
2220                                  FW_EQ_OFLD_CMD_FBMAX(3) |
2221                                  FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
2222                                  FW_EQ_OFLD_CMD_EQSIZE(nentries));
2223        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2224
2225        ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2226        if (ret) {
2227                kfree(txq->q.sdesc);
2228                txq->q.sdesc = NULL;
2229                dma_free_coherent(adap->pdev_dev,
2230                                  nentries * sizeof(struct tx_desc),
2231                                  txq->q.desc, txq->q.phys_addr);
2232                txq->q.desc = NULL;
2233                return ret;
2234        }
2235
2236        init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2237        txq->adap = adap;
2238        skb_queue_head_init(&txq->sendq);
2239        tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2240        txq->full = 0;
2241        txq->mapping_err = 0;
2242        return 0;
2243}
2244
2245static void free_txq(struct adapter *adap, struct sge_txq *q)
2246{
2247        dma_free_coherent(adap->pdev_dev,
2248                          q->size * sizeof(struct tx_desc) + STAT_LEN,
2249                          q->desc, q->phys_addr);
2250        q->cntxt_id = 0;
2251        q->sdesc = NULL;
2252        q->desc = NULL;
2253}
2254
2255static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2256                         struct sge_fl *fl)
2257{
2258        unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2259
2260        adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2261        t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2262                   rq->cntxt_id, fl_id, 0xffff);
2263        dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2264                          rq->desc, rq->phys_addr);
2265        netif_napi_del(&rq->napi);
2266        rq->netdev = NULL;
2267        rq->cntxt_id = rq->abs_id = 0;
2268        rq->desc = NULL;
2269
2270        if (fl) {
2271                free_rx_bufs(adap, fl, fl->avail);
2272                dma_free_coherent(adap->pdev_dev, fl->size * 8 + STAT_LEN,
2273                                  fl->desc, fl->addr);
2274                kfree(fl->sdesc);
2275                fl->sdesc = NULL;
2276                fl->cntxt_id = 0;
2277                fl->desc = NULL;
2278        }
2279}
2280
2281/**
2282 *      t4_free_sge_resources - free SGE resources
2283 *      @adap: the adapter
2284 *
2285 *      Frees resources used by the SGE queue sets.
2286 */
2287void t4_free_sge_resources(struct adapter *adap)
2288{
2289        int i;
2290        struct sge_eth_rxq *eq = adap->sge.ethrxq;
2291        struct sge_eth_txq *etq = adap->sge.ethtxq;
2292        struct sge_ofld_rxq *oq = adap->sge.ofldrxq;
2293
2294        /* clean up Ethernet Tx/Rx queues */
2295        for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2296                if (eq->rspq.desc)
2297                        free_rspq_fl(adap, &eq->rspq, &eq->fl);
2298                if (etq->q.desc) {
2299                        t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2300                                       etq->q.cntxt_id);
2301                        free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2302                        kfree(etq->q.sdesc);
2303                        free_txq(adap, &etq->q);
2304                }
2305        }
2306
2307        /* clean up RDMA and iSCSI Rx queues */
2308        for (i = 0; i < adap->sge.ofldqsets; i++, oq++) {
2309                if (oq->rspq.desc)
2310                        free_rspq_fl(adap, &oq->rspq, &oq->fl);
2311        }
2312        for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) {
2313                if (oq->rspq.desc)
2314                        free_rspq_fl(adap, &oq->rspq, &oq->fl);
2315        }
2316
2317        /* clean up offload Tx queues */
2318        for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2319                struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2320
2321                if (q->q.desc) {
2322                        tasklet_kill(&q->qresume_tsk);
2323                        t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2324                                        q->q.cntxt_id);
2325                        free_tx_desc(adap, &q->q, q->q.in_use, false);
2326                        kfree(q->q.sdesc);
2327                        __skb_queue_purge(&q->sendq);
2328                        free_txq(adap, &q->q);
2329                }
2330        }
2331
2332        /* clean up control Tx queues */
2333        for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2334                struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2335
2336                if (cq->q.desc) {
2337                        tasklet_kill(&cq->qresume_tsk);
2338                        t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2339                                        cq->q.cntxt_id);
2340                        __skb_queue_purge(&cq->sendq);
2341                        free_txq(adap, &cq->q);
2342                }
2343        }
2344
2345        if (adap->sge.fw_evtq.desc)
2346                free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2347
2348        if (adap->sge.intrq.desc)
2349                free_rspq_fl(adap, &adap->sge.intrq, NULL);
2350
2351        /* clear the reverse egress queue map */
2352        memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
2353}
2354
2355void t4_sge_start(struct adapter *adap)
2356{
2357        adap->sge.ethtxq_rover = 0;
2358        mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2359        mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2360}
2361
2362/**
2363 *      t4_sge_stop - disable SGE operation
2364 *      @adap: the adapter
2365 *
2366 *      Stop tasklets and timers associated with the DMA engine.  Note that
2367 *      this is effective only if measures have been taken to disable any HW
2368 *      events that may restart them.
2369 */
2370void t4_sge_stop(struct adapter *adap)
2371{
2372        int i;
2373        struct sge *s = &adap->sge;
2374
2375        if (in_interrupt())  /* actions below require waiting */
2376                return;
2377
2378        if (s->rx_timer.function)
2379                del_timer_sync(&s->rx_timer);
2380        if (s->tx_timer.function)
2381                del_timer_sync(&s->tx_timer);
2382
2383        for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2384                struct sge_ofld_txq *q = &s->ofldtxq[i];
2385
2386                if (q->q.desc)
2387                        tasklet_kill(&q->qresume_tsk);
2388        }
2389        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2390                struct sge_ctrl_txq *cq = &s->ctrlq[i];
2391
2392                if (cq->q.desc)
2393                        tasklet_kill(&cq->qresume_tsk);
2394        }
2395}
2396
2397/**
2398 *      t4_sge_init - initialize SGE
2399 *      @adap: the adapter
2400 *
2401 *      Performs SGE initialization needed every time after a chip reset.
2402 *      We do not initialize any of the queues here, instead the driver
2403 *      top-level must request them individually.
2404 */
2405void t4_sge_init(struct adapter *adap)
2406{
2407        unsigned int i, v;
2408        struct sge *s = &adap->sge;
2409        unsigned int fl_align_log = ilog2(FL_ALIGN);
2410
2411        t4_set_reg_field(adap, SGE_CONTROL, PKTSHIFT_MASK |
2412                         INGPADBOUNDARY_MASK | EGRSTATUSPAGESIZE,
2413                         INGPADBOUNDARY(fl_align_log - 5) | PKTSHIFT(2) |
2414                         RXPKTCPLMODE |
2415                         (STAT_LEN == 128 ? EGRSTATUSPAGESIZE : 0));
2416
2417        for (i = v = 0; i < 32; i += 4)
2418                v |= (PAGE_SHIFT - 10) << i;
2419        t4_write_reg(adap, SGE_HOST_PAGE_SIZE, v);
2420        t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, PAGE_SIZE);
2421#if FL_PG_ORDER > 0
2422        t4_write_reg(adap, SGE_FL_BUFFER_SIZE1, PAGE_SIZE << FL_PG_ORDER);
2423#endif
2424        t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
2425                     THRESHOLD_0(s->counter_val[0]) |
2426                     THRESHOLD_1(s->counter_val[1]) |
2427                     THRESHOLD_2(s->counter_val[2]) |
2428                     THRESHOLD_3(s->counter_val[3]));
2429        t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
2430                     TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
2431                     TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
2432        t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
2433                     TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[2])) |
2434                     TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[3])));
2435        t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
2436                     TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[4])) |
2437                     TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[5])));
2438        setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
2439        setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
2440        s->starve_thres = core_ticks_per_usec(adap) * 1000000;  /* 1 s */
2441        s->idma_state[0] = s->idma_state[1] = 0;
2442        spin_lock_init(&s->intrq_lock);
2443}
2444