linux/drivers/net/cxgb4vf/cxgb4vf_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#include <linux/version.h>
  37#include <linux/module.h>
  38#include <linux/moduleparam.h>
  39#include <linux/init.h>
  40#include <linux/pci.h>
  41#include <linux/dma-mapping.h>
  42#include <linux/netdevice.h>
  43#include <linux/etherdevice.h>
  44#include <linux/debugfs.h>
  45#include <linux/ethtool.h>
  46
  47#include "t4vf_common.h"
  48#include "t4vf_defs.h"
  49
  50#include "../cxgb4/t4_regs.h"
  51#include "../cxgb4/t4_msg.h"
  52
  53/*
  54 * Generic information about the driver.
  55 */
  56#define DRV_VERSION "1.0.0"
  57#define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
  58
  59/*
  60 * Module Parameters.
  61 * ==================
  62 */
  63
  64/*
  65 * Default ethtool "message level" for adapters.
  66 */
  67#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
  68                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
  69                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
  70
  71static int dflt_msg_enable = DFLT_MSG_ENABLE;
  72
  73module_param(dflt_msg_enable, int, 0644);
  74MODULE_PARM_DESC(dflt_msg_enable,
  75                 "default adapter ethtool message level bitmap");
  76
  77/*
  78 * The driver uses the best interrupt scheme available on a platform in the
  79 * order MSI-X then MSI.  This parameter determines which of these schemes the
  80 * driver may consider as follows:
  81 *
  82 *     msi = 2: choose from among MSI-X and MSI
  83 *     msi = 1: only consider MSI interrupts
  84 *
  85 * Note that unlike the Physical Function driver, this Virtual Function driver
  86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
  87 * the PCI-E SR-IOV standard).
  88 */
  89#define MSI_MSIX        2
  90#define MSI_MSI         1
  91#define MSI_DEFAULT     MSI_MSIX
  92
  93static int msi = MSI_DEFAULT;
  94
  95module_param(msi, int, 0644);
  96MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
  97
  98/*
  99 * Fundamental constants.
 100 * ======================
 101 */
 102
 103enum {
 104        MAX_TXQ_ENTRIES         = 16384,
 105        MAX_RSPQ_ENTRIES        = 16384,
 106        MAX_RX_BUFFERS          = 16384,
 107
 108        MIN_TXQ_ENTRIES         = 32,
 109        MIN_RSPQ_ENTRIES        = 128,
 110        MIN_FL_ENTRIES          = 16,
 111
 112        /*
 113         * For purposes of manipulating the Free List size we need to
 114         * recognize that Free Lists are actually Egress Queues (the host
 115         * produces free buffers which the hardware consumes), Egress Queues
 116         * indices are all in units of Egress Context Units bytes, and free
 117         * list entries are 64-bit PCI DMA addresses.  And since the state of
 118         * the Producer Index == the Consumer Index implies an EMPTY list, we
 119         * always have at least one Egress Unit's worth of Free List entries
 120         * unused.  See sge.c for more details ...
 121         */
 122        EQ_UNIT = SGE_EQ_IDXSIZE,
 123        FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
 124        MIN_FL_RESID = FL_PER_EQ_UNIT,
 125};
 126
 127/*
 128 * Global driver state.
 129 * ====================
 130 */
 131
 132static struct dentry *cxgb4vf_debugfs_root;
 133
 134/*
 135 * OS "Callback" functions.
 136 * ========================
 137 */
 138
 139/*
 140 * The link status has changed on the indicated "port" (Virtual Interface).
 141 */
 142void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
 143{
 144        struct net_device *dev = adapter->port[pidx];
 145
 146        /*
 147         * If the port is disabled or the current recorded "link up"
 148         * status matches the new status, just return.
 149         */
 150        if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
 151                return;
 152
 153        /*
 154         * Tell the OS that the link status has changed and print a short
 155         * informative message on the console about the event.
 156         */
 157        if (link_ok) {
 158                const char *s;
 159                const char *fc;
 160                const struct port_info *pi = netdev_priv(dev);
 161
 162                netif_carrier_on(dev);
 163
 164                switch (pi->link_cfg.speed) {
 165                case SPEED_10000:
 166                        s = "10Gbps";
 167                        break;
 168
 169                case SPEED_1000:
 170                        s = "1000Mbps";
 171                        break;
 172
 173                case SPEED_100:
 174                        s = "100Mbps";
 175                        break;
 176
 177                default:
 178                        s = "unknown";
 179                        break;
 180                }
 181
 182                switch (pi->link_cfg.fc) {
 183                case PAUSE_RX:
 184                        fc = "RX";
 185                        break;
 186
 187                case PAUSE_TX:
 188                        fc = "TX";
 189                        break;
 190
 191                case PAUSE_RX|PAUSE_TX:
 192                        fc = "RX/TX";
 193                        break;
 194
 195                default:
 196                        fc = "no";
 197                        break;
 198                }
 199
 200                printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
 201                       dev->name, s, fc);
 202        } else {
 203                netif_carrier_off(dev);
 204                printk(KERN_INFO "%s: link down\n", dev->name);
 205        }
 206}
 207
 208/*
 209 * Net device operations.
 210 * ======================
 211 */
 212
 213/*
 214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
 215 * based on whether the specified VLAN Group pointer is NULL or not.
 216 */
 217static void cxgb4vf_vlan_rx_register(struct net_device *dev,
 218                                     struct vlan_group *grp)
 219{
 220        struct port_info *pi = netdev_priv(dev);
 221
 222        pi->vlan_grp = grp;
 223        t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
 224}
 225
 226/*
 227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
 228 * Interface).
 229 */
 230static int link_start(struct net_device *dev)
 231{
 232        int ret;
 233        struct port_info *pi = netdev_priv(dev);
 234
 235        /*
 236         * We do not set address filters and promiscuity here, the stack does
 237         * that step explicitly.
 238         */
 239        ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
 240                              true);
 241        if (ret == 0) {
 242                ret = t4vf_change_mac(pi->adapter, pi->viid,
 243                                      pi->xact_addr_filt, dev->dev_addr, true);
 244                if (ret >= 0) {
 245                        pi->xact_addr_filt = ret;
 246                        ret = 0;
 247                }
 248        }
 249
 250        /*
 251         * We don't need to actually "start the link" itself since the
 252         * firmware will do that for us when the first Virtual Interface
 253         * is enabled on a port.
 254         */
 255        if (ret == 0)
 256                ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
 257        return ret;
 258}
 259
 260/*
 261 * Name the MSI-X interrupts.
 262 */
 263static void name_msix_vecs(struct adapter *adapter)
 264{
 265        int namelen = sizeof(adapter->msix_info[0].desc) - 1;
 266        int pidx;
 267
 268        /*
 269         * Firmware events.
 270         */
 271        snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
 272                 "%s-FWeventq", adapter->name);
 273        adapter->msix_info[MSIX_FW].desc[namelen] = 0;
 274
 275        /*
 276         * Ethernet queues.
 277         */
 278        for_each_port(adapter, pidx) {
 279                struct net_device *dev = adapter->port[pidx];
 280                const struct port_info *pi = netdev_priv(dev);
 281                int qs, msi;
 282
 283                for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
 284                        snprintf(adapter->msix_info[msi].desc, namelen,
 285                                 "%s-%d", dev->name, qs);
 286                        adapter->msix_info[msi].desc[namelen] = 0;
 287                }
 288        }
 289}
 290
 291/*
 292 * Request all of our MSI-X resources.
 293 */
 294static int request_msix_queue_irqs(struct adapter *adapter)
 295{
 296        struct sge *s = &adapter->sge;
 297        int rxq, msi, err;
 298
 299        /*
 300         * Firmware events.
 301         */
 302        err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
 303                          0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
 304        if (err)
 305                return err;
 306
 307        /*
 308         * Ethernet queues.
 309         */
 310        msi = MSIX_IQFLINT;
 311        for_each_ethrxq(s, rxq) {
 312                err = request_irq(adapter->msix_info[msi].vec,
 313                                  t4vf_sge_intr_msix, 0,
 314                                  adapter->msix_info[msi].desc,
 315                                  &s->ethrxq[rxq].rspq);
 316                if (err)
 317                        goto err_free_irqs;
 318                msi++;
 319        }
 320        return 0;
 321
 322err_free_irqs:
 323        while (--rxq >= 0)
 324                free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
 325        free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
 326        return err;
 327}
 328
 329/*
 330 * Free our MSI-X resources.
 331 */
 332static void free_msix_queue_irqs(struct adapter *adapter)
 333{
 334        struct sge *s = &adapter->sge;
 335        int rxq, msi;
 336
 337        free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
 338        msi = MSIX_IQFLINT;
 339        for_each_ethrxq(s, rxq)
 340                free_irq(adapter->msix_info[msi++].vec,
 341                         &s->ethrxq[rxq].rspq);
 342}
 343
 344/*
 345 * Turn on NAPI and start up interrupts on a response queue.
 346 */
 347static void qenable(struct sge_rspq *rspq)
 348{
 349        napi_enable(&rspq->napi);
 350
 351        /*
 352         * 0-increment the Going To Sleep register to start the timer and
 353         * enable interrupts.
 354         */
 355        t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
 356                     CIDXINC(0) |
 357                     SEINTARM(rspq->intr_params) |
 358                     INGRESSQID(rspq->cntxt_id));
 359}
 360
 361/*
 362 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
 363 */
 364static void enable_rx(struct adapter *adapter)
 365{
 366        int rxq;
 367        struct sge *s = &adapter->sge;
 368
 369        for_each_ethrxq(s, rxq)
 370                qenable(&s->ethrxq[rxq].rspq);
 371        qenable(&s->fw_evtq);
 372
 373        /*
 374         * The interrupt queue doesn't use NAPI so we do the 0-increment of
 375         * its Going To Sleep register here to get it started.
 376         */
 377        if (adapter->flags & USING_MSI)
 378                t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
 379                             CIDXINC(0) |
 380                             SEINTARM(s->intrq.intr_params) |
 381                             INGRESSQID(s->intrq.cntxt_id));
 382
 383}
 384
 385/*
 386 * Wait until all NAPI handlers are descheduled.
 387 */
 388static void quiesce_rx(struct adapter *adapter)
 389{
 390        struct sge *s = &adapter->sge;
 391        int rxq;
 392
 393        for_each_ethrxq(s, rxq)
 394                napi_disable(&s->ethrxq[rxq].rspq.napi);
 395        napi_disable(&s->fw_evtq.napi);
 396}
 397
 398/*
 399 * Response queue handler for the firmware event queue.
 400 */
 401static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
 402                          const struct pkt_gl *gl)
 403{
 404        /*
 405         * Extract response opcode and get pointer to CPL message body.
 406         */
 407        struct adapter *adapter = rspq->adapter;
 408        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 409        void *cpl = (void *)(rsp + 1);
 410
 411        switch (opcode) {
 412        case CPL_FW6_MSG: {
 413                /*
 414                 * We've received an asynchronous message from the firmware.
 415                 */
 416                const struct cpl_fw6_msg *fw_msg = cpl;
 417                if (fw_msg->type == FW6_TYPE_CMD_RPL)
 418                        t4vf_handle_fw_rpl(adapter, fw_msg->data);
 419                break;
 420        }
 421
 422        case CPL_SGE_EGR_UPDATE: {
 423                /*
 424                 * We've received an Egress Queue Status Update message.  We
 425                 * get these, if the SGE is configured to send these when the
 426                 * firmware passes certain points in processing our TX
 427                 * Ethernet Queue or if we make an explicit request for one.
 428                 * We use these updates to determine when we may need to
 429                 * restart a TX Ethernet Queue which was stopped for lack of
 430                 * free TX Queue Descriptors ...
 431                 */
 432                const struct cpl_sge_egr_update *p = (void *)cpl;
 433                unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
 434                struct sge *s = &adapter->sge;
 435                struct sge_txq *tq;
 436                struct sge_eth_txq *txq;
 437                unsigned int eq_idx;
 438
 439                /*
 440                 * Perform sanity checking on the Queue ID to make sure it
 441                 * really refers to one of our TX Ethernet Egress Queues which
 442                 * is active and matches the queue's ID.  None of these error
 443                 * conditions should ever happen so we may want to either make
 444                 * them fatal and/or conditionalized under DEBUG.
 445                 */
 446                eq_idx = EQ_IDX(s, qid);
 447                if (unlikely(eq_idx >= MAX_EGRQ)) {
 448                        dev_err(adapter->pdev_dev,
 449                                "Egress Update QID %d out of range\n", qid);
 450                        break;
 451                }
 452                tq = s->egr_map[eq_idx];
 453                if (unlikely(tq == NULL)) {
 454                        dev_err(adapter->pdev_dev,
 455                                "Egress Update QID %d TXQ=NULL\n", qid);
 456                        break;
 457                }
 458                txq = container_of(tq, struct sge_eth_txq, q);
 459                if (unlikely(tq->abs_id != qid)) {
 460                        dev_err(adapter->pdev_dev,
 461                                "Egress Update QID %d refers to TXQ %d\n",
 462                                qid, tq->abs_id);
 463                        break;
 464                }
 465
 466                /*
 467                 * Restart a stopped TX Queue which has less than half of its
 468                 * TX ring in use ...
 469                 */
 470                txq->q.restarts++;
 471                netif_tx_wake_queue(txq->txq);
 472                break;
 473        }
 474
 475        default:
 476                dev_err(adapter->pdev_dev,
 477                        "unexpected CPL %#x on FW event queue\n", opcode);
 478        }
 479
 480        return 0;
 481}
 482
 483/*
 484 * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
 485 * to use and initializes them.  We support multiple "Queue Sets" per port if
 486 * we have MSI-X, otherwise just one queue set per port.
 487 */
 488static int setup_sge_queues(struct adapter *adapter)
 489{
 490        struct sge *s = &adapter->sge;
 491        int err, pidx, msix;
 492
 493        /*
 494         * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
 495         * state.
 496         */
 497        bitmap_zero(s->starving_fl, MAX_EGRQ);
 498
 499        /*
 500         * If we're using MSI interrupt mode we need to set up a "forwarded
 501         * interrupt" queue which we'll set up with our MSI vector.  The rest
 502         * of the ingress queues will be set up to forward their interrupts to
 503         * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
 504         * the intrq's queue ID as the interrupt forwarding queue for the
 505         * subsequent calls ...
 506         */
 507        if (adapter->flags & USING_MSI) {
 508                err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
 509                                         adapter->port[0], 0, NULL, NULL);
 510                if (err)
 511                        goto err_free_queues;
 512        }
 513
 514        /*
 515         * Allocate our ingress queue for asynchronous firmware messages.
 516         */
 517        err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
 518                                 MSIX_FW, NULL, fwevtq_handler);
 519        if (err)
 520                goto err_free_queues;
 521
 522        /*
 523         * Allocate each "port"'s initial Queue Sets.  These can be changed
 524         * later on ... up to the point where any interface on the adapter is
 525         * brought up at which point lots of things get nailed down
 526         * permanently ...
 527         */
 528        msix = MSIX_IQFLINT;
 529        for_each_port(adapter, pidx) {
 530                struct net_device *dev = adapter->port[pidx];
 531                struct port_info *pi = netdev_priv(dev);
 532                struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
 533                struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
 534                int qs;
 535
 536                for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
 537                        err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
 538                                                 dev, msix++,
 539                                                 &rxq->fl, t4vf_ethrx_handler);
 540                        if (err)
 541                                goto err_free_queues;
 542
 543                        err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
 544                                             netdev_get_tx_queue(dev, qs),
 545                                             s->fw_evtq.cntxt_id);
 546                        if (err)
 547                                goto err_free_queues;
 548
 549                        rxq->rspq.idx = qs;
 550                        memset(&rxq->stats, 0, sizeof(rxq->stats));
 551                }
 552        }
 553
 554        /*
 555         * Create the reverse mappings for the queues.
 556         */
 557        s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
 558        s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
 559        IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
 560        for_each_port(adapter, pidx) {
 561                struct net_device *dev = adapter->port[pidx];
 562                struct port_info *pi = netdev_priv(dev);
 563                struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
 564                struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
 565                int qs;
 566
 567                for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
 568                        IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
 569                        EQ_MAP(s, txq->q.abs_id) = &txq->q;
 570
 571                        /*
 572                         * The FW_IQ_CMD doesn't return the Absolute Queue IDs
 573                         * for Free Lists but since all of the Egress Queues
 574                         * (including Free Lists) have Relative Queue IDs
 575                         * which are computed as Absolute - Base Queue ID, we
 576                         * can synthesize the Absolute Queue IDs for the Free
 577                         * Lists.  This is useful for debugging purposes when
 578                         * we want to dump Queue Contexts via the PF Driver.
 579                         */
 580                        rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
 581                        EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
 582                }
 583        }
 584        return 0;
 585
 586err_free_queues:
 587        t4vf_free_sge_resources(adapter);
 588        return err;
 589}
 590
 591/*
 592 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
 593 * queues.  We configure the RSS CPU lookup table to distribute to the number
 594 * of HW receive queues, and the response queue lookup table to narrow that
 595 * down to the response queues actually configured for each "port" (Virtual
 596 * Interface).  We always configure the RSS mapping for all ports since the
 597 * mapping table has plenty of entries.
 598 */
 599static int setup_rss(struct adapter *adapter)
 600{
 601        int pidx;
 602
 603        for_each_port(adapter, pidx) {
 604                struct port_info *pi = adap2pinfo(adapter, pidx);
 605                struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
 606                u16 rss[MAX_PORT_QSETS];
 607                int qs, err;
 608
 609                for (qs = 0; qs < pi->nqsets; qs++)
 610                        rss[qs] = rxq[qs].rspq.abs_id;
 611
 612                err = t4vf_config_rss_range(adapter, pi->viid,
 613                                            0, pi->rss_size, rss, pi->nqsets);
 614                if (err)
 615                        return err;
 616
 617                /*
 618                 * Perform Global RSS Mode-specific initialization.
 619                 */
 620                switch (adapter->params.rss.mode) {
 621                case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
 622                        /*
 623                         * If Tunnel All Lookup isn't specified in the global
 624                         * RSS Configuration, then we need to specify a
 625                         * default Ingress Queue for any ingress packets which
 626                         * aren't hashed.  We'll use our first ingress queue
 627                         * ...
 628                         */
 629                        if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
 630                                union rss_vi_config config;
 631                                err = t4vf_read_rss_vi_config(adapter,
 632                                                              pi->viid,
 633                                                              &config);
 634                                if (err)
 635                                        return err;
 636                                config.basicvirtual.defaultq =
 637                                        rxq[0].rspq.abs_id;
 638                                err = t4vf_write_rss_vi_config(adapter,
 639                                                               pi->viid,
 640                                                               &config);
 641                                if (err)
 642                                        return err;
 643                        }
 644                        break;
 645                }
 646        }
 647
 648        return 0;
 649}
 650
 651/*
 652 * Bring the adapter up.  Called whenever we go from no "ports" open to having
 653 * one open.  This function performs the actions necessary to make an adapter
 654 * operational, such as completing the initialization of HW modules, and
 655 * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
 656 * this is called "cxgb_up" in the PF Driver.)
 657 */
 658static int adapter_up(struct adapter *adapter)
 659{
 660        int err;
 661
 662        /*
 663         * If this is the first time we've been called, perform basic
 664         * adapter setup.  Once we've done this, many of our adapter
 665         * parameters can no longer be changed ...
 666         */
 667        if ((adapter->flags & FULL_INIT_DONE) == 0) {
 668                err = setup_sge_queues(adapter);
 669                if (err)
 670                        return err;
 671                err = setup_rss(adapter);
 672                if (err) {
 673                        t4vf_free_sge_resources(adapter);
 674                        return err;
 675                }
 676
 677                if (adapter->flags & USING_MSIX)
 678                        name_msix_vecs(adapter);
 679                adapter->flags |= FULL_INIT_DONE;
 680        }
 681
 682        /*
 683         * Acquire our interrupt resources.  We only support MSI-X and MSI.
 684         */
 685        BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
 686        if (adapter->flags & USING_MSIX)
 687                err = request_msix_queue_irqs(adapter);
 688        else
 689                err = request_irq(adapter->pdev->irq,
 690                                  t4vf_intr_handler(adapter), 0,
 691                                  adapter->name, adapter);
 692        if (err) {
 693                dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
 694                        err);
 695                return err;
 696        }
 697
 698        /*
 699         * Enable NAPI ingress processing and return success.
 700         */
 701        enable_rx(adapter);
 702        t4vf_sge_start(adapter);
 703        return 0;
 704}
 705
 706/*
 707 * Bring the adapter down.  Called whenever the last "port" (Virtual
 708 * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
 709 * Driver.)
 710 */
 711static void adapter_down(struct adapter *adapter)
 712{
 713        /*
 714         * Free interrupt resources.
 715         */
 716        if (adapter->flags & USING_MSIX)
 717                free_msix_queue_irqs(adapter);
 718        else
 719                free_irq(adapter->pdev->irq, adapter);
 720
 721        /*
 722         * Wait for NAPI handlers to finish.
 723         */
 724        quiesce_rx(adapter);
 725}
 726
 727/*
 728 * Start up a net device.
 729 */
 730static int cxgb4vf_open(struct net_device *dev)
 731{
 732        int err;
 733        struct port_info *pi = netdev_priv(dev);
 734        struct adapter *adapter = pi->adapter;
 735
 736        /*
 737         * If this is the first interface that we're opening on the "adapter",
 738         * bring the "adapter" up now.
 739         */
 740        if (adapter->open_device_map == 0) {
 741                err = adapter_up(adapter);
 742                if (err)
 743                        return err;
 744        }
 745
 746        /*
 747         * Note that this interface is up and start everything up ...
 748         */
 749        netif_set_real_num_tx_queues(dev, pi->nqsets);
 750        err = netif_set_real_num_rx_queues(dev, pi->nqsets);
 751        if (err)
 752                goto err_unwind;
 753        err = link_start(dev);
 754        if (err)
 755                goto err_unwind;
 756
 757        netif_tx_start_all_queues(dev);
 758        set_bit(pi->port_id, &adapter->open_device_map);
 759        return 0;
 760
 761err_unwind:
 762        if (adapter->open_device_map == 0)
 763                adapter_down(adapter);
 764        return err;
 765}
 766
 767/*
 768 * Shut down a net device.  This routine is called "cxgb_close" in the PF
 769 * Driver ...
 770 */
 771static int cxgb4vf_stop(struct net_device *dev)
 772{
 773        struct port_info *pi = netdev_priv(dev);
 774        struct adapter *adapter = pi->adapter;
 775
 776        netif_tx_stop_all_queues(dev);
 777        netif_carrier_off(dev);
 778        t4vf_enable_vi(adapter, pi->viid, false, false);
 779        pi->link_cfg.link_ok = 0;
 780
 781        clear_bit(pi->port_id, &adapter->open_device_map);
 782        if (adapter->open_device_map == 0)
 783                adapter_down(adapter);
 784        return 0;
 785}
 786
 787/*
 788 * Translate our basic statistics into the standard "ifconfig" statistics.
 789 */
 790static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
 791{
 792        struct t4vf_port_stats stats;
 793        struct port_info *pi = netdev2pinfo(dev);
 794        struct adapter *adapter = pi->adapter;
 795        struct net_device_stats *ns = &dev->stats;
 796        int err;
 797
 798        spin_lock(&adapter->stats_lock);
 799        err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
 800        spin_unlock(&adapter->stats_lock);
 801
 802        memset(ns, 0, sizeof(*ns));
 803        if (err)
 804                return ns;
 805
 806        ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
 807                        stats.tx_ucast_bytes + stats.tx_offload_bytes);
 808        ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
 809                          stats.tx_ucast_frames + stats.tx_offload_frames);
 810        ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
 811                        stats.rx_ucast_bytes);
 812        ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
 813                          stats.rx_ucast_frames);
 814        ns->multicast = stats.rx_mcast_frames;
 815        ns->tx_errors = stats.tx_drop_frames;
 816        ns->rx_errors = stats.rx_err_frames;
 817
 818        return ns;
 819}
 820
 821/*
 822 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
 823 * at a specified offset within the list, into an array of addrss pointers and
 824 * return the number collected.
 825 */
 826static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
 827                                                        const u8 **addr,
 828                                                        unsigned int offset,
 829                                                        unsigned int maxaddrs)
 830{
 831        unsigned int index = 0;
 832        unsigned int naddr = 0;
 833        const struct netdev_hw_addr *ha;
 834
 835        for_each_dev_addr(dev, ha)
 836                if (index++ >= offset) {
 837                        addr[naddr++] = ha->addr;
 838                        if (naddr >= maxaddrs)
 839                                break;
 840                }
 841        return naddr;
 842}
 843
 844/*
 845 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
 846 * at a specified offset within the list, into an array of addrss pointers and
 847 * return the number collected.
 848 */
 849static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
 850                                                        const u8 **addr,
 851                                                        unsigned int offset,
 852                                                        unsigned int maxaddrs)
 853{
 854        unsigned int index = 0;
 855        unsigned int naddr = 0;
 856        const struct netdev_hw_addr *ha;
 857
 858        netdev_for_each_mc_addr(ha, dev)
 859                if (index++ >= offset) {
 860                        addr[naddr++] = ha->addr;
 861                        if (naddr >= maxaddrs)
 862                                break;
 863                }
 864        return naddr;
 865}
 866
 867/*
 868 * Configure the exact and hash address filters to handle a port's multicast
 869 * and secondary unicast MAC addresses.
 870 */
 871static int set_addr_filters(const struct net_device *dev, bool sleep)
 872{
 873        u64 mhash = 0;
 874        u64 uhash = 0;
 875        bool free = true;
 876        unsigned int offset, naddr;
 877        const u8 *addr[7];
 878        int ret;
 879        const struct port_info *pi = netdev_priv(dev);
 880
 881        /* first do the secondary unicast addresses */
 882        for (offset = 0; ; offset += naddr) {
 883                naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
 884                                                     ARRAY_SIZE(addr));
 885                if (naddr == 0)
 886                        break;
 887
 888                ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
 889                                          naddr, addr, NULL, &uhash, sleep);
 890                if (ret < 0)
 891                        return ret;
 892
 893                free = false;
 894        }
 895
 896        /* next set up the multicast addresses */
 897        for (offset = 0; ; offset += naddr) {
 898                naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
 899                                                     ARRAY_SIZE(addr));
 900                if (naddr == 0)
 901                        break;
 902
 903                ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
 904                                          naddr, addr, NULL, &mhash, sleep);
 905                if (ret < 0)
 906                        return ret;
 907                free = false;
 908        }
 909
 910        return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
 911                                  uhash | mhash, sleep);
 912}
 913
 914/*
 915 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
 916 * If @mtu is -1 it is left unchanged.
 917 */
 918static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 919{
 920        int ret;
 921        struct port_info *pi = netdev_priv(dev);
 922
 923        ret = set_addr_filters(dev, sleep_ok);
 924        if (ret == 0)
 925                ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
 926                                      (dev->flags & IFF_PROMISC) != 0,
 927                                      (dev->flags & IFF_ALLMULTI) != 0,
 928                                      1, -1, sleep_ok);
 929        return ret;
 930}
 931
 932/*
 933 * Set the current receive modes on the device.
 934 */
 935static void cxgb4vf_set_rxmode(struct net_device *dev)
 936{
 937        /* unfortunately we can't return errors to the stack */
 938        set_rxmode(dev, -1, false);
 939}
 940
 941/*
 942 * Find the entry in the interrupt holdoff timer value array which comes
 943 * closest to the specified interrupt holdoff value.
 944 */
 945static int closest_timer(const struct sge *s, int us)
 946{
 947        int i, timer_idx = 0, min_delta = INT_MAX;
 948
 949        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
 950                int delta = us - s->timer_val[i];
 951                if (delta < 0)
 952                        delta = -delta;
 953                if (delta < min_delta) {
 954                        min_delta = delta;
 955                        timer_idx = i;
 956                }
 957        }
 958        return timer_idx;
 959}
 960
 961static int closest_thres(const struct sge *s, int thres)
 962{
 963        int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
 964
 965        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
 966                delta = thres - s->counter_val[i];
 967                if (delta < 0)
 968                        delta = -delta;
 969                if (delta < min_delta) {
 970                        min_delta = delta;
 971                        pktcnt_idx = i;
 972                }
 973        }
 974        return pktcnt_idx;
 975}
 976
 977/*
 978 * Return a queue's interrupt hold-off time in us.  0 means no timer.
 979 */
 980static unsigned int qtimer_val(const struct adapter *adapter,
 981                               const struct sge_rspq *rspq)
 982{
 983        unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
 984
 985        return timer_idx < SGE_NTIMERS
 986                ? adapter->sge.timer_val[timer_idx]
 987                : 0;
 988}
 989
 990/**
 991 *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
 992 *      @adapter: the adapter
 993 *      @rspq: the RX response queue
 994 *      @us: the hold-off time in us, or 0 to disable timer
 995 *      @cnt: the hold-off packet count, or 0 to disable counter
 996 *
 997 *      Sets an RX response queue's interrupt hold-off time and packet count.
 998 *      At least one of the two needs to be enabled for the queue to generate
 999 *      interrupts.
1000 */
1001static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1002                               unsigned int us, unsigned int cnt)
1003{
1004        unsigned int timer_idx;
1005
1006        /*
1007         * If both the interrupt holdoff timer and count are specified as
1008         * zero, default to a holdoff count of 1 ...
1009         */
1010        if ((us | cnt) == 0)
1011                cnt = 1;
1012
1013        /*
1014         * If an interrupt holdoff count has been specified, then find the
1015         * closest configured holdoff count and use that.  If the response
1016         * queue has already been created, then update its queue context
1017         * parameters ...
1018         */
1019        if (cnt) {
1020                int err;
1021                u32 v, pktcnt_idx;
1022
1023                pktcnt_idx = closest_thres(&adapter->sge, cnt);
1024                if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1025                        v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1026                            FW_PARAMS_PARAM_X(
1027                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1028                            FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1029                        err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1030                        if (err)
1031                                return err;
1032                }
1033                rspq->pktcnt_idx = pktcnt_idx;
1034        }
1035
1036        /*
1037         * Compute the closest holdoff timer index from the supplied holdoff
1038         * timer value.
1039         */
1040        timer_idx = (us == 0
1041                     ? SGE_TIMER_RSTRT_CNTR
1042                     : closest_timer(&adapter->sge, us));
1043
1044        /*
1045         * Update the response queue's interrupt coalescing parameters and
1046         * return success.
1047         */
1048        rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1049                             (cnt > 0 ? QINTR_CNT_EN : 0));
1050        return 0;
1051}
1052
1053/*
1054 * Return a version number to identify the type of adapter.  The scheme is:
1055 * - bits 0..9: chip version
1056 * - bits 10..15: chip revision
1057 */
1058static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1059{
1060        /*
1061         * Chip version 4, revision 0x3f (cxgb4vf).
1062         */
1063        return 4 | (0x3f << 10);
1064}
1065
1066/*
1067 * Execute the specified ioctl command.
1068 */
1069static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1070{
1071        int ret = 0;
1072
1073        switch (cmd) {
1074            /*
1075             * The VF Driver doesn't have access to any of the other
1076             * common Ethernet device ioctl()'s (like reading/writing
1077             * PHY registers, etc.
1078             */
1079
1080        default:
1081                ret = -EOPNOTSUPP;
1082                break;
1083        }
1084        return ret;
1085}
1086
1087/*
1088 * Change the device's MTU.
1089 */
1090static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1091{
1092        int ret;
1093        struct port_info *pi = netdev_priv(dev);
1094
1095        /* accommodate SACK */
1096        if (new_mtu < 81)
1097                return -EINVAL;
1098
1099        ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1100                              -1, -1, -1, -1, true);
1101        if (!ret)
1102                dev->mtu = new_mtu;
1103        return ret;
1104}
1105
1106/*
1107 * Change the devices MAC address.
1108 */
1109static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1110{
1111        int ret;
1112        struct sockaddr *addr = _addr;
1113        struct port_info *pi = netdev_priv(dev);
1114
1115        if (!is_valid_ether_addr(addr->sa_data))
1116                return -EINVAL;
1117
1118        ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1119                              addr->sa_data, true);
1120        if (ret < 0)
1121                return ret;
1122
1123        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1124        pi->xact_addr_filt = ret;
1125        return 0;
1126}
1127
1128#ifdef CONFIG_NET_POLL_CONTROLLER
1129/*
1130 * Poll all of our receive queues.  This is called outside of normal interrupt
1131 * context.
1132 */
1133static void cxgb4vf_poll_controller(struct net_device *dev)
1134{
1135        struct port_info *pi = netdev_priv(dev);
1136        struct adapter *adapter = pi->adapter;
1137
1138        if (adapter->flags & USING_MSIX) {
1139                struct sge_eth_rxq *rxq;
1140                int nqsets;
1141
1142                rxq = &adapter->sge.ethrxq[pi->first_qset];
1143                for (nqsets = pi->nqsets; nqsets; nqsets--) {
1144                        t4vf_sge_intr_msix(0, &rxq->rspq);
1145                        rxq++;
1146                }
1147        } else
1148                t4vf_intr_handler(adapter)(0, adapter);
1149}
1150#endif
1151
1152/*
1153 * Ethtool operations.
1154 * ===================
1155 *
1156 * Note that we don't support any ethtool operations which change the physical
1157 * state of the port to which we're linked.
1158 */
1159
1160/*
1161 * Return current port link settings.
1162 */
1163static int cxgb4vf_get_settings(struct net_device *dev,
1164                                struct ethtool_cmd *cmd)
1165{
1166        const struct port_info *pi = netdev_priv(dev);
1167
1168        cmd->supported = pi->link_cfg.supported;
1169        cmd->advertising = pi->link_cfg.advertising;
1170        cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1171        cmd->duplex = DUPLEX_FULL;
1172
1173        cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1174        cmd->phy_address = pi->port_id;
1175        cmd->transceiver = XCVR_EXTERNAL;
1176        cmd->autoneg = pi->link_cfg.autoneg;
1177        cmd->maxtxpkt = 0;
1178        cmd->maxrxpkt = 0;
1179        return 0;
1180}
1181
1182/*
1183 * Return our driver information.
1184 */
1185static void cxgb4vf_get_drvinfo(struct net_device *dev,
1186                                struct ethtool_drvinfo *drvinfo)
1187{
1188        struct adapter *adapter = netdev2adap(dev);
1189
1190        strcpy(drvinfo->driver, KBUILD_MODNAME);
1191        strcpy(drvinfo->version, DRV_VERSION);
1192        strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1193        snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1194                 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1195                 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1196                 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1197                 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1198                 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1199                 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1200                 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1201                 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1202                 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1203}
1204
1205/*
1206 * Return current adapter message level.
1207 */
1208static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1209{
1210        return netdev2adap(dev)->msg_enable;
1211}
1212
1213/*
1214 * Set current adapter message level.
1215 */
1216static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1217{
1218        netdev2adap(dev)->msg_enable = msglevel;
1219}
1220
1221/*
1222 * Return the device's current Queue Set ring size parameters along with the
1223 * allowed maximum values.  Since ethtool doesn't understand the concept of
1224 * multi-queue devices, we just return the current values associated with the
1225 * first Queue Set.
1226 */
1227static void cxgb4vf_get_ringparam(struct net_device *dev,
1228                                  struct ethtool_ringparam *rp)
1229{
1230        const struct port_info *pi = netdev_priv(dev);
1231        const struct sge *s = &pi->adapter->sge;
1232
1233        rp->rx_max_pending = MAX_RX_BUFFERS;
1234        rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1235        rp->rx_jumbo_max_pending = 0;
1236        rp->tx_max_pending = MAX_TXQ_ENTRIES;
1237
1238        rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1239        rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1240        rp->rx_jumbo_pending = 0;
1241        rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1242}
1243
1244/*
1245 * Set the Queue Set ring size parameters for the device.  Again, since
1246 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1247 * apply these new values across all of the Queue Sets associated with the
1248 * device -- after vetting them of course!
1249 */
1250static int cxgb4vf_set_ringparam(struct net_device *dev,
1251                                 struct ethtool_ringparam *rp)
1252{
1253        const struct port_info *pi = netdev_priv(dev);
1254        struct adapter *adapter = pi->adapter;
1255        struct sge *s = &adapter->sge;
1256        int qs;
1257
1258        if (rp->rx_pending > MAX_RX_BUFFERS ||
1259            rp->rx_jumbo_pending ||
1260            rp->tx_pending > MAX_TXQ_ENTRIES ||
1261            rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1262            rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1263            rp->rx_pending < MIN_FL_ENTRIES ||
1264            rp->tx_pending < MIN_TXQ_ENTRIES)
1265                return -EINVAL;
1266
1267        if (adapter->flags & FULL_INIT_DONE)
1268                return -EBUSY;
1269
1270        for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1271                s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1272                s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1273                s->ethtxq[qs].q.size = rp->tx_pending;
1274        }
1275        return 0;
1276}
1277
1278/*
1279 * Return the interrupt holdoff timer and count for the first Queue Set on the
1280 * device.  Our extension ioctl() (the cxgbtool interface) allows the
1281 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1282 */
1283static int cxgb4vf_get_coalesce(struct net_device *dev,
1284                                struct ethtool_coalesce *coalesce)
1285{
1286        const struct port_info *pi = netdev_priv(dev);
1287        const struct adapter *adapter = pi->adapter;
1288        const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1289
1290        coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1291        coalesce->rx_max_coalesced_frames =
1292                ((rspq->intr_params & QINTR_CNT_EN)
1293                 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1294                 : 0);
1295        return 0;
1296}
1297
1298/*
1299 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1300 * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1301 * the interrupt holdoff timer on any of the device's Queue Sets.
1302 */
1303static int cxgb4vf_set_coalesce(struct net_device *dev,
1304                                struct ethtool_coalesce *coalesce)
1305{
1306        const struct port_info *pi = netdev_priv(dev);
1307        struct adapter *adapter = pi->adapter;
1308
1309        return set_rxq_intr_params(adapter,
1310                                   &adapter->sge.ethrxq[pi->first_qset].rspq,
1311                                   coalesce->rx_coalesce_usecs,
1312                                   coalesce->rx_max_coalesced_frames);
1313}
1314
1315/*
1316 * Report current port link pause parameter settings.
1317 */
1318static void cxgb4vf_get_pauseparam(struct net_device *dev,
1319                                   struct ethtool_pauseparam *pauseparam)
1320{
1321        struct port_info *pi = netdev_priv(dev);
1322
1323        pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1324        pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1325        pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1326}
1327
1328/*
1329 * Return whether RX Checksum Offloading is currently enabled for the device.
1330 */
1331static u32 cxgb4vf_get_rx_csum(struct net_device *dev)
1332{
1333        struct port_info *pi = netdev_priv(dev);
1334
1335        return (pi->rx_offload & RX_CSO) != 0;
1336}
1337
1338/*
1339 * Turn RX Checksum Offloading on or off for the device.
1340 */
1341static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum)
1342{
1343        struct port_info *pi = netdev_priv(dev);
1344
1345        if (csum)
1346                pi->rx_offload |= RX_CSO;
1347        else
1348                pi->rx_offload &= ~RX_CSO;
1349        return 0;
1350}
1351
1352/*
1353 * Identify the port by blinking the port's LED.
1354 */
1355static int cxgb4vf_phys_id(struct net_device *dev, u32 id)
1356{
1357        struct port_info *pi = netdev_priv(dev);
1358
1359        return t4vf_identify_port(pi->adapter, pi->viid, 5);
1360}
1361
1362/*
1363 * Port stats maintained per queue of the port.
1364 */
1365struct queue_port_stats {
1366        u64 tso;
1367        u64 tx_csum;
1368        u64 rx_csum;
1369        u64 vlan_ex;
1370        u64 vlan_ins;
1371        u64 lro_pkts;
1372        u64 lro_merged;
1373};
1374
1375/*
1376 * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1377 * these need to match the order of statistics returned by
1378 * t4vf_get_port_stats().
1379 */
1380static const char stats_strings[][ETH_GSTRING_LEN] = {
1381        /*
1382         * These must match the layout of the t4vf_port_stats structure.
1383         */
1384        "TxBroadcastBytes  ",
1385        "TxBroadcastFrames ",
1386        "TxMulticastBytes  ",
1387        "TxMulticastFrames ",
1388        "TxUnicastBytes    ",
1389        "TxUnicastFrames   ",
1390        "TxDroppedFrames   ",
1391        "TxOffloadBytes    ",
1392        "TxOffloadFrames   ",
1393        "RxBroadcastBytes  ",
1394        "RxBroadcastFrames ",
1395        "RxMulticastBytes  ",
1396        "RxMulticastFrames ",
1397        "RxUnicastBytes    ",
1398        "RxUnicastFrames   ",
1399        "RxErrorFrames     ",
1400
1401        /*
1402         * These are accumulated per-queue statistics and must match the
1403         * order of the fields in the queue_port_stats structure.
1404         */
1405        "TSO               ",
1406        "TxCsumOffload     ",
1407        "RxCsumGood        ",
1408        "VLANextractions   ",
1409        "VLANinsertions    ",
1410        "GROPackets        ",
1411        "GROMerged         ",
1412};
1413
1414/*
1415 * Return the number of statistics in the specified statistics set.
1416 */
1417static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1418{
1419        switch (sset) {
1420        case ETH_SS_STATS:
1421                return ARRAY_SIZE(stats_strings);
1422        default:
1423                return -EOPNOTSUPP;
1424        }
1425        /*NOTREACHED*/
1426}
1427
1428/*
1429 * Return the strings for the specified statistics set.
1430 */
1431static void cxgb4vf_get_strings(struct net_device *dev,
1432                                u32 sset,
1433                                u8 *data)
1434{
1435        switch (sset) {
1436        case ETH_SS_STATS:
1437                memcpy(data, stats_strings, sizeof(stats_strings));
1438                break;
1439        }
1440}
1441
1442/*
1443 * Small utility routine to accumulate queue statistics across the queues of
1444 * a "port".
1445 */
1446static void collect_sge_port_stats(const struct adapter *adapter,
1447                                   const struct port_info *pi,
1448                                   struct queue_port_stats *stats)
1449{
1450        const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1451        const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1452        int qs;
1453
1454        memset(stats, 0, sizeof(*stats));
1455        for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1456                stats->tso += txq->tso;
1457                stats->tx_csum += txq->tx_cso;
1458                stats->rx_csum += rxq->stats.rx_cso;
1459                stats->vlan_ex += rxq->stats.vlan_ex;
1460                stats->vlan_ins += txq->vlan_ins;
1461                stats->lro_pkts += rxq->stats.lro_pkts;
1462                stats->lro_merged += rxq->stats.lro_merged;
1463        }
1464}
1465
1466/*
1467 * Return the ETH_SS_STATS statistics set.
1468 */
1469static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1470                                      struct ethtool_stats *stats,
1471                                      u64 *data)
1472{
1473        struct port_info *pi = netdev2pinfo(dev);
1474        struct adapter *adapter = pi->adapter;
1475        int err = t4vf_get_port_stats(adapter, pi->pidx,
1476                                      (struct t4vf_port_stats *)data);
1477        if (err)
1478                memset(data, 0, sizeof(struct t4vf_port_stats));
1479
1480        data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1481        collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1482}
1483
1484/*
1485 * Return the size of our register map.
1486 */
1487static int cxgb4vf_get_regs_len(struct net_device *dev)
1488{
1489        return T4VF_REGMAP_SIZE;
1490}
1491
1492/*
1493 * Dump a block of registers, start to end inclusive, into a buffer.
1494 */
1495static void reg_block_dump(struct adapter *adapter, void *regbuf,
1496                           unsigned int start, unsigned int end)
1497{
1498        u32 *bp = regbuf + start - T4VF_REGMAP_START;
1499
1500        for ( ; start <= end; start += sizeof(u32)) {
1501                /*
1502                 * Avoid reading the Mailbox Control register since that
1503                 * can trigger a Mailbox Ownership Arbitration cycle and
1504                 * interfere with communication with the firmware.
1505                 */
1506                if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1507                        *bp++ = 0xffff;
1508                else
1509                        *bp++ = t4_read_reg(adapter, start);
1510        }
1511}
1512
1513/*
1514 * Copy our entire register map into the provided buffer.
1515 */
1516static void cxgb4vf_get_regs(struct net_device *dev,
1517                             struct ethtool_regs *regs,
1518                             void *regbuf)
1519{
1520        struct adapter *adapter = netdev2adap(dev);
1521
1522        regs->version = mk_adap_vers(adapter);
1523
1524        /*
1525         * Fill in register buffer with our register map.
1526         */
1527        memset(regbuf, 0, T4VF_REGMAP_SIZE);
1528
1529        reg_block_dump(adapter, regbuf,
1530                       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1531                       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1532        reg_block_dump(adapter, regbuf,
1533                       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1534                       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1535        reg_block_dump(adapter, regbuf,
1536                       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1537                       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1538        reg_block_dump(adapter, regbuf,
1539                       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1540                       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1541
1542        reg_block_dump(adapter, regbuf,
1543                       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1544                       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1545}
1546
1547/*
1548 * Report current Wake On LAN settings.
1549 */
1550static void cxgb4vf_get_wol(struct net_device *dev,
1551                            struct ethtool_wolinfo *wol)
1552{
1553        wol->supported = 0;
1554        wol->wolopts = 0;
1555        memset(&wol->sopass, 0, sizeof(wol->sopass));
1556}
1557
1558/*
1559 * TCP Segmentation Offload flags which we support.
1560 */
1561#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1562
1563/*
1564 * Set TCP Segmentation Offloading feature capabilities.
1565 */
1566static int cxgb4vf_set_tso(struct net_device *dev, u32 tso)
1567{
1568        if (tso)
1569                dev->features |= TSO_FLAGS;
1570        else
1571                dev->features &= ~TSO_FLAGS;
1572        return 0;
1573}
1574
1575static struct ethtool_ops cxgb4vf_ethtool_ops = {
1576        .get_settings           = cxgb4vf_get_settings,
1577        .get_drvinfo            = cxgb4vf_get_drvinfo,
1578        .get_msglevel           = cxgb4vf_get_msglevel,
1579        .set_msglevel           = cxgb4vf_set_msglevel,
1580        .get_ringparam          = cxgb4vf_get_ringparam,
1581        .set_ringparam          = cxgb4vf_set_ringparam,
1582        .get_coalesce           = cxgb4vf_get_coalesce,
1583        .set_coalesce           = cxgb4vf_set_coalesce,
1584        .get_pauseparam         = cxgb4vf_get_pauseparam,
1585        .get_rx_csum            = cxgb4vf_get_rx_csum,
1586        .set_rx_csum            = cxgb4vf_set_rx_csum,
1587        .set_tx_csum            = ethtool_op_set_tx_ipv6_csum,
1588        .set_sg                 = ethtool_op_set_sg,
1589        .get_link               = ethtool_op_get_link,
1590        .get_strings            = cxgb4vf_get_strings,
1591        .phys_id                = cxgb4vf_phys_id,
1592        .get_sset_count         = cxgb4vf_get_sset_count,
1593        .get_ethtool_stats      = cxgb4vf_get_ethtool_stats,
1594        .get_regs_len           = cxgb4vf_get_regs_len,
1595        .get_regs               = cxgb4vf_get_regs,
1596        .get_wol                = cxgb4vf_get_wol,
1597        .set_tso                = cxgb4vf_set_tso,
1598};
1599
1600/*
1601 * /sys/kernel/debug/cxgb4vf support code and data.
1602 * ================================================
1603 */
1604
1605/*
1606 * Show SGE Queue Set information.  We display QPL Queues Sets per line.
1607 */
1608#define QPL     4
1609
1610static int sge_qinfo_show(struct seq_file *seq, void *v)
1611{
1612        struct adapter *adapter = seq->private;
1613        int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1614        int qs, r = (uintptr_t)v - 1;
1615
1616        if (r)
1617                seq_putc(seq, '\n');
1618
1619        #define S3(fmt_spec, s, v) \
1620                do {\
1621                        seq_printf(seq, "%-12s", s); \
1622                        for (qs = 0; qs < n; ++qs) \
1623                                seq_printf(seq, " %16" fmt_spec, v); \
1624                        seq_putc(seq, '\n'); \
1625                } while (0)
1626        #define S(s, v)         S3("s", s, v)
1627        #define T(s, v)         S3("u", s, txq[qs].v)
1628        #define R(s, v)         S3("u", s, rxq[qs].v)
1629
1630        if (r < eth_entries) {
1631                const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1632                const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1633                int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1634
1635                S("QType:", "Ethernet");
1636                S("Interface:",
1637                  (rxq[qs].rspq.netdev
1638                   ? rxq[qs].rspq.netdev->name
1639                   : "N/A"));
1640                S3("d", "Port:",
1641                   (rxq[qs].rspq.netdev
1642                    ? ((struct port_info *)
1643                       netdev_priv(rxq[qs].rspq.netdev))->port_id
1644                    : -1));
1645                T("TxQ ID:", q.abs_id);
1646                T("TxQ size:", q.size);
1647                T("TxQ inuse:", q.in_use);
1648                T("TxQ PIdx:", q.pidx);
1649                T("TxQ CIdx:", q.cidx);
1650                R("RspQ ID:", rspq.abs_id);
1651                R("RspQ size:", rspq.size);
1652                R("RspQE size:", rspq.iqe_len);
1653                S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1654                S3("u", "Intr pktcnt:",
1655                   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1656                R("RspQ CIdx:", rspq.cidx);
1657                R("RspQ Gen:", rspq.gen);
1658                R("FL ID:", fl.abs_id);
1659                R("FL size:", fl.size - MIN_FL_RESID);
1660                R("FL avail:", fl.avail);
1661                R("FL PIdx:", fl.pidx);
1662                R("FL CIdx:", fl.cidx);
1663                return 0;
1664        }
1665
1666        r -= eth_entries;
1667        if (r == 0) {
1668                const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1669
1670                seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1671                seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1672                seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1673                           qtimer_val(adapter, evtq));
1674                seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1675                           adapter->sge.counter_val[evtq->pktcnt_idx]);
1676                seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1677                seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1678        } else if (r == 1) {
1679                const struct sge_rspq *intrq = &adapter->sge.intrq;
1680
1681                seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1682                seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1683                seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1684                           qtimer_val(adapter, intrq));
1685                seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1686                           adapter->sge.counter_val[intrq->pktcnt_idx]);
1687                seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1688                seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1689        }
1690
1691        #undef R
1692        #undef T
1693        #undef S
1694        #undef S3
1695
1696        return 0;
1697}
1698
1699/*
1700 * Return the number of "entries" in our "file".  We group the multi-Queue
1701 * sections with QPL Queue Sets per "entry".  The sections of the output are:
1702 *
1703 *     Ethernet RX/TX Queue Sets
1704 *     Firmware Event Queue
1705 *     Forwarded Interrupt Queue (if in MSI mode)
1706 */
1707static int sge_queue_entries(const struct adapter *adapter)
1708{
1709        return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1710                ((adapter->flags & USING_MSI) != 0);
1711}
1712
1713static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1714{
1715        int entries = sge_queue_entries(seq->private);
1716
1717        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1718}
1719
1720static void sge_queue_stop(struct seq_file *seq, void *v)
1721{
1722}
1723
1724static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1725{
1726        int entries = sge_queue_entries(seq->private);
1727
1728        ++*pos;
1729        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1730}
1731
1732static const struct seq_operations sge_qinfo_seq_ops = {
1733        .start = sge_queue_start,
1734        .next  = sge_queue_next,
1735        .stop  = sge_queue_stop,
1736        .show  = sge_qinfo_show
1737};
1738
1739static int sge_qinfo_open(struct inode *inode, struct file *file)
1740{
1741        int res = seq_open(file, &sge_qinfo_seq_ops);
1742
1743        if (!res) {
1744                struct seq_file *seq = file->private_data;
1745                seq->private = inode->i_private;
1746        }
1747        return res;
1748}
1749
1750static const struct file_operations sge_qinfo_debugfs_fops = {
1751        .owner   = THIS_MODULE,
1752        .open    = sge_qinfo_open,
1753        .read    = seq_read,
1754        .llseek  = seq_lseek,
1755        .release = seq_release,
1756};
1757
1758/*
1759 * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
1760 */
1761#define QPL     4
1762
1763static int sge_qstats_show(struct seq_file *seq, void *v)
1764{
1765        struct adapter *adapter = seq->private;
1766        int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1767        int qs, r = (uintptr_t)v - 1;
1768
1769        if (r)
1770                seq_putc(seq, '\n');
1771
1772        #define S3(fmt, s, v) \
1773                do { \
1774                        seq_printf(seq, "%-16s", s); \
1775                        for (qs = 0; qs < n; ++qs) \
1776                                seq_printf(seq, " %8" fmt, v); \
1777                        seq_putc(seq, '\n'); \
1778                } while (0)
1779        #define S(s, v)         S3("s", s, v)
1780
1781        #define T3(fmt, s, v)   S3(fmt, s, txq[qs].v)
1782        #define T(s, v)         T3("lu", s, v)
1783
1784        #define R3(fmt, s, v)   S3(fmt, s, rxq[qs].v)
1785        #define R(s, v)         R3("lu", s, v)
1786
1787        if (r < eth_entries) {
1788                const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1789                const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1790                int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1791
1792                S("QType:", "Ethernet");
1793                S("Interface:",
1794                  (rxq[qs].rspq.netdev
1795                   ? rxq[qs].rspq.netdev->name
1796                   : "N/A"));
1797                R3("u", "RspQNullInts:", rspq.unhandled_irqs);
1798                R("RxPackets:", stats.pkts);
1799                R("RxCSO:", stats.rx_cso);
1800                R("VLANxtract:", stats.vlan_ex);
1801                R("LROmerged:", stats.lro_merged);
1802                R("LROpackets:", stats.lro_pkts);
1803                R("RxDrops:", stats.rx_drops);
1804                T("TSO:", tso);
1805                T("TxCSO:", tx_cso);
1806                T("VLANins:", vlan_ins);
1807                T("TxQFull:", q.stops);
1808                T("TxQRestarts:", q.restarts);
1809                T("TxMapErr:", mapping_err);
1810                R("FLAllocErr:", fl.alloc_failed);
1811                R("FLLrgAlcErr:", fl.large_alloc_failed);
1812                R("FLStarving:", fl.starving);
1813                return 0;
1814        }
1815
1816        r -= eth_entries;
1817        if (r == 0) {
1818                const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1819
1820                seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
1821                seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1822                           evtq->unhandled_irqs);
1823                seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1824                seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1825        } else if (r == 1) {
1826                const struct sge_rspq *intrq = &adapter->sge.intrq;
1827
1828                seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
1829                seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1830                           intrq->unhandled_irqs);
1831                seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1832                seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1833        }
1834
1835        #undef R
1836        #undef T
1837        #undef S
1838        #undef R3
1839        #undef T3
1840        #undef S3
1841
1842        return 0;
1843}
1844
1845/*
1846 * Return the number of "entries" in our "file".  We group the multi-Queue
1847 * sections with QPL Queue Sets per "entry".  The sections of the output are:
1848 *
1849 *     Ethernet RX/TX Queue Sets
1850 *     Firmware Event Queue
1851 *     Forwarded Interrupt Queue (if in MSI mode)
1852 */
1853static int sge_qstats_entries(const struct adapter *adapter)
1854{
1855        return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1856                ((adapter->flags & USING_MSI) != 0);
1857}
1858
1859static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1860{
1861        int entries = sge_qstats_entries(seq->private);
1862
1863        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1864}
1865
1866static void sge_qstats_stop(struct seq_file *seq, void *v)
1867{
1868}
1869
1870static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1871{
1872        int entries = sge_qstats_entries(seq->private);
1873
1874        (*pos)++;
1875        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1876}
1877
1878static const struct seq_operations sge_qstats_seq_ops = {
1879        .start = sge_qstats_start,
1880        .next  = sge_qstats_next,
1881        .stop  = sge_qstats_stop,
1882        .show  = sge_qstats_show
1883};
1884
1885static int sge_qstats_open(struct inode *inode, struct file *file)
1886{
1887        int res = seq_open(file, &sge_qstats_seq_ops);
1888
1889        if (res == 0) {
1890                struct seq_file *seq = file->private_data;
1891                seq->private = inode->i_private;
1892        }
1893        return res;
1894}
1895
1896static const struct file_operations sge_qstats_proc_fops = {
1897        .owner   = THIS_MODULE,
1898        .open    = sge_qstats_open,
1899        .read    = seq_read,
1900        .llseek  = seq_lseek,
1901        .release = seq_release,
1902};
1903
1904/*
1905 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1906 */
1907static int resources_show(struct seq_file *seq, void *v)
1908{
1909        struct adapter *adapter = seq->private;
1910        struct vf_resources *vfres = &adapter->params.vfres;
1911
1912        #define S(desc, fmt, var) \
1913                seq_printf(seq, "%-60s " fmt "\n", \
1914                           desc " (" #var "):", vfres->var)
1915
1916        S("Virtual Interfaces", "%d", nvi);
1917        S("Egress Queues", "%d", neq);
1918        S("Ethernet Control", "%d", nethctrl);
1919        S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1920        S("Ingress Queues", "%d", niq);
1921        S("Traffic Class", "%d", tc);
1922        S("Port Access Rights Mask", "%#x", pmask);
1923        S("MAC Address Filters", "%d", nexactf);
1924        S("Firmware Command Read Capabilities", "%#x", r_caps);
1925        S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1926
1927        #undef S
1928
1929        return 0;
1930}
1931
1932static int resources_open(struct inode *inode, struct file *file)
1933{
1934        return single_open(file, resources_show, inode->i_private);
1935}
1936
1937static const struct file_operations resources_proc_fops = {
1938        .owner   = THIS_MODULE,
1939        .open    = resources_open,
1940        .read    = seq_read,
1941        .llseek  = seq_lseek,
1942        .release = single_release,
1943};
1944
1945/*
1946 * Show Virtual Interfaces.
1947 */
1948static int interfaces_show(struct seq_file *seq, void *v)
1949{
1950        if (v == SEQ_START_TOKEN) {
1951                seq_puts(seq, "Interface  Port   VIID\n");
1952        } else {
1953                struct adapter *adapter = seq->private;
1954                int pidx = (uintptr_t)v - 2;
1955                struct net_device *dev = adapter->port[pidx];
1956                struct port_info *pi = netdev_priv(dev);
1957
1958                seq_printf(seq, "%9s  %4d  %#5x\n",
1959                           dev->name, pi->port_id, pi->viid);
1960        }
1961        return 0;
1962}
1963
1964static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1965{
1966        return pos <= adapter->params.nports
1967                ? (void *)(uintptr_t)(pos + 1)
1968                : NULL;
1969}
1970
1971static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1972{
1973        return *pos
1974                ? interfaces_get_idx(seq->private, *pos)
1975                : SEQ_START_TOKEN;
1976}
1977
1978static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1979{
1980        (*pos)++;
1981        return interfaces_get_idx(seq->private, *pos);
1982}
1983
1984static void interfaces_stop(struct seq_file *seq, void *v)
1985{
1986}
1987
1988static const struct seq_operations interfaces_seq_ops = {
1989        .start = interfaces_start,
1990        .next  = interfaces_next,
1991        .stop  = interfaces_stop,
1992        .show  = interfaces_show
1993};
1994
1995static int interfaces_open(struct inode *inode, struct file *file)
1996{
1997        int res = seq_open(file, &interfaces_seq_ops);
1998
1999        if (res == 0) {
2000                struct seq_file *seq = file->private_data;
2001                seq->private = inode->i_private;
2002        }
2003        return res;
2004}
2005
2006static const struct file_operations interfaces_proc_fops = {
2007        .owner   = THIS_MODULE,
2008        .open    = interfaces_open,
2009        .read    = seq_read,
2010        .llseek  = seq_lseek,
2011        .release = seq_release,
2012};
2013
2014/*
2015 * /sys/kernel/debugfs/cxgb4vf/ files list.
2016 */
2017struct cxgb4vf_debugfs_entry {
2018        const char *name;               /* name of debugfs node */
2019        mode_t mode;                    /* file system mode */
2020        const struct file_operations *fops;
2021};
2022
2023static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2024        { "sge_qinfo",  S_IRUGO, &sge_qinfo_debugfs_fops },
2025        { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2026        { "resources",  S_IRUGO, &resources_proc_fops },
2027        { "interfaces", S_IRUGO, &interfaces_proc_fops },
2028};
2029
2030/*
2031 * Module and device initialization and cleanup code.
2032 * ==================================================
2033 */
2034
2035/*
2036 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2037 * directory (debugfs_root) has already been set up.
2038 */
2039static int __devinit setup_debugfs(struct adapter *adapter)
2040{
2041        int i;
2042
2043        BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2044
2045        /*
2046         * Debugfs support is best effort.
2047         */
2048        for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2049                (void)debugfs_create_file(debugfs_files[i].name,
2050                                  debugfs_files[i].mode,
2051                                  adapter->debugfs_root,
2052                                  (void *)adapter,
2053                                  debugfs_files[i].fops);
2054
2055        return 0;
2056}
2057
2058/*
2059 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2060 * it to our caller to tear down the directory (debugfs_root).
2061 */
2062static void cleanup_debugfs(struct adapter *adapter)
2063{
2064        BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2065
2066        /*
2067         * Unlike our sister routine cleanup_proc(), we don't need to remove
2068         * individual entries because a call will be made to
2069         * debugfs_remove_recursive().  We just need to clean up any ancillary
2070         * persistent state.
2071         */
2072        /* nothing to do */
2073}
2074
2075/*
2076 * Perform early "adapter" initialization.  This is where we discover what
2077 * adapter parameters we're going to be using and initialize basic adapter
2078 * hardware support.
2079 */
2080static int __devinit adap_init0(struct adapter *adapter)
2081{
2082        struct vf_resources *vfres = &adapter->params.vfres;
2083        struct sge_params *sge_params = &adapter->params.sge;
2084        struct sge *s = &adapter->sge;
2085        unsigned int ethqsets;
2086        int err;
2087
2088        /*
2089         * Wait for the device to become ready before proceeding ...
2090         */
2091        err = t4vf_wait_dev_ready(adapter);
2092        if (err) {
2093                dev_err(adapter->pdev_dev, "device didn't become ready:"
2094                        " err=%d\n", err);
2095                return err;
2096        }
2097
2098        /*
2099         * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2100         * 2.6.31 and later we can't call pci_reset_function() in order to
2101         * issue an FLR because of a self- deadlock on the device semaphore.
2102         * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2103         * cases where they're needed -- for instance, some versions of KVM
2104         * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2105         * use the firmware based reset in order to reset any per function
2106         * state.
2107         */
2108        err = t4vf_fw_reset(adapter);
2109        if (err < 0) {
2110                dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2111                return err;
2112        }
2113
2114        /*
2115         * Grab basic operational parameters.  These will predominantly have
2116         * been set up by the Physical Function Driver or will be hard coded
2117         * into the adapter.  We just have to live with them ...  Note that
2118         * we _must_ get our VPD parameters before our SGE parameters because
2119         * we need to know the adapter's core clock from the VPD in order to
2120         * properly decode the SGE Timer Values.
2121         */
2122        err = t4vf_get_dev_params(adapter);
2123        if (err) {
2124                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2125                        " device parameters: err=%d\n", err);
2126                return err;
2127        }
2128        err = t4vf_get_vpd_params(adapter);
2129        if (err) {
2130                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2131                        " VPD parameters: err=%d\n", err);
2132                return err;
2133        }
2134        err = t4vf_get_sge_params(adapter);
2135        if (err) {
2136                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2137                        " SGE parameters: err=%d\n", err);
2138                return err;
2139        }
2140        err = t4vf_get_rss_glb_config(adapter);
2141        if (err) {
2142                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2143                        " RSS parameters: err=%d\n", err);
2144                return err;
2145        }
2146        if (adapter->params.rss.mode !=
2147            FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2148                dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2149                        " mode %d\n", adapter->params.rss.mode);
2150                return -EINVAL;
2151        }
2152        err = t4vf_sge_init(adapter);
2153        if (err) {
2154                dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2155                        " err=%d\n", err);
2156                return err;
2157        }
2158
2159        /*
2160         * Retrieve our RX interrupt holdoff timer values and counter
2161         * threshold values from the SGE parameters.
2162         */
2163        s->timer_val[0] = core_ticks_to_us(adapter,
2164                TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2165        s->timer_val[1] = core_ticks_to_us(adapter,
2166                TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2167        s->timer_val[2] = core_ticks_to_us(adapter,
2168                TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2169        s->timer_val[3] = core_ticks_to_us(adapter,
2170                TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2171        s->timer_val[4] = core_ticks_to_us(adapter,
2172                TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2173        s->timer_val[5] = core_ticks_to_us(adapter,
2174                TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2175
2176        s->counter_val[0] =
2177                THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2178        s->counter_val[1] =
2179                THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2180        s->counter_val[2] =
2181                THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2182        s->counter_val[3] =
2183                THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2184
2185        /*
2186         * Grab our Virtual Interface resource allocation, extract the
2187         * features that we're interested in and do a bit of sanity testing on
2188         * what we discover.
2189         */
2190        err = t4vf_get_vfres(adapter);
2191        if (err) {
2192                dev_err(adapter->pdev_dev, "unable to get virtual interface"
2193                        " resources: err=%d\n", err);
2194                return err;
2195        }
2196
2197        /*
2198         * The number of "ports" which we support is equal to the number of
2199         * Virtual Interfaces with which we've been provisioned.
2200         */
2201        adapter->params.nports = vfres->nvi;
2202        if (adapter->params.nports > MAX_NPORTS) {
2203                dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2204                         " virtual interfaces\n", MAX_NPORTS,
2205                         adapter->params.nports);
2206                adapter->params.nports = MAX_NPORTS;
2207        }
2208
2209        /*
2210         * We need to reserve a number of the ingress queues with Free List
2211         * and Interrupt capabilities for special interrupt purposes (like
2212         * asynchronous firmware messages, or forwarded interrupts if we're
2213         * using MSI).  The rest of the FL/Intr-capable ingress queues will be
2214         * matched up one-for-one with Ethernet/Control egress queues in order
2215         * to form "Queue Sets" which will be aportioned between the "ports".
2216         * For each Queue Set, we'll need the ability to allocate two Egress
2217         * Contexts -- one for the Ingress Queue Free List and one for the TX
2218         * Ethernet Queue.
2219         */
2220        ethqsets = vfres->niqflint - INGQ_EXTRAS;
2221        if (vfres->nethctrl != ethqsets) {
2222                dev_warn(adapter->pdev_dev, "unequal number of [available]"
2223                         " ingress/egress queues (%d/%d); using minimum for"
2224                         " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2225                ethqsets = min(vfres->nethctrl, ethqsets);
2226        }
2227        if (vfres->neq < ethqsets*2) {
2228                dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2229                         " to support Queue Sets (%d); reducing allowed Queue"
2230                         " Sets\n", vfres->neq, ethqsets);
2231                ethqsets = vfres->neq/2;
2232        }
2233        if (ethqsets > MAX_ETH_QSETS) {
2234                dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2235                         " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2236                ethqsets = MAX_ETH_QSETS;
2237        }
2238        if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2239                dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2240                         " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2241        }
2242        adapter->sge.max_ethqsets = ethqsets;
2243
2244        /*
2245         * Check for various parameter sanity issues.  Most checks simply
2246         * result in us using fewer resources than our provissioning but we
2247         * do need at least  one "port" with which to work ...
2248         */
2249        if (adapter->sge.max_ethqsets < adapter->params.nports) {
2250                dev_warn(adapter->pdev_dev, "only using %d of %d available"
2251                         " virtual interfaces (too few Queue Sets)\n",
2252                         adapter->sge.max_ethqsets, adapter->params.nports);
2253                adapter->params.nports = adapter->sge.max_ethqsets;
2254        }
2255        if (adapter->params.nports == 0) {
2256                dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2257                        "usable!\n");
2258                return -EINVAL;
2259        }
2260        return 0;
2261}
2262
2263static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2264                             u8 pkt_cnt_idx, unsigned int size,
2265                             unsigned int iqe_size)
2266{
2267        rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2268                             (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2269        rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2270                            ? pkt_cnt_idx
2271                            : 0);
2272        rspq->iqe_len = iqe_size;
2273        rspq->size = size;
2274}
2275
2276/*
2277 * Perform default configuration of DMA queues depending on the number and
2278 * type of ports we found and the number of available CPUs.  Most settings can
2279 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2280 * being brought up for the first time.
2281 */
2282static void __devinit cfg_queues(struct adapter *adapter)
2283{
2284        struct sge *s = &adapter->sge;
2285        int q10g, n10g, qidx, pidx, qs;
2286        size_t iqe_size;
2287
2288        /*
2289         * We should not be called till we know how many Queue Sets we can
2290         * support.  In particular, this means that we need to know what kind
2291         * of interrupts we'll be using ...
2292         */
2293        BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2294
2295        /*
2296         * Count the number of 10GbE Virtual Interfaces that we have.
2297         */
2298        n10g = 0;
2299        for_each_port(adapter, pidx)
2300                n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2301
2302        /*
2303         * We default to 1 queue per non-10G port and up to # of cores queues
2304         * per 10G port.
2305         */
2306        if (n10g == 0)
2307                q10g = 0;
2308        else {
2309                int n1g = (adapter->params.nports - n10g);
2310                q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2311                if (q10g > num_online_cpus())
2312                        q10g = num_online_cpus();
2313        }
2314
2315        /*
2316         * Allocate the "Queue Sets" to the various Virtual Interfaces.
2317         * The layout will be established in setup_sge_queues() when the
2318         * adapter is brough up for the first time.
2319         */
2320        qidx = 0;
2321        for_each_port(adapter, pidx) {
2322                struct port_info *pi = adap2pinfo(adapter, pidx);
2323
2324                pi->first_qset = qidx;
2325                pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2326                qidx += pi->nqsets;
2327        }
2328        s->ethqsets = qidx;
2329
2330        /*
2331         * The Ingress Queue Entry Size for our various Response Queues needs
2332         * to be big enough to accommodate the largest message we can receive
2333         * from the chip/firmware; which is 64 bytes ...
2334         */
2335        iqe_size = 64;
2336
2337        /*
2338         * Set up default Queue Set parameters ...  Start off with the
2339         * shortest interrupt holdoff timer.
2340         */
2341        for (qs = 0; qs < s->max_ethqsets; qs++) {
2342                struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2343                struct sge_eth_txq *txq = &s->ethtxq[qs];
2344
2345                init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2346                rxq->fl.size = 72;
2347                txq->q.size = 1024;
2348        }
2349
2350        /*
2351         * The firmware event queue is used for link state changes and
2352         * notifications of TX DMA completions.
2353         */
2354        init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2355
2356        /*
2357         * The forwarded interrupt queue is used when we're in MSI interrupt
2358         * mode.  In this mode all interrupts associated with RX queues will
2359         * be forwarded to a single queue which we'll associate with our MSI
2360         * interrupt vector.  The messages dropped in the forwarded interrupt
2361         * queue will indicate which ingress queue needs servicing ...  This
2362         * queue needs to be large enough to accommodate all of the ingress
2363         * queues which are forwarding their interrupt (+1 to prevent the PIDX
2364         * from equalling the CIDX if every ingress queue has an outstanding
2365         * interrupt).  The queue doesn't need to be any larger because no
2366         * ingress queue will ever have more than one outstanding interrupt at
2367         * any time ...
2368         */
2369        init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2370                  iqe_size);
2371}
2372
2373/*
2374 * Reduce the number of Ethernet queues across all ports to at most n.
2375 * n provides at least one queue per port.
2376 */
2377static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2378{
2379        int i;
2380        struct port_info *pi;
2381
2382        /*
2383         * While we have too many active Ether Queue Sets, interate across the
2384         * "ports" and reduce their individual Queue Set allocations.
2385         */
2386        BUG_ON(n < adapter->params.nports);
2387        while (n < adapter->sge.ethqsets)
2388                for_each_port(adapter, i) {
2389                        pi = adap2pinfo(adapter, i);
2390                        if (pi->nqsets > 1) {
2391                                pi->nqsets--;
2392                                adapter->sge.ethqsets--;
2393                                if (adapter->sge.ethqsets <= n)
2394                                        break;
2395                        }
2396                }
2397
2398        /*
2399         * Reassign the starting Queue Sets for each of the "ports" ...
2400         */
2401        n = 0;
2402        for_each_port(adapter, i) {
2403                pi = adap2pinfo(adapter, i);
2404                pi->first_qset = n;
2405                n += pi->nqsets;
2406        }
2407}
2408
2409/*
2410 * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2411 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2412 * need.  Minimally we need one for every Virtual Interface plus those needed
2413 * for our "extras".  Note that this process may lower the maximum number of
2414 * allowed Queue Sets ...
2415 */
2416static int __devinit enable_msix(struct adapter *adapter)
2417{
2418        int i, err, want, need;
2419        struct msix_entry entries[MSIX_ENTRIES];
2420        struct sge *s = &adapter->sge;
2421
2422        for (i = 0; i < MSIX_ENTRIES; ++i)
2423                entries[i].entry = i;
2424
2425        /*
2426         * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2427         * plus those needed for our "extras" (for example, the firmware
2428         * message queue).  We _need_ at least one "Queue Set" per Virtual
2429         * Interface plus those needed for our "extras".  So now we get to see
2430         * if the song is right ...
2431         */
2432        want = s->max_ethqsets + MSIX_EXTRAS;
2433        need = adapter->params.nports + MSIX_EXTRAS;
2434        while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2435                want = err;
2436
2437        if (err == 0) {
2438                int nqsets = want - MSIX_EXTRAS;
2439                if (nqsets < s->max_ethqsets) {
2440                        dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2441                                 " for %d Queue Sets\n", nqsets);
2442                        s->max_ethqsets = nqsets;
2443                        if (nqsets < s->ethqsets)
2444                                reduce_ethqs(adapter, nqsets);
2445                }
2446                for (i = 0; i < want; ++i)
2447                        adapter->msix_info[i].vec = entries[i].vector;
2448        } else if (err > 0) {
2449                pci_disable_msix(adapter->pdev);
2450                dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2451                         " not using MSI-X\n", err);
2452        }
2453        return err;
2454}
2455
2456#ifdef HAVE_NET_DEVICE_OPS
2457static const struct net_device_ops cxgb4vf_netdev_ops   = {
2458        .ndo_open               = cxgb4vf_open,
2459        .ndo_stop               = cxgb4vf_stop,
2460        .ndo_start_xmit         = t4vf_eth_xmit,
2461        .ndo_get_stats          = cxgb4vf_get_stats,
2462        .ndo_set_rx_mode        = cxgb4vf_set_rxmode,
2463        .ndo_set_mac_address    = cxgb4vf_set_mac_addr,
2464        .ndo_validate_addr      = eth_validate_addr,
2465        .ndo_do_ioctl           = cxgb4vf_do_ioctl,
2466        .ndo_change_mtu         = cxgb4vf_change_mtu,
2467        .ndo_vlan_rx_register   = cxgb4vf_vlan_rx_register,
2468#ifdef CONFIG_NET_POLL_CONTROLLER
2469        .ndo_poll_controller    = cxgb4vf_poll_controller,
2470#endif
2471};
2472#endif
2473
2474/*
2475 * "Probe" a device: initialize a device and construct all kernel and driver
2476 * state needed to manage the device.  This routine is called "init_one" in
2477 * the PF Driver ...
2478 */
2479static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2480                                       const struct pci_device_id *ent)
2481{
2482        static int version_printed;
2483
2484        int pci_using_dac;
2485        int err, pidx;
2486        unsigned int pmask;
2487        struct adapter *adapter;
2488        struct port_info *pi;
2489        struct net_device *netdev;
2490
2491        /*
2492         * Print our driver banner the first time we're called to initialize a
2493         * device.
2494         */
2495        if (version_printed == 0) {
2496                printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2497                version_printed = 1;
2498        }
2499
2500        /*
2501         * Initialize generic PCI device state.
2502         */
2503        err = pci_enable_device(pdev);
2504        if (err) {
2505                dev_err(&pdev->dev, "cannot enable PCI device\n");
2506                return err;
2507        }
2508
2509        /*
2510         * Reserve PCI resources for the device.  If we can't get them some
2511         * other driver may have already claimed the device ...
2512         */
2513        err = pci_request_regions(pdev, KBUILD_MODNAME);
2514        if (err) {
2515                dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2516                goto err_disable_device;
2517        }
2518
2519        /*
2520         * Set up our DMA mask: try for 64-bit address masking first and
2521         * fall back to 32-bit if we can't get 64 bits ...
2522         */
2523        err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2524        if (err == 0) {
2525                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2526                if (err) {
2527                        dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2528                                " coherent allocations\n");
2529                        goto err_release_regions;
2530                }
2531                pci_using_dac = 1;
2532        } else {
2533                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2534                if (err != 0) {
2535                        dev_err(&pdev->dev, "no usable DMA configuration\n");
2536                        goto err_release_regions;
2537                }
2538                pci_using_dac = 0;
2539        }
2540
2541        /*
2542         * Enable bus mastering for the device ...
2543         */
2544        pci_set_master(pdev);
2545
2546        /*
2547         * Allocate our adapter data structure and attach it to the device.
2548         */
2549        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2550        if (!adapter) {
2551                err = -ENOMEM;
2552                goto err_release_regions;
2553        }
2554        pci_set_drvdata(pdev, adapter);
2555        adapter->pdev = pdev;
2556        adapter->pdev_dev = &pdev->dev;
2557
2558        /*
2559         * Initialize SMP data synchronization resources.
2560         */
2561        spin_lock_init(&adapter->stats_lock);
2562
2563        /*
2564         * Map our I/O registers in BAR0.
2565         */
2566        adapter->regs = pci_ioremap_bar(pdev, 0);
2567        if (!adapter->regs) {
2568                dev_err(&pdev->dev, "cannot map device registers\n");
2569                err = -ENOMEM;
2570                goto err_free_adapter;
2571        }
2572
2573        /*
2574         * Initialize adapter level features.
2575         */
2576        adapter->name = pci_name(pdev);
2577        adapter->msg_enable = dflt_msg_enable;
2578        err = adap_init0(adapter);
2579        if (err)
2580                goto err_unmap_bar;
2581
2582        /*
2583         * Allocate our "adapter ports" and stitch everything together.
2584         */
2585        pmask = adapter->params.vfres.pmask;
2586        for_each_port(adapter, pidx) {
2587                int port_id, viid;
2588
2589                /*
2590                 * We simplistically allocate our virtual interfaces
2591                 * sequentially across the port numbers to which we have
2592                 * access rights.  This should be configurable in some manner
2593                 * ...
2594                 */
2595                if (pmask == 0)
2596                        break;
2597                port_id = ffs(pmask) - 1;
2598                pmask &= ~(1 << port_id);
2599                viid = t4vf_alloc_vi(adapter, port_id);
2600                if (viid < 0) {
2601                        dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2602                                " err=%d\n", port_id, viid);
2603                        err = viid;
2604                        goto err_free_dev;
2605                }
2606
2607                /*
2608                 * Allocate our network device and stitch things together.
2609                 */
2610                netdev = alloc_etherdev_mq(sizeof(struct port_info),
2611                                           MAX_PORT_QSETS);
2612                if (netdev == NULL) {
2613                        dev_err(&pdev->dev, "cannot allocate netdev for"
2614                                " port %d\n", port_id);
2615                        t4vf_free_vi(adapter, viid);
2616                        err = -ENOMEM;
2617                        goto err_free_dev;
2618                }
2619                adapter->port[pidx] = netdev;
2620                SET_NETDEV_DEV(netdev, &pdev->dev);
2621                pi = netdev_priv(netdev);
2622                pi->adapter = adapter;
2623                pi->pidx = pidx;
2624                pi->port_id = port_id;
2625                pi->viid = viid;
2626
2627                /*
2628                 * Initialize the starting state of our "port" and register
2629                 * it.
2630                 */
2631                pi->xact_addr_filt = -1;
2632                pi->rx_offload = RX_CSO;
2633                netif_carrier_off(netdev);
2634                netdev->irq = pdev->irq;
2635
2636                netdev->features = (NETIF_F_SG | TSO_FLAGS |
2637                                    NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2638                                    NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2639                                    NETIF_F_GRO);
2640                if (pci_using_dac)
2641                        netdev->features |= NETIF_F_HIGHDMA;
2642                netdev->vlan_features =
2643                        (netdev->features &
2644                         ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX));
2645
2646#ifdef HAVE_NET_DEVICE_OPS
2647                netdev->netdev_ops = &cxgb4vf_netdev_ops;
2648#else
2649                netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2650                netdev->open = cxgb4vf_open;
2651                netdev->stop = cxgb4vf_stop;
2652                netdev->hard_start_xmit = t4vf_eth_xmit;
2653                netdev->get_stats = cxgb4vf_get_stats;
2654                netdev->set_rx_mode = cxgb4vf_set_rxmode;
2655                netdev->do_ioctl = cxgb4vf_do_ioctl;
2656                netdev->change_mtu = cxgb4vf_change_mtu;
2657                netdev->set_mac_address = cxgb4vf_set_mac_addr;
2658#ifdef CONFIG_NET_POLL_CONTROLLER
2659                netdev->poll_controller = cxgb4vf_poll_controller;
2660#endif
2661#endif
2662                SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2663
2664                /*
2665                 * Initialize the hardware/software state for the port.
2666                 */
2667                err = t4vf_port_init(adapter, pidx);
2668                if (err) {
2669                        dev_err(&pdev->dev, "cannot initialize port %d\n",
2670                                pidx);
2671                        goto err_free_dev;
2672                }
2673        }
2674
2675        /*
2676         * The "card" is now ready to go.  If any errors occur during device
2677         * registration we do not fail the whole "card" but rather proceed
2678         * only with the ports we manage to register successfully.  However we
2679         * must register at least one net device.
2680         */
2681        for_each_port(adapter, pidx) {
2682                netdev = adapter->port[pidx];
2683                if (netdev == NULL)
2684                        continue;
2685
2686                err = register_netdev(netdev);
2687                if (err) {
2688                        dev_warn(&pdev->dev, "cannot register net device %s,"
2689                                 " skipping\n", netdev->name);
2690                        continue;
2691                }
2692
2693                set_bit(pidx, &adapter->registered_device_map);
2694        }
2695        if (adapter->registered_device_map == 0) {
2696                dev_err(&pdev->dev, "could not register any net devices\n");
2697                goto err_free_dev;
2698        }
2699
2700        /*
2701         * Set up our debugfs entries.
2702         */
2703        if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
2704                adapter->debugfs_root =
2705                        debugfs_create_dir(pci_name(pdev),
2706                                           cxgb4vf_debugfs_root);
2707                if (IS_ERR_OR_NULL(adapter->debugfs_root))
2708                        dev_warn(&pdev->dev, "could not create debugfs"
2709                                 " directory");
2710                else
2711                        setup_debugfs(adapter);
2712        }
2713
2714        /*
2715         * See what interrupts we'll be using.  If we've been configured to
2716         * use MSI-X interrupts, try to enable them but fall back to using
2717         * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
2718         * get MSI interrupts we bail with the error.
2719         */
2720        if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2721                adapter->flags |= USING_MSIX;
2722        else {
2723                err = pci_enable_msi(pdev);
2724                if (err) {
2725                        dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2726                                " err=%d\n",
2727                                msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2728                        goto err_free_debugfs;
2729                }
2730                adapter->flags |= USING_MSI;
2731        }
2732
2733        /*
2734         * Now that we know how many "ports" we have and what their types are,
2735         * and how many Queue Sets we can support, we can configure our queue
2736         * resources.
2737         */
2738        cfg_queues(adapter);
2739
2740        /*
2741         * Print a short notice on the existance and configuration of the new
2742         * VF network device ...
2743         */
2744        for_each_port(adapter, pidx) {
2745                dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2746                         adapter->port[pidx]->name,
2747                         (adapter->flags & USING_MSIX) ? "MSI-X" :
2748                         (adapter->flags & USING_MSI)  ? "MSI" : "");
2749        }
2750
2751        /*
2752         * Return success!
2753         */
2754        return 0;
2755
2756        /*
2757         * Error recovery and exit code.  Unwind state that's been created
2758         * so far and return the error.
2759         */
2760
2761err_free_debugfs:
2762        if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2763                cleanup_debugfs(adapter);
2764                debugfs_remove_recursive(adapter->debugfs_root);
2765        }
2766
2767err_free_dev:
2768        for_each_port(adapter, pidx) {
2769                netdev = adapter->port[pidx];
2770                if (netdev == NULL)
2771                        continue;
2772                pi = netdev_priv(netdev);
2773                t4vf_free_vi(adapter, pi->viid);
2774                if (test_bit(pidx, &adapter->registered_device_map))
2775                        unregister_netdev(netdev);
2776                free_netdev(netdev);
2777        }
2778
2779err_unmap_bar:
2780        iounmap(adapter->regs);
2781
2782err_free_adapter:
2783        kfree(adapter);
2784        pci_set_drvdata(pdev, NULL);
2785
2786err_release_regions:
2787        pci_release_regions(pdev);
2788        pci_set_drvdata(pdev, NULL);
2789        pci_clear_master(pdev);
2790
2791err_disable_device:
2792        pci_disable_device(pdev);
2793
2794        return err;
2795}
2796
2797/*
2798 * "Remove" a device: tear down all kernel and driver state created in the
2799 * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
2800 * that this is called "remove_one" in the PF Driver.)
2801 */
2802static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2803{
2804        struct adapter *adapter = pci_get_drvdata(pdev);
2805
2806        /*
2807         * Tear down driver state associated with device.
2808         */
2809        if (adapter) {
2810                int pidx;
2811
2812                /*
2813                 * Stop all of our activity.  Unregister network port,
2814                 * disable interrupts, etc.
2815                 */
2816                for_each_port(adapter, pidx)
2817                        if (test_bit(pidx, &adapter->registered_device_map))
2818                                unregister_netdev(adapter->port[pidx]);
2819                t4vf_sge_stop(adapter);
2820                if (adapter->flags & USING_MSIX) {
2821                        pci_disable_msix(adapter->pdev);
2822                        adapter->flags &= ~USING_MSIX;
2823                } else if (adapter->flags & USING_MSI) {
2824                        pci_disable_msi(adapter->pdev);
2825                        adapter->flags &= ~USING_MSI;
2826                }
2827
2828                /*
2829                 * Tear down our debugfs entries.
2830                 */
2831                if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2832                        cleanup_debugfs(adapter);
2833                        debugfs_remove_recursive(adapter->debugfs_root);
2834                }
2835
2836                /*
2837                 * Free all of the various resources which we've acquired ...
2838                 */
2839                t4vf_free_sge_resources(adapter);
2840                for_each_port(adapter, pidx) {
2841                        struct net_device *netdev = adapter->port[pidx];
2842                        struct port_info *pi;
2843
2844                        if (netdev == NULL)
2845                                continue;
2846
2847                        pi = netdev_priv(netdev);
2848                        t4vf_free_vi(adapter, pi->viid);
2849                        free_netdev(netdev);
2850                }
2851                iounmap(adapter->regs);
2852                kfree(adapter);
2853                pci_set_drvdata(pdev, NULL);
2854        }
2855
2856        /*
2857         * Disable the device and release its PCI resources.
2858         */
2859        pci_disable_device(pdev);
2860        pci_clear_master(pdev);
2861        pci_release_regions(pdev);
2862}
2863
2864/*
2865 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2866 * delivery.
2867 */
2868static void __devexit cxgb4vf_pci_shutdown(struct pci_dev *pdev)
2869{
2870        struct adapter *adapter;
2871        int pidx;
2872
2873        adapter = pci_get_drvdata(pdev);
2874        if (!adapter)
2875                return;
2876
2877        /*
2878         * Disable all Virtual Interfaces.  This will shut down the
2879         * delivery of all ingress packets into the chip for these
2880         * Virtual Interfaces.
2881         */
2882        for_each_port(adapter, pidx) {
2883                struct net_device *netdev;
2884                struct port_info *pi;
2885
2886                if (!test_bit(pidx, &adapter->registered_device_map))
2887                        continue;
2888
2889                netdev = adapter->port[pidx];
2890                if (!netdev)
2891                        continue;
2892
2893                pi = netdev_priv(netdev);
2894                t4vf_enable_vi(adapter, pi->viid, false, false);
2895        }
2896
2897        /*
2898         * Free up all Queues which will prevent further DMA and
2899         * Interrupts allowing various internal pathways to drain.
2900         */
2901        t4vf_free_sge_resources(adapter);
2902}
2903
2904/*
2905 * PCI Device registration data structures.
2906 */
2907#define CH_DEVICE(devid, idx) \
2908        { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2909
2910static struct pci_device_id cxgb4vf_pci_tbl[] = {
2911        CH_DEVICE(0xb000, 0),   /* PE10K FPGA */
2912        CH_DEVICE(0x4800, 0),   /* T440-dbg */
2913        CH_DEVICE(0x4801, 0),   /* T420-cr */
2914        CH_DEVICE(0x4802, 0),   /* T422-cr */
2915        CH_DEVICE(0x4803, 0),   /* T440-cr */
2916        CH_DEVICE(0x4804, 0),   /* T420-bch */
2917        CH_DEVICE(0x4805, 0),   /* T440-bch */
2918        CH_DEVICE(0x4806, 0),   /* T460-ch */
2919        CH_DEVICE(0x4807, 0),   /* T420-so */
2920        CH_DEVICE(0x4808, 0),   /* T420-cx */
2921        CH_DEVICE(0x4809, 0),   /* T420-bt */
2922        CH_DEVICE(0x480a, 0),   /* T404-bt */
2923        { 0, }
2924};
2925
2926MODULE_DESCRIPTION(DRV_DESC);
2927MODULE_AUTHOR("Chelsio Communications");
2928MODULE_LICENSE("Dual BSD/GPL");
2929MODULE_VERSION(DRV_VERSION);
2930MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2931
2932static struct pci_driver cxgb4vf_driver = {
2933        .name           = KBUILD_MODNAME,
2934        .id_table       = cxgb4vf_pci_tbl,
2935        .probe          = cxgb4vf_pci_probe,
2936        .remove         = __devexit_p(cxgb4vf_pci_remove),
2937        .shutdown       = __devexit_p(cxgb4vf_pci_shutdown),
2938};
2939
2940/*
2941 * Initialize global driver state.
2942 */
2943static int __init cxgb4vf_module_init(void)
2944{
2945        int ret;
2946
2947        /*
2948         * Vet our module parameters.
2949         */
2950        if (msi != MSI_MSIX && msi != MSI_MSI) {
2951                printk(KERN_WARNING KBUILD_MODNAME
2952                       ": bad module parameter msi=%d; must be %d"
2953                       " (MSI-X or MSI) or %d (MSI)\n",
2954                       msi, MSI_MSIX, MSI_MSI);
2955                return -EINVAL;
2956        }
2957
2958        /* Debugfs support is optional, just warn if this fails */
2959        cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2960        if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2961                printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2962                       " debugfs entry, continuing\n");
2963
2964        ret = pci_register_driver(&cxgb4vf_driver);
2965        if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2966                debugfs_remove(cxgb4vf_debugfs_root);
2967        return ret;
2968}
2969
2970/*
2971 * Tear down global driver state.
2972 */
2973static void __exit cxgb4vf_module_exit(void)
2974{
2975        pci_unregister_driver(&cxgb4vf_driver);
2976        debugfs_remove(cxgb4vf_debugfs_root);
2977}
2978
2979module_init(cxgb4vf_module_init);
2980module_exit(cxgb4vf_module_exit);
2981