linux/drivers/net/cxgb4vf/t4vf_hw.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#include <linux/version.h>
  37#include <linux/pci.h>
  38
  39#include "t4vf_common.h"
  40#include "t4vf_defs.h"
  41
  42#include "../cxgb4/t4_regs.h"
  43#include "../cxgb4/t4fw_api.h"
  44
  45/*
  46 * Wait for the device to become ready (signified by our "who am I" register
  47 * returning a value other than all 1's).  Return an error if it doesn't
  48 * become ready ...
  49 */
  50int __devinit t4vf_wait_dev_ready(struct adapter *adapter)
  51{
  52        const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
  53        const u32 notready1 = 0xffffffff;
  54        const u32 notready2 = 0xeeeeeeee;
  55        u32 val;
  56
  57        val = t4_read_reg(adapter, whoami);
  58        if (val != notready1 && val != notready2)
  59                return 0;
  60        msleep(500);
  61        val = t4_read_reg(adapter, whoami);
  62        if (val != notready1 && val != notready2)
  63                return 0;
  64        else
  65                return -EIO;
  66}
  67
  68/*
  69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
  70 * (since the firmware data structures are specified in a big-endian layout).
  71 */
  72static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
  73                         u32 mbox_data)
  74{
  75        for ( ; size; size -= 8, mbox_data += 8)
  76                *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
  77}
  78
  79/*
  80 * Dump contents of mailbox with a leading tag.
  81 */
  82static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
  83{
  84        dev_err(adapter->pdev_dev,
  85                "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
  86                (unsigned long long)t4_read_reg64(adapter, mbox_data +  0),
  87                (unsigned long long)t4_read_reg64(adapter, mbox_data +  8),
  88                (unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
  89                (unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
  90                (unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
  91                (unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
  92                (unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
  93                (unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
  94}
  95
  96/**
  97 *      t4vf_wr_mbox_core - send a command to FW through the mailbox
  98 *      @adapter: the adapter
  99 *      @cmd: the command to write
 100 *      @size: command length in bytes
 101 *      @rpl: where to optionally store the reply
 102 *      @sleep_ok: if true we may sleep while awaiting command completion
 103 *
 104 *      Sends the given command to FW through the mailbox and waits for the
 105 *      FW to execute the command.  If @rpl is not %NULL it is used to store
 106 *      the FW's reply to the command.  The command and its optional reply
 107 *      are of the same length.  FW can take up to 500 ms to respond.
 108 *      @sleep_ok determines whether we may sleep while awaiting the response.
 109 *      If sleeping is allowed we use progressive backoff otherwise we spin.
 110 *
 111 *      The return value is 0 on success or a negative errno on failure.  A
 112 *      failure can happen either because we are not able to execute the
 113 *      command or FW executes it but signals an error.  In the latter case
 114 *      the return value is the error code indicated by FW (negated).
 115 */
 116int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
 117                      void *rpl, bool sleep_ok)
 118{
 119        static const int delay[] = {
 120                1, 1, 3, 5, 10, 10, 20, 50, 100
 121        };
 122
 123        u32 v;
 124        int i, ms, delay_idx;
 125        const __be64 *p;
 126        u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
 127        u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
 128
 129        /*
 130         * Commands must be multiples of 16 bytes in length and may not be
 131         * larger than the size of the Mailbox Data register array.
 132         */
 133        if ((size % 16) != 0 ||
 134            size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
 135                return -EINVAL;
 136
 137        /*
 138         * Loop trying to get ownership of the mailbox.  Return an error
 139         * if we can't gain ownership.
 140         */
 141        v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
 142        for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
 143                v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
 144        if (v != MBOX_OWNER_DRV)
 145                return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
 146
 147        /*
 148         * Write the command array into the Mailbox Data register array and
 149         * transfer ownership of the mailbox to the firmware.
 150         *
 151         * For the VFs, the Mailbox Data "registers" are actually backed by
 152         * T4's "MA" interface rather than PL Registers (as is the case for
 153         * the PFs).  Because these are in different coherency domains, the
 154         * write to the VF's PL-register-backed Mailbox Control can race in
 155         * front of the writes to the MA-backed VF Mailbox Data "registers".
 156         * So we need to do a read-back on at least one byte of the VF Mailbox
 157         * Data registers before doing the write to the VF Mailbox Control
 158         * register.
 159         */
 160        for (i = 0, p = cmd; i < size; i += 8)
 161                t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
 162        t4_read_reg(adapter, mbox_data);         /* flush write */
 163
 164        t4_write_reg(adapter, mbox_ctl,
 165                     MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
 166        t4_read_reg(adapter, mbox_ctl);          /* flush write */
 167
 168        /*
 169         * Spin waiting for firmware to acknowledge processing our command.
 170         */
 171        delay_idx = 0;
 172        ms = delay[0];
 173
 174        for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
 175                if (sleep_ok) {
 176                        ms = delay[delay_idx];
 177                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 178                                delay_idx++;
 179                        msleep(ms);
 180                } else
 181                        mdelay(ms);
 182
 183                /*
 184                 * If we're the owner, see if this is the reply we wanted.
 185                 */
 186                v = t4_read_reg(adapter, mbox_ctl);
 187                if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
 188                        /*
 189                         * If the Message Valid bit isn't on, revoke ownership
 190                         * of the mailbox and continue waiting for our reply.
 191                         */
 192                        if ((v & MBMSGVALID) == 0) {
 193                                t4_write_reg(adapter, mbox_ctl,
 194                                             MBOWNER(MBOX_OWNER_NONE));
 195                                continue;
 196                        }
 197
 198                        /*
 199                         * We now have our reply.  Extract the command return
 200                         * value, copy the reply back to our caller's buffer
 201                         * (if specified) and revoke ownership of the mailbox.
 202                         * We return the (negated) firmware command return
 203                         * code (this depends on FW_SUCCESS == 0).
 204                         */
 205
 206                        /* return value in low-order little-endian word */
 207                        v = t4_read_reg(adapter, mbox_data);
 208                        if (FW_CMD_RETVAL_GET(v))
 209                                dump_mbox(adapter, "FW Error", mbox_data);
 210
 211                        if (rpl) {
 212                                /* request bit in high-order BE word */
 213                                WARN_ON((be32_to_cpu(*(const u32 *)cmd)
 214                                         & FW_CMD_REQUEST) == 0);
 215                                get_mbox_rpl(adapter, rpl, size, mbox_data);
 216                                WARN_ON((be32_to_cpu(*(u32 *)rpl)
 217                                         & FW_CMD_REQUEST) != 0);
 218                        }
 219                        t4_write_reg(adapter, mbox_ctl,
 220                                     MBOWNER(MBOX_OWNER_NONE));
 221                        return -FW_CMD_RETVAL_GET(v);
 222                }
 223        }
 224
 225        /*
 226         * We timed out.  Return the error ...
 227         */
 228        dump_mbox(adapter, "FW Timeout", mbox_data);
 229        return -ETIMEDOUT;
 230}
 231
 232/**
 233 *      hash_mac_addr - return the hash value of a MAC address
 234 *      @addr: the 48-bit Ethernet MAC address
 235 *
 236 *      Hashes a MAC address according to the hash function used by hardware
 237 *      inexact (hash) address matching.
 238 */
 239static int hash_mac_addr(const u8 *addr)
 240{
 241        u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
 242        u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
 243        a ^= b;
 244        a ^= (a >> 12);
 245        a ^= (a >> 6);
 246        return a & 0x3f;
 247}
 248
 249/**
 250 *      init_link_config - initialize a link's SW state
 251 *      @lc: structure holding the link state
 252 *      @caps: link capabilities
 253 *
 254 *      Initializes the SW state maintained for each link, including the link's
 255 *      capabilities and default speed/flow-control/autonegotiation settings.
 256 */
 257static void __devinit init_link_config(struct link_config *lc,
 258                                       unsigned int caps)
 259{
 260        lc->supported = caps;
 261        lc->requested_speed = 0;
 262        lc->speed = 0;
 263        lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
 264        if (lc->supported & SUPPORTED_Autoneg) {
 265                lc->advertising = lc->supported;
 266                lc->autoneg = AUTONEG_ENABLE;
 267                lc->requested_fc |= PAUSE_AUTONEG;
 268        } else {
 269                lc->advertising = 0;
 270                lc->autoneg = AUTONEG_DISABLE;
 271        }
 272}
 273
 274/**
 275 *      t4vf_port_init - initialize port hardware/software state
 276 *      @adapter: the adapter
 277 *      @pidx: the adapter port index
 278 */
 279int __devinit t4vf_port_init(struct adapter *adapter, int pidx)
 280{
 281        struct port_info *pi = adap2pinfo(adapter, pidx);
 282        struct fw_vi_cmd vi_cmd, vi_rpl;
 283        struct fw_port_cmd port_cmd, port_rpl;
 284        int v;
 285        u32 word;
 286
 287        /*
 288         * Execute a VI Read command to get our Virtual Interface information
 289         * like MAC address, etc.
 290         */
 291        memset(&vi_cmd, 0, sizeof(vi_cmd));
 292        vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
 293                                       FW_CMD_REQUEST |
 294                                       FW_CMD_READ);
 295        vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
 296        vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid));
 297        v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
 298        if (v)
 299                return v;
 300
 301        BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd));
 302        pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd));
 303        t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
 304
 305        /*
 306         * If we don't have read access to our port information, we're done
 307         * now.  Otherwise, execute a PORT Read command to get it ...
 308         */
 309        if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
 310                return 0;
 311
 312        memset(&port_cmd, 0, sizeof(port_cmd));
 313        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) |
 314                                            FW_CMD_REQUEST |
 315                                            FW_CMD_READ |
 316                                            FW_PORT_CMD_PORTID(pi->port_id));
 317        port_cmd.action_to_len16 =
 318                cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
 319                            FW_LEN16(port_cmd));
 320        v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
 321        if (v)
 322                return v;
 323
 324        v = 0;
 325        word = be16_to_cpu(port_rpl.u.info.pcap);
 326        if (word & FW_PORT_CAP_SPEED_100M)
 327                v |= SUPPORTED_100baseT_Full;
 328        if (word & FW_PORT_CAP_SPEED_1G)
 329                v |= SUPPORTED_1000baseT_Full;
 330        if (word & FW_PORT_CAP_SPEED_10G)
 331                v |= SUPPORTED_10000baseT_Full;
 332        if (word & FW_PORT_CAP_ANEG)
 333                v |= SUPPORTED_Autoneg;
 334        init_link_config(&pi->link_cfg, v);
 335
 336        return 0;
 337}
 338
 339/**
 340 *      t4vf_fw_reset - issue a reset to FW
 341 *      @adapter: the adapter
 342 *
 343 *      Issues a reset command to FW.  For a Physical Function this would
 344 *      result in the Firmware reseting all of its state.  For a Virtual
 345 *      Function this just resets the state associated with the VF.
 346 */
 347int t4vf_fw_reset(struct adapter *adapter)
 348{
 349        struct fw_reset_cmd cmd;
 350
 351        memset(&cmd, 0, sizeof(cmd));
 352        cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RESET_CMD) |
 353                                      FW_CMD_WRITE);
 354        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 355        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 356}
 357
 358/**
 359 *      t4vf_query_params - query FW or device parameters
 360 *      @adapter: the adapter
 361 *      @nparams: the number of parameters
 362 *      @params: the parameter names
 363 *      @vals: the parameter values
 364 *
 365 *      Reads the values of firmware or device parameters.  Up to 7 parameters
 366 *      can be queried at once.
 367 */
 368int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
 369                      const u32 *params, u32 *vals)
 370{
 371        int i, ret;
 372        struct fw_params_cmd cmd, rpl;
 373        struct fw_params_param *p;
 374        size_t len16;
 375
 376        if (nparams > 7)
 377                return -EINVAL;
 378
 379        memset(&cmd, 0, sizeof(cmd));
 380        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
 381                                    FW_CMD_REQUEST |
 382                                    FW_CMD_READ);
 383        len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 384                                      param[nparams].mnem), 16);
 385        cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
 386        for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
 387                p->mnem = htonl(*params++);
 388
 389        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 390        if (ret == 0)
 391                for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
 392                        *vals++ = be32_to_cpu(p->val);
 393        return ret;
 394}
 395
 396/**
 397 *      t4vf_set_params - sets FW or device parameters
 398 *      @adapter: the adapter
 399 *      @nparams: the number of parameters
 400 *      @params: the parameter names
 401 *      @vals: the parameter values
 402 *
 403 *      Sets the values of firmware or device parameters.  Up to 7 parameters
 404 *      can be specified at once.
 405 */
 406int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
 407                    const u32 *params, const u32 *vals)
 408{
 409        int i;
 410        struct fw_params_cmd cmd;
 411        struct fw_params_param *p;
 412        size_t len16;
 413
 414        if (nparams > 7)
 415                return -EINVAL;
 416
 417        memset(&cmd, 0, sizeof(cmd));
 418        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
 419                                    FW_CMD_REQUEST |
 420                                    FW_CMD_WRITE);
 421        len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 422                                      param[nparams]), 16);
 423        cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
 424        for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
 425                p->mnem = cpu_to_be32(*params++);
 426                p->val = cpu_to_be32(*vals++);
 427        }
 428
 429        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 430}
 431
 432/**
 433 *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
 434 *      @adapter: the adapter
 435 *
 436 *      Retrieves various core SGE parameters in the form of hardware SGE
 437 *      register values.  The caller is responsible for decoding these as
 438 *      needed.  The SGE parameters are stored in @adapter->params.sge.
 439 */
 440int t4vf_get_sge_params(struct adapter *adapter)
 441{
 442        struct sge_params *sge_params = &adapter->params.sge;
 443        u32 params[7], vals[7];
 444        int v;
 445
 446        params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 447                     FW_PARAMS_PARAM_XYZ(SGE_CONTROL));
 448        params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 449                     FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE));
 450        params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 451                     FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0));
 452        params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 453                     FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1));
 454        params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 455                     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1));
 456        params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 457                     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3));
 458        params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 459                     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5));
 460        v = t4vf_query_params(adapter, 7, params, vals);
 461        if (v)
 462                return v;
 463        sge_params->sge_control = vals[0];
 464        sge_params->sge_host_page_size = vals[1];
 465        sge_params->sge_fl_buffer_size[0] = vals[2];
 466        sge_params->sge_fl_buffer_size[1] = vals[3];
 467        sge_params->sge_timer_value_0_and_1 = vals[4];
 468        sge_params->sge_timer_value_2_and_3 = vals[5];
 469        sge_params->sge_timer_value_4_and_5 = vals[6];
 470
 471        params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 472                     FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD));
 473        v = t4vf_query_params(adapter, 1, params, vals);
 474        if (v)
 475                return v;
 476        sge_params->sge_ingress_rx_threshold = vals[0];
 477
 478        return 0;
 479}
 480
 481/**
 482 *      t4vf_get_vpd_params - retrieve device VPD paremeters
 483 *      @adapter: the adapter
 484 *
 485 *      Retrives various device Vital Product Data parameters.  The parameters
 486 *      are stored in @adapter->params.vpd.
 487 */
 488int t4vf_get_vpd_params(struct adapter *adapter)
 489{
 490        struct vpd_params *vpd_params = &adapter->params.vpd;
 491        u32 params[7], vals[7];
 492        int v;
 493
 494        params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
 495                     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
 496        v = t4vf_query_params(adapter, 1, params, vals);
 497        if (v)
 498                return v;
 499        vpd_params->cclk = vals[0];
 500
 501        return 0;
 502}
 503
 504/**
 505 *      t4vf_get_dev_params - retrieve device paremeters
 506 *      @adapter: the adapter
 507 *
 508 *      Retrives various device parameters.  The parameters are stored in
 509 *      @adapter->params.dev.
 510 */
 511int t4vf_get_dev_params(struct adapter *adapter)
 512{
 513        struct dev_params *dev_params = &adapter->params.dev;
 514        u32 params[7], vals[7];
 515        int v;
 516
 517        params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
 518                     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV));
 519        params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
 520                     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV));
 521        v = t4vf_query_params(adapter, 2, params, vals);
 522        if (v)
 523                return v;
 524        dev_params->fwrev = vals[0];
 525        dev_params->tprev = vals[1];
 526
 527        return 0;
 528}
 529
 530/**
 531 *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
 532 *      @adapter: the adapter
 533 *
 534 *      Retrieves global RSS mode and parameters with which we have to live
 535 *      and stores them in the @adapter's RSS parameters.
 536 */
 537int t4vf_get_rss_glb_config(struct adapter *adapter)
 538{
 539        struct rss_params *rss = &adapter->params.rss;
 540        struct fw_rss_glb_config_cmd cmd, rpl;
 541        int v;
 542
 543        /*
 544         * Execute an RSS Global Configuration read command to retrieve
 545         * our RSS configuration.
 546         */
 547        memset(&cmd, 0, sizeof(cmd));
 548        cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
 549                                      FW_CMD_REQUEST |
 550                                      FW_CMD_READ);
 551        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 552        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 553        if (v)
 554                return v;
 555
 556        /*
 557         * Transate the big-endian RSS Global Configuration into our
 558         * cpu-endian format based on the RSS mode.  We also do first level
 559         * filtering at this point to weed out modes which don't support
 560         * VF Drivers ...
 561         */
 562        rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET(
 563                        be32_to_cpu(rpl.u.manual.mode_pkd));
 564        switch (rss->mode) {
 565        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
 566                u32 word = be32_to_cpu(
 567                                rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
 568
 569                rss->u.basicvirtual.synmapen =
 570                        ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
 571                rss->u.basicvirtual.syn4tupenipv6 =
 572                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
 573                rss->u.basicvirtual.syn2tupenipv6 =
 574                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
 575                rss->u.basicvirtual.syn4tupenipv4 =
 576                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
 577                rss->u.basicvirtual.syn2tupenipv4 =
 578                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
 579
 580                rss->u.basicvirtual.ofdmapen =
 581                        ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
 582
 583                rss->u.basicvirtual.tnlmapen =
 584                        ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
 585                rss->u.basicvirtual.tnlalllookup =
 586                        ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
 587
 588                rss->u.basicvirtual.hashtoeplitz =
 589                        ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
 590
 591                /* we need at least Tunnel Map Enable to be set */
 592                if (!rss->u.basicvirtual.tnlmapen)
 593                        return -EINVAL;
 594                break;
 595        }
 596
 597        default:
 598                /* all unknown/unsupported RSS modes result in an error */
 599                return -EINVAL;
 600        }
 601
 602        return 0;
 603}
 604
 605/**
 606 *      t4vf_get_vfres - retrieve VF resource limits
 607 *      @adapter: the adapter
 608 *
 609 *      Retrieves configured resource limits and capabilities for a virtual
 610 *      function.  The results are stored in @adapter->vfres.
 611 */
 612int t4vf_get_vfres(struct adapter *adapter)
 613{
 614        struct vf_resources *vfres = &adapter->params.vfres;
 615        struct fw_pfvf_cmd cmd, rpl;
 616        int v;
 617        u32 word;
 618
 619        /*
 620         * Execute PFVF Read command to get VF resource limits; bail out early
 621         * with error on command failure.
 622         */
 623        memset(&cmd, 0, sizeof(cmd));
 624        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) |
 625                                    FW_CMD_REQUEST |
 626                                    FW_CMD_READ);
 627        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 628        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 629        if (v)
 630                return v;
 631
 632        /*
 633         * Extract VF resource limits and return success.
 634         */
 635        word = be32_to_cpu(rpl.niqflint_niq);
 636        vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word);
 637        vfres->niq = FW_PFVF_CMD_NIQ_GET(word);
 638
 639        word = be32_to_cpu(rpl.type_to_neq);
 640        vfres->neq = FW_PFVF_CMD_NEQ_GET(word);
 641        vfres->pmask = FW_PFVF_CMD_PMASK_GET(word);
 642
 643        word = be32_to_cpu(rpl.tc_to_nexactf);
 644        vfres->tc = FW_PFVF_CMD_TC_GET(word);
 645        vfres->nvi = FW_PFVF_CMD_NVI_GET(word);
 646        vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word);
 647
 648        word = be32_to_cpu(rpl.r_caps_to_nethctrl);
 649        vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word);
 650        vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word);
 651        vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word);
 652
 653        return 0;
 654}
 655
 656/**
 657 *      t4vf_read_rss_vi_config - read a VI's RSS configuration
 658 *      @adapter: the adapter
 659 *      @viid: Virtual Interface ID
 660 *      @config: pointer to host-native VI RSS Configuration buffer
 661 *
 662 *      Reads the Virtual Interface's RSS configuration information and
 663 *      translates it into CPU-native format.
 664 */
 665int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
 666                            union rss_vi_config *config)
 667{
 668        struct fw_rss_vi_config_cmd cmd, rpl;
 669        int v;
 670
 671        memset(&cmd, 0, sizeof(cmd));
 672        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
 673                                     FW_CMD_REQUEST |
 674                                     FW_CMD_READ |
 675                                     FW_RSS_VI_CONFIG_CMD_VIID(viid));
 676        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 677        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 678        if (v)
 679                return v;
 680
 681        switch (adapter->params.rss.mode) {
 682        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
 683                u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
 684
 685                config->basicvirtual.ip6fourtupen =
 686                        ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0);
 687                config->basicvirtual.ip6twotupen =
 688                        ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0);
 689                config->basicvirtual.ip4fourtupen =
 690                        ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0);
 691                config->basicvirtual.ip4twotupen =
 692                        ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0);
 693                config->basicvirtual.udpen =
 694                        ((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0);
 695                config->basicvirtual.defaultq =
 696                        FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word);
 697                break;
 698        }
 699
 700        default:
 701                return -EINVAL;
 702        }
 703
 704        return 0;
 705}
 706
 707/**
 708 *      t4vf_write_rss_vi_config - write a VI's RSS configuration
 709 *      @adapter: the adapter
 710 *      @viid: Virtual Interface ID
 711 *      @config: pointer to host-native VI RSS Configuration buffer
 712 *
 713 *      Write the Virtual Interface's RSS configuration information
 714 *      (translating it into firmware-native format before writing).
 715 */
 716int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
 717                             union rss_vi_config *config)
 718{
 719        struct fw_rss_vi_config_cmd cmd, rpl;
 720
 721        memset(&cmd, 0, sizeof(cmd));
 722        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
 723                                     FW_CMD_REQUEST |
 724                                     FW_CMD_WRITE |
 725                                     FW_RSS_VI_CONFIG_CMD_VIID(viid));
 726        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 727        switch (adapter->params.rss.mode) {
 728        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
 729                u32 word = 0;
 730
 731                if (config->basicvirtual.ip6fourtupen)
 732                        word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
 733                if (config->basicvirtual.ip6twotupen)
 734                        word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
 735                if (config->basicvirtual.ip4fourtupen)
 736                        word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
 737                if (config->basicvirtual.ip4twotupen)
 738                        word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
 739                if (config->basicvirtual.udpen)
 740                        word |= FW_RSS_VI_CONFIG_CMD_UDPEN;
 741                word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
 742                                config->basicvirtual.defaultq);
 743                cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
 744                break;
 745        }
 746
 747        default:
 748                return -EINVAL;
 749        }
 750
 751        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 752}
 753
 754/**
 755 *      t4vf_config_rss_range - configure a portion of the RSS mapping table
 756 *      @adapter: the adapter
 757 *      @viid: Virtual Interface of RSS Table Slice
 758 *      @start: starting entry in the table to write
 759 *      @n: how many table entries to write
 760 *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
 761 *      @nrspq: number of values in @rspq
 762 *
 763 *      Programs the selected part of the VI's RSS mapping table with the
 764 *      provided values.  If @nrspq < @n the supplied values are used repeatedly
 765 *      until the full table range is populated.
 766 *
 767 *      The caller must ensure the values in @rspq are in the range 0..1023.
 768 */
 769int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
 770                          int start, int n, const u16 *rspq, int nrspq)
 771{
 772        const u16 *rsp = rspq;
 773        const u16 *rsp_end = rspq+nrspq;
 774        struct fw_rss_ind_tbl_cmd cmd;
 775
 776        /*
 777         * Initialize firmware command template to write the RSS table.
 778         */
 779        memset(&cmd, 0, sizeof(cmd));
 780        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
 781                                     FW_CMD_REQUEST |
 782                                     FW_CMD_WRITE |
 783                                     FW_RSS_IND_TBL_CMD_VIID(viid));
 784        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 785
 786        /*
 787         * Each firmware RSS command can accommodate up to 32 RSS Ingress
 788         * Queue Identifiers.  These Ingress Queue IDs are packed three to
 789         * a 32-bit word as 10-bit values with the upper remaining 2 bits
 790         * reserved.
 791         */
 792        while (n > 0) {
 793                __be32 *qp = &cmd.iq0_to_iq2;
 794                int nq = min(n, 32);
 795                int ret;
 796
 797                /*
 798                 * Set up the firmware RSS command header to send the next
 799                 * "nq" Ingress Queue IDs to the firmware.
 800                 */
 801                cmd.niqid = cpu_to_be16(nq);
 802                cmd.startidx = cpu_to_be16(start);
 803
 804                /*
 805                 * "nq" more done for the start of the next loop.
 806                 */
 807                start += nq;
 808                n -= nq;
 809
 810                /*
 811                 * While there are still Ingress Queue IDs to stuff into the
 812                 * current firmware RSS command, retrieve them from the
 813                 * Ingress Queue ID array and insert them into the command.
 814                 */
 815                while (nq > 0) {
 816                        /*
 817                         * Grab up to the next 3 Ingress Queue IDs (wrapping
 818                         * around the Ingress Queue ID array if necessary) and
 819                         * insert them into the firmware RSS command at the
 820                         * current 3-tuple position within the commad.
 821                         */
 822                        u16 qbuf[3];
 823                        u16 *qbp = qbuf;
 824                        int nqbuf = min(3, nq);
 825
 826                        nq -= nqbuf;
 827                        qbuf[0] = qbuf[1] = qbuf[2] = 0;
 828                        while (nqbuf) {
 829                                nqbuf--;
 830                                *qbp++ = *rsp++;
 831                                if (rsp >= rsp_end)
 832                                        rsp = rspq;
 833                        }
 834                        *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
 835                                            FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
 836                                            FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
 837                }
 838
 839                /*
 840                 * Send this portion of the RRS table update to the firmware;
 841                 * bail out on any errors.
 842                 */
 843                ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 844                if (ret)
 845                        return ret;
 846        }
 847        return 0;
 848}
 849
 850/**
 851 *      t4vf_alloc_vi - allocate a virtual interface on a port
 852 *      @adapter: the adapter
 853 *      @port_id: physical port associated with the VI
 854 *
 855 *      Allocate a new Virtual Interface and bind it to the indicated
 856 *      physical port.  Return the new Virtual Interface Identifier on
 857 *      success, or a [negative] error number on failure.
 858 */
 859int t4vf_alloc_vi(struct adapter *adapter, int port_id)
 860{
 861        struct fw_vi_cmd cmd, rpl;
 862        int v;
 863
 864        /*
 865         * Execute a VI command to allocate Virtual Interface and return its
 866         * VIID.
 867         */
 868        memset(&cmd, 0, sizeof(cmd));
 869        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
 870                                    FW_CMD_REQUEST |
 871                                    FW_CMD_WRITE |
 872                                    FW_CMD_EXEC);
 873        cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
 874                                         FW_VI_CMD_ALLOC);
 875        cmd.portid_pkd = FW_VI_CMD_PORTID(port_id);
 876        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 877        if (v)
 878                return v;
 879
 880        return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid));
 881}
 882
 883/**
 884 *      t4vf_free_vi -- free a virtual interface
 885 *      @adapter: the adapter
 886 *      @viid: the virtual interface identifier
 887 *
 888 *      Free a previously allocated Virtual Interface.  Return an error on
 889 *      failure.
 890 */
 891int t4vf_free_vi(struct adapter *adapter, int viid)
 892{
 893        struct fw_vi_cmd cmd;
 894
 895        /*
 896         * Execute a VI command to free the Virtual Interface.
 897         */
 898        memset(&cmd, 0, sizeof(cmd));
 899        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
 900                                    FW_CMD_REQUEST |
 901                                    FW_CMD_EXEC);
 902        cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
 903                                         FW_VI_CMD_FREE);
 904        cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid));
 905        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 906}
 907
 908/**
 909 *      t4vf_enable_vi - enable/disable a virtual interface
 910 *      @adapter: the adapter
 911 *      @viid: the Virtual Interface ID
 912 *      @rx_en: 1=enable Rx, 0=disable Rx
 913 *      @tx_en: 1=enable Tx, 0=disable Tx
 914 *
 915 *      Enables/disables a virtual interface.
 916 */
 917int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
 918                   bool rx_en, bool tx_en)
 919{
 920        struct fw_vi_enable_cmd cmd;
 921
 922        memset(&cmd, 0, sizeof(cmd));
 923        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
 924                                     FW_CMD_REQUEST |
 925                                     FW_CMD_EXEC |
 926                                     FW_VI_ENABLE_CMD_VIID(viid));
 927        cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) |
 928                                       FW_VI_ENABLE_CMD_EEN(tx_en) |
 929                                       FW_LEN16(cmd));
 930        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 931}
 932
 933/**
 934 *      t4vf_identify_port - identify a VI's port by blinking its LED
 935 *      @adapter: the adapter
 936 *      @viid: the Virtual Interface ID
 937 *      @nblinks: how many times to blink LED at 2.5 Hz
 938 *
 939 *      Identifies a VI's port by blinking its LED.
 940 */
 941int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
 942                       unsigned int nblinks)
 943{
 944        struct fw_vi_enable_cmd cmd;
 945
 946        memset(&cmd, 0, sizeof(cmd));
 947        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
 948                                     FW_CMD_REQUEST |
 949                                     FW_CMD_EXEC |
 950                                     FW_VI_ENABLE_CMD_VIID(viid));
 951        cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED |
 952                                       FW_LEN16(cmd));
 953        cmd.blinkdur = cpu_to_be16(nblinks);
 954        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 955}
 956
 957/**
 958 *      t4vf_set_rxmode - set Rx properties of a virtual interface
 959 *      @adapter: the adapter
 960 *      @viid: the VI id
 961 *      @mtu: the new MTU or -1 for no change
 962 *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
 963 *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
 964 *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
 965 *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
 966 *              -1 no change
 967 *
 968 *      Sets Rx properties of a virtual interface.
 969 */
 970int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
 971                    int mtu, int promisc, int all_multi, int bcast, int vlanex,
 972                    bool sleep_ok)
 973{
 974        struct fw_vi_rxmode_cmd cmd;
 975
 976        /* convert to FW values */
 977        if (mtu < 0)
 978                mtu = FW_VI_RXMODE_CMD_MTU_MASK;
 979        if (promisc < 0)
 980                promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
 981        if (all_multi < 0)
 982                all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
 983        if (bcast < 0)
 984                bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
 985        if (vlanex < 0)
 986                vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
 987
 988        memset(&cmd, 0, sizeof(cmd));
 989        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) |
 990                                     FW_CMD_REQUEST |
 991                                     FW_CMD_WRITE |
 992                                     FW_VI_RXMODE_CMD_VIID(viid));
 993        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 994        cmd.mtu_to_vlanexen =
 995                cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) |
 996                            FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
 997                            FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
 998                            FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
 999                            FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
1000        return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1001}
1002
1003/**
1004 *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1005 *      @adapter: the adapter
1006 *      @viid: the Virtual Interface Identifier
1007 *      @free: if true any existing filters for this VI id are first removed
1008 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1009 *      @addr: the MAC address(es)
1010 *      @idx: where to store the index of each allocated filter
1011 *      @hash: pointer to hash address filter bitmap
1012 *      @sleep_ok: call is allowed to sleep
1013 *
1014 *      Allocates an exact-match filter for each of the supplied addresses and
1015 *      sets it to the corresponding address.  If @idx is not %NULL it should
1016 *      have at least @naddr entries, each of which will be set to the index of
1017 *      the filter allocated for the corresponding MAC address.  If a filter
1018 *      could not be allocated for an address its index is set to 0xffff.
1019 *      If @hash is not %NULL addresses that fail to allocate an exact filter
1020 *      are hashed and update the hash filter bitmap pointed at by @hash.
1021 *
1022 *      Returns a negative error number or the number of filters allocated.
1023 */
1024int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1025                        unsigned int naddr, const u8 **addr, u16 *idx,
1026                        u64 *hash, bool sleep_ok)
1027{
1028        int offset, ret = 0;
1029        unsigned nfilters = 0;
1030        unsigned int rem = naddr;
1031        struct fw_vi_mac_cmd cmd, rpl;
1032
1033        if (naddr > FW_CLS_TCAM_NUM_ENTRIES)
1034                return -EINVAL;
1035
1036        for (offset = 0; offset < naddr; /**/) {
1037                unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1038                                         ? rem
1039                                         : ARRAY_SIZE(cmd.u.exact));
1040                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1041                                                     u.exact[fw_naddr]), 16);
1042                struct fw_vi_mac_exact *p;
1043                int i;
1044
1045                memset(&cmd, 0, sizeof(cmd));
1046                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1047                                             FW_CMD_REQUEST |
1048                                             FW_CMD_WRITE |
1049                                             (free ? FW_CMD_EXEC : 0) |
1050                                             FW_VI_MAC_CMD_VIID(viid));
1051                cmd.freemacs_to_len16 =
1052                        cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) |
1053                                    FW_CMD_LEN16(len16));
1054
1055                for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1056                        p->valid_to_idx = cpu_to_be16(
1057                                FW_VI_MAC_CMD_VALID |
1058                                FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
1059                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1060                }
1061
1062
1063                ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1064                                        sleep_ok);
1065                if (ret && ret != -ENOMEM)
1066                        break;
1067
1068                for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1069                        u16 index = FW_VI_MAC_CMD_IDX_GET(
1070                                be16_to_cpu(p->valid_to_idx));
1071
1072                        if (idx)
1073                                idx[offset+i] =
1074                                        (index >= FW_CLS_TCAM_NUM_ENTRIES
1075                                         ? 0xffff
1076                                         : index);
1077                        if (index < FW_CLS_TCAM_NUM_ENTRIES)
1078                                nfilters++;
1079                        else if (hash)
1080                                *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1081                }
1082
1083                free = false;
1084                offset += fw_naddr;
1085                rem -= fw_naddr;
1086        }
1087
1088        /*
1089         * If there were no errors or we merely ran out of room in our MAC
1090         * address arena, return the number of filters actually written.
1091         */
1092        if (ret == 0 || ret == -ENOMEM)
1093                ret = nfilters;
1094        return ret;
1095}
1096
1097/**
1098 *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1099 *      @adapter: the adapter
1100 *      @viid: the Virtual Interface ID
1101 *      @idx: index of existing filter for old value of MAC address, or -1
1102 *      @addr: the new MAC address value
1103 *      @persist: if idx < 0, the new MAC allocation should be persistent
1104 *
1105 *      Modifies an exact-match filter and sets it to the new MAC address.
1106 *      Note that in general it is not possible to modify the value of a given
1107 *      filter so the generic way to modify an address filter is to free the
1108 *      one being used by the old address value and allocate a new filter for
1109 *      the new address value.  @idx can be -1 if the address is a new
1110 *      addition.
1111 *
1112 *      Returns a negative error number or the index of the filter with the new
1113 *      MAC value.
1114 */
1115int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1116                    int idx, const u8 *addr, bool persist)
1117{
1118        int ret;
1119        struct fw_vi_mac_cmd cmd, rpl;
1120        struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1121        size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1122                                             u.exact[1]), 16);
1123
1124        /*
1125         * If this is a new allocation, determine whether it should be
1126         * persistent (across a "freemacs" operation) or not.
1127         */
1128        if (idx < 0)
1129                idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1130
1131        memset(&cmd, 0, sizeof(cmd));
1132        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1133                                     FW_CMD_REQUEST |
1134                                     FW_CMD_WRITE |
1135                                     FW_VI_MAC_CMD_VIID(viid));
1136        cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1137        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID |
1138                                      FW_VI_MAC_CMD_IDX(idx));
1139        memcpy(p->macaddr, addr, sizeof(p->macaddr));
1140
1141        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1142        if (ret == 0) {
1143                p = &rpl.u.exact[0];
1144                ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx));
1145                if (ret >= FW_CLS_TCAM_NUM_ENTRIES)
1146                        ret = -ENOMEM;
1147        }
1148        return ret;
1149}
1150
1151/**
1152 *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1153 *      @adapter: the adapter
1154 *      @viid: the Virtual Interface Identifier
1155 *      @ucast: whether the hash filter should also match unicast addresses
1156 *      @vec: the value to be written to the hash filter
1157 *      @sleep_ok: call is allowed to sleep
1158 *
1159 *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1160 */
1161int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1162                       bool ucast, u64 vec, bool sleep_ok)
1163{
1164        struct fw_vi_mac_cmd cmd;
1165        size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1166                                             u.exact[0]), 16);
1167
1168        memset(&cmd, 0, sizeof(cmd));
1169        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1170                                     FW_CMD_REQUEST |
1171                                     FW_CMD_WRITE |
1172                                     FW_VI_ENABLE_CMD_VIID(viid));
1173        cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN |
1174                                            FW_VI_MAC_CMD_HASHUNIEN(ucast) |
1175                                            FW_CMD_LEN16(len16));
1176        cmd.u.hash.hashvec = cpu_to_be64(vec);
1177        return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1178}
1179
1180/**
1181 *      t4vf_get_port_stats - collect "port" statistics
1182 *      @adapter: the adapter
1183 *      @pidx: the port index
1184 *      @s: the stats structure to fill
1185 *
1186 *      Collect statistics for the "port"'s Virtual Interface.
1187 */
1188int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1189                        struct t4vf_port_stats *s)
1190{
1191        struct port_info *pi = adap2pinfo(adapter, pidx);
1192        struct fw_vi_stats_vf fwstats;
1193        unsigned int rem = VI_VF_NUM_STATS;
1194        __be64 *fwsp = (__be64 *)&fwstats;
1195
1196        /*
1197         * Grab the Virtual Interface statistics a chunk at a time via mailbox
1198         * commands.  We could use a Work Request and get all of them at once
1199         * but that's an asynchronous interface which is awkward to use.
1200         */
1201        while (rem) {
1202                unsigned int ix = VI_VF_NUM_STATS - rem;
1203                unsigned int nstats = min(6U, rem);
1204                struct fw_vi_stats_cmd cmd, rpl;
1205                size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1206                              sizeof(struct fw_vi_stats_ctl));
1207                size_t len16 = DIV_ROUND_UP(len, 16);
1208                int ret;
1209
1210                memset(&cmd, 0, sizeof(cmd));
1211                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) |
1212                                             FW_VI_STATS_CMD_VIID(pi->viid) |
1213                                             FW_CMD_REQUEST |
1214                                             FW_CMD_READ);
1215                cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1216                cmd.u.ctl.nstats_ix =
1217                        cpu_to_be16(FW_VI_STATS_CMD_IX(ix) |
1218                                    FW_VI_STATS_CMD_NSTATS(nstats));
1219                ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1220                if (ret)
1221                        return ret;
1222
1223                memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1224
1225                rem -= nstats;
1226                fwsp += nstats;
1227        }
1228
1229        /*
1230         * Translate firmware statistics into host native statistics.
1231         */
1232        s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1233        s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1234        s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1235        s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1236        s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1237        s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1238        s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1239        s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1240        s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1241
1242        s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1243        s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1244        s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1245        s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1246        s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1247        s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1248
1249        s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1250
1251        return 0;
1252}
1253
1254/**
1255 *      t4vf_iq_free - free an ingress queue and its free lists
1256 *      @adapter: the adapter
1257 *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1258 *      @iqid: ingress queue ID
1259 *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1260 *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1261 *
1262 *      Frees an ingress queue and its associated free lists, if any.
1263 */
1264int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1265                 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1266{
1267        struct fw_iq_cmd cmd;
1268
1269        memset(&cmd, 0, sizeof(cmd));
1270        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
1271                                    FW_CMD_REQUEST |
1272                                    FW_CMD_EXEC);
1273        cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE |
1274                                         FW_LEN16(cmd));
1275        cmd.type_to_iqandstindex =
1276                cpu_to_be32(FW_IQ_CMD_TYPE(iqtype));
1277
1278        cmd.iqid = cpu_to_be16(iqid);
1279        cmd.fl0id = cpu_to_be16(fl0id);
1280        cmd.fl1id = cpu_to_be16(fl1id);
1281        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1282}
1283
1284/**
1285 *      t4vf_eth_eq_free - free an Ethernet egress queue
1286 *      @adapter: the adapter
1287 *      @eqid: egress queue ID
1288 *
1289 *      Frees an Ethernet egress queue.
1290 */
1291int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1292{
1293        struct fw_eq_eth_cmd cmd;
1294
1295        memset(&cmd, 0, sizeof(cmd));
1296        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
1297                                    FW_CMD_REQUEST |
1298                                    FW_CMD_EXEC);
1299        cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE |
1300                                         FW_LEN16(cmd));
1301        cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid));
1302        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1303}
1304
1305/**
1306 *      t4vf_handle_fw_rpl - process a firmware reply message
1307 *      @adapter: the adapter
1308 *      @rpl: start of the firmware message
1309 *
1310 *      Processes a firmware message, such as link state change messages.
1311 */
1312int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1313{
1314        const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1315        u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi));
1316
1317        switch (opcode) {
1318        case FW_PORT_CMD: {
1319                /*
1320                 * Link/module state change message.
1321                 */
1322                const struct fw_port_cmd *port_cmd =
1323                        (const struct fw_port_cmd *)rpl;
1324                u32 word;
1325                int action, port_id, link_ok, speed, fc, pidx;
1326
1327                /*
1328                 * Extract various fields from port status change message.
1329                 */
1330                action = FW_PORT_CMD_ACTION_GET(
1331                        be32_to_cpu(port_cmd->action_to_len16));
1332                if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1333                        dev_err(adapter->pdev_dev,
1334                                "Unknown firmware PORT reply action %x\n",
1335                                action);
1336                        break;
1337                }
1338
1339                port_id = FW_PORT_CMD_PORTID_GET(
1340                        be32_to_cpu(port_cmd->op_to_portid));
1341
1342                word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1343                link_ok = (word & FW_PORT_CMD_LSTATUS) != 0;
1344                speed = 0;
1345                fc = 0;
1346                if (word & FW_PORT_CMD_RXPAUSE)
1347                        fc |= PAUSE_RX;
1348                if (word & FW_PORT_CMD_TXPAUSE)
1349                        fc |= PAUSE_TX;
1350                if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
1351                        speed = SPEED_100;
1352                else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
1353                        speed = SPEED_1000;
1354                else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
1355                        speed = SPEED_10000;
1356
1357                /*
1358                 * Scan all of our "ports" (Virtual Interfaces) looking for
1359                 * those bound to the physical port which has changed.  If
1360                 * our recorded state doesn't match the current state,
1361                 * signal that change to the OS code.
1362                 */
1363                for_each_port(adapter, pidx) {
1364                        struct port_info *pi = adap2pinfo(adapter, pidx);
1365                        struct link_config *lc;
1366
1367                        if (pi->port_id != port_id)
1368                                continue;
1369
1370                        lc = &pi->link_cfg;
1371                        if (link_ok != lc->link_ok || speed != lc->speed ||
1372                            fc != lc->fc) {
1373                                /* something changed */
1374                                lc->link_ok = link_ok;
1375                                lc->speed = speed;
1376                                lc->fc = fc;
1377                                t4vf_os_link_changed(adapter, pidx, link_ok);
1378                        }
1379                }
1380                break;
1381        }
1382
1383        default:
1384                dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1385                        opcode);
1386        }
1387        return 0;
1388}
1389