linux/drivers/net/e100.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/100 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 *      e100.c: Intel(R) PRO/100 ethernet driver
  31 *
  32 *      (Re)written 2003 by scott.feldman@intel.com.  Based loosely on
  33 *      original e100 driver, but better described as a munging of
  34 *      e100, e1000, eepro100, tg3, 8139cp, and other drivers.
  35 *
  36 *      References:
  37 *              Intel 8255x 10/100 Mbps Ethernet Controller Family,
  38 *              Open Source Software Developers Manual,
  39 *              http://sourceforge.net/projects/e1000
  40 *
  41 *
  42 *                            Theory of Operation
  43 *
  44 *      I.   General
  45 *
  46 *      The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
  47 *      controller family, which includes the 82557, 82558, 82559, 82550,
  48 *      82551, and 82562 devices.  82558 and greater controllers
  49 *      integrate the Intel 82555 PHY.  The controllers are used in
  50 *      server and client network interface cards, as well as in
  51 *      LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
  52 *      configurations.  8255x supports a 32-bit linear addressing
  53 *      mode and operates at 33Mhz PCI clock rate.
  54 *
  55 *      II.  Driver Operation
  56 *
  57 *      Memory-mapped mode is used exclusively to access the device's
  58 *      shared-memory structure, the Control/Status Registers (CSR). All
  59 *      setup, configuration, and control of the device, including queuing
  60 *      of Tx, Rx, and configuration commands is through the CSR.
  61 *      cmd_lock serializes accesses to the CSR command register.  cb_lock
  62 *      protects the shared Command Block List (CBL).
  63 *
  64 *      8255x is highly MII-compliant and all access to the PHY go
  65 *      through the Management Data Interface (MDI).  Consequently, the
  66 *      driver leverages the mii.c library shared with other MII-compliant
  67 *      devices.
  68 *
  69 *      Big- and Little-Endian byte order as well as 32- and 64-bit
  70 *      archs are supported.  Weak-ordered memory and non-cache-coherent
  71 *      archs are supported.
  72 *
  73 *      III. Transmit
  74 *
  75 *      A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
  76 *      together in a fixed-size ring (CBL) thus forming the flexible mode
  77 *      memory structure.  A TCB marked with the suspend-bit indicates
  78 *      the end of the ring.  The last TCB processed suspends the
  79 *      controller, and the controller can be restarted by issue a CU
  80 *      resume command to continue from the suspend point, or a CU start
  81 *      command to start at a given position in the ring.
  82 *
  83 *      Non-Tx commands (config, multicast setup, etc) are linked
  84 *      into the CBL ring along with Tx commands.  The common structure
  85 *      used for both Tx and non-Tx commands is the Command Block (CB).
  86 *
  87 *      cb_to_use is the next CB to use for queuing a command; cb_to_clean
  88 *      is the next CB to check for completion; cb_to_send is the first
  89 *      CB to start on in case of a previous failure to resume.  CB clean
  90 *      up happens in interrupt context in response to a CU interrupt.
  91 *      cbs_avail keeps track of number of free CB resources available.
  92 *
  93 *      Hardware padding of short packets to minimum packet size is
  94 *      enabled.  82557 pads with 7Eh, while the later controllers pad
  95 *      with 00h.
  96 *
  97 *      IV.  Receive
  98 *
  99 *      The Receive Frame Area (RFA) comprises a ring of Receive Frame
 100 *      Descriptors (RFD) + data buffer, thus forming the simplified mode
 101 *      memory structure.  Rx skbs are allocated to contain both the RFD
 102 *      and the data buffer, but the RFD is pulled off before the skb is
 103 *      indicated.  The data buffer is aligned such that encapsulated
 104 *      protocol headers are u32-aligned.  Since the RFD is part of the
 105 *      mapped shared memory, and completion status is contained within
 106 *      the RFD, the RFD must be dma_sync'ed to maintain a consistent
 107 *      view from software and hardware.
 108 *
 109 *      In order to keep updates to the RFD link field from colliding with
 110 *      hardware writes to mark packets complete, we use the feature that
 111 *      hardware will not write to a size 0 descriptor and mark the previous
 112 *      packet as end-of-list (EL).   After updating the link, we remove EL
 113 *      and only then restore the size such that hardware may use the
 114 *      previous-to-end RFD.
 115 *
 116 *      Under typical operation, the  receive unit (RU) is start once,
 117 *      and the controller happily fills RFDs as frames arrive.  If
 118 *      replacement RFDs cannot be allocated, or the RU goes non-active,
 119 *      the RU must be restarted.  Frame arrival generates an interrupt,
 120 *      and Rx indication and re-allocation happen in the same context,
 121 *      therefore no locking is required.  A software-generated interrupt
 122 *      is generated from the watchdog to recover from a failed allocation
 123 *      scenario where all Rx resources have been indicated and none re-
 124 *      placed.
 125 *
 126 *      V.   Miscellaneous
 127 *
 128 *      VLAN offloading of tagging, stripping and filtering is not
 129 *      supported, but driver will accommodate the extra 4-byte VLAN tag
 130 *      for processing by upper layers.  Tx/Rx Checksum offloading is not
 131 *      supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 132 *      not supported (hardware limitation).
 133 *
 134 *      MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 135 *
 136 *      Thanks to JC (jchapman@katalix.com) for helping with
 137 *      testing/troubleshooting the development driver.
 138 *
 139 *      TODO:
 140 *      o several entry points race with dev->close
 141 *      o check for tx-no-resources/stop Q races with tx clean/wake Q
 142 *
 143 *      FIXES:
 144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
 145 *      - Stratus87247: protect MDI control register manipulations
 146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
 147 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
 148 */
 149
 150#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 151
 152#include <linux/module.h>
 153#include <linux/moduleparam.h>
 154#include <linux/kernel.h>
 155#include <linux/types.h>
 156#include <linux/sched.h>
 157#include <linux/slab.h>
 158#include <linux/delay.h>
 159#include <linux/init.h>
 160#include <linux/pci.h>
 161#include <linux/dma-mapping.h>
 162#include <linux/dmapool.h>
 163#include <linux/netdevice.h>
 164#include <linux/etherdevice.h>
 165#include <linux/mii.h>
 166#include <linux/if_vlan.h>
 167#include <linux/skbuff.h>
 168#include <linux/ethtool.h>
 169#include <linux/string.h>
 170#include <linux/firmware.h>
 171#include <linux/rtnetlink.h>
 172#include <asm/unaligned.h>
 173
 174
 175#define DRV_NAME                "e100"
 176#define DRV_EXT                 "-NAPI"
 177#define DRV_VERSION             "3.5.24-k2"DRV_EXT
 178#define DRV_DESCRIPTION         "Intel(R) PRO/100 Network Driver"
 179#define DRV_COPYRIGHT           "Copyright(c) 1999-2006 Intel Corporation"
 180
 181#define E100_WATCHDOG_PERIOD    (2 * HZ)
 182#define E100_NAPI_WEIGHT        16
 183
 184#define FIRMWARE_D101M          "e100/d101m_ucode.bin"
 185#define FIRMWARE_D101S          "e100/d101s_ucode.bin"
 186#define FIRMWARE_D102E          "e100/d102e_ucode.bin"
 187
 188MODULE_DESCRIPTION(DRV_DESCRIPTION);
 189MODULE_AUTHOR(DRV_COPYRIGHT);
 190MODULE_LICENSE("GPL");
 191MODULE_VERSION(DRV_VERSION);
 192MODULE_FIRMWARE(FIRMWARE_D101M);
 193MODULE_FIRMWARE(FIRMWARE_D101S);
 194MODULE_FIRMWARE(FIRMWARE_D102E);
 195
 196static int debug = 3;
 197static int eeprom_bad_csum_allow = 0;
 198static int use_io = 0;
 199module_param(debug, int, 0);
 200module_param(eeprom_bad_csum_allow, int, 0);
 201module_param(use_io, int, 0);
 202MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 203MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
 204MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
 205
 206#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
 207        PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
 208        PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
 209static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
 210        INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
 211        INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
 212        INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
 213        INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
 214        INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
 215        INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
 216        INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
 217        INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
 218        INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
 219        INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
 220        INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
 221        INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
 222        INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
 223        INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
 224        INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
 225        INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
 226        INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
 227        INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
 228        INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
 229        INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
 230        INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
 231        INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
 232        INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
 233        INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
 234        INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
 235        INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
 236        INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
 237        INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
 238        INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
 239        INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
 240        INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
 241        INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
 242        INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
 243        INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
 244        INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
 245        INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
 246        INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
 247        INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
 248        INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
 249        INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
 250        INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
 251        INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
 252        { 0, }
 253};
 254MODULE_DEVICE_TABLE(pci, e100_id_table);
 255
 256enum mac {
 257        mac_82557_D100_A  = 0,
 258        mac_82557_D100_B  = 1,
 259        mac_82557_D100_C  = 2,
 260        mac_82558_D101_A4 = 4,
 261        mac_82558_D101_B0 = 5,
 262        mac_82559_D101M   = 8,
 263        mac_82559_D101S   = 9,
 264        mac_82550_D102    = 12,
 265        mac_82550_D102_C  = 13,
 266        mac_82551_E       = 14,
 267        mac_82551_F       = 15,
 268        mac_82551_10      = 16,
 269        mac_unknown       = 0xFF,
 270};
 271
 272enum phy {
 273        phy_100a     = 0x000003E0,
 274        phy_100c     = 0x035002A8,
 275        phy_82555_tx = 0x015002A8,
 276        phy_nsc_tx   = 0x5C002000,
 277        phy_82562_et = 0x033002A8,
 278        phy_82562_em = 0x032002A8,
 279        phy_82562_ek = 0x031002A8,
 280        phy_82562_eh = 0x017002A8,
 281        phy_82552_v  = 0xd061004d,
 282        phy_unknown  = 0xFFFFFFFF,
 283};
 284
 285/* CSR (Control/Status Registers) */
 286struct csr {
 287        struct {
 288                u8 status;
 289                u8 stat_ack;
 290                u8 cmd_lo;
 291                u8 cmd_hi;
 292                u32 gen_ptr;
 293        } scb;
 294        u32 port;
 295        u16 flash_ctrl;
 296        u8 eeprom_ctrl_lo;
 297        u8 eeprom_ctrl_hi;
 298        u32 mdi_ctrl;
 299        u32 rx_dma_count;
 300};
 301
 302enum scb_status {
 303        rus_no_res       = 0x08,
 304        rus_ready        = 0x10,
 305        rus_mask         = 0x3C,
 306};
 307
 308enum ru_state  {
 309        RU_SUSPENDED = 0,
 310        RU_RUNNING       = 1,
 311        RU_UNINITIALIZED = -1,
 312};
 313
 314enum scb_stat_ack {
 315        stat_ack_not_ours    = 0x00,
 316        stat_ack_sw_gen      = 0x04,
 317        stat_ack_rnr         = 0x10,
 318        stat_ack_cu_idle     = 0x20,
 319        stat_ack_frame_rx    = 0x40,
 320        stat_ack_cu_cmd_done = 0x80,
 321        stat_ack_not_present = 0xFF,
 322        stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
 323        stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
 324};
 325
 326enum scb_cmd_hi {
 327        irq_mask_none = 0x00,
 328        irq_mask_all  = 0x01,
 329        irq_sw_gen    = 0x02,
 330};
 331
 332enum scb_cmd_lo {
 333        cuc_nop        = 0x00,
 334        ruc_start      = 0x01,
 335        ruc_load_base  = 0x06,
 336        cuc_start      = 0x10,
 337        cuc_resume     = 0x20,
 338        cuc_dump_addr  = 0x40,
 339        cuc_dump_stats = 0x50,
 340        cuc_load_base  = 0x60,
 341        cuc_dump_reset = 0x70,
 342};
 343
 344enum cuc_dump {
 345        cuc_dump_complete       = 0x0000A005,
 346        cuc_dump_reset_complete = 0x0000A007,
 347};
 348
 349enum port {
 350        software_reset  = 0x0000,
 351        selftest        = 0x0001,
 352        selective_reset = 0x0002,
 353};
 354
 355enum eeprom_ctrl_lo {
 356        eesk = 0x01,
 357        eecs = 0x02,
 358        eedi = 0x04,
 359        eedo = 0x08,
 360};
 361
 362enum mdi_ctrl {
 363        mdi_write = 0x04000000,
 364        mdi_read  = 0x08000000,
 365        mdi_ready = 0x10000000,
 366};
 367
 368enum eeprom_op {
 369        op_write = 0x05,
 370        op_read  = 0x06,
 371        op_ewds  = 0x10,
 372        op_ewen  = 0x13,
 373};
 374
 375enum eeprom_offsets {
 376        eeprom_cnfg_mdix  = 0x03,
 377        eeprom_phy_iface  = 0x06,
 378        eeprom_id         = 0x0A,
 379        eeprom_config_asf = 0x0D,
 380        eeprom_smbus_addr = 0x90,
 381};
 382
 383enum eeprom_cnfg_mdix {
 384        eeprom_mdix_enabled = 0x0080,
 385};
 386
 387enum eeprom_phy_iface {
 388        NoSuchPhy = 0,
 389        I82553AB,
 390        I82553C,
 391        I82503,
 392        DP83840,
 393        S80C240,
 394        S80C24,
 395        I82555,
 396        DP83840A = 10,
 397};
 398
 399enum eeprom_id {
 400        eeprom_id_wol = 0x0020,
 401};
 402
 403enum eeprom_config_asf {
 404        eeprom_asf = 0x8000,
 405        eeprom_gcl = 0x4000,
 406};
 407
 408enum cb_status {
 409        cb_complete = 0x8000,
 410        cb_ok       = 0x2000,
 411};
 412
 413enum cb_command {
 414        cb_nop    = 0x0000,
 415        cb_iaaddr = 0x0001,
 416        cb_config = 0x0002,
 417        cb_multi  = 0x0003,
 418        cb_tx     = 0x0004,
 419        cb_ucode  = 0x0005,
 420        cb_dump   = 0x0006,
 421        cb_tx_sf  = 0x0008,
 422        cb_cid    = 0x1f00,
 423        cb_i      = 0x2000,
 424        cb_s      = 0x4000,
 425        cb_el     = 0x8000,
 426};
 427
 428struct rfd {
 429        __le16 status;
 430        __le16 command;
 431        __le32 link;
 432        __le32 rbd;
 433        __le16 actual_size;
 434        __le16 size;
 435};
 436
 437struct rx {
 438        struct rx *next, *prev;
 439        struct sk_buff *skb;
 440        dma_addr_t dma_addr;
 441};
 442
 443#if defined(__BIG_ENDIAN_BITFIELD)
 444#define X(a,b)  b,a
 445#else
 446#define X(a,b)  a,b
 447#endif
 448struct config {
 449/*0*/   u8 X(byte_count:6, pad0:2);
 450/*1*/   u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
 451/*2*/   u8 adaptive_ifs;
 452/*3*/   u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
 453           term_write_cache_line:1), pad3:4);
 454/*4*/   u8 X(rx_dma_max_count:7, pad4:1);
 455/*5*/   u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
 456/*6*/   u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
 457           tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
 458           rx_discard_overruns:1), rx_save_bad_frames:1);
 459/*7*/   u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
 460           pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
 461           tx_dynamic_tbd:1);
 462/*8*/   u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
 463/*9*/   u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
 464           link_status_wake:1), arp_wake:1), mcmatch_wake:1);
 465/*10*/  u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
 466           loopback:2);
 467/*11*/  u8 X(linear_priority:3, pad11:5);
 468/*12*/  u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
 469/*13*/  u8 ip_addr_lo;
 470/*14*/  u8 ip_addr_hi;
 471/*15*/  u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
 472           wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
 473           pad15_2:1), crs_or_cdt:1);
 474/*16*/  u8 fc_delay_lo;
 475/*17*/  u8 fc_delay_hi;
 476/*18*/  u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
 477           rx_long_ok:1), fc_priority_threshold:3), pad18:1);
 478/*19*/  u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
 479           fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
 480           full_duplex_force:1), full_duplex_pin:1);
 481/*20*/  u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
 482/*21*/  u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
 483/*22*/  u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
 484        u8 pad_d102[9];
 485};
 486
 487#define E100_MAX_MULTICAST_ADDRS        64
 488struct multi {
 489        __le16 count;
 490        u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
 491};
 492
 493/* Important: keep total struct u32-aligned */
 494#define UCODE_SIZE                      134
 495struct cb {
 496        __le16 status;
 497        __le16 command;
 498        __le32 link;
 499        union {
 500                u8 iaaddr[ETH_ALEN];
 501                __le32 ucode[UCODE_SIZE];
 502                struct config config;
 503                struct multi multi;
 504                struct {
 505                        u32 tbd_array;
 506                        u16 tcb_byte_count;
 507                        u8 threshold;
 508                        u8 tbd_count;
 509                        struct {
 510                                __le32 buf_addr;
 511                                __le16 size;
 512                                u16 eol;
 513                        } tbd;
 514                } tcb;
 515                __le32 dump_buffer_addr;
 516        } u;
 517        struct cb *next, *prev;
 518        dma_addr_t dma_addr;
 519        struct sk_buff *skb;
 520};
 521
 522enum loopback {
 523        lb_none = 0, lb_mac = 1, lb_phy = 3,
 524};
 525
 526struct stats {
 527        __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
 528                tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
 529                tx_multiple_collisions, tx_total_collisions;
 530        __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
 531                rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
 532                rx_short_frame_errors;
 533        __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
 534        __le16 xmt_tco_frames, rcv_tco_frames;
 535        __le32 complete;
 536};
 537
 538struct mem {
 539        struct {
 540                u32 signature;
 541                u32 result;
 542        } selftest;
 543        struct stats stats;
 544        u8 dump_buf[596];
 545};
 546
 547struct param_range {
 548        u32 min;
 549        u32 max;
 550        u32 count;
 551};
 552
 553struct params {
 554        struct param_range rfds;
 555        struct param_range cbs;
 556};
 557
 558struct nic {
 559        /* Begin: frequently used values: keep adjacent for cache effect */
 560        u32 msg_enable                          ____cacheline_aligned;
 561        struct net_device *netdev;
 562        struct pci_dev *pdev;
 563        u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
 564
 565        struct rx *rxs                          ____cacheline_aligned;
 566        struct rx *rx_to_use;
 567        struct rx *rx_to_clean;
 568        struct rfd blank_rfd;
 569        enum ru_state ru_running;
 570
 571        spinlock_t cb_lock                      ____cacheline_aligned;
 572        spinlock_t cmd_lock;
 573        struct csr __iomem *csr;
 574        enum scb_cmd_lo cuc_cmd;
 575        unsigned int cbs_avail;
 576        struct napi_struct napi;
 577        struct cb *cbs;
 578        struct cb *cb_to_use;
 579        struct cb *cb_to_send;
 580        struct cb *cb_to_clean;
 581        __le16 tx_command;
 582        /* End: frequently used values: keep adjacent for cache effect */
 583
 584        enum {
 585                ich                = (1 << 0),
 586                promiscuous        = (1 << 1),
 587                multicast_all      = (1 << 2),
 588                wol_magic          = (1 << 3),
 589                ich_10h_workaround = (1 << 4),
 590        } flags                                 ____cacheline_aligned;
 591
 592        enum mac mac;
 593        enum phy phy;
 594        struct params params;
 595        struct timer_list watchdog;
 596        struct timer_list blink_timer;
 597        struct mii_if_info mii;
 598        struct work_struct tx_timeout_task;
 599        enum loopback loopback;
 600
 601        struct mem *mem;
 602        dma_addr_t dma_addr;
 603
 604        struct pci_pool *cbs_pool;
 605        dma_addr_t cbs_dma_addr;
 606        u8 adaptive_ifs;
 607        u8 tx_threshold;
 608        u32 tx_frames;
 609        u32 tx_collisions;
 610        u32 tx_deferred;
 611        u32 tx_single_collisions;
 612        u32 tx_multiple_collisions;
 613        u32 tx_fc_pause;
 614        u32 tx_tco_frames;
 615
 616        u32 rx_fc_pause;
 617        u32 rx_fc_unsupported;
 618        u32 rx_tco_frames;
 619        u32 rx_over_length_errors;
 620
 621        u16 leds;
 622        u16 eeprom_wc;
 623        __le16 eeprom[256];
 624        spinlock_t mdio_lock;
 625        const struct firmware *fw;
 626};
 627
 628static inline void e100_write_flush(struct nic *nic)
 629{
 630        /* Flush previous PCI writes through intermediate bridges
 631         * by doing a benign read */
 632        (void)ioread8(&nic->csr->scb.status);
 633}
 634
 635static void e100_enable_irq(struct nic *nic)
 636{
 637        unsigned long flags;
 638
 639        spin_lock_irqsave(&nic->cmd_lock, flags);
 640        iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
 641        e100_write_flush(nic);
 642        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 643}
 644
 645static void e100_disable_irq(struct nic *nic)
 646{
 647        unsigned long flags;
 648
 649        spin_lock_irqsave(&nic->cmd_lock, flags);
 650        iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
 651        e100_write_flush(nic);
 652        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 653}
 654
 655static void e100_hw_reset(struct nic *nic)
 656{
 657        /* Put CU and RU into idle with a selective reset to get
 658         * device off of PCI bus */
 659        iowrite32(selective_reset, &nic->csr->port);
 660        e100_write_flush(nic); udelay(20);
 661
 662        /* Now fully reset device */
 663        iowrite32(software_reset, &nic->csr->port);
 664        e100_write_flush(nic); udelay(20);
 665
 666        /* Mask off our interrupt line - it's unmasked after reset */
 667        e100_disable_irq(nic);
 668}
 669
 670static int e100_self_test(struct nic *nic)
 671{
 672        u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
 673
 674        /* Passing the self-test is a pretty good indication
 675         * that the device can DMA to/from host memory */
 676
 677        nic->mem->selftest.signature = 0;
 678        nic->mem->selftest.result = 0xFFFFFFFF;
 679
 680        iowrite32(selftest | dma_addr, &nic->csr->port);
 681        e100_write_flush(nic);
 682        /* Wait 10 msec for self-test to complete */
 683        msleep(10);
 684
 685        /* Interrupts are enabled after self-test */
 686        e100_disable_irq(nic);
 687
 688        /* Check results of self-test */
 689        if (nic->mem->selftest.result != 0) {
 690                netif_err(nic, hw, nic->netdev,
 691                          "Self-test failed: result=0x%08X\n",
 692                          nic->mem->selftest.result);
 693                return -ETIMEDOUT;
 694        }
 695        if (nic->mem->selftest.signature == 0) {
 696                netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
 697                return -ETIMEDOUT;
 698        }
 699
 700        return 0;
 701}
 702
 703static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
 704{
 705        u32 cmd_addr_data[3];
 706        u8 ctrl;
 707        int i, j;
 708
 709        /* Three cmds: write/erase enable, write data, write/erase disable */
 710        cmd_addr_data[0] = op_ewen << (addr_len - 2);
 711        cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
 712                le16_to_cpu(data);
 713        cmd_addr_data[2] = op_ewds << (addr_len - 2);
 714
 715        /* Bit-bang cmds to write word to eeprom */
 716        for (j = 0; j < 3; j++) {
 717
 718                /* Chip select */
 719                iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 720                e100_write_flush(nic); udelay(4);
 721
 722                for (i = 31; i >= 0; i--) {
 723                        ctrl = (cmd_addr_data[j] & (1 << i)) ?
 724                                eecs | eedi : eecs;
 725                        iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 726                        e100_write_flush(nic); udelay(4);
 727
 728                        iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 729                        e100_write_flush(nic); udelay(4);
 730                }
 731                /* Wait 10 msec for cmd to complete */
 732                msleep(10);
 733
 734                /* Chip deselect */
 735                iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 736                e100_write_flush(nic); udelay(4);
 737        }
 738};
 739
 740/* General technique stolen from the eepro100 driver - very clever */
 741static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
 742{
 743        u32 cmd_addr_data;
 744        u16 data = 0;
 745        u8 ctrl;
 746        int i;
 747
 748        cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
 749
 750        /* Chip select */
 751        iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 752        e100_write_flush(nic); udelay(4);
 753
 754        /* Bit-bang to read word from eeprom */
 755        for (i = 31; i >= 0; i--) {
 756                ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
 757                iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 758                e100_write_flush(nic); udelay(4);
 759
 760                iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 761                e100_write_flush(nic); udelay(4);
 762
 763                /* Eeprom drives a dummy zero to EEDO after receiving
 764                 * complete address.  Use this to adjust addr_len. */
 765                ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
 766                if (!(ctrl & eedo) && i > 16) {
 767                        *addr_len -= (i - 16);
 768                        i = 17;
 769                }
 770
 771                data = (data << 1) | (ctrl & eedo ? 1 : 0);
 772        }
 773
 774        /* Chip deselect */
 775        iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 776        e100_write_flush(nic); udelay(4);
 777
 778        return cpu_to_le16(data);
 779};
 780
 781/* Load entire EEPROM image into driver cache and validate checksum */
 782static int e100_eeprom_load(struct nic *nic)
 783{
 784        u16 addr, addr_len = 8, checksum = 0;
 785
 786        /* Try reading with an 8-bit addr len to discover actual addr len */
 787        e100_eeprom_read(nic, &addr_len, 0);
 788        nic->eeprom_wc = 1 << addr_len;
 789
 790        for (addr = 0; addr < nic->eeprom_wc; addr++) {
 791                nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
 792                if (addr < nic->eeprom_wc - 1)
 793                        checksum += le16_to_cpu(nic->eeprom[addr]);
 794        }
 795
 796        /* The checksum, stored in the last word, is calculated such that
 797         * the sum of words should be 0xBABA */
 798        if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
 799                netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
 800                if (!eeprom_bad_csum_allow)
 801                        return -EAGAIN;
 802        }
 803
 804        return 0;
 805}
 806
 807/* Save (portion of) driver EEPROM cache to device and update checksum */
 808static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
 809{
 810        u16 addr, addr_len = 8, checksum = 0;
 811
 812        /* Try reading with an 8-bit addr len to discover actual addr len */
 813        e100_eeprom_read(nic, &addr_len, 0);
 814        nic->eeprom_wc = 1 << addr_len;
 815
 816        if (start + count >= nic->eeprom_wc)
 817                return -EINVAL;
 818
 819        for (addr = start; addr < start + count; addr++)
 820                e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
 821
 822        /* The checksum, stored in the last word, is calculated such that
 823         * the sum of words should be 0xBABA */
 824        for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
 825                checksum += le16_to_cpu(nic->eeprom[addr]);
 826        nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
 827        e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
 828                nic->eeprom[nic->eeprom_wc - 1]);
 829
 830        return 0;
 831}
 832
 833#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
 834#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
 835static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
 836{
 837        unsigned long flags;
 838        unsigned int i;
 839        int err = 0;
 840
 841        spin_lock_irqsave(&nic->cmd_lock, flags);
 842
 843        /* Previous command is accepted when SCB clears */
 844        for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
 845                if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
 846                        break;
 847                cpu_relax();
 848                if (unlikely(i > E100_WAIT_SCB_FAST))
 849                        udelay(5);
 850        }
 851        if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
 852                err = -EAGAIN;
 853                goto err_unlock;
 854        }
 855
 856        if (unlikely(cmd != cuc_resume))
 857                iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
 858        iowrite8(cmd, &nic->csr->scb.cmd_lo);
 859
 860err_unlock:
 861        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 862
 863        return err;
 864}
 865
 866static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
 867        void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
 868{
 869        struct cb *cb;
 870        unsigned long flags;
 871        int err = 0;
 872
 873        spin_lock_irqsave(&nic->cb_lock, flags);
 874
 875        if (unlikely(!nic->cbs_avail)) {
 876                err = -ENOMEM;
 877                goto err_unlock;
 878        }
 879
 880        cb = nic->cb_to_use;
 881        nic->cb_to_use = cb->next;
 882        nic->cbs_avail--;
 883        cb->skb = skb;
 884
 885        if (unlikely(!nic->cbs_avail))
 886                err = -ENOSPC;
 887
 888        cb_prepare(nic, cb, skb);
 889
 890        /* Order is important otherwise we'll be in a race with h/w:
 891         * set S-bit in current first, then clear S-bit in previous. */
 892        cb->command |= cpu_to_le16(cb_s);
 893        wmb();
 894        cb->prev->command &= cpu_to_le16(~cb_s);
 895
 896        while (nic->cb_to_send != nic->cb_to_use) {
 897                if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
 898                        nic->cb_to_send->dma_addr))) {
 899                        /* Ok, here's where things get sticky.  It's
 900                         * possible that we can't schedule the command
 901                         * because the controller is too busy, so
 902                         * let's just queue the command and try again
 903                         * when another command is scheduled. */
 904                        if (err == -ENOSPC) {
 905                                //request a reset
 906                                schedule_work(&nic->tx_timeout_task);
 907                        }
 908                        break;
 909                } else {
 910                        nic->cuc_cmd = cuc_resume;
 911                        nic->cb_to_send = nic->cb_to_send->next;
 912                }
 913        }
 914
 915err_unlock:
 916        spin_unlock_irqrestore(&nic->cb_lock, flags);
 917
 918        return err;
 919}
 920
 921static int mdio_read(struct net_device *netdev, int addr, int reg)
 922{
 923        struct nic *nic = netdev_priv(netdev);
 924        return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
 925}
 926
 927static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
 928{
 929        struct nic *nic = netdev_priv(netdev);
 930
 931        nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
 932}
 933
 934/* the standard mdio_ctrl() function for usual MII-compliant hardware */
 935static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
 936{
 937        u32 data_out = 0;
 938        unsigned int i;
 939        unsigned long flags;
 940
 941
 942        /*
 943         * Stratus87247: we shouldn't be writing the MDI control
 944         * register until the Ready bit shows True.  Also, since
 945         * manipulation of the MDI control registers is a multi-step
 946         * procedure it should be done under lock.
 947         */
 948        spin_lock_irqsave(&nic->mdio_lock, flags);
 949        for (i = 100; i; --i) {
 950                if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
 951                        break;
 952                udelay(20);
 953        }
 954        if (unlikely(!i)) {
 955                netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
 956                spin_unlock_irqrestore(&nic->mdio_lock, flags);
 957                return 0;               /* No way to indicate timeout error */
 958        }
 959        iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
 960
 961        for (i = 0; i < 100; i++) {
 962                udelay(20);
 963                if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
 964                        break;
 965        }
 966        spin_unlock_irqrestore(&nic->mdio_lock, flags);
 967        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
 968                     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
 969                     dir == mdi_read ? "READ" : "WRITE",
 970                     addr, reg, data, data_out);
 971        return (u16)data_out;
 972}
 973
 974/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
 975static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
 976                                 u32 addr,
 977                                 u32 dir,
 978                                 u32 reg,
 979                                 u16 data)
 980{
 981        if ((reg == MII_BMCR) && (dir == mdi_write)) {
 982                if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
 983                        u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
 984                                                        MII_ADVERTISE);
 985
 986                        /*
 987                         * Workaround Si issue where sometimes the part will not
 988                         * autoneg to 100Mbps even when advertised.
 989                         */
 990                        if (advert & ADVERTISE_100FULL)
 991                                data |= BMCR_SPEED100 | BMCR_FULLDPLX;
 992                        else if (advert & ADVERTISE_100HALF)
 993                                data |= BMCR_SPEED100;
 994                }
 995        }
 996        return mdio_ctrl_hw(nic, addr, dir, reg, data);
 997}
 998
 999/* Fully software-emulated mdio_ctrl() function for cards without
1000 * MII-compliant PHYs.
1001 * For now, this is mainly geared towards 80c24 support; in case of further
1002 * requirements for other types (i82503, ...?) either extend this mechanism
1003 * or split it, whichever is cleaner.
1004 */
1005static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1006                                      u32 addr,
1007                                      u32 dir,
1008                                      u32 reg,
1009                                      u16 data)
1010{
1011        /* might need to allocate a netdev_priv'ed register array eventually
1012         * to be able to record state changes, but for now
1013         * some fully hardcoded register handling ought to be ok I guess. */
1014
1015        if (dir == mdi_read) {
1016                switch (reg) {
1017                case MII_BMCR:
1018                        /* Auto-negotiation, right? */
1019                        return  BMCR_ANENABLE |
1020                                BMCR_FULLDPLX;
1021                case MII_BMSR:
1022                        return  BMSR_LSTATUS /* for mii_link_ok() */ |
1023                                BMSR_ANEGCAPABLE |
1024                                BMSR_10FULL;
1025                case MII_ADVERTISE:
1026                        /* 80c24 is a "combo card" PHY, right? */
1027                        return  ADVERTISE_10HALF |
1028                                ADVERTISE_10FULL;
1029                default:
1030                        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1031                                     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1032                                     dir == mdi_read ? "READ" : "WRITE",
1033                                     addr, reg, data);
1034                        return 0xFFFF;
1035                }
1036        } else {
1037                switch (reg) {
1038                default:
1039                        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1040                                     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1041                                     dir == mdi_read ? "READ" : "WRITE",
1042                                     addr, reg, data);
1043                        return 0xFFFF;
1044                }
1045        }
1046}
1047static inline int e100_phy_supports_mii(struct nic *nic)
1048{
1049        /* for now, just check it by comparing whether we
1050           are using MII software emulation.
1051        */
1052        return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1053}
1054
1055static void e100_get_defaults(struct nic *nic)
1056{
1057        struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1058        struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1059
1060        /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1061        nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1062        if (nic->mac == mac_unknown)
1063                nic->mac = mac_82557_D100_A;
1064
1065        nic->params.rfds = rfds;
1066        nic->params.cbs = cbs;
1067
1068        /* Quadwords to DMA into FIFO before starting frame transmit */
1069        nic->tx_threshold = 0xE0;
1070
1071        /* no interrupt for every tx completion, delay = 256us if not 557 */
1072        nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1073                ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1074
1075        /* Template for a freshly allocated RFD */
1076        nic->blank_rfd.command = 0;
1077        nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1078        nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1079
1080        /* MII setup */
1081        nic->mii.phy_id_mask = 0x1F;
1082        nic->mii.reg_num_mask = 0x1F;
1083        nic->mii.dev = nic->netdev;
1084        nic->mii.mdio_read = mdio_read;
1085        nic->mii.mdio_write = mdio_write;
1086}
1087
1088static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1089{
1090        struct config *config = &cb->u.config;
1091        u8 *c = (u8 *)config;
1092
1093        cb->command = cpu_to_le16(cb_config);
1094
1095        memset(config, 0, sizeof(struct config));
1096
1097        config->byte_count = 0x16;              /* bytes in this struct */
1098        config->rx_fifo_limit = 0x8;            /* bytes in FIFO before DMA */
1099        config->direct_rx_dma = 0x1;            /* reserved */
1100        config->standard_tcb = 0x1;             /* 1=standard, 0=extended */
1101        config->standard_stat_counter = 0x1;    /* 1=standard, 0=extended */
1102        config->rx_discard_short_frames = 0x1;  /* 1=discard, 0=pass */
1103        config->tx_underrun_retry = 0x3;        /* # of underrun retries */
1104        if (e100_phy_supports_mii(nic))
1105                config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1106        config->pad10 = 0x6;
1107        config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1108        config->preamble_length = 0x2;          /* 0=1, 1=3, 2=7, 3=15 bytes */
1109        config->ifs = 0x6;                      /* x16 = inter frame spacing */
1110        config->ip_addr_hi = 0xF2;              /* ARP IP filter - not used */
1111        config->pad15_1 = 0x1;
1112        config->pad15_2 = 0x1;
1113        config->crs_or_cdt = 0x0;               /* 0=CRS only, 1=CRS or CDT */
1114        config->fc_delay_hi = 0x40;             /* time delay for fc frame */
1115        config->tx_padding = 0x1;               /* 1=pad short frames */
1116        config->fc_priority_threshold = 0x7;    /* 7=priority fc disabled */
1117        config->pad18 = 0x1;
1118        config->full_duplex_pin = 0x1;          /* 1=examine FDX# pin */
1119        config->pad20_1 = 0x1F;
1120        config->fc_priority_location = 0x1;     /* 1=byte#31, 0=byte#19 */
1121        config->pad21_1 = 0x5;
1122
1123        config->adaptive_ifs = nic->adaptive_ifs;
1124        config->loopback = nic->loopback;
1125
1126        if (nic->mii.force_media && nic->mii.full_duplex)
1127                config->full_duplex_force = 0x1;        /* 1=force, 0=auto */
1128
1129        if (nic->flags & promiscuous || nic->loopback) {
1130                config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1131                config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1132                config->promiscuous_mode = 0x1;         /* 1=on, 0=off */
1133        }
1134
1135        if (nic->flags & multicast_all)
1136                config->multicast_all = 0x1;            /* 1=accept, 0=no */
1137
1138        /* disable WoL when up */
1139        if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1140                config->magic_packet_disable = 0x1;     /* 1=off, 0=on */
1141
1142        if (nic->mac >= mac_82558_D101_A4) {
1143                config->fc_disable = 0x1;       /* 1=Tx fc off, 0=Tx fc on */
1144                config->mwi_enable = 0x1;       /* 1=enable, 0=disable */
1145                config->standard_tcb = 0x0;     /* 1=standard, 0=extended */
1146                config->rx_long_ok = 0x1;       /* 1=VLANs ok, 0=standard */
1147                if (nic->mac >= mac_82559_D101M) {
1148                        config->tno_intr = 0x1;         /* TCO stats enable */
1149                        /* Enable TCO in extended config */
1150                        if (nic->mac >= mac_82551_10) {
1151                                config->byte_count = 0x20; /* extended bytes */
1152                                config->rx_d102_mode = 0x1; /* GMRC for TCO */
1153                        }
1154                } else {
1155                        config->standard_stat_counter = 0x0;
1156                }
1157        }
1158
1159        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1160                     "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1161                     c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1162        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1163                     "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1164                     c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1165        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1166                     "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1167                     c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1168}
1169
1170/*************************************************************************
1171*  CPUSaver parameters
1172*
1173*  All CPUSaver parameters are 16-bit literals that are part of a
1174*  "move immediate value" instruction.  By changing the value of
1175*  the literal in the instruction before the code is loaded, the
1176*  driver can change the algorithm.
1177*
1178*  INTDELAY - This loads the dead-man timer with its initial value.
1179*    When this timer expires the interrupt is asserted, and the
1180*    timer is reset each time a new packet is received.  (see
1181*    BUNDLEMAX below to set the limit on number of chained packets)
1182*    The current default is 0x600 or 1536.  Experiments show that
1183*    the value should probably stay within the 0x200 - 0x1000.
1184*
1185*  BUNDLEMAX -
1186*    This sets the maximum number of frames that will be bundled.  In
1187*    some situations, such as the TCP windowing algorithm, it may be
1188*    better to limit the growth of the bundle size than let it go as
1189*    high as it can, because that could cause too much added latency.
1190*    The default is six, because this is the number of packets in the
1191*    default TCP window size.  A value of 1 would make CPUSaver indicate
1192*    an interrupt for every frame received.  If you do not want to put
1193*    a limit on the bundle size, set this value to xFFFF.
1194*
1195*  BUNDLESMALL -
1196*    This contains a bit-mask describing the minimum size frame that
1197*    will be bundled.  The default masks the lower 7 bits, which means
1198*    that any frame less than 128 bytes in length will not be bundled,
1199*    but will instead immediately generate an interrupt.  This does
1200*    not affect the current bundle in any way.  Any frame that is 128
1201*    bytes or large will be bundled normally.  This feature is meant
1202*    to provide immediate indication of ACK frames in a TCP environment.
1203*    Customers were seeing poor performance when a machine with CPUSaver
1204*    enabled was sending but not receiving.  The delay introduced when
1205*    the ACKs were received was enough to reduce total throughput, because
1206*    the sender would sit idle until the ACK was finally seen.
1207*
1208*    The current default is 0xFF80, which masks out the lower 7 bits.
1209*    This means that any frame which is x7F (127) bytes or smaller
1210*    will cause an immediate interrupt.  Because this value must be a
1211*    bit mask, there are only a few valid values that can be used.  To
1212*    turn this feature off, the driver can write the value xFFFF to the
1213*    lower word of this instruction (in the same way that the other
1214*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1215*    cause an interrupt to be generated for every frame, because all
1216*    standard Ethernet frames are <= 2047 bytes in length.
1217*************************************************************************/
1218
1219/* if you wish to disable the ucode functionality, while maintaining the
1220 * workarounds it provides, set the following defines to:
1221 * BUNDLESMALL 0
1222 * BUNDLEMAX 1
1223 * INTDELAY 1
1224 */
1225#define BUNDLESMALL 1
1226#define BUNDLEMAX (u16)6
1227#define INTDELAY (u16)1536 /* 0x600 */
1228
1229/* Initialize firmware */
1230static const struct firmware *e100_request_firmware(struct nic *nic)
1231{
1232        const char *fw_name;
1233        const struct firmware *fw = nic->fw;
1234        u8 timer, bundle, min_size;
1235        int err = 0;
1236
1237        /* do not load u-code for ICH devices */
1238        if (nic->flags & ich)
1239                return NULL;
1240
1241        /* Search for ucode match against h/w revision */
1242        if (nic->mac == mac_82559_D101M)
1243                fw_name = FIRMWARE_D101M;
1244        else if (nic->mac == mac_82559_D101S)
1245                fw_name = FIRMWARE_D101S;
1246        else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
1247                fw_name = FIRMWARE_D102E;
1248        else /* No ucode on other devices */
1249                return NULL;
1250
1251        /* If the firmware has not previously been loaded, request a pointer
1252         * to it. If it was previously loaded, we are reinitializing the
1253         * adapter, possibly in a resume from hibernate, in which case
1254         * request_firmware() cannot be used.
1255         */
1256        if (!fw)
1257                err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1258
1259        if (err) {
1260                netif_err(nic, probe, nic->netdev,
1261                          "Failed to load firmware \"%s\": %d\n",
1262                          fw_name, err);
1263                return ERR_PTR(err);
1264        }
1265
1266        /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1267           indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1268        if (fw->size != UCODE_SIZE * 4 + 3) {
1269                netif_err(nic, probe, nic->netdev,
1270                          "Firmware \"%s\" has wrong size %zu\n",
1271                          fw_name, fw->size);
1272                release_firmware(fw);
1273                return ERR_PTR(-EINVAL);
1274        }
1275
1276        /* Read timer, bundle and min_size from end of firmware blob */
1277        timer = fw->data[UCODE_SIZE * 4];
1278        bundle = fw->data[UCODE_SIZE * 4 + 1];
1279        min_size = fw->data[UCODE_SIZE * 4 + 2];
1280
1281        if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1282            min_size >= UCODE_SIZE) {
1283                netif_err(nic, probe, nic->netdev,
1284                          "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1285                          fw_name, timer, bundle, min_size);
1286                release_firmware(fw);
1287                return ERR_PTR(-EINVAL);
1288        }
1289
1290        /* OK, firmware is validated and ready to use. Save a pointer
1291         * to it in the nic */
1292        nic->fw = fw;
1293        return fw;
1294}
1295
1296static void e100_setup_ucode(struct nic *nic, struct cb *cb,
1297                             struct sk_buff *skb)
1298{
1299        const struct firmware *fw = (void *)skb;
1300        u8 timer, bundle, min_size;
1301
1302        /* It's not a real skb; we just abused the fact that e100_exec_cb
1303           will pass it through to here... */
1304        cb->skb = NULL;
1305
1306        /* firmware is stored as little endian already */
1307        memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1308
1309        /* Read timer, bundle and min_size from end of firmware blob */
1310        timer = fw->data[UCODE_SIZE * 4];
1311        bundle = fw->data[UCODE_SIZE * 4 + 1];
1312        min_size = fw->data[UCODE_SIZE * 4 + 2];
1313
1314        /* Insert user-tunable settings in cb->u.ucode */
1315        cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1316        cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1317        cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1318        cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1319        cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1320        cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1321
1322        cb->command = cpu_to_le16(cb_ucode | cb_el);
1323}
1324
1325static inline int e100_load_ucode_wait(struct nic *nic)
1326{
1327        const struct firmware *fw;
1328        int err = 0, counter = 50;
1329        struct cb *cb = nic->cb_to_clean;
1330
1331        fw = e100_request_firmware(nic);
1332        /* If it's NULL, then no ucode is required */
1333        if (!fw || IS_ERR(fw))
1334                return PTR_ERR(fw);
1335
1336        if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1337                netif_err(nic, probe, nic->netdev,
1338                          "ucode cmd failed with error %d\n", err);
1339
1340        /* must restart cuc */
1341        nic->cuc_cmd = cuc_start;
1342
1343        /* wait for completion */
1344        e100_write_flush(nic);
1345        udelay(10);
1346
1347        /* wait for possibly (ouch) 500ms */
1348        while (!(cb->status & cpu_to_le16(cb_complete))) {
1349                msleep(10);
1350                if (!--counter) break;
1351        }
1352
1353        /* ack any interrupts, something could have been set */
1354        iowrite8(~0, &nic->csr->scb.stat_ack);
1355
1356        /* if the command failed, or is not OK, notify and return */
1357        if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1358                netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1359                err = -EPERM;
1360        }
1361
1362        return err;
1363}
1364
1365static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1366        struct sk_buff *skb)
1367{
1368        cb->command = cpu_to_le16(cb_iaaddr);
1369        memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1370}
1371
1372static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1373{
1374        cb->command = cpu_to_le16(cb_dump);
1375        cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1376                offsetof(struct mem, dump_buf));
1377}
1378
1379static int e100_phy_check_without_mii(struct nic *nic)
1380{
1381        u8 phy_type;
1382        int without_mii;
1383
1384        phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1385
1386        switch (phy_type) {
1387        case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1388        case I82503: /* Non-MII PHY; UNTESTED! */
1389        case S80C24: /* Non-MII PHY; tested and working */
1390                /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1391                 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1392                 * doesn't have a programming interface of any sort.  The
1393                 * media is sensed automatically based on how the link partner
1394                 * is configured.  This is, in essence, manual configuration.
1395                 */
1396                netif_info(nic, probe, nic->netdev,
1397                           "found MII-less i82503 or 80c24 or other PHY\n");
1398
1399                nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1400                nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1401
1402                /* these might be needed for certain MII-less cards...
1403                 * nic->flags |= ich;
1404                 * nic->flags |= ich_10h_workaround; */
1405
1406                without_mii = 1;
1407                break;
1408        default:
1409                without_mii = 0;
1410                break;
1411        }
1412        return without_mii;
1413}
1414
1415#define NCONFIG_AUTO_SWITCH     0x0080
1416#define MII_NSC_CONG            MII_RESV1
1417#define NSC_CONG_ENABLE         0x0100
1418#define NSC_CONG_TXREADY        0x0400
1419#define ADVERTISE_FC_SUPPORTED  0x0400
1420static int e100_phy_init(struct nic *nic)
1421{
1422        struct net_device *netdev = nic->netdev;
1423        u32 addr;
1424        u16 bmcr, stat, id_lo, id_hi, cong;
1425
1426        /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1427        for (addr = 0; addr < 32; addr++) {
1428                nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1429                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1430                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1431                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1432                if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1433                        break;
1434        }
1435        if (addr == 32) {
1436                /* uhoh, no PHY detected: check whether we seem to be some
1437                 * weird, rare variant which is *known* to not have any MII.
1438                 * But do this AFTER MII checking only, since this does
1439                 * lookup of EEPROM values which may easily be unreliable. */
1440                if (e100_phy_check_without_mii(nic))
1441                        return 0; /* simply return and hope for the best */
1442                else {
1443                        /* for unknown cases log a fatal error */
1444                        netif_err(nic, hw, nic->netdev,
1445                                  "Failed to locate any known PHY, aborting\n");
1446                        return -EAGAIN;
1447                }
1448        } else
1449                netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1450                             "phy_addr = %d\n", nic->mii.phy_id);
1451
1452        /* Get phy ID */
1453        id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1454        id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1455        nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1456        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1457                     "phy ID = 0x%08X\n", nic->phy);
1458
1459        /* Select the phy and isolate the rest */
1460        for (addr = 0; addr < 32; addr++) {
1461                if (addr != nic->mii.phy_id) {
1462                        mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1463                } else if (nic->phy != phy_82552_v) {
1464                        bmcr = mdio_read(netdev, addr, MII_BMCR);
1465                        mdio_write(netdev, addr, MII_BMCR,
1466                                bmcr & ~BMCR_ISOLATE);
1467                }
1468        }
1469        /*
1470         * Workaround for 82552:
1471         * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1472         * other phy_id's) using bmcr value from addr discovery loop above.
1473         */
1474        if (nic->phy == phy_82552_v)
1475                mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1476                        bmcr & ~BMCR_ISOLATE);
1477
1478        /* Handle National tx phys */
1479#define NCS_PHY_MODEL_MASK      0xFFF0FFFF
1480        if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1481                /* Disable congestion control */
1482                cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1483                cong |= NSC_CONG_TXREADY;
1484                cong &= ~NSC_CONG_ENABLE;
1485                mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1486        }
1487
1488        if (nic->phy == phy_82552_v) {
1489                u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1490
1491                /* assign special tweaked mdio_ctrl() function */
1492                nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1493
1494                /* Workaround Si not advertising flow-control during autoneg */
1495                advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1496                mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1497
1498                /* Reset for the above changes to take effect */
1499                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1500                bmcr |= BMCR_RESET;
1501                mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1502        } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1503           (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1504                !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1505                /* enable/disable MDI/MDI-X auto-switching. */
1506                mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1507                                nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1508        }
1509
1510        return 0;
1511}
1512
1513static int e100_hw_init(struct nic *nic)
1514{
1515        int err;
1516
1517        e100_hw_reset(nic);
1518
1519        netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1520        if (!in_interrupt() && (err = e100_self_test(nic)))
1521                return err;
1522
1523        if ((err = e100_phy_init(nic)))
1524                return err;
1525        if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1526                return err;
1527        if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1528                return err;
1529        if ((err = e100_load_ucode_wait(nic)))
1530                return err;
1531        if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1532                return err;
1533        if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1534                return err;
1535        if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1536                nic->dma_addr + offsetof(struct mem, stats))))
1537                return err;
1538        if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1539                return err;
1540
1541        e100_disable_irq(nic);
1542
1543        return 0;
1544}
1545
1546static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1547{
1548        struct net_device *netdev = nic->netdev;
1549        struct netdev_hw_addr *ha;
1550        u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1551
1552        cb->command = cpu_to_le16(cb_multi);
1553        cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1554        i = 0;
1555        netdev_for_each_mc_addr(ha, netdev) {
1556                if (i == count)
1557                        break;
1558                memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1559                        ETH_ALEN);
1560        }
1561}
1562
1563static void e100_set_multicast_list(struct net_device *netdev)
1564{
1565        struct nic *nic = netdev_priv(netdev);
1566
1567        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1568                     "mc_count=%d, flags=0x%04X\n",
1569                     netdev_mc_count(netdev), netdev->flags);
1570
1571        if (netdev->flags & IFF_PROMISC)
1572                nic->flags |= promiscuous;
1573        else
1574                nic->flags &= ~promiscuous;
1575
1576        if (netdev->flags & IFF_ALLMULTI ||
1577                netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1578                nic->flags |= multicast_all;
1579        else
1580                nic->flags &= ~multicast_all;
1581
1582        e100_exec_cb(nic, NULL, e100_configure);
1583        e100_exec_cb(nic, NULL, e100_multi);
1584}
1585
1586static void e100_update_stats(struct nic *nic)
1587{
1588        struct net_device *dev = nic->netdev;
1589        struct net_device_stats *ns = &dev->stats;
1590        struct stats *s = &nic->mem->stats;
1591        __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1592                (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1593                &s->complete;
1594
1595        /* Device's stats reporting may take several microseconds to
1596         * complete, so we're always waiting for results of the
1597         * previous command. */
1598
1599        if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1600                *complete = 0;
1601                nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1602                nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1603                ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1604                ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1605                ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1606                ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1607                ns->collisions += nic->tx_collisions;
1608                ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1609                        le32_to_cpu(s->tx_lost_crs);
1610                ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1611                        nic->rx_over_length_errors;
1612                ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1613                ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1614                ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1615                ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1616                ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1617                ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1618                        le32_to_cpu(s->rx_alignment_errors) +
1619                        le32_to_cpu(s->rx_short_frame_errors) +
1620                        le32_to_cpu(s->rx_cdt_errors);
1621                nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1622                nic->tx_single_collisions +=
1623                        le32_to_cpu(s->tx_single_collisions);
1624                nic->tx_multiple_collisions +=
1625                        le32_to_cpu(s->tx_multiple_collisions);
1626                if (nic->mac >= mac_82558_D101_A4) {
1627                        nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1628                        nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1629                        nic->rx_fc_unsupported +=
1630                                le32_to_cpu(s->fc_rcv_unsupported);
1631                        if (nic->mac >= mac_82559_D101M) {
1632                                nic->tx_tco_frames +=
1633                                        le16_to_cpu(s->xmt_tco_frames);
1634                                nic->rx_tco_frames +=
1635                                        le16_to_cpu(s->rcv_tco_frames);
1636                        }
1637                }
1638        }
1639
1640
1641        if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1642                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1643                             "exec cuc_dump_reset failed\n");
1644}
1645
1646static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1647{
1648        /* Adjust inter-frame-spacing (IFS) between two transmits if
1649         * we're getting collisions on a half-duplex connection. */
1650
1651        if (duplex == DUPLEX_HALF) {
1652                u32 prev = nic->adaptive_ifs;
1653                u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1654
1655                if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1656                   (nic->tx_frames > min_frames)) {
1657                        if (nic->adaptive_ifs < 60)
1658                                nic->adaptive_ifs += 5;
1659                } else if (nic->tx_frames < min_frames) {
1660                        if (nic->adaptive_ifs >= 5)
1661                                nic->adaptive_ifs -= 5;
1662                }
1663                if (nic->adaptive_ifs != prev)
1664                        e100_exec_cb(nic, NULL, e100_configure);
1665        }
1666}
1667
1668static void e100_watchdog(unsigned long data)
1669{
1670        struct nic *nic = (struct nic *)data;
1671        struct ethtool_cmd cmd;
1672
1673        netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1674                     "right now = %ld\n", jiffies);
1675
1676        /* mii library handles link maintenance tasks */
1677
1678        mii_ethtool_gset(&nic->mii, &cmd);
1679
1680        if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1681                netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1682                            cmd.speed == SPEED_100 ? 100 : 10,
1683                            cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1684        } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1685                netdev_info(nic->netdev, "NIC Link is Down\n");
1686        }
1687
1688        mii_check_link(&nic->mii);
1689
1690        /* Software generated interrupt to recover from (rare) Rx
1691         * allocation failure.
1692         * Unfortunately have to use a spinlock to not re-enable interrupts
1693         * accidentally, due to hardware that shares a register between the
1694         * interrupt mask bit and the SW Interrupt generation bit */
1695        spin_lock_irq(&nic->cmd_lock);
1696        iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1697        e100_write_flush(nic);
1698        spin_unlock_irq(&nic->cmd_lock);
1699
1700        e100_update_stats(nic);
1701        e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1702
1703        if (nic->mac <= mac_82557_D100_C)
1704                /* Issue a multicast command to workaround a 557 lock up */
1705                e100_set_multicast_list(nic->netdev);
1706
1707        if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1708                /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1709                nic->flags |= ich_10h_workaround;
1710        else
1711                nic->flags &= ~ich_10h_workaround;
1712
1713        mod_timer(&nic->watchdog,
1714                  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1715}
1716
1717static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1718        struct sk_buff *skb)
1719{
1720        cb->command = nic->tx_command;
1721        /* interrupt every 16 packets regardless of delay */
1722        if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1723                cb->command |= cpu_to_le16(cb_i);
1724        cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1725        cb->u.tcb.tcb_byte_count = 0;
1726        cb->u.tcb.threshold = nic->tx_threshold;
1727        cb->u.tcb.tbd_count = 1;
1728        cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1729                skb->data, skb->len, PCI_DMA_TODEVICE));
1730        /* check for mapping failure? */
1731        cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1732}
1733
1734static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1735                                   struct net_device *netdev)
1736{
1737        struct nic *nic = netdev_priv(netdev);
1738        int err;
1739
1740        if (nic->flags & ich_10h_workaround) {
1741                /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1742                   Issue a NOP command followed by a 1us delay before
1743                   issuing the Tx command. */
1744                if (e100_exec_cmd(nic, cuc_nop, 0))
1745                        netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1746                                     "exec cuc_nop failed\n");
1747                udelay(1);
1748        }
1749
1750        err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1751
1752        switch (err) {
1753        case -ENOSPC:
1754                /* We queued the skb, but now we're out of space. */
1755                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1756                             "No space for CB\n");
1757                netif_stop_queue(netdev);
1758                break;
1759        case -ENOMEM:
1760                /* This is a hard error - log it. */
1761                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1762                             "Out of Tx resources, returning skb\n");
1763                netif_stop_queue(netdev);
1764                return NETDEV_TX_BUSY;
1765        }
1766
1767        return NETDEV_TX_OK;
1768}
1769
1770static int e100_tx_clean(struct nic *nic)
1771{
1772        struct net_device *dev = nic->netdev;
1773        struct cb *cb;
1774        int tx_cleaned = 0;
1775
1776        spin_lock(&nic->cb_lock);
1777
1778        /* Clean CBs marked complete */
1779        for (cb = nic->cb_to_clean;
1780            cb->status & cpu_to_le16(cb_complete);
1781            cb = nic->cb_to_clean = cb->next) {
1782                rmb(); /* read skb after status */
1783                netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1784                             "cb[%d]->status = 0x%04X\n",
1785                             (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1786                             cb->status);
1787
1788                if (likely(cb->skb != NULL)) {
1789                        dev->stats.tx_packets++;
1790                        dev->stats.tx_bytes += cb->skb->len;
1791
1792                        pci_unmap_single(nic->pdev,
1793                                le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1794                                le16_to_cpu(cb->u.tcb.tbd.size),
1795                                PCI_DMA_TODEVICE);
1796                        dev_kfree_skb_any(cb->skb);
1797                        cb->skb = NULL;
1798                        tx_cleaned = 1;
1799                }
1800                cb->status = 0;
1801                nic->cbs_avail++;
1802        }
1803
1804        spin_unlock(&nic->cb_lock);
1805
1806        /* Recover from running out of Tx resources in xmit_frame */
1807        if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1808                netif_wake_queue(nic->netdev);
1809
1810        return tx_cleaned;
1811}
1812
1813static void e100_clean_cbs(struct nic *nic)
1814{
1815        if (nic->cbs) {
1816                while (nic->cbs_avail != nic->params.cbs.count) {
1817                        struct cb *cb = nic->cb_to_clean;
1818                        if (cb->skb) {
1819                                pci_unmap_single(nic->pdev,
1820                                        le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1821                                        le16_to_cpu(cb->u.tcb.tbd.size),
1822                                        PCI_DMA_TODEVICE);
1823                                dev_kfree_skb(cb->skb);
1824                        }
1825                        nic->cb_to_clean = nic->cb_to_clean->next;
1826                        nic->cbs_avail++;
1827                }
1828                pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1829                nic->cbs = NULL;
1830                nic->cbs_avail = 0;
1831        }
1832        nic->cuc_cmd = cuc_start;
1833        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1834                nic->cbs;
1835}
1836
1837static int e100_alloc_cbs(struct nic *nic)
1838{
1839        struct cb *cb;
1840        unsigned int i, count = nic->params.cbs.count;
1841
1842        nic->cuc_cmd = cuc_start;
1843        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1844        nic->cbs_avail = 0;
1845
1846        nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
1847                                  &nic->cbs_dma_addr);
1848        if (!nic->cbs)
1849                return -ENOMEM;
1850        memset(nic->cbs, 0, count * sizeof(struct cb));
1851
1852        for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1853                cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1854                cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1855
1856                cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1857                cb->link = cpu_to_le32(nic->cbs_dma_addr +
1858                        ((i+1) % count) * sizeof(struct cb));
1859        }
1860
1861        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1862        nic->cbs_avail = count;
1863
1864        return 0;
1865}
1866
1867static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1868{
1869        if (!nic->rxs) return;
1870        if (RU_SUSPENDED != nic->ru_running) return;
1871
1872        /* handle init time starts */
1873        if (!rx) rx = nic->rxs;
1874
1875        /* (Re)start RU if suspended or idle and RFA is non-NULL */
1876        if (rx->skb) {
1877                e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1878                nic->ru_running = RU_RUNNING;
1879        }
1880}
1881
1882#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1883static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1884{
1885        if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1886                return -ENOMEM;
1887
1888        /* Init, and map the RFD. */
1889        skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1890        rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1891                RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1892
1893        if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1894                dev_kfree_skb_any(rx->skb);
1895                rx->skb = NULL;
1896                rx->dma_addr = 0;
1897                return -ENOMEM;
1898        }
1899
1900        /* Link the RFD to end of RFA by linking previous RFD to
1901         * this one.  We are safe to touch the previous RFD because
1902         * it is protected by the before last buffer's el bit being set */
1903        if (rx->prev->skb) {
1904                struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1905                put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1906                pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1907                        sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1908        }
1909
1910        return 0;
1911}
1912
1913static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1914        unsigned int *work_done, unsigned int work_to_do)
1915{
1916        struct net_device *dev = nic->netdev;
1917        struct sk_buff *skb = rx->skb;
1918        struct rfd *rfd = (struct rfd *)skb->data;
1919        u16 rfd_status, actual_size;
1920
1921        if (unlikely(work_done && *work_done >= work_to_do))
1922                return -EAGAIN;
1923
1924        /* Need to sync before taking a peek at cb_complete bit */
1925        pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1926                sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1927        rfd_status = le16_to_cpu(rfd->status);
1928
1929        netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1930                     "status=0x%04X\n", rfd_status);
1931        rmb(); /* read size after status bit */
1932
1933        /* If data isn't ready, nothing to indicate */
1934        if (unlikely(!(rfd_status & cb_complete))) {
1935                /* If the next buffer has the el bit, but we think the receiver
1936                 * is still running, check to see if it really stopped while
1937                 * we had interrupts off.
1938                 * This allows for a fast restart without re-enabling
1939                 * interrupts */
1940                if ((le16_to_cpu(rfd->command) & cb_el) &&
1941                    (RU_RUNNING == nic->ru_running))
1942
1943                        if (ioread8(&nic->csr->scb.status) & rus_no_res)
1944                                nic->ru_running = RU_SUSPENDED;
1945                pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1946                                               sizeof(struct rfd),
1947                                               PCI_DMA_FROMDEVICE);
1948                return -ENODATA;
1949        }
1950
1951        /* Get actual data size */
1952        actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1953        if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1954                actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1955
1956        /* Get data */
1957        pci_unmap_single(nic->pdev, rx->dma_addr,
1958                RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1959
1960        /* If this buffer has the el bit, but we think the receiver
1961         * is still running, check to see if it really stopped while
1962         * we had interrupts off.
1963         * This allows for a fast restart without re-enabling interrupts.
1964         * This can happen when the RU sees the size change but also sees
1965         * the el bit set. */
1966        if ((le16_to_cpu(rfd->command) & cb_el) &&
1967            (RU_RUNNING == nic->ru_running)) {
1968
1969            if (ioread8(&nic->csr->scb.status) & rus_no_res)
1970                nic->ru_running = RU_SUSPENDED;
1971        }
1972
1973        /* Pull off the RFD and put the actual data (minus eth hdr) */
1974        skb_reserve(skb, sizeof(struct rfd));
1975        skb_put(skb, actual_size);
1976        skb->protocol = eth_type_trans(skb, nic->netdev);
1977
1978        if (unlikely(!(rfd_status & cb_ok))) {
1979                /* Don't indicate if hardware indicates errors */
1980                dev_kfree_skb_any(skb);
1981        } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1982                /* Don't indicate oversized frames */
1983                nic->rx_over_length_errors++;
1984                dev_kfree_skb_any(skb);
1985        } else {
1986                dev->stats.rx_packets++;
1987                dev->stats.rx_bytes += actual_size;
1988                netif_receive_skb(skb);
1989                if (work_done)
1990                        (*work_done)++;
1991        }
1992
1993        rx->skb = NULL;
1994
1995        return 0;
1996}
1997
1998static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1999        unsigned int work_to_do)
2000{
2001        struct rx *rx;
2002        int restart_required = 0, err = 0;
2003        struct rx *old_before_last_rx, *new_before_last_rx;
2004        struct rfd *old_before_last_rfd, *new_before_last_rfd;
2005
2006        /* Indicate newly arrived packets */
2007        for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2008                err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2009                /* Hit quota or no more to clean */
2010                if (-EAGAIN == err || -ENODATA == err)
2011                        break;
2012        }
2013
2014
2015        /* On EAGAIN, hit quota so have more work to do, restart once
2016         * cleanup is complete.
2017         * Else, are we already rnr? then pay attention!!! this ensures that
2018         * the state machine progression never allows a start with a
2019         * partially cleaned list, avoiding a race between hardware
2020         * and rx_to_clean when in NAPI mode */
2021        if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2022                restart_required = 1;
2023
2024        old_before_last_rx = nic->rx_to_use->prev->prev;
2025        old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2026
2027        /* Alloc new skbs to refill list */
2028        for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2029                if (unlikely(e100_rx_alloc_skb(nic, rx)))
2030                        break; /* Better luck next time (see watchdog) */
2031        }
2032
2033        new_before_last_rx = nic->rx_to_use->prev->prev;
2034        if (new_before_last_rx != old_before_last_rx) {
2035                /* Set the el-bit on the buffer that is before the last buffer.
2036                 * This lets us update the next pointer on the last buffer
2037                 * without worrying about hardware touching it.
2038                 * We set the size to 0 to prevent hardware from touching this
2039                 * buffer.
2040                 * When the hardware hits the before last buffer with el-bit
2041                 * and size of 0, it will RNR interrupt, the RUS will go into
2042                 * the No Resources state.  It will not complete nor write to
2043                 * this buffer. */
2044                new_before_last_rfd =
2045                        (struct rfd *)new_before_last_rx->skb->data;
2046                new_before_last_rfd->size = 0;
2047                new_before_last_rfd->command |= cpu_to_le16(cb_el);
2048                pci_dma_sync_single_for_device(nic->pdev,
2049                        new_before_last_rx->dma_addr, sizeof(struct rfd),
2050                        PCI_DMA_BIDIRECTIONAL);
2051
2052                /* Now that we have a new stopping point, we can clear the old
2053                 * stopping point.  We must sync twice to get the proper
2054                 * ordering on the hardware side of things. */
2055                old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2056                pci_dma_sync_single_for_device(nic->pdev,
2057                        old_before_last_rx->dma_addr, sizeof(struct rfd),
2058                        PCI_DMA_BIDIRECTIONAL);
2059                old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
2060                pci_dma_sync_single_for_device(nic->pdev,
2061                        old_before_last_rx->dma_addr, sizeof(struct rfd),
2062                        PCI_DMA_BIDIRECTIONAL);
2063        }
2064
2065        if (restart_required) {
2066                // ack the rnr?
2067                iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2068                e100_start_receiver(nic, nic->rx_to_clean);
2069                if (work_done)
2070                        (*work_done)++;
2071        }
2072}
2073
2074static void e100_rx_clean_list(struct nic *nic)
2075{
2076        struct rx *rx;
2077        unsigned int i, count = nic->params.rfds.count;
2078
2079        nic->ru_running = RU_UNINITIALIZED;
2080
2081        if (nic->rxs) {
2082                for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2083                        if (rx->skb) {
2084                                pci_unmap_single(nic->pdev, rx->dma_addr,
2085                                        RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2086                                dev_kfree_skb(rx->skb);
2087                        }
2088                }
2089                kfree(nic->rxs);
2090                nic->rxs = NULL;
2091        }
2092
2093        nic->rx_to_use = nic->rx_to_clean = NULL;
2094}
2095
2096static int e100_rx_alloc_list(struct nic *nic)
2097{
2098        struct rx *rx;
2099        unsigned int i, count = nic->params.rfds.count;
2100        struct rfd *before_last;
2101
2102        nic->rx_to_use = nic->rx_to_clean = NULL;
2103        nic->ru_running = RU_UNINITIALIZED;
2104
2105        if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2106                return -ENOMEM;
2107
2108        for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2109                rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2110                rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2111                if (e100_rx_alloc_skb(nic, rx)) {
2112                        e100_rx_clean_list(nic);
2113                        return -ENOMEM;
2114                }
2115        }
2116        /* Set the el-bit on the buffer that is before the last buffer.
2117         * This lets us update the next pointer on the last buffer without
2118         * worrying about hardware touching it.
2119         * We set the size to 0 to prevent hardware from touching this buffer.
2120         * When the hardware hits the before last buffer with el-bit and size
2121         * of 0, it will RNR interrupt, the RU will go into the No Resources
2122         * state.  It will not complete nor write to this buffer. */
2123        rx = nic->rxs->prev->prev;
2124        before_last = (struct rfd *)rx->skb->data;
2125        before_last->command |= cpu_to_le16(cb_el);
2126        before_last->size = 0;
2127        pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2128                sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2129
2130        nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2131        nic->ru_running = RU_SUSPENDED;
2132
2133        return 0;
2134}
2135
2136static irqreturn_t e100_intr(int irq, void *dev_id)
2137{
2138        struct net_device *netdev = dev_id;
2139        struct nic *nic = netdev_priv(netdev);
2140        u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2141
2142        netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2143                     "stat_ack = 0x%02X\n", stat_ack);
2144
2145        if (stat_ack == stat_ack_not_ours ||    /* Not our interrupt */
2146           stat_ack == stat_ack_not_present)    /* Hardware is ejected */
2147                return IRQ_NONE;
2148
2149        /* Ack interrupt(s) */
2150        iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2151
2152        /* We hit Receive No Resource (RNR); restart RU after cleaning */
2153        if (stat_ack & stat_ack_rnr)
2154                nic->ru_running = RU_SUSPENDED;
2155
2156        if (likely(napi_schedule_prep(&nic->napi))) {
2157                e100_disable_irq(nic);
2158                __napi_schedule(&nic->napi);
2159        }
2160
2161        return IRQ_HANDLED;
2162}
2163
2164static int e100_poll(struct napi_struct *napi, int budget)
2165{
2166        struct nic *nic = container_of(napi, struct nic, napi);
2167        unsigned int work_done = 0;
2168
2169        e100_rx_clean(nic, &work_done, budget);
2170        e100_tx_clean(nic);
2171
2172        /* If budget not fully consumed, exit the polling mode */
2173        if (work_done < budget) {
2174                napi_complete(napi);
2175                e100_enable_irq(nic);
2176        }
2177
2178        return work_done;
2179}
2180
2181#ifdef CONFIG_NET_POLL_CONTROLLER
2182static void e100_netpoll(struct net_device *netdev)
2183{
2184        struct nic *nic = netdev_priv(netdev);
2185
2186        e100_disable_irq(nic);
2187        e100_intr(nic->pdev->irq, netdev);
2188        e100_tx_clean(nic);
2189        e100_enable_irq(nic);
2190}
2191#endif
2192
2193static int e100_set_mac_address(struct net_device *netdev, void *p)
2194{
2195        struct nic *nic = netdev_priv(netdev);
2196        struct sockaddr *addr = p;
2197
2198        if (!is_valid_ether_addr(addr->sa_data))
2199                return -EADDRNOTAVAIL;
2200
2201        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2202        e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2203
2204        return 0;
2205}
2206
2207static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2208{
2209        if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2210                return -EINVAL;
2211        netdev->mtu = new_mtu;
2212        return 0;
2213}
2214
2215static int e100_asf(struct nic *nic)
2216{
2217        /* ASF can be enabled from eeprom */
2218        return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2219           (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2220           !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2221           ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2222}
2223
2224static int e100_up(struct nic *nic)
2225{
2226        int err;
2227
2228        if ((err = e100_rx_alloc_list(nic)))
2229                return err;
2230        if ((err = e100_alloc_cbs(nic)))
2231                goto err_rx_clean_list;
2232        if ((err = e100_hw_init(nic)))
2233                goto err_clean_cbs;
2234        e100_set_multicast_list(nic->netdev);
2235        e100_start_receiver(nic, NULL);
2236        mod_timer(&nic->watchdog, jiffies);
2237        if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2238                nic->netdev->name, nic->netdev)))
2239                goto err_no_irq;
2240        netif_wake_queue(nic->netdev);
2241        napi_enable(&nic->napi);
2242        /* enable ints _after_ enabling poll, preventing a race between
2243         * disable ints+schedule */
2244        e100_enable_irq(nic);
2245        return 0;
2246
2247err_no_irq:
2248        del_timer_sync(&nic->watchdog);
2249err_clean_cbs:
2250        e100_clean_cbs(nic);
2251err_rx_clean_list:
2252        e100_rx_clean_list(nic);
2253        return err;
2254}
2255
2256static void e100_down(struct nic *nic)
2257{
2258        /* wait here for poll to complete */
2259        napi_disable(&nic->napi);
2260        netif_stop_queue(nic->netdev);
2261        e100_hw_reset(nic);
2262        free_irq(nic->pdev->irq, nic->netdev);
2263        del_timer_sync(&nic->watchdog);
2264        netif_carrier_off(nic->netdev);
2265        e100_clean_cbs(nic);
2266        e100_rx_clean_list(nic);
2267}
2268
2269static void e100_tx_timeout(struct net_device *netdev)
2270{
2271        struct nic *nic = netdev_priv(netdev);
2272
2273        /* Reset outside of interrupt context, to avoid request_irq
2274         * in interrupt context */
2275        schedule_work(&nic->tx_timeout_task);
2276}
2277
2278static void e100_tx_timeout_task(struct work_struct *work)
2279{
2280        struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2281        struct net_device *netdev = nic->netdev;
2282
2283        netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2284                     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2285
2286        rtnl_lock();
2287        if (netif_running(netdev)) {
2288                e100_down(netdev_priv(netdev));
2289                e100_up(netdev_priv(netdev));
2290        }
2291        rtnl_unlock();
2292}
2293
2294static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2295{
2296        int err;
2297        struct sk_buff *skb;
2298
2299        /* Use driver resources to perform internal MAC or PHY
2300         * loopback test.  A single packet is prepared and transmitted
2301         * in loopback mode, and the test passes if the received
2302         * packet compares byte-for-byte to the transmitted packet. */
2303
2304        if ((err = e100_rx_alloc_list(nic)))
2305                return err;
2306        if ((err = e100_alloc_cbs(nic)))
2307                goto err_clean_rx;
2308
2309        /* ICH PHY loopback is broken so do MAC loopback instead */
2310        if (nic->flags & ich && loopback_mode == lb_phy)
2311                loopback_mode = lb_mac;
2312
2313        nic->loopback = loopback_mode;
2314        if ((err = e100_hw_init(nic)))
2315                goto err_loopback_none;
2316
2317        if (loopback_mode == lb_phy)
2318                mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2319                        BMCR_LOOPBACK);
2320
2321        e100_start_receiver(nic, NULL);
2322
2323        if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2324                err = -ENOMEM;
2325                goto err_loopback_none;
2326        }
2327        skb_put(skb, ETH_DATA_LEN);
2328        memset(skb->data, 0xFF, ETH_DATA_LEN);
2329        e100_xmit_frame(skb, nic->netdev);
2330
2331        msleep(10);
2332
2333        pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2334                        RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2335
2336        if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2337           skb->data, ETH_DATA_LEN))
2338                err = -EAGAIN;
2339
2340err_loopback_none:
2341        mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2342        nic->loopback = lb_none;
2343        e100_clean_cbs(nic);
2344        e100_hw_reset(nic);
2345err_clean_rx:
2346        e100_rx_clean_list(nic);
2347        return err;
2348}
2349
2350#define MII_LED_CONTROL 0x1B
2351#define E100_82552_LED_OVERRIDE 0x19
2352#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2353#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2354static void e100_blink_led(unsigned long data)
2355{
2356        struct nic *nic = (struct nic *)data;
2357        enum led_state {
2358                led_on     = 0x01,
2359                led_off    = 0x04,
2360                led_on_559 = 0x05,
2361                led_on_557 = 0x07,
2362        };
2363        u16 led_reg = MII_LED_CONTROL;
2364
2365        if (nic->phy == phy_82552_v) {
2366                led_reg = E100_82552_LED_OVERRIDE;
2367
2368                nic->leds = (nic->leds == E100_82552_LED_ON) ?
2369                            E100_82552_LED_OFF : E100_82552_LED_ON;
2370        } else {
2371                nic->leds = (nic->leds & led_on) ? led_off :
2372                            (nic->mac < mac_82559_D101M) ? led_on_557 :
2373                            led_on_559;
2374        }
2375        mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds);
2376        mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2377}
2378
2379static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2380{
2381        struct nic *nic = netdev_priv(netdev);
2382        return mii_ethtool_gset(&nic->mii, cmd);
2383}
2384
2385static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2386{
2387        struct nic *nic = netdev_priv(netdev);
2388        int err;
2389
2390        mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2391        err = mii_ethtool_sset(&nic->mii, cmd);
2392        e100_exec_cb(nic, NULL, e100_configure);
2393
2394        return err;
2395}
2396
2397static void e100_get_drvinfo(struct net_device *netdev,
2398        struct ethtool_drvinfo *info)
2399{
2400        struct nic *nic = netdev_priv(netdev);
2401        strcpy(info->driver, DRV_NAME);
2402        strcpy(info->version, DRV_VERSION);
2403        strcpy(info->fw_version, "N/A");
2404        strcpy(info->bus_info, pci_name(nic->pdev));
2405}
2406
2407#define E100_PHY_REGS 0x1C
2408static int e100_get_regs_len(struct net_device *netdev)
2409{
2410        struct nic *nic = netdev_priv(netdev);
2411        return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2412}
2413
2414static void e100_get_regs(struct net_device *netdev,
2415        struct ethtool_regs *regs, void *p)
2416{
2417        struct nic *nic = netdev_priv(netdev);
2418        u32 *buff = p;
2419        int i;
2420
2421        regs->version = (1 << 24) | nic->pdev->revision;
2422        buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2423                ioread8(&nic->csr->scb.cmd_lo) << 16 |
2424                ioread16(&nic->csr->scb.status);
2425        for (i = E100_PHY_REGS; i >= 0; i--)
2426                buff[1 + E100_PHY_REGS - i] =
2427                        mdio_read(netdev, nic->mii.phy_id, i);
2428        memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2429        e100_exec_cb(nic, NULL, e100_dump);
2430        msleep(10);
2431        memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2432                sizeof(nic->mem->dump_buf));
2433}
2434
2435static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2436{
2437        struct nic *nic = netdev_priv(netdev);
2438        wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2439        wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2440}
2441
2442static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2443{
2444        struct nic *nic = netdev_priv(netdev);
2445
2446        if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2447            !device_can_wakeup(&nic->pdev->dev))
2448                return -EOPNOTSUPP;
2449
2450        if (wol->wolopts)
2451                nic->flags |= wol_magic;
2452        else
2453                nic->flags &= ~wol_magic;
2454
2455        device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2456
2457        e100_exec_cb(nic, NULL, e100_configure);
2458
2459        return 0;
2460}
2461
2462static u32 e100_get_msglevel(struct net_device *netdev)
2463{
2464        struct nic *nic = netdev_priv(netdev);
2465        return nic->msg_enable;
2466}
2467
2468static void e100_set_msglevel(struct net_device *netdev, u32 value)
2469{
2470        struct nic *nic = netdev_priv(netdev);
2471        nic->msg_enable = value;
2472}
2473
2474static int e100_nway_reset(struct net_device *netdev)
2475{
2476        struct nic *nic = netdev_priv(netdev);
2477        return mii_nway_restart(&nic->mii);
2478}
2479
2480static u32 e100_get_link(struct net_device *netdev)
2481{
2482        struct nic *nic = netdev_priv(netdev);
2483        return mii_link_ok(&nic->mii);
2484}
2485
2486static int e100_get_eeprom_len(struct net_device *netdev)
2487{
2488        struct nic *nic = netdev_priv(netdev);
2489        return nic->eeprom_wc << 1;
2490}
2491
2492#define E100_EEPROM_MAGIC       0x1234
2493static int e100_get_eeprom(struct net_device *netdev,
2494        struct ethtool_eeprom *eeprom, u8 *bytes)
2495{
2496        struct nic *nic = netdev_priv(netdev);
2497
2498        eeprom->magic = E100_EEPROM_MAGIC;
2499        memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2500
2501        return 0;
2502}
2503
2504static int e100_set_eeprom(struct net_device *netdev,
2505        struct ethtool_eeprom *eeprom, u8 *bytes)
2506{
2507        struct nic *nic = netdev_priv(netdev);
2508
2509        if (eeprom->magic != E100_EEPROM_MAGIC)
2510                return -EINVAL;
2511
2512        memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2513
2514        return e100_eeprom_save(nic, eeprom->offset >> 1,
2515                (eeprom->len >> 1) + 1);
2516}
2517
2518static void e100_get_ringparam(struct net_device *netdev,
2519        struct ethtool_ringparam *ring)
2520{
2521        struct nic *nic = netdev_priv(netdev);
2522        struct param_range *rfds = &nic->params.rfds;
2523        struct param_range *cbs = &nic->params.cbs;
2524
2525        ring->rx_max_pending = rfds->max;
2526        ring->tx_max_pending = cbs->max;
2527        ring->rx_mini_max_pending = 0;
2528        ring->rx_jumbo_max_pending = 0;
2529        ring->rx_pending = rfds->count;
2530        ring->tx_pending = cbs->count;
2531        ring->rx_mini_pending = 0;
2532        ring->rx_jumbo_pending = 0;
2533}
2534
2535static int e100_set_ringparam(struct net_device *netdev,
2536        struct ethtool_ringparam *ring)
2537{
2538        struct nic *nic = netdev_priv(netdev);
2539        struct param_range *rfds = &nic->params.rfds;
2540        struct param_range *cbs = &nic->params.cbs;
2541
2542        if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2543                return -EINVAL;
2544
2545        if (netif_running(netdev))
2546                e100_down(nic);
2547        rfds->count = max(ring->rx_pending, rfds->min);
2548        rfds->count = min(rfds->count, rfds->max);
2549        cbs->count = max(ring->tx_pending, cbs->min);
2550        cbs->count = min(cbs->count, cbs->max);
2551        netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2552                   rfds->count, cbs->count);
2553        if (netif_running(netdev))
2554                e100_up(nic);
2555
2556        return 0;
2557}
2558
2559static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2560        "Link test     (on/offline)",
2561        "Eeprom test   (on/offline)",
2562        "Self test        (offline)",
2563        "Mac loopback     (offline)",
2564        "Phy loopback     (offline)",
2565};
2566#define E100_TEST_LEN   ARRAY_SIZE(e100_gstrings_test)
2567
2568static void e100_diag_test(struct net_device *netdev,
2569        struct ethtool_test *test, u64 *data)
2570{
2571        struct ethtool_cmd cmd;
2572        struct nic *nic = netdev_priv(netdev);
2573        int i, err;
2574
2575        memset(data, 0, E100_TEST_LEN * sizeof(u64));
2576        data[0] = !mii_link_ok(&nic->mii);
2577        data[1] = e100_eeprom_load(nic);
2578        if (test->flags & ETH_TEST_FL_OFFLINE) {
2579
2580                /* save speed, duplex & autoneg settings */
2581                err = mii_ethtool_gset(&nic->mii, &cmd);
2582
2583                if (netif_running(netdev))
2584                        e100_down(nic);
2585                data[2] = e100_self_test(nic);
2586                data[3] = e100_loopback_test(nic, lb_mac);
2587                data[4] = e100_loopback_test(nic, lb_phy);
2588
2589                /* restore speed, duplex & autoneg settings */
2590                err = mii_ethtool_sset(&nic->mii, &cmd);
2591
2592                if (netif_running(netdev))
2593                        e100_up(nic);
2594        }
2595        for (i = 0; i < E100_TEST_LEN; i++)
2596                test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2597
2598        msleep_interruptible(4 * 1000);
2599}
2600
2601static int e100_phys_id(struct net_device *netdev, u32 data)
2602{
2603        struct nic *nic = netdev_priv(netdev);
2604        u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2605                      MII_LED_CONTROL;
2606
2607        if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2608                data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2609        mod_timer(&nic->blink_timer, jiffies);
2610        msleep_interruptible(data * 1000);
2611        del_timer_sync(&nic->blink_timer);
2612        mdio_write(netdev, nic->mii.phy_id, led_reg, 0);
2613
2614        return 0;
2615}
2616
2617static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2618        "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2619        "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2620        "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2621        "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2622        "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2623        "tx_heartbeat_errors", "tx_window_errors",
2624        /* device-specific stats */
2625        "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2626        "tx_flow_control_pause", "rx_flow_control_pause",
2627        "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2628};
2629#define E100_NET_STATS_LEN      21
2630#define E100_STATS_LEN  ARRAY_SIZE(e100_gstrings_stats)
2631
2632static int e100_get_sset_count(struct net_device *netdev, int sset)
2633{
2634        switch (sset) {
2635        case ETH_SS_TEST:
2636                return E100_TEST_LEN;
2637        case ETH_SS_STATS:
2638                return E100_STATS_LEN;
2639        default:
2640                return -EOPNOTSUPP;
2641        }
2642}
2643
2644static void e100_get_ethtool_stats(struct net_device *netdev,
2645        struct ethtool_stats *stats, u64 *data)
2646{
2647        struct nic *nic = netdev_priv(netdev);
2648        int i;
2649
2650        for (i = 0; i < E100_NET_STATS_LEN; i++)
2651                data[i] = ((unsigned long *)&netdev->stats)[i];
2652
2653        data[i++] = nic->tx_deferred;
2654        data[i++] = nic->tx_single_collisions;
2655        data[i++] = nic->tx_multiple_collisions;
2656        data[i++] = nic->tx_fc_pause;
2657        data[i++] = nic->rx_fc_pause;
2658        data[i++] = nic->rx_fc_unsupported;
2659        data[i++] = nic->tx_tco_frames;
2660        data[i++] = nic->rx_tco_frames;
2661}
2662
2663static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2664{
2665        switch (stringset) {
2666        case ETH_SS_TEST:
2667                memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2668                break;
2669        case ETH_SS_STATS:
2670                memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2671                break;
2672        }
2673}
2674
2675static const struct ethtool_ops e100_ethtool_ops = {
2676        .get_settings           = e100_get_settings,
2677        .set_settings           = e100_set_settings,
2678        .get_drvinfo            = e100_get_drvinfo,
2679        .get_regs_len           = e100_get_regs_len,
2680        .get_regs               = e100_get_regs,
2681        .get_wol                = e100_get_wol,
2682        .set_wol                = e100_set_wol,
2683        .get_msglevel           = e100_get_msglevel,
2684        .set_msglevel           = e100_set_msglevel,
2685        .nway_reset             = e100_nway_reset,
2686        .get_link               = e100_get_link,
2687        .get_eeprom_len         = e100_get_eeprom_len,
2688        .get_eeprom             = e100_get_eeprom,
2689        .set_eeprom             = e100_set_eeprom,
2690        .get_ringparam          = e100_get_ringparam,
2691        .set_ringparam          = e100_set_ringparam,
2692        .self_test              = e100_diag_test,
2693        .get_strings            = e100_get_strings,
2694        .phys_id                = e100_phys_id,
2695        .get_ethtool_stats      = e100_get_ethtool_stats,
2696        .get_sset_count         = e100_get_sset_count,
2697};
2698
2699static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2700{
2701        struct nic *nic = netdev_priv(netdev);
2702
2703        return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2704}
2705
2706static int e100_alloc(struct nic *nic)
2707{
2708        nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2709                &nic->dma_addr);
2710        return nic->mem ? 0 : -ENOMEM;
2711}
2712
2713static void e100_free(struct nic *nic)
2714{
2715        if (nic->mem) {
2716                pci_free_consistent(nic->pdev, sizeof(struct mem),
2717                        nic->mem, nic->dma_addr);
2718                nic->mem = NULL;
2719        }
2720}
2721
2722static int e100_open(struct net_device *netdev)
2723{
2724        struct nic *nic = netdev_priv(netdev);
2725        int err = 0;
2726
2727        netif_carrier_off(netdev);
2728        if ((err = e100_up(nic)))
2729                netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2730        return err;
2731}
2732
2733static int e100_close(struct net_device *netdev)
2734{
2735        e100_down(netdev_priv(netdev));
2736        return 0;
2737}
2738
2739static const struct net_device_ops e100_netdev_ops = {
2740        .ndo_open               = e100_open,
2741        .ndo_stop               = e100_close,
2742        .ndo_start_xmit         = e100_xmit_frame,
2743        .ndo_validate_addr      = eth_validate_addr,
2744        .ndo_set_multicast_list = e100_set_multicast_list,
2745        .ndo_set_mac_address    = e100_set_mac_address,
2746        .ndo_change_mtu         = e100_change_mtu,
2747        .ndo_do_ioctl           = e100_do_ioctl,
2748        .ndo_tx_timeout         = e100_tx_timeout,
2749#ifdef CONFIG_NET_POLL_CONTROLLER
2750        .ndo_poll_controller    = e100_netpoll,
2751#endif
2752};
2753
2754static int __devinit e100_probe(struct pci_dev *pdev,
2755        const struct pci_device_id *ent)
2756{
2757        struct net_device *netdev;
2758        struct nic *nic;
2759        int err;
2760
2761        if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2762                if (((1 << debug) - 1) & NETIF_MSG_PROBE)
2763                        pr_err("Etherdev alloc failed, aborting\n");
2764                return -ENOMEM;
2765        }
2766
2767        netdev->netdev_ops = &e100_netdev_ops;
2768        SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2769        netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2770        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2771
2772        nic = netdev_priv(netdev);
2773        netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2774        nic->netdev = netdev;
2775        nic->pdev = pdev;
2776        nic->msg_enable = (1 << debug) - 1;
2777        nic->mdio_ctrl = mdio_ctrl_hw;
2778        pci_set_drvdata(pdev, netdev);
2779
2780        if ((err = pci_enable_device(pdev))) {
2781                netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2782                goto err_out_free_dev;
2783        }
2784
2785        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2786                netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2787                err = -ENODEV;
2788                goto err_out_disable_pdev;
2789        }
2790
2791        if ((err = pci_request_regions(pdev, DRV_NAME))) {
2792                netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2793                goto err_out_disable_pdev;
2794        }
2795
2796        if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2797                netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2798                goto err_out_free_res;
2799        }
2800
2801        SET_NETDEV_DEV(netdev, &pdev->dev);
2802
2803        if (use_io)
2804                netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2805
2806        nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2807        if (!nic->csr) {
2808                netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2809                err = -ENOMEM;
2810                goto err_out_free_res;
2811        }
2812
2813        if (ent->driver_data)
2814                nic->flags |= ich;
2815        else
2816                nic->flags &= ~ich;
2817
2818        e100_get_defaults(nic);
2819
2820        /* locks must be initialized before calling hw_reset */
2821        spin_lock_init(&nic->cb_lock);
2822        spin_lock_init(&nic->cmd_lock);
2823        spin_lock_init(&nic->mdio_lock);
2824
2825        /* Reset the device before pci_set_master() in case device is in some
2826         * funky state and has an interrupt pending - hint: we don't have the
2827         * interrupt handler registered yet. */
2828        e100_hw_reset(nic);
2829
2830        pci_set_master(pdev);
2831
2832        init_timer(&nic->watchdog);
2833        nic->watchdog.function = e100_watchdog;
2834        nic->watchdog.data = (unsigned long)nic;
2835        init_timer(&nic->blink_timer);
2836        nic->blink_timer.function = e100_blink_led;
2837        nic->blink_timer.data = (unsigned long)nic;
2838
2839        INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2840
2841        if ((err = e100_alloc(nic))) {
2842                netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2843                goto err_out_iounmap;
2844        }
2845
2846        if ((err = e100_eeprom_load(nic)))
2847                goto err_out_free;
2848
2849        e100_phy_init(nic);
2850
2851        memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2852        memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2853        if (!is_valid_ether_addr(netdev->perm_addr)) {
2854                if (!eeprom_bad_csum_allow) {
2855                        netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2856                        err = -EAGAIN;
2857                        goto err_out_free;
2858                } else {
2859                        netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2860                }
2861        }
2862
2863        /* Wol magic packet can be enabled from eeprom */
2864        if ((nic->mac >= mac_82558_D101_A4) &&
2865           (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2866                nic->flags |= wol_magic;
2867                device_set_wakeup_enable(&pdev->dev, true);
2868        }
2869
2870        /* ack any pending wake events, disable PME */
2871        pci_pme_active(pdev, false);
2872
2873        strcpy(netdev->name, "eth%d");
2874        if ((err = register_netdev(netdev))) {
2875                netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2876                goto err_out_free;
2877        }
2878        nic->cbs_pool = pci_pool_create(netdev->name,
2879                           nic->pdev,
2880                           nic->params.cbs.max * sizeof(struct cb),
2881                           sizeof(u32),
2882                           0);
2883        netif_info(nic, probe, nic->netdev,
2884                   "addr 0x%llx, irq %d, MAC addr %pM\n",
2885                   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2886                   pdev->irq, netdev->dev_addr);
2887
2888        return 0;
2889
2890err_out_free:
2891        e100_free(nic);
2892err_out_iounmap:
2893        pci_iounmap(pdev, nic->csr);
2894err_out_free_res:
2895        pci_release_regions(pdev);
2896err_out_disable_pdev:
2897        pci_disable_device(pdev);
2898err_out_free_dev:
2899        pci_set_drvdata(pdev, NULL);
2900        free_netdev(netdev);
2901        return err;
2902}
2903
2904static void __devexit e100_remove(struct pci_dev *pdev)
2905{
2906        struct net_device *netdev = pci_get_drvdata(pdev);
2907
2908        if (netdev) {
2909                struct nic *nic = netdev_priv(netdev);
2910                unregister_netdev(netdev);
2911                e100_free(nic);
2912                pci_iounmap(pdev, nic->csr);
2913                pci_pool_destroy(nic->cbs_pool);
2914                free_netdev(netdev);
2915                pci_release_regions(pdev);
2916                pci_disable_device(pdev);
2917                pci_set_drvdata(pdev, NULL);
2918        }
2919}
2920
2921#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2922#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
2923#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
2924static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
2925{
2926        struct net_device *netdev = pci_get_drvdata(pdev);
2927        struct nic *nic = netdev_priv(netdev);
2928
2929        if (netif_running(netdev))
2930                e100_down(nic);
2931        netif_device_detach(netdev);
2932
2933        pci_save_state(pdev);
2934
2935        if ((nic->flags & wol_magic) | e100_asf(nic)) {
2936                /* enable reverse auto-negotiation */
2937                if (nic->phy == phy_82552_v) {
2938                        u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2939                                                   E100_82552_SMARTSPEED);
2940
2941                        mdio_write(netdev, nic->mii.phy_id,
2942                                   E100_82552_SMARTSPEED, smartspeed |
2943                                   E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
2944                }
2945                *enable_wake = true;
2946        } else {
2947                *enable_wake = false;
2948        }
2949
2950        pci_disable_device(pdev);
2951}
2952
2953static int __e100_power_off(struct pci_dev *pdev, bool wake)
2954{
2955        if (wake)
2956                return pci_prepare_to_sleep(pdev);
2957
2958        pci_wake_from_d3(pdev, false);
2959        pci_set_power_state(pdev, PCI_D3hot);
2960
2961        return 0;
2962}
2963
2964#ifdef CONFIG_PM
2965static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2966{
2967        bool wake;
2968        __e100_shutdown(pdev, &wake);
2969        return __e100_power_off(pdev, wake);
2970}
2971
2972static int e100_resume(struct pci_dev *pdev)
2973{
2974        struct net_device *netdev = pci_get_drvdata(pdev);
2975        struct nic *nic = netdev_priv(netdev);
2976
2977        pci_set_power_state(pdev, PCI_D0);
2978        pci_restore_state(pdev);
2979        /* ack any pending wake events, disable PME */
2980        pci_enable_wake(pdev, 0, 0);
2981
2982        /* disable reverse auto-negotiation */
2983        if (nic->phy == phy_82552_v) {
2984                u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2985                                           E100_82552_SMARTSPEED);
2986
2987                mdio_write(netdev, nic->mii.phy_id,
2988                           E100_82552_SMARTSPEED,
2989                           smartspeed & ~(E100_82552_REV_ANEG));
2990        }
2991
2992        netif_device_attach(netdev);
2993        if (netif_running(netdev))
2994                e100_up(nic);
2995
2996        return 0;
2997}
2998#endif /* CONFIG_PM */
2999
3000static void e100_shutdown(struct pci_dev *pdev)
3001{
3002        bool wake;
3003        __e100_shutdown(pdev, &wake);
3004        if (system_state == SYSTEM_POWER_OFF)
3005                __e100_power_off(pdev, wake);
3006}
3007
3008/* ------------------ PCI Error Recovery infrastructure  -------------- */
3009/**
3010 * e100_io_error_detected - called when PCI error is detected.
3011 * @pdev: Pointer to PCI device
3012 * @state: The current pci connection state
3013 */
3014static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3015{
3016        struct net_device *netdev = pci_get_drvdata(pdev);
3017        struct nic *nic = netdev_priv(netdev);
3018
3019        netif_device_detach(netdev);
3020
3021        if (state == pci_channel_io_perm_failure)
3022                return PCI_ERS_RESULT_DISCONNECT;
3023
3024        if (netif_running(netdev))
3025                e100_down(nic);
3026        pci_disable_device(pdev);
3027
3028        /* Request a slot reset. */
3029        return PCI_ERS_RESULT_NEED_RESET;
3030}
3031
3032/**
3033 * e100_io_slot_reset - called after the pci bus has been reset.
3034 * @pdev: Pointer to PCI device
3035 *
3036 * Restart the card from scratch.
3037 */
3038static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3039{
3040        struct net_device *netdev = pci_get_drvdata(pdev);
3041        struct nic *nic = netdev_priv(netdev);
3042
3043        if (pci_enable_device(pdev)) {
3044                pr_err("Cannot re-enable PCI device after reset\n");
3045                return PCI_ERS_RESULT_DISCONNECT;
3046        }
3047        pci_set_master(pdev);
3048
3049        /* Only one device per card can do a reset */
3050        if (0 != PCI_FUNC(pdev->devfn))
3051                return PCI_ERS_RESULT_RECOVERED;
3052        e100_hw_reset(nic);
3053        e100_phy_init(nic);
3054
3055        return PCI_ERS_RESULT_RECOVERED;
3056}
3057
3058/**
3059 * e100_io_resume - resume normal operations
3060 * @pdev: Pointer to PCI device
3061 *
3062 * Resume normal operations after an error recovery
3063 * sequence has been completed.
3064 */
3065static void e100_io_resume(struct pci_dev *pdev)
3066{
3067        struct net_device *netdev = pci_get_drvdata(pdev);
3068        struct nic *nic = netdev_priv(netdev);
3069
3070        /* ack any pending wake events, disable PME */
3071        pci_enable_wake(pdev, 0, 0);
3072
3073        netif_device_attach(netdev);
3074        if (netif_running(netdev)) {
3075                e100_open(netdev);
3076                mod_timer(&nic->watchdog, jiffies);
3077        }
3078}
3079
3080static struct pci_error_handlers e100_err_handler = {
3081        .error_detected = e100_io_error_detected,
3082        .slot_reset = e100_io_slot_reset,
3083        .resume = e100_io_resume,
3084};
3085
3086static struct pci_driver e100_driver = {
3087        .name =         DRV_NAME,
3088        .id_table =     e100_id_table,
3089        .probe =        e100_probe,
3090        .remove =       __devexit_p(e100_remove),
3091#ifdef CONFIG_PM
3092        /* Power Management hooks */
3093        .suspend =      e100_suspend,
3094        .resume =       e100_resume,
3095#endif
3096        .shutdown =     e100_shutdown,
3097        .err_handler = &e100_err_handler,
3098};
3099
3100static int __init e100_init_module(void)
3101{
3102        if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3103                pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3104                pr_info("%s\n", DRV_COPYRIGHT);
3105        }
3106        return pci_register_driver(&e100_driver);
3107}
3108
3109static void __exit e100_cleanup_module(void)
3110{
3111        pci_unregister_driver(&e100_driver);
3112}
3113
3114module_init(e100_init_module);
3115module_exit(e100_cleanup_module);
3116